
Preface

Piero A. Bonatti1, Li Ding2, Tim Finin3, and Daniel Olmedilla4

1 Università di Napoli Federico II, Napoli, Italy

bonatti@na.infn.it
2 Knowledge Systems Lab, Stanford,USA

ding@ksl.stanford.edu
3 University of Maryland Baltimore County, USA

finin@cs.umbc.edu
4 L3S Research Center and University of Hannover, Hannover, Germany

olmedilla@L3S.de

Policies are pervasive in web applications. They play crucial roles in enhancing
security, privacy and usability of distributed services, and indeed may determine
the success (or failure) of a web service. However, users will not be able to
benefit from these protection mechanisms unless they understand and are able
to personalize policies applied in such contexts. For web services this includes
policies for access control, privacy and business rules, among others. There has
been extensive research in the area, including the Semantic Web community,
but several aspects still exist that prevent policy frameworks from widespread
adoption and real world application like for example:

– Adoption of a broad notion of policy, encompassing not only access con-
trol policies, but also privacy policies, business rules, quality of service, and
others.

– Strong and lightweight evidence: Policies make decisions based on properties
of the peers interacting with the system. These properties may be strongly
certified by cryptographic techniques, or may be reliable to some intermedi-
ate degree with lightweight evidence gathering and validation.

– Policy-driven negotiations may be one of the main ingredients that can be
used to make heterogeneous peers effectively interoperate.

– Lightweight knowledge representation and reasoning should also reduce the
effort to specialize general frameworks to specific application domains

– Solutions like controlled natural language syntax for policy rules, to be trans-
lated by a parser into the internal logical format, will definitively ease the
adoption of any policy language.

– Cooperative policy enforcement: A secure cooperative system should (al-
most) never say no. Whenever prerequisites for accessing a service are not
met, web applications should explain what is missing and help the user in
obtaining the required permissions.

– Advanced explanation mechanisms are necessary to help users in under-
standing policy decisions and obtaining the permission to access a desired
service.

II Piero A. Bonatti, Li Ding, Tim Finin, and Daniel Olmedilla

This volume5 contains the papers presented at the 2nd International Se-
mantic Web Policy Workshop (SWPW’06) held on Athens in Georgia, USA on
November 5th, 2006, in conjunction with the 5th International Semantic Web
Conference (ISWC).

In response to the call for papers there were a total number of 15 submissions.
These papers were evaluated on the basis of their originality and contribution,
technical quality and presentation. Each submission was reviewed by at least
3 programme committee members. The committee finally decided to accept 4
full papers and 6 short/position papers. The program also includes an invited
talk by Grit Denker on Policy Specification and Enforcement For Spectrum-Agile
Radios.

We would like to thank all people who contributed to the success of the
workshop including the programme committee members and external referees,
who provided timely and indepth reviews of the submitted papers, all authors
who submitted papers and all the attendees.

Piero A. Bonatti, Li Ding, Tim Finin, and Daniel Olmedilla

Programme Committee Chairs

SWPW 2006

5 The management of the workshop as well as the generation of the workshop pro-

ceedings greatly benefitted from the EasyChair conference management system.

Workshop Organization

Programme Chairs

Piero A. Bonatti, University of Naples
Li Ding, Knowledge Systems Lab, Stanford
Tim Finin, University of Maryland Baltimore County
Daniel Olmedilla, L3S Research Center & Hannover University

Programme Committee

Anne Anderson, Sun Microsystems
Anupam Joshi, University of Maryland, Baltimore County
Chris Bizer, FU Berlin
Piero Bonatti, University of Naples
Jeffrey M. Bradshaw, Florida IHMC
Li Ding, Knowledge Systems Lab, Stanford University
Naranker Dulay, Imperial College
Tim Finin, University of Maryland, Baltimore County
Lalana Kagal, MIT
Jiangtao Li, Purdue University
Brian LaMacchia, Microsoft
Fabio Martinelli, National Research Council - C.N.R.
Rebecca Montanari, University of Bologna
Wolfgang Nejdl, L3S and University of Hannover
Daniel Olmedilla, L3S and University of Hannover
Norman Sadeh, Carnegie Mellon University
Pierangela Samarati, University of Milano
Kent Seamons, Brigham Young University
William Winsborough, University of Texas at San Antonio

Additional Referees

Sabrina De Capitani di Vimercati
Jinghai Rao
Alessandra Toninelli

IV

Table of Contents

Policy Specification and Enforcement For Spectrum-Agile Radios
(invited talk) . 1

Grit Denker

Towards Verification, Validation and Integrity of Rule Based Policies
and Contracts in the Semantic Web . 2

Adrian Paschke

Trust Policies for Semantic Web Repositories . 17
Vinicius da Silva Almendra, Daniel Schwabe

An Access Control Model for Protecting Semantic Web Resources 32
Sara Javanmardi, Morteza Amini, rasool jalili

Context-aware Trustworthiness Evaluation with Indirect Knowledge 47
Santtu Toivonen, Lenzini Gabriele, Ilkka Uusitalo

The Virtuous Circle of Expressing Authorisation Policies 62
David Chadwick, Angela Sasse

Aligning WSMO and WS-Policy . 70
Dumitru Roman, Jacek Kopecky, Ioan Toma, Dieter Fensel

WS-Policy and Beyond: Application of OWL Defaults to Web Service
Policies . 78

Vladimir Kolovski

Semantics in Model-Driven Business Design . 86
Mark Linehan

Non-Boolean Authentication . 94
Alec Yasinsac

Semantic Digital Rights Management for Controlled P2P RDF
Metadata Diffusion . 102

Giovanni Tummarello, Roberto Garcia

VI

Policy Specification and Enforcement For
Spectrum-Agile Radios

Grit Denker

SRI International, 333 Ravenswood Ave, Menlo Park, California 94025
Grit.Denker@sri.com

Because of the centralized, static nature of current spectrum allotment policy, wire-
less communication is confronting two significant problems: spectrum scarcity and de-
ployment delays. Current systems are significantly impacted by the lack of access to
unused spectrum, and existing spectrum management procedures are too inflexible to
react to dynamic operational needs. The policies are static and policy changes are very
labor intensive.

Existing policies assume 100% spectrum use; however, studies have shown that
most assigned spectrum is unused most of the time. This motivated the goals of DARPA’s
neXt Generation (XG) Communications Program, which envisions opportunistic spec-
trum access. XG provides technologies for automatic, dynamic, and opportunistic ac-
cess to unused spectrum. This requires that radios sense and opportunistically adapt to
local RF environments and application needs.

In addition, radios must act according to regulatory rules. Spectrum use policies are
authored in more than 200 countries and are verified by each host nation. Policies are
customizable to location, user, time, frequency and many other parameters, and they
change over time. The large number of operating dimensions to be considered makes
it difficult to find a solution for the optimal use of radio spectrum. In XG this problem
is solved by using platform-independentPolicy Controlsto regulate spectrum access in
changing regulatory environments.

We developed an expressive and extensible policy language for describing policies
that meet the needs of a wide variety of spectrum regulation bodies, including reuse
of ontological concepts, and for supporting efficient reasoning. We also implemented
a policy-conformance algorithm that checks the compliance of candidate transmissions
using efficient, state-of-the-art reasoning technology. The design of the algorithm is
independent of, yet easy to integrate into, any radio design, to encourage competitive,
best-of-breed XG radio development.

We will report on our experience in designing the Cognitive Radio Language (CoRaL).
CoRaL is a declarative language based on a typed version of classical first-order logic.
We will also summarize the results of our evaluation of various logical formalisms with
respect to their appropriateness for the XG domain. Finally, we will illustrate the main
concepts of the XG Policy Reasoner.

Acknowledgments.

This research was supported by DARPA’s neXt Generation (XG) Communications Pro-
gram under Contract Number FA8750-05-C-0230. (Approved for Public Release, Dis-
tribution Unlimited)

1

Verification, Validation, Integrity of Rule Based
Policies and Contracts in the Semantic Web

Adrian Paschke

Internet-based Information Systems, Dept. of Informatics, TU Munich, Germany
Adrian.Paschke@gmx.de

Abstract. Rule-based policy and contract systems have rarely been stud-
ied in terms of their software engineering properties. This is a serious omis-
sion, because in rule-based policy or contract representation languages rules
are being used as a declarative programming language to formalize real-
world decision logic and create IS production systems upon. This paper
adopts a successful SE methodology, namely test driven development, and
discusses how it can be adapted to verification, validation and integrity test-
ing (V&V&I) of policy and contract specifications. Since, the test-driven ap-
proach focuses on the behavioral aspects and the drawn conclusions instead
of the structure of the rule base and the causes of faults, it is independent
of the complexity of the rules and the system under test and thus much
easier to use and understand for the rule engineer and the user.

Key words: Declarative Verification, Validation and Integrity (V&V&I),
Rule-based Policies / SLAs, Rule Interchange, Test Cases, Test Coverage

1 Test-driven V&V for Rule-based Policies and Contracts

Increasing interest in industry and academia in higher-level policy and contract lan-
guages has led to much recent development. Different representation approaches have
been propose, reaching from general syntactic XML markup languages such as WS-
Policy, WS-Agreement or WSLA to semantically-rich (ontology based) policy repre-
sentation languages such as Rei, KAoS or Ponder and highly expressive rule based
contract languages such as the RBSLA language [2] or the SweetRules approach. In
this paper we adopt the rule-based view on expressive high-level policy and contract
languages for representing e.g. SLAs, business policies and other contractual, business-
oriented decision logic. In particular, we focus on logic programming techniques. Logic
programming has been one of the most successful representatives of declarative pro-
gramming. It is based on solid and well-understood theoretical concepts and has been
proven to be very useful for rapid prototyping and describing problems on a high ab-
straction level. The domain of contractual agreements, high-level policies and business
rules’ decision logic appears to be highly suitable to logic programming. For instance,
IT service providers need to manage and possibly interchange large amounts of SLAs /
policies / business rules which describe behavioral, contractual or business logic using
different rule types to describe e.g. complex conditional decision logic (derivation rules),
reactive or even proactive behavior (ECA rules), normative statements and legal rules
(deontic rules), integrity definitions (integrity constraints) or defaults, rule preferences
and exceptions (non-monotonic defeasible rules). Such rule types have been shown to

2

2 Paschke, Adrian

be adequately represented and formalized as logic programs (LPs) - see the Contract-
Log KR [1] developed in the RBSLA project [3]. However, the domain imposes some
specific needs on the engineering and life-cycle management of formalized policy / con-
tract specifications: The policy rules must be necessarily modelled evolutionary, in a
close collaboration between domain experts, rule engineers and practitioners and the
statements are not of static nature and need to be continuously adapted to changing
needs. The future growth of policies or contract specifications, where rules are often
managed in a distributed way and are interchanged between domain boundaries, will
be seriously obstructed if developers and providers do not firmly face the problem of
quality, predictability, reliability and usability also w.r.t. understandability of the re-
sults produced by their rule-based policy/contract systems and programs. Furthermore,
the derived conclusions and results need to be highly reliable and traceable to count
even in the legal sense. This amounts for verification, validation and integrity testing
(V&V&I) techniques, which are much simpler than the rule based specifications itself,
but nevertheless adequate (expressive enough) to approximate their intended seman-
tics, determine the reliability of the produced results, ensure the correct execution in
a target inference environment and safeguard the life cycle of possibly distributed and
unitized rules in rule-based policy projects which are likely to change frequently.

Different approaches and methodologies to V&V of rule-based systems have been
proposed in the literature such as model checking, code inspection or structural debug-
ging. Simple operational debugging approaches which instrument the policy/contract
rules and explore its execution trace place a huge cognitive load on the user, who
needs to analyze each step of the conclusion process and needs to understand the
structure of the rule system under test. On the other hand, typical heavy-weight V&V
methodologies in Software Engineering (SE) such as waterfall-based approaches are
often not suitable for rule-based systems, because they induce high costs of change
and do not facilitate evolutionary modelling of rule-based policies with collaborations
of different roles such as domain experts, system developers and knowledge engineers.
Moreover, they can not check the dynamic behaviors and the interaction between dy-
namically updated and interchanged policies/contracts and target execution environ-
ments at runtime. Model-checking techniques and methods based e.g. on algebraic-,
graph- or Petri-net-based interpretations are computationally very costly, inapplicable
for expressive policy/contract rule languages and presuppose a deep understanding of
both domains, i.e. of the the testing language / models and of of the rule language and
the rule inferences. Although test-driven Extreme Programming (XP) techniques and
similar approaches to agile SE have been very successful in recent years and are widely
used among mainstream software developers, its values, principles and practices have
not been transferred into the rule-based policy and contract representation commu-
nity yet. In this paper, we adapt a successful methodology of XP, namely test cases
(TCs), to verify and validate correctness, reliability and adequacy of rule-based policy
and contract specifications. It is well understood in the SE community that test-driven
development improves the quality and predictability of software releases and we argue
that TCs and integrity constraints (ICs) also have a huge potential to be a successful
tool for declarative V&V of rule-based policy and contract systems. TCs in combina-
tion with other SE methodologies such as test coverage measurement which is used to
quantify the completeness of TCs as a part of the feedback loop in the development
process and rule base refinements (a.k.a. refactorings) [17] which optimize the existing
rule code, e.g. remove inconsistencies, redundancy or missing knowledge without break-
ing its functionality, qualify for typically frequently changing requirements and models
of rule-based policies and contracts (e.g. SLAs). Due to their inherent simplicity TCs,

3

V&V&I of Rule Based Policies, Contracts, SLAs 3

which provide an abstracted black-box view on the rules, better support different roles
which are involved during the engineering process and give policy engineers an expres-
sive but nevertheless easy to use testing language. In open distributed environment
TCs can be used to ensure correct execution of interchanged specifications in target
execution environments by validating the interchanged rules with the attached TCs.

The further paper is structured as follows: In section 2 we review basics in V&V
research. In section 3 we define syntax and semantics of TCs and ICs for LP based
policy/contract specifications. In section 4 we introduce a declarative test coverage
measure which draws on inductive logic programming techniques. In section 5 we dis-
cuss TCs for V&V of rule engines and rule interchange. In section 6 we describe our
reference implementation in the ContractLog KR and integrate our approach into an
existing SE test framework (JUnit) and a rule markup language (RuleML). In section
7 we discuss related work and conclude this paper with a discussion of the test-drive
V&V&I approach for rule-based policies and contracts.

2 Basics in Rule-based V&V Research

V&V of rule-based policy/contract specifications is vital to assure that the LP used
to formalize the policy/contract rules performs the tasks which it was designed for.
Accordingly, the term V&V is used as a rough synonym for ”evaluation and testing”.
Both processes guarantee that the LP provides the intended answer, but also imply
other goals such as to assure the security or maintenance and service of the rule-based
system. There are many definitions of V&V in the SE literature. In the context of V&V
of rule-based policies/contracts we use the following:
1. Verification ensures the logical correctness of a LP. Akin to traditional SE a distinction between

structurally flawed or logically flawed rule bases can be made with structural checks for redundancy

or relevance and semantic checks for consistency, soundness and completeness.

2. As discussed by Gonzales [4] validation is concerned with the correctness of a rule-based system

in a particular environment/situation and domain.

During runtime certain parts of the rule based decision logic should be static and not
subjected to changes or it must be assured that updates do not change this part of the
intended behavior of the policy/contract. A common way to represent such constraints
are ICs. Roughly, if validation is interpreted as: ”Are we building the right product?”
and verification as: ”Are we building the product right?” then integrity might be loosely
defined as: ”Are we keeping the product right?”, leading to the new pattern: V&V&I.
Hence, ICs are a way to formulate consistency (or inconsistency) criteria of a dynami-
cally updated knowledge base (KB). Another distinction which can be made is between
errors and anomalies:
- Errors represent problems which directly effect the execution of rules. The simplest source of errors

are typographical mistakes which can be solved by a verifying parser. More complex problems arise

in case of large rule bases incorporating several people during design and maintenance and in case of

the dynamic alteration of the rule base via adding, changing or refining the knowledge which might

easily lead to incompleteness and contradictions.

- Anomalies are considered as symptoms of genuine errors, i.e. they man not necessarily represent

problems in themselves.

Much work has been done to establish and classify the nature of errors and anomalies
that may be present in rule bases, see e.g. the taxonomy of anomalies from Preece and
Shinghal [5]. We briefly review the notions that are commonly used in the literature
[6, 7], which range from semantic checks for consistency and completeness to structural

4

4 Paschke, Adrian

checks for redundancy, relevance and reachability:
1. Consistency: No conflicting conclusions can be made from a set of valid input data. The common

definition of consistency is that two rules or inferences are inconsistent if they succeed at the same

knowledge state, but have conflicting results. Several special cases of inconsistent rules are consid-

ered in literature such as:

- self-contradicting rules and self-contradicting rule chains, e.g. p ∧ q → ¬p

- contradicting rules and contradicting rule chains, e.g. p ∧ q → s and p ∧ q → ¬s

Note that the first two cases of self-contradiction are not consistent in a semantic sense and can

equally be seen as redundant rules, since they can be never concluded.

2. Correctness/Soundness: No invalid conclusions can be inferred from valid input data, i.e. a rule

base is correct when it holds for any complete model M , that the inferred output from valid inputs

via the rule base are true in M . This is closely related to soundness which checks that the intended

outputs indeed follows from the valid input. Note, that in case of partial models with only partial in-

formation this means that all possible partial models need to be verified instead of only the complete

models. However, for monotonic inferences these notions coincide and a rule base which is sound is

also consistent.

3. Completeness: No valid input information fails to produce the intended output conclusions, i.e.

completeness relates to gaps (incomplete knowledge) in the knowledge base. The iterative process

of building large rule bases where rules are tested, added, changed and refined obviously can leave

gaps such as missing rules in the knowledge base. This usually results in intended derivations which

are not possible. Typical sources of incompleteness are missing facts or rules which prevent intended

conclusions to be drawn. But there are also other sources. A KB having too many rules and too many

input facts negatively influences performance and may lead to incompleteness due to termination

problems or memory overflows. Hence, superfluous rules and non-terminating rule chains can be also

considered as completeness problems, e.g.:

- Unused rules and facts, which are never used in any rule/query derivation (backward reasoning)

or which are unreachable or dead-ends (forward reasoning).

- Redundant rules such as identical rules or rule chains, e.g. p→ q and p→ q.

- Subsumed rules, a special case of redundant rules, where two rules have the same rule head but

one rule contains more prerequisites (conditions) in the body, e.g. p ∧ q → r and p→ r.

- Self-contradicting rules, such as p ∧ q ∧ ¬p→ r or simply p→ ¬p, which can never succeed.

- Loops in rules of rule chains, e.g. p ∧ q → q or tautologies such as p→ p.

3 Homogeneous Integration of Test Cases and Integrity
Constraints into Logic Programs

The relevance of V&V of rule bases and LPs has been recognized in the past (see section
2 and 7) and most recently also in the context of policy explanations [8]. The majority
of these approaches rely on debugging the derivation trees and giving explanations (e.g.
via spy and trace commands) or transforming the program into other more abstract
representation structures such as graphs, petri nets or algebraic structures which are
then analyzed for inconsistencies. Typically, the definition of an inconsistency, error
or anomaly (see section 2) is then given in the language used for analyzing the LP,
i.e. the V&V information is not expressed in the same representation language as the
rules. This is in strong contrast to the way people would like to engineer, manage and
maintain rule-based policies and systems. Different skills for writing the formalized
specifications and for analyzing them are needed as well as different systems for rea-
soning with rules and for V&V. Moreover, the used V&V methodologies (e.g. model

5

V&V&I of Rule Based Policies, Contracts, SLAs 5

checking or graph theory) are typically much more complicated than the rule-based
programs. In fact, it turns out that even writing rule-based systems that are useful
in practice is already of significant complexity, e.g. due to non-monotonic features or
different negations, and that simple methods are needed to safeguard the engineering
and maintenance process w.r.t. V&V&I. Therefore, what policy engineers and practi-
tioners would like to have is an ”easy-to-use” approach that allows representing rules
and tests in the same homogeneous representation language, so that they can be en-
gineered, executed, maintained and interchanged together using the same underlying
syntax, semantics and execution/inference environment. In this section we elaborate on
this homogeneous integration approach based on the common ”denominator”: extended
logic programming.

In the following we use the standard LP notation with an ISO Prolog related
scripting syntax called Prova [9] and we assume that the reader is familiar with logic
programming techniques [10]. For the semantics of the KB we adapt a rather gen-
eral definition [11] of LP semantics, because our test-driven approach is intended to
be general and applicable to several logic classes / rule languages (e.g. propositional,
DataLog, normal, extended) in order to fulfill the different KR needs of particular pol-
icy/contract projects (w.r.t expressiveness and computational complexity which are in
a trade-off relation to each other). In particular, as we will show in section 5, TCs can
be also used to verify the possible unknown semantics of a target inference service in
a open environment such as the (Semantic) Web and test the correct execution of an
interchanged policy/contract in the target environment.
- A semantics SEM(P) of a LP P is proof-theoretically defined as a set of literals that are

derivable from P using a particular derivation mechanisms, such as linear SLD(NF)-resolution

variants with negation-as-finite-failure rule or non-linear tabling approaches such as SLG reso-

lution. Model-theoretically, a semantics SEM(P) of a program P is a subset of all models of P :

MOD(P). In this paper in most cases a subset of the (3-valued) Herbrand-models of the language

of LP : SEM(P) ⊆MOD
HerbLP

(P). Associated to SEM(P) are two entailment relations:

1. sceptical, where the set of all atoms or default atoms are true in all models of SEM(P)

2. credulous, where the set of all atoms or default atoms are true in at least one model of SEM(P)

- A semantics SEM ′ extends a semantics SEM denoted by SEM ′ ≥ SEM, if for all programs

P and all atoms l the following holds: SEM(P) |= l ⇒ SEM ′(P) |= l, i.e. all atoms derivable

from SEM with respect to P are also derivable from SEM ′, but SEM ′ derives more true or false

atoms than SEM. The semantics SEM ′ is defined for a class of programs that strictly includes

the class of programs with the semantics SEM. SEM ′ coincides with SEM for all programs of

the class of programs for which SEM is defined.

In our ContractLog reference implementation we mainly adopt the sceptical view-
point on extended LPs and apply an extended linear SLDNF variant as procedural
semantics which has been extended with explicit negation, goal memoization and loop
prevention to overcome typical restrictions of standard SLDNF and compute WFS (see
ContractLog inference engine).

The general idea of TCs in SE is to predefine the intended output of a program
or method and compare the intended results with the derived results. If both match,
the TC is said to capture the intended behavior of the program/method. Although
there is no 100% guarantee that the TCs defined for V&V of a program exclude every
unintended results of the program, they are an easy way to approximate correctness
and other SE-related quality goals (in particular when the TCs and the program are
refined in an evolutionary, iterative process with a feedback loop). In logic programming
we think of a LP as formalizing our knowledge about the world and how the world
behaves. The world is defined by a set of models. The rules in the LP constrain the

6

6 Paschke, Adrian

set of possible models to the set of models which satisfy the rules w.r.t the current KB
(actual knowledge state). A query Q to the LP is typically a conjunction of literals
(positive or negative atoms) G1 ∧ .. ∧Gn, where the literals Gi may contain variables.
Asking a query Q to the LP then means asking for all possible substitutions θ of the
variables in Q such that Qθ logically follows from the LP P . The substitution set θ
is said to be the answer to the query, i.e. it is the output of the program P . Hence,
following the idea of TCs, for V&V of a LP P we need to predefine the intended outputs
of P as a set of (test) queries to P and compare it with the actual results / answers
derived from P by asking these test queries to P . Obviously, the set of possible models
of a program might be quite large (even if many constraining rules exist), e.g. because
of a large fact base or infinite functions. As a result the set of test queries needed to test
the program and V&V of the actual models of P would be in worst case also infinite.
However, we claim that most of the time correctness of a set of rules can be assured
by testing a much smaller subset of these models. In particular, as we will see in the
next section, in order to be an adequate cover for a LP the tests need to be only a
least general instantiation (specialization) of the rules’ terms (arguments) which fully
investigates and tests all rules in P . This supports our second claim, that V&V of LPs
with TC can be almost ever done in reasonable time, due to the fact that the typical
test query is a ground query (without variables) which has a small search space (as
compared to queries with free variables) and only proves existence of at least one model
satisfying it. In analogy to TCs in SE we define a TC as TC := {A, T} for a LP P to
consists of:
1. a set of possibly empty input assertions ”A” being the set of temporarily asserted test input

facts (and additionally meta test rules - see section 5) defined over the alphabet ”L”. The assertions

are used to temporarily setup the test environment. They can be e.g. used to define test facts,

result values of (external) functions called by procedural attachments, events and actions for testing

reactive rules or additional meta test rules.

2. a set of one ore more tests T . Each test Ti, i > 0 consists of:

- a test query Q with goal literals of the form q(t1, ..tn)?, where Q ∈ rule(P) and rule(P) is the

set of literals in the head of rules (since only rules need to be tested)

- a result R being either a positive ”true”, negative ”false” or ”unknown” label.

- an intended answer set θ of expected variable bindings for the variables of the test query Q:

θ := {X1, ..Xn} where each Xi is a set of variable bindings {Xi/a1, .., Xi/an}. For ground test

queries θ := ∅.
We write a TC T as follows: T = A ∪ {Q => R : θ}. If a TC has no assertions
we simply write T = {Q => R : θ}. For instance, a TC T1 = {p(X) => true :
{X/a, X/b, X/b}, q(Y) => false} defines a TC T1 with two test queries p(X)? and
q(Y)?. The query p(X)? should succeed and return three answers a,b and c for the free
variable X. The query q(Y) should fail. In case we are only interested in the existential
success of a test query we shorten the notation of a TC to T = {Q => R}.

To formulate runtime consistency criteria w.r.t. conflicts which might arise due to
knowledge updates, e.g. adding rules, we apply ICs:
An IC on a LP is defined as a set of conditions that the constrained KB must satisfy, in order

to be considered as a consistent model of the intended (real-world domain-specific) model. Sat-

isfaction of an IC is the fulfillment to the conditions imposed by the constraint and violation of

an IC is the fact of not giving strict fulfillment to the conditions imposed by the constraint, i.e.

satisfaction resp. violation on a program (LP) P w.r.t the set of IC := {ic1, ..ici} defined in P

is the satisfaction of each ici ∈ IC at each KB state P ′ := P ∪Mi ⇒ P ∪Mi+1 with M0 = ∅,
where Mi is an arbitrary knowledge update adding,removing or changing rules or facts to the

dynamically extended or reduced KB.

7

V&V&I of Rule Based Policies, Contracts, SLAs 7

Accordingly, ICs are closely related to our notion of TCs for LPs. In fact, TCs can be
seen as more expressive ICs. From a syntactical perspective we distinguish ICs from
TCs, since in our (ContractLog) approach we typically represent and manage TCs as
stand-alone LP scripts (module files) which are imported to the KB, whereas ICs are
defined as LP functions. Both, internal ICs or external TCs can be used to define
conditions which denote a logic or application specific conflict. ICs in ContractLog are
defined as a n-ary function integrity(< operator >, < conditions >). We distinguish
four types of ICs:
- Not-constraints which express that none of the stated conclusions should be drawn.

- Xor-constraints which express that the stated conclusions should not be drawn at the same time.

- Or-constraints which express that at least one of the stated conclusions must be drawn.

- And-constraints which express that all of the stated conclusion must draw.

ICs are defined as constraints on the set of possible models and therefore describe the
model(s) which should be considered as strictly conflicting. Model theoretically we at-
tribute a 2-valued truth value (true/false) to an IC and use the defined set of constraints
(literals) in an IC as a goal on the program P , by meta interpretation (proof-theoretic
semantics) of the integrity functions. In short, the truth of an IC in a finite interpreta-
tion I is determined by running the goal GIC defined by the IC on the clauses in P or
more precisely on the actual knowledge state of Pi in the KB. If the GIC is satisfied,
i.e. there exists at least one model for the sentence formed by the GIC : Pi |= GIC , the
IC is violated and P is proven to be in an inconsistent state w.r.t. IC: IC is violated
resp. Pi violates integrity iff for any interpretation I, I |= Pi → I |= GIC . We define
the following interpretation for ICs:
And and(C1, .., Cn): Pi |= (notC1 ∨ .. ∨ notCn) if exists i ∈ 1, .., n, Pi |= not Ci

Not: not(C1, .., Cn): Pi |= (C1 ∨ .. ∨ Cn) if exists i ∈ 1, .., n, Pi |= Ci

Or: or(C1, .., Cn): Pi |= (notC1 ∧ .. ∧ notCn if for all i ∈ 1, .., n, Pi |= not Ci

Xor: xor(C1, .., Cn): Pi |= (Cj ∧ Ck) if exists j ∈ 1, .., n, Pi |= Cj and exists k ∈ 1, .., n, Pi |= Ck

with Cj 6= Ck and Cj ∈ C, Ck ∈ C

C := {C1, .., Cn} are positive or negative n-ary atoms which might contain variables;
not is used in the usual sense of default negation, i.e. if a constraint literal can not be
proven true, it is assumed to be false. If there exists a model for a IC goal (as defined
above), i.e. the ”integrity test goal” is satisfied Pi |= GIC , the IC is assigned true and
hence integrity is violated in the actual knowledge/program state Pi.

4 Declarative Test Coverage Measurement

Test coverage is an essential part of the feedback loop in the test-driven engineering
process. The coverage feedback highlights aspects of the formalized policy/contract
specification which may not be adequately tested and which require additional testing.
This loop will continue until coverage of the intended models of the formalized policy
specification meets an adequate approximation level by the TC resp. test suites (TS)
which bundle several TCs. Moreover, test coverage measurements helps to avoid atro-
phy of TSs when the rule-based specifications are evolutionary extended. Measuring
coverage helps to keep the tests up to a required level if new rules are added or exist-
ing rules are removed/changed. However, conventional testing methods for imperative
programming languages rely on the control flow graph as an abstract model of the pro-
gram or the explicitly defined data flow and use coverage measures such as branch or
path coverage. In contrast, the proof-theoretic semantics of LPs is based on resolution
with unification and backtracking, where no explicit control flow exists and goals are

8

8 Paschke, Adrian

used in a refutation attempt to specialize the rules in the declarative LP by unifying
them with the rule heads. Accordingly, building upon this central concept of unifica-
tion a test covers a logic program P , if the test queries (goals) lead to a least general
specialization of each rule in P , such that the full scope of terms (arguments) of each
literal in each rule is investigated by the set of test queries.
Inductively deriving general information from specific knowledge is a task which is
approached by inductive logic programming (ILP) techniques which allow computing
the least general generalization (lgg), i.e. the most specific clause (e.g. w.r.t. theta
subsumption) covering two input clauses. A lgg is the generalization that keeps an
generalized term t (or clause) as special as possible so that every other generalization
would increase the number of possible instances of t in comparison to the possible
instances of the lgg. Efficient algorithms based on syntactical anti-unification with θ-
subsumption ordering for the computation of the (relative) lgg(s) exist and several
implementations have been proposed in ILP systems such as GOLEM, or FOIL. θ-
subsumption introduces a syntactic notion of generality: A rule (clause) r (resp. a term
t) θ-subsumes another rule r′, if there exists a substitution θ, such that r ⊆ r′, i.e. a
rule r is as least as general as the rule r′ (r ≤ r′), if r θ-subsumes r′ resp. is more
general than r′ (r < r′) if r ≤ r′ and r′ � r. (see e.g. [14]) In order to determine the
level of coverage the specializations of the rules in the LP under test are computed via
specializing the rules with the test queries by standard unification. Then via general-
izing these specializations under θ-subsumption ordering, i.e. computing the lggs of all
successful specializations, a reconstruction of the original LP is attempted. The number
of successful ”recoverings” then give the level of test coverage, i.e. the level determines
those statements (rules) in a LP that have been executed/investigated through a test
run and those which have not. In particular, if the complete LP can be reconstructed
via generalization of the specialization then the test fully covers the LP. Formally we
express this as follows:
Let T be a test with a set of test queries T := {Q1?, .., Qn?} for a program P , then T
is a cover for a rule ri ∈ P , if the lgg(r′

i) ' ri under θ − subsumption, where ' is an
equivalence relation denoting variants of clauses/terms and the r′

i are the specializa-
tions of ri by a query Qi ∈ T . It is a cover for a program P , if T is a cover for each
rule ri ∈ P . With this definition it can be determined whether a test covers a LP or
not. The coverage measure for a LP P is then given by the number of covered rules ri

divided by the number k of all rules in P :

coverP (T) : −
Pk

i=1 coverri
(T)

k

For instance, consider the following simplified business policy P :

discount(Customer, 10%) :- gold(Customer).
gold(Customer) :- spending(Customer, Value) , Value > 3000.
spending(’Moor’,5000). spending(’Do’,4000). %facts

Let T = {discount(′Moor′, 10%)? => true, discount(′Do′, 10%)? => true be a test with two test
queries. The set of directly derived specializations by applying this tests on P are:

discount(’Moor’,10%) :- gold(’Moor’).
discount(’Do’,10%) :- gold(’Do’).

The computed lggs of this specializations are:

discount(Customer,10%) :- gold(Customer).

Accordingly, the coverage of P is 50%. We extend T with the additional test goals: {gold(′Moor′)? =>
true, gold(′Do′)? => true)?}. This leads to two new specializations:

9

V&V&I of Rule Based Policies, Contracts, SLAs 9

gold(’Moor’) :- spending(’Moor’,Value) , Value > 3000.
gold(’Do’) :- spending(’Do’,Value) , Value > 3000.

The additional lggs are then:

gold(Customer) :- spending(Customer, Value) , Value > 3000.

T now covers P , i.e. coverage = 100%.

The coverage measure determines how much of the information represented by the
rules is already investigated by the actual tests. The actual lggs give feedback how
to extend the set of test goals in order to increase the coverage level. Moreover, re-
peatedly measuring the test coverage each time when the rule base becomes updated
(e.g. when new rules are added) keeps the test suites (set of TCs) up to acceptable
testing standards and one can be confident that there will be only minimal problems
during runtime of the LP because the rules do not only pass their tests but they are
also well tested. In contrast to other computations of the lggs such as implication (i.e.
a stronger ordering relationship), which becomes undecidable if functions are used, θ-
subsumption has nice computational properties and it works for simple terms as well
as for complex terms with or without negation, e.g. p() : −q(f(a)) is a specialization
of p : −q(X). Although it must be noted that the resulting clause under generalization
with θ-subsumption ordering may turn out to be redundant, i.e. it is possible find an
equivalent one which is described more shortly, this redundancy can be reduced and
since we are only generalizing the specializations on the top level this reduction is com-
putationally adequate. Thus, θ-subsumption and least general generalization qualify to
be the right framework of generality in the application of our test coverage notion.

5 Test-driven V&V of Rule Engines and Rule Interchange

Typical rule-based contracts/policies are managed and maintained in a distributed en-
vironment where the rules and data is interchanged over domain boundaries using more
or less standardized rule markup interchange formats, e.g. RuleML, SWRL, RBSLA,
RIF. The interchanged rules need to be interpreted and executed correctly in the target
inference engine which might be provided as an open (Web) service by a third-party
provider or a standardization body such as OMG or W3C (see [15]). Obviously, the
correct execution of the interchanged LP depends on the semantics of both, the LP
and the the inference engine (IE). TCs, which are interchanged together with the LP,
can be used to test whether the LP still behaves as intended in the target environment.

To address this issues the IE, the interchanged LP and the provided TCs must reveal
their semantics, e.g. by use of explicit meta annotations based on a common vocabulary
such as a (Semantic Web) ontology which classifies semantics such as STABLE (stable
model), WFS (well-founded) and relates them to classes of LPs such as stratified LPs,
normal LPs, extended LPs. The ontology can then be used to provide additional meta
information about the semantics and logic class of the interchanged rules and TCs
and find appropriate IEs to correctly and efficiently interpret and execute the LP,
e.g. (1) via configuring the target rule engine for a particular semantics in case it
supports different ones (see e.g. the configurable ContractLog IE), (2) by executing
an applicable variant of several interchanged semantics alternatives of the LP or (3)
by automatic transformation approaches which transform the interchange LP into an
executable LP. However, we do not believe that each rule engine vendor will annotate
its implementation with such meta information, even when there is an official standard

10

10 Paschke, Adrian

Semantic Web ontology on hand (e.g. released by OMG or W3C). Therefore, means to
automatically determine the supported semantics of IEs are needed. As we will show in
this section, TCs can be extended to meta test programs testing typical properties of
well-known semantics and by the combination of succeed and failed meta tests uniquely
determine the unknown semantics of the target environment.

A great variety of semantics for LPs and non-monotonic reasoning have been devel-
oped in the past decades. For an overview we relate to [11]. In general, there are three
ways to determine the semantics (and hence the IE) to be used for execution: (1) by
its complexity and expressiveness class (which are in a trade-off relation to each other),
(2) by its runtime performance or (3) by the semantic properties it should satisfy. A
generally accepted criteria as to why one semantics should be used over another does
not exists, but two main competing approaches, namely WFS and STABLE, have been
broadly accepted as declarative semantics for normal LPs.

For discussion of the worst case complexity and expressiveness of several classes
of LPs we refer to [16]. Based on these complexity results for different semantics and
expressive classes of LPs, which might be published in a machine interpretable format
(Semantic Web ontology) for automatic decision making, certain semantics might be
already excluded to be usable for a particular rule-based policy/contract application.
However, asymptotic worst-case results are not always appropriate to quantify perfor-
mance and scalability of a particular rule execution environment since implementation
specifics of an IE such as the use of inefficient recursions or memory-structures might
lead to low performance or memory overflows in practice. TCs can be used to measure
the runtime performance and scalability for different outcomes of a rule set given a
certain test fact base as input. By this certain points of attention, e.g., long computa-
tions, loops or deeply nested derivation trees, can be identified and a refactoring of the
rule code (e.g. reordering rules, narrowing rules, deleting rules etc.) can be attempted
[17]. We call this dynamic testing in opposite to functional testing. Dynamic TCs with
maximum time values (time constraints) are defined as an extension to functional TCs
(see section 3): TC = A ∪ {Q => R : θ < MS}, where MS is a maximum time con-
straint for the test query Q. If the query was not successful within this time frame the
test is said to be failed. For instance, TCdyn : q(a)? => true < 1000ms succeeds iff the
test query succeeds and the answer is computed in less than 1000 milliseconds.

To define a meta ontology of semantics and LP classes (represented as an OWL
ontology - see [18]) which can be used to meta annotate the interchanged policy LPs,
the IEs and the TCs we draw on the general semantics classification theory developed
by J. Dix [12, 13]. Typical top-level LP classes are, e.g., definite LPs, stratified LPs,
normal LP, extended LPs, disjunctive LPs. Well-known semantics for these classes are
e.g., least and supported Herbrand models, 2 and 3-valued COMP, WFS, STABLE,
generalized WFS etc. Given the information to which class a particular LP belongs,
which is its intended semantics and which is the de facto semantics of the target IE, it
is straightforward to decide wether the LP can be executed by the IE or not. In short, a
LP can not be executed by an IE, if the IE derives less literals than the intended SEM
for which the LP was design for would do, i.e. SEM ′(IE) ≥ SEM(P) or the semantics
implemented by the IE is not adequate for the program, i.e. SEM ′(IE) 6= SEM(P)
. This information can be give by meta annotations, e.g., class: defines the class of
the LP / IE; semantics: defines the semantics of the LP / IE; syntax: defines the rule
language syntax.

In the context of rule interchange with open, distributed IEs, which might be pro-
vided as public services, an important question is, wether the IE correctly implements
a semantics. Meta TCs can be used for V&V of the interchanged LP in the target en-

11

V&V&I of Rule Based Policies, Contracts, SLAs 11

vironment and therefore establish trust to this service. Moreover, meta TCs checking
general properties of semantics can be also used to verify and determine the semantics
of the target IE even in case when it is unknown (not given by meta annotations).
Kraus et al. [19] and Dix [12, 13] proposed several weak and structural (strong) prop-
erties for arbitrary (non-monotonic) semantics, e.g.:

Strong Properties

- Cumulativity: If U ⊆ V ⊆ SEMscept
P (U), then SEMscept

P (U) = SEMscept
P (V), where U and V

are are sets of atoms and SEMscept
P is an arbitrary sceptical semantics for the program P , i.e. if

a |∼ b then a |∼ c iff (a ∧ b) |∼ c.

- Rationality: If U ⊆ V, V ∩ {A : SEMscept
P (U) |= ¬A} = ∅, then SEMscept

P (U) ⊆ SEMscept
P (V).

Weak Properties

- Elimination of Tautologies: If a rule a ← b ∧ not c with a ∩ b = ∅ is eliminated from a program

P , then the resulting program P ′ is semantically equivalent: SEM(P) = SEM(P ′). a,b,c are sets

of atoms: P 7→ P ′ iff there is a rule H ← B ∈ P such that H ∈ B and P ′ = P \ {H ← b}
- Generalized Principle of Partial Evaluation (GPPE): If a rule a ← b ∧ not c, where b contains

an atom B, is replaced in a program P ′ by the n rules a ∪ (ai −B)← ((b−B) ∪ bi) ∧ not (c ∪ ci),

where ai ← bi ∧ not ci(i = 1, ..n) are all rules for which B ∈ ai, then SEM(P) = SEM(P ′)

- Positive/Negative Reduction: If a rule a← b ∧ not c is replaced in a program P ′ by a← b ∧ not

(c−C) (C is an atom), where C appears in no rule head, or a rule a← b∧ not c is deleted from P ,

if there is a fact a′ in P such that a′ ⊆ c, then SEM(P) = SEM(P ′):

1. Positive Reduction: P 7→ P ′ iff there is a rule H ← B ∈ P and a negative literal not B ∈ B such

that B 3 HEAD(P) and P ′ = (P \ {H ← B}) ∪ {H ← (B \ {notB})}
2. Negative Reduction: P 7→ P ′ iff there is a rule H ← B ∈ P and a negative literal not B ∈ B such

that B ∈ FACT (P) and P ′ = (P \ {H ← B})
- Elimination of Non-Minimal Rules / Subsumption: If a rule a ← b ∧ not c is deleted from a

program P if there is another rule a′ ← b′ ∧ not c′ such that a′ ⊆ a, b′ ⊆ b, c′ ⊆ c, where at least

one ⊆ is proper, then SEM(P) = SEM(P ′): P 7→ P ′ iff there are rules H ← B and H ← B′ ∈ P

such that B ⊂ B′ and P ′ = P \ {H ← B′}
- Consistency: SEM(P) = ∅ for all disjunctive LPs

- Independence: For every literal L, L is true in every M ∈ SEM(P) iff L is true in every

M ∈ SEM(P ∪ P ′) provided that the language of P and P ′ are disjoint and L belongs to the

language of P

- Relevance: The truth value of a literal L with respect to a semantics SEM(P), only depends on the

subprogram formed from the relevant rules of P (relevant(P)) with respect to L: SEM(P)(L) =

SEM(relevant(P, L))(L)

The basic idea to apply these properties for the V&V as well as for the automated
determination of the semantics of arbitrary LP rule inference environments is, to trans-
late known counter examples into meta TCs and apply them in the target IE. Such
counter examples which show that certain semantics do not satisfy one or more of the
general properties, have been discussed in literature. To demonstrate this approach we
will now give an examples derived from [12, 13]. For a more detailed discussion of this
meta test case approach and more examples see [18]:

Example: STABLE is not Cautious
P: a <- neg b P’: a <- neg b

b <- neg a b <- neg a
c <- neg c c <- neg c
c <- a c <- a

c
T:{a?=>true,c?=>true}

12

12 Paschke, Adrian

STABLE(P) has {a, neg b, c} as its only stable model and hence it derives ’a’ and ’c’, i.e.
’T’ succeeds. By adding the derived atom ’c’ we get another model for P’ {neg a, b, c}, i.e.
’a’ can no longer derived (i.e. ’T’ now fails) and cautious monotonicity is not satisfied.

Example: STABLE does not satisfy Relevance
P: a <- neg b P’: a <- neg b

c <- neg c
T:={a?=>true}

The unique stable model of ’P’ is {a}. If the rule ’c <- neg c’ is added, ’a’ is no longer
derivable because no stable model exists. Relevance is violated, because the truth value of
’a’ depends on atoms that are totaly unrelated with ’a’.

The first ”positive” meta TC is used to verify if the (unknown) semantics imple-
mented by the IE will provide the correct answers for this particular meta test program
P . The ”negative” TC P ′ is then used to evaluate if the semantics of the IE satisfies
the property under tests. Such sets of meta TCs provide us with a tool for determining
an ”adequate” semantics to be used for a particular rule-based policy/contract appli-
cation. Moreover, there are strong evidences that by taking all properties together an
arbitrary semantics might be uniquely determined by the set of satisfied and unsat-
isfied properties, i.e. via applying a meta TS consisting of adequate meta TCs with
typical counter examples for these properties in a IE, we can uniquely determine the
semantics of this IE. Table 1 (derived from [12, 13]) specifies for common semantics the
properties that they satisfy.

The semantic principles described in this section are also very important in the context
of applying refactorings to LPs. In general, a refactoring to a rule base should optimize
the rule code without changing the semantics of the program. Removing tautologies
or non-minimal rules or applying positive/negative reductions are typically applied in
rule base refinements using refactorings [17] and the semantics equivalence relation
between the original and the refined program defined for this principles is therefore an
important prerequisite to safely apply a refactoring of this kind.

6 Integration into Testing Frameworks and RuleML

We have implemented the test drive approach in the ContractLog KR [18]. The Con-
tractLog KR [1] is an expressive and efficient KR framework developed in the RBSLA
project [3] and hosted at Sourceforge for the representation of contractual rules, poli-
cies and SLAs implementing several logical formalisms such as event logics, defeasible
logic, deontic logics, description logic programs in a homogeneous LP framework as
meta programs. TCs in the ContractLog KR are homogeneously integrated into LPs
and are written in an extended ISO Prolog related scripting syntax called Prova [9]. A
TC script consists of (1) a unique ID denoted by the function testcase(ID), (2) optional

13

V&V&I of Rule Based Policies, Contracts, SLAs 13

input assertions such as input facts and test rules which are added temporarily to the
KB as partial modules by expressive ID-based update functions, (3) a positive meta
test rule defining the test queries and variable bindings testSuccess(Test Name,Optional
Message for Junit), (4) a negative test rule testFailure(Test Name,Message) and (5) a
runTest rule.

% testcase oid
testcase("./examples/tc1.test").
% assertions via ID-based updates adding one rule and two facts
:-solve(update("tc1.test","a(X):-b(X). b(1). b(2).")).
% positive test with success message for JUnit report
testSuccess("test1","succeeded"):- testcase(./examples/tc1.test),testQuery(a(1)).
% negative test with failure message for Junit report
testFailure("test1","can not derive a"):- not(testSuccess("test1",Message)).
% define the active tests - used by meta program
runTest("./examples/tc1.test"):-testSuccess("test 1",Message).

A TC can be temporarily loaded resp. removed to/from the KB for testing pur-
poses, using expressive ID-based update functions for dynamic LPs [18]. The TC meta
program implements various functions, e.g., to define positive and negative test queries
(testQuery, testNotQuery, testNegQuery), expected answer sets (variable bindings:
testResults) and quantifications on the expected number of result (testNumberOfRe-
sults). It also implements the functions to compute the clause/term specializations (spe-
cialize) and generalizations (generalize) as well as the test coverage (cover). To proof
integrity constraints we have implemented another LP meta program in the Contract-
Log KR with the main test axioms testIntegrity() and testIntegrity(Literal). The
first integrity test is useful to verify (test logical integrity) and validate (test applica-
tion/domain integrity) the integrity of the actual KB against all ICs in the KB. The
second integrity test is useful to hypothetically test an intended knowledge update,
e.g. test wether a conclusion from a rule (the literal denotes the rule head) will lead to
violations of the ICs in the KB. Similar sets of test axioms are provided for temporarily
loading, executing and unloading TCs from external scripts at runtime.

To become widely accepted and useable to a broad community of policy engineers
and practitioners existing expertise and tools in traditional SE and flexible information
system (IS) development should be adapted to the declarative test-driven programming
approach. Well-known test frameworks like JUnit facilitate a tight integration of tests
into code and allow for automated testing and reporting in existing IDEs such as
eclipse via automated Ant tasks. The RBSLA/ ContractLog KR implements support
for JUnit based testing and test coverage reporting where TCs can be managed in
test suites (represented as LP scripts) and automatically run by a JUnit Ant task. The
ContractLog distribution comes with a set of functional-, regression-, performance- and
meta-TCs for the V&V of the inference implementations, semantics and meta programs
of the ContractLog KR.

To support distributed management and rule interchange we have integrated TCs
into RuleML (RuleML 0.9). The Rule Markup Language (RuleML) is a standardiza-
tion initiative with the goal of creating an open, producer-independent XML/RDF
based web language for rules. The Rule Based Service Level Agreement markup lan-
guage (RBSLA) [2] which has been developed for serialization of rule based contracts,
policies and SLAs comprises the TC layer together with several other layers extending
RuleML with expressive serialization constructs, e.g. defeasible rules, deontic norms,
temporal event logics, reactive ECA rules. The markup serialization syntax for TSs
/ TCs includes the following constructs given in EBNF notation, i.e. alternatives are

14

14 Paschke, Adrian

separated by vertical bars (|); zero to one occurrences are written in square brackets
([]) and zero to many occurrences in braces ({}).:

assertions ::= And
test ::= Test | Query
message ::= Ind | Var
TestSuite ::= [oid,] content | And
TestCase ::= [oid,] {test | Test,}, [assertions | And]
Test ::= [oid,] [message | Ind | Var,] test | Query, [answer | Substitutions]
Substitutions ::= {Var, Ind | Cterm}

Example:

<TestCase @semantics="semantics:STABLE" class="class:Propositional">
<Test @semantics="semantics:WFS" @label="true">

<Ind>Test 1</Ind><Ind>Test 1 failed</Ind>
<Query>

<And>
<Atom><Rel>p</Rel></Atom>
<Naf><Atom><Rel>q</Rel></Atom></Naf>

...
</TestCase>

The example shows a test case with the test: test1 : {p => true, not q => true}.

7 Related Work and Conclusion

V&V of KB systems and in particular rule based systems such as LPs with Prolog
interpreters have received much attention from the mid ’80s to the early ’90s, see e.g.
[6]. Several V&V methods have been proposed, such as methods based on operational
debugging via instrumenting the rule base and exploring the execution trace, tabular
methods, which pairwise compare the rules of the rule base to detect relationships
among premises and conclusions, methods based on formal graph theory or Petri Nets
which translate the rules into graphs or Petri nets, methods based on declarative de-
bugging which build an abstract model of the LP and navigate through it or methods
based on algebraic interpretation which transform a KB into an algebraic structure,
e.g. a boolean algebra which is then used to verify the KB. As discussed in section 1
most of this approaches are inherently complex and are not suited for the policy resp.
contract domain. Much research has also been directed at the automated refinement
of rule bases [17], and on the automatic generation of test cases. There are only a few
attempts addressing test coverage measurement for test cases of backward-reasoning
rule based programs [22, 23].

Test cases for rule based policies are particular well-suited when policies/contracts
grow larger and more complex and are maintained, possibly distributed and inter-
changed, by different people. In this paper we have attempted to bridge the gap be-
tween the test-driven techniques developed in the Software Engineering community,
on one hand, and the declarative rule based programming approach for engineering
high level policies such as SLAs, on the other hand. We have elaborated on an ap-
proach using logic programming as a common basis and have extended this test-driven
approach with the notion of test coverage, integrity tests, functional, dynamic and
meta tests for the V&V&I of inference environments in a open distributed environ-
ment such as the (Semantic) Web. In addition to the homogeneous integration of test
cases into LP languages we have introduce a markup serialization as an extension to
RuleML which, e.g. facilitates rule interchange. We have implemented our approach

15

V&V&I of Rule Based Policies, Contracts, SLAs 15

in the ContractLog KR [1] which is based on the Prova open-source rule environment
[9] and applied the agile test-driven values and practices successfully in the rule based
SLA (RBSLA) project for the development of complex, distributed SLAs [3]. Clearly,
test cases and test-driven development is not a replacement for good programming
practices and rule code review. However, the presence of test cases helps to safeguard
the life cycle of policy/contract rules, e.g. enabling V&V at design/development time
but also dynamic testing at runtime. In general, the test-driven approach follows the
well-known 80-20 rule, i.e. increasing the approximation level of the intended semantics
of a rule set (a.k.a. test coverage) by finding new adequate test cases becomes more
and more difficult with new tests delivering less and less incrementally. Hence, under
a cost-benefit perspective one has to make a break-even point and apply a not too
defensive development strategy to reach practical levels of rule engineering and testing
in larger rule based policy or contract projects.

References

1. A. Paschke, M. Bichler. Knowledge Representation Concepts for Automated SLA Management,
Int. Journal of Decision Support Systems, to appear 2007.

2. A. Paschke. RBSLA - A declarative Rule-based Service Level Agreement Language based on
RuleML, Int. Conf. on Intelligent Agents, Web Technology and Internet Commerce, Vienna,
Austria, 2005.

3. A. Paschke. RBSLA: Rule-based Service Level Agreements.
http://ibis.in.tum.de/staff/paschke/rbsla/index.htm or https://sourceforge.net/projects/rbsla.

4. A.J. Gonzales, V. Barr. Validation and verification of intelligent systems. Journal of Experi-
mental and Theoretical AI. 2000.

5. A.D. Preece and Shinghal R. Foundations and applications of Knowledge Base Verification. Int.
J. of Intelligent Systems. Vol. 9, pp. 683-701, 1994.

6. G. Antoniou, F. v. Harmelen, R Plant, and J Vanthienen. Verification and validation of
knowledge-based systems - report on two 1997 events. AI Magazine, 19(3):123126, Fall 1998.

7. A. Preece. Evaluating verification and validation methods in knowledge engineering. University
of Aberdeen, 2001.

8. P. Bonatti, D. Olmedilla, and J Peer. Advanced policy explanations. In 17th European Confer-
ence on Artificial Intelligence (ECAI 2006), Riva del Garda, Italy, Aug-Sep 2006. IOS Press.

9. A. Kozlenkov, A. Paschke, M. Schroeder, Prova - A Language for Rule Based Java Scripting,
Information Integration, and Agent Programming. http://prova.ws., 2006.

10. J.W. Lloyd. Foundations of Logic Programming. 1987, Berlin: Springer.
11. J. Dix. Semantics of Logic Programs: Their Intuitions and Formal Properties. An Overview. In

Andre Fuhrmann and Hans Rott, editors, Logic, Action and Information – Essays on Logic in
Philosophy and Artificial Intelligence, pages 241–327. DeGruyter, 1995.

12. J. Dix. A Classification-Theory of Semantics of Normal Logic Programs: I. Strong Properties,”
Fundamenta Informaticae XXII(3) pp. 227-255, 1995.

13. J. Dix. A Classification-Theory of Semantics of Normal Logic Programs: II. Weak Properties.
Fundamenta Informaticae, XXII(3):257-288, 1995.

14. G.D. Plotkin. A note on inductive generalization. Machine Intelligence, 5, 1970.
15. A. Paschke, J. Dietrich and H. Boley. W3C RIF Use Case: Rule Interchange

Through Test-Driven Verification and Validation. http://www.w3.org/2005/rules/wg/wiki/
Rule Interchange Through Test-Driven Verification and Validation, 2005.

16. E. Dantsin, T. Eiter, G. Gottlob, and A. Voronkov. Complexity and expressive power of logic
programming. IEEE Conference on Computational Complexity, pages 82–101, Ulm, Germany,
1997.

17. J. Dietrich and A. Paschke. On the test-driven development and validation of business rules.
Int. Conf. ISTA’2005, 23-25 May, 2005, Palmerston North, New Zealand, 2005.

18. A. Paschke. The ContractLog Approach Towards Test-driven Verification and Validation of Rule
Bases - A Homogeneous Integration of Test Cases and Integrity Constraints into Dynamic Logic
Programs and Rule Markup Languages (RuleML), IBIS, TUM, Technical Report 10/05.

19. S. Kraus, D. Lehmann, M. Magidor. Nonmonotonic reasoning, preferential models and cumula-
tive logics. Artificial Intelligence, 44(1-2):167–207, 1990.

20. P. Meseguer. Expert System Validation Through Knowledge Base Refinement. IJCAI’93, 1993.
21. C.L. Chang, J.B. Combs, R.A. Stachowitz. A Report on the Expert Systems Validation Associate

(EVA). Expert Systems with Applications, Vol.1,No.3,pp. 219-230.
22. R. Denney. Test-Case Generation from Prolog-Based Specifications, IEEE Software, vol. 8, no.

2, pp. 49-57, Mar/Apr, 1991.
23. G. Luo, G. Bochmann, B. Sarikaya, and M. Boyer. Control-flow based testing of prolog programs.

In Int. Symp. on Software Reliability Enginnering, pp. 104-113, 1992.

16

Trust Policies for Semantic Web Repositories

Vinicius da S. Almendra1, Daniel Schwabe1

(1) Departamento de Informática
Pontifícia Universidade Católica do Rio de Janeiro - PUC-Rio

Rio de Janeiro - Brazil
{almendra,dschwabe}@inf.puc-rio.br

Abstract. The increasing reliance on information gathered from the Web and
other Internet technologies (P2P networks, e-mails, blogs, wikis, etc.) raises the
issue of trust. Trust policies are needed to filter out untrustworthy information.
This filtering task can be leveraged by the increasing availability of Semantic
Web metadata that describes the information retrieved. It is necessary, however,
to adequately model the concept of trustworthiness; otherwise one may end up
with operational trust measures that lack a clear meaning. It is also important to
have a path from one’s trust requirements to concrete trust policies through Se-
mantic Web technologies. This paper proposes a horn logic model for trust poli-
cies, grounded on a real-world model of trust that offers justification for trust
decisions and controlled trust measurement. We also propose the use of this
model to enhance existing Semantic Web repositories with a trust layer.

1 Introduction

One of the great challenges of the Web is the problem of trust. Operational measures
of trustworthiness are needed to separate relevant and truthful data from those that are
not. However, to be correctly interpreted, these measures must be linked with real-
world concepts of trust. They must also meet the trust requirements of their users.
Building on the trust concepts found in the work of Gerck [10] and Castelfranchi et al.
[7], our work aims to pave the path leading from a user’s trust requirements to opera-
tional trust policies that can be applied to Semantic Web data, while preserving the
correspondence between these policies and the trust requirements we started with.
This correspondence is important because it enables the user to find out why a piece
of data was found trustful.

We focus on the Semantic Web scenario, where an agent aggregates metadata from
various sources and the agent must decide which metadata can be trusted and to what
extent. Our contributions include a concept of real-world trust, a model to represent
this trust concept in the scenario of interest, a simple model to express trust policies
using horn logic, including justification for trust decisions, and an implementation,
written in Java and Prolog, for the proposed model. It represents an improvement over
our previous works [1, 2], where trust degrees and justification were not present.

In section 2 we describe the scenario in which this work fits in. In section 2 we de-
scribe the concept of real-world trust on which our work is based, and a model for
trust on Semantic Web, based on this trust concept; we also describe a motivating ex-

17

ample. In section 4 we describe a model to express trust policies using horn logic. In
section 4.3 we describe the implementation of the trust model using Java and Prolog.
In section 6 we present works more closely related to our, discussing some differ-
ences. In section 7 we conclude our work and point to future directions.

2 A Motivating Scenario

The scenario we focus on is based on the Semantic Web Publishing scenario [6], the
DBin project [17] and the Piggy Bank plugin [14]. They all work with the idea of a
local repository of information that aggregates new statements from various sources.
The first two also include the idea of trustfulness.

The Semantic Web Publishing scenario has information providers and information
consumers. An information provider publishes RDF graphs, which contain informa-
tion and its metadata, such as provenance, publishing date, etc. An information con-
sumer gathers these graphs and decides what to do with them, treating these graphs as
claims by the information provider, rather than definitive facts. The formal meaning
of these claims, that is, what statements about the world are being made, is given by a
set of accepted graphs, which is a subset of the graphs the information consumer re-
ceives.

The Semantic Web Publishing proposal also enables the user to specify a trust poli-
cy, that is, a set of conditions that the received information should meet to be accept-
ed. An example of a policy would be “trust all information about computers that
comes from direct friends”.

This scenario can be integrated with the one of DBin’s project, which is a P2P net-
work where people exchange RDF graphs of interest and store all the received graphs
in a local database. Filtering can be applied to hide triples that do not match the user’s
criteria. The set of visible triples, which we call accepted triples, is analogous to the
set of accepted graphs described above.

These tools can be integrated, giving rise to the scenario we are working with: an
agent that continuously aggregates Semantic Web descriptions from various sources
and uses these descriptions, together with trust policies, to decide which other de-
scriptions are to be trusted. Recommender systems, reputation management systems,
autonomous agents and Social Semantic Desktops can all be seen as particular in-
stances of this scenario, when they are built on top of Semantic Web technologies.

The integration of Piggy Bank and the Semantic Web Publishing scenario, dis-
cussed in [4], exemplifies how trust filtering can be integrated to web browsing.

3 A Model for Trust

3.1 A Concept of Trust

To build a suitable trust model, we start by eliciting attributes of real-world trust, try-
ing to capture its essence. Castelfranchi et al. [7] define trust in the context of multi-

18

agent systems, where agents are endowed with goals. In this context, he asserts that
trust is “a mental state, a complex attitude of an agent x towards another agent y about
the behavior/action α relevant for the result (goal) g. This attitude leads the agent x to
the decision of relying on y having the behavior/action α, in order to achieve the goal
g.

Gerck [10] presents a definition of trust as “what an observer knows about an enti-
ty and can rely upon to a qualified extent”. This definition has a close parallel with
Castelfranchi’s: the observer is the agent who trusts; the entity is the trusted agent; the
qualified extent is the behavior/action. Both associate trust with reliance. However,
the former definition mentions explicitly the goal-oriented nature of trust, which is an
important aspect, as agents lacking goals do not really need trust [7].

From both definitions, we observe that trust implies reliance: when an agent trusts
something, s/he relies on its truth to achieve some goal without further analysis –
even if s/he is running the risk of taking an inappropriate or even damaging action if
the object of trust is false.

Trust implies reliance, but not necessarily action. For example, John may trust
Mary’s bookstore without buying anything there. Nevertheless, if John needs a book
and Mary offers it under good sale conditions – price, placement, payment etc. –,
John will buy the book without further questions. At the same time, he may refuse to
buy the same book under better sale conditions at a bookstore that he does not trust1.
So, the trust attitude entails a “potential” reliance on the object of trust.

We may also ask what the object of trust is. In this case, it could be described as
the statement “Mary’s bookstore is good”. John believes this and will act upon it
when needed. Using the definition of Gerck, John knows that “Mary’s bookstore is
good” is true and relies on this.

There is another question to be considered: how did John decide to trust Mary’s
bookstore? This is the problem of justification [10]. Castelfranchi et al. [7] ground the
trust decision on the beliefs of the trusting agent. In our example, one reason John
may have decided to trust Mary’s bookstore is because he believes Mary is an honest
and competent person, and that the business runs under her strict control. If one of
these beliefs were absent, then John might not trust Mary’s bookstore, according to
these premises. Notice that this does not preclude John from trusting Mary’s book-
store for other reasons besides this one.

The problem is not solved yet, as we may ask where these beliefs come from. John
relies on those beliefs to take a decision (in this case, the decision to trust Mary’s
bookstore), which characterizes John’s trust on those beliefs. So, trust decisions may
be chained: to trust Mary’s bookstore, John also has to trust that she is competent and
honest. Nevertheless, these trust decisions do not need to be simultaneous: John may
have decided to trust Mary’s competence many years before she had a bookstore.

There are certain kinds of beliefs widely used to justify trust. One of these is the
self-trust belief: a person normally trusts facts that are evident to (directly observed
by) him. Provenance belief is also an important one: when deciding the truthfulness
of a statement, one of the first questions is who stated it. In fact, the word statement
implies a provenance: a statement has been stated by someone.

1 Absence of trust is different from distrust, which is a positive evaluation of negative quali-
ties: one may not trust a stranger, but will almost certainly distrust a liar.

19

The justification of trust based on beliefs links trust with belief revision: if some of
the beliefs that justified a trust decision are discredited, this trust may eventually be
lost. If John discovers that several friends bought defective books from Mary, the be-
lief about competence could be revised. Then, trust on Mary’s bookstore could be-
come unjustified and might be lost. This is a situation where new evidence hampers
previously acquired trust, as this trust was based on the assumption that Mary was
competent. It might have been a good assumption, but was shown to be false due to
contradictory evidence. Here we use the underlying assumption that sometimes the
absence of a belief (in this case, the belief that some people bought defective books
from Mary) is treated as a positive belief (in this case, the belief that no one has ever
bought defective books from Mary or, if someone did, it is not relevant to my deci-
sion). This is grounded on the assumption that, if something “wrong” happens (that is,
something that may impact an agent’s decisions), the agent will eventually be in-
formed about it before he can make damaging decisions.

Another characteristic is that trust is subjective: different agents may have different
beliefs, different goals and require different degrees of justification to trust some-
thing. Continuing with the example, Mike might not trust Mary’s bookstore, as he be-
lieves she is not competent, she does not know Japanese literature well and she does
not worry about the tidiness of the bookstore. Here, we face contradictory beliefs and
also different demands to consider a bookstore to be trustful. The difference between
beliefs held by John and Mike may be due to the goals: John might be an occasional
reader, whereas Mike might be an artist interested in Japanese culture. Note that this
goes beyond being a matter of opinion: both make decisions and act based on these
beliefs.

Trust also changes over time. John may lose his trust on Mary’s bookstore even
without any change in his beliefs about her. What changes in such cases is the justifi-
cation required for trustfulness.

It is of common sense that trust is scalable [7], but this apparently conflicts with
the concept of trust as a binary decision (to rely or not). Following Gerck’s reasoning
[10], the scalability of trust lies is the degree of justification required to trust. Stronger
trust means stronger evidences. This implies an ordering on the possible justifications
for trusting a fact: a better justification assigns a greater trust level to a trusted fact.

3.2 Trust and Semantic Web

At the core of Semantic Web technologies lays RDF (Resource Description Frame-
work) and languages and formalisms based on it, most notably OWL (Web Ontology
Language). RDF allows one to describe things using a controlled vocabulary, based
on URIs (Uniform Resource Identifiers), through statements which are triples in the
form (subject, property, object), meaning that the resource identified by subject has
property with value object. An RDF document is a set of statements about some reali-
ty.

The fact that an agent (human or not) states something does not mean that it is true:
one might state that Brazil’s capital is Buenos Aires, which is not true (it is Brasília).
When an agent uses (that is, relies on) an RDF document, it is implicitly trusting the
source of the document on the statements contained in it, which means that s/he trusts

20

every RDF triple in it. Trusting an RDF triple (S, P, O) simply means that s/he be-
lieves S has the property P with value O. This trust decision is based on the informa-
tion contained in the document and on other information available to the agent. From
the work of [6], this trust decision may be called accepting a triple. After this deci-
sion, the triple becomes a belief of the trusting agent.

The decision of whether or not to accept a triple can be modeled as a trust policy
which specifies which triples are to be trusted, depending on its components and on
other triples the agent has already trusted.

Another important information when dealing with trust is provenance. There are
some proposals [6, 9] to add provenance to RDF documents using a fourth element in
RDF statements: the context. Although this is not an essential element for trust (one
might gather provenance information from other sources), it enhances the expressive-
nesses of trust policies.

RDF triples may be stored anywhere (in a web page, in an email, in a document in
the local file system etc.). In our work we focus on the idea of a repository which
holds all triples that are going to be subject to trust evaluation. This solution avoids
problems of distributed systems (e.g. lack of network connectivity) and circumscribes
the universe of facts used in trust evaluation.

3.3 Outline of a Trust Model

Based on the trust concept formulated in section 3.1 and on Semantic Web concepts
discussed in section 3.2, we build an informal model of trust, which comprises the
following elements: facts, contexts, knowledge bases, trust policies, trust decisions,
justification and trust layers.

A fact is a statement about reality, following the semantic of RDF triples. Some
authors recognize the need for a fourth element: the context [3, 9, 13]. Contexts help
define the provenance of the facts (who stated it), the circumstances (date, time, rea-
son, etc.), and, more generally, help situating a fact in order to allow its correct under-
standing. As these elements are relevant to trust, we will assume the presence of this
fourth element. This raises the need for an extension of RDF, such as the named
graphs formalism [6]. We will not propose a new extension, but simply assume the
availability of contexts and the possibility to obtain provenance and circumstantial in-
formation through it.

The set of facts that an agent knows constitutes its knowledge base. An asserted
fact is a known fact and a trusted fact is an asserted fact that can be trusted. For exam-
ple, when someone reads a newspaper, he may augment his knowledge base with sev-
eral asserted facts, but he may only trust some of them (or none!).

A trust policy is a set of rules that the trusting agent uses to test the trustfulness of a
fact. Different trusting agents may use different trust policies and, hence, they can
make different trust decisions, even when based on the same facts, characterizing the
subjective nature of trust. The same trusting agent may change his trust policy in or-
der to match his current goals, which characterizes trust dynamism.

A trust decision is the act of testing if an asserted (or inferred according to the do-
main theory) fact meets a trust policy, that is, a decision to rely on that fact’s truthful-
ness. A trust decision is in fact the process of finding a deduction, which we call a

21

justification, that the asserted fact can indeed be trusted. Only trusted facts can be
used in a justification. The trust policy specifies trusting agent decides what justifica-
tions are acceptable to trust a certain fact. From now on we will call justification any
necessary and sufficient set of trusted facts needed to accept an asserted fact as trust-
worthy. The deduction is done by the trust policy, so a justification is always relative
to a specific trust policy and to a specific asserted fact.

Not all justifications grant the same degree of confidence to the trusting agent. Two
or three mentions in different web sites might be enough to justify buying a CD from
an unknown internet dealer, but would not give enough confidence to buy a car. In
both cases, what is in stake is the quality of service offered by the vendor and his/her
honesty, but the degree of reliance exhibited in each decision is clearly different.
Greater reliance levels demand better justifications.

Given a trust policy and a fact, a justification level is an equivalence class of all
justifications that are equally good to the trusting agent for that fact with respect to
that policy. The set of all justification levels is a partial order: in some situations we
say that some justification is better than other, in others situations this statement does
not make sense, as one would be comparing apples with oranges. An example of the
former is a reputation management system: a person is more reliable than other if its
reputation score is greater. An example of the latter is to compare his/her reputation
score with the number of citations of papers authored by the other: although both
share the idea of refereeing, a direct comparison of these scores does not make sense.
A justification class is a set of justification levels that form a total order, that is, they
are all comparable. Each fact that can have a varying degree of justification may yield
a justification class.

A trust policy must assign some justification level to trusted facts. This justifica-
tion level should reflect some property displayed by the justification that has varying
degrees, e.g. the number of positive reviews. When this is not the case, the trust poli-
cy may assign the same justification level regardless of the justification facts.

The use of justification levels allows one to rank competing trusted facts in order to
choose the one with more evidence. This feature allows the implementation of reputa-
tion systems based on trust policies, where the entities of interest are relevant facts
from the trusting agent point of view.

The trust layer stands between a repository of RDF statements and the application
and yields a list of trusted facts together with their justification levels. It does not alter
the information in the repository: it just gives trust information under request.

Figure 1 shows the relationship among these concepts. The trust layer augments
the knowledge base with justification information, represented by the circles (sets of
facts), arcs (justification relationship) and labels on arcs (point out the policy used and
the justification level achieved). Colored circles denote trusted facts. Notice that fact
9 was not trusted; policy 1 asserts the trustfulness of fact 4 with justification level A1
due to the presence of the trusted facts 1, 2 and 3. Fact 8 has two different justifica-
tion levels.

22

Fact 3

Fact 8

Fact 5

Fact 4

Fact 2

Fact 6

Fact 7Fact 1

Knowledge base

Fact 3

Policy 1

Level A1

Fact 8

Fact 5

Fact 4

Fact 2

Fact 6

Fact 7Fact 1

Policy 2

Level B1

Policy 3

Level B2

TRUST LAYER

Fact 9

Fact 9

Fig. 1: A Knowledge base and its Trust Layer

3.4 A Motivating Example

Large companies normally have a purchasing department that takes care of buying
supplies and purchasing services for the organization. This department deals with a
wide variety of products and with many internal clients, that is, people that actually
demand the purchasing of new goods or services. It also has a set of suppliers that
may change over time, although at a slow rate. As suppliers’ performance can vary
widely in terms of quality of service, an important function of the purchasing depart-
ment is to select the right suppliers, given budget restrictions and minimum quality of
service requirements.

This task involves dealing of lots of information coming from suppliers, from pre-
vious purchases, coming from internal feedback about purchased goods or services,
marketing information coming from specialized media etc. Feedback information can
be regarded as kind of recommendation. The use of Semantic Web technologies to-
gether with trust policies fits well in this scenario, as it uses lots of structured infor-
mation from various sources and needs to repeatedly assess the trustfulness of state-

23

ments related to the quality of service and recommendations. The proposed model
does not improve over other possible solutions for this problem, but it enables a sim-
pler and cheaper implementation, based on the reuse of existing standards, tools and
ontologies like ROR (Resource of a Resource)2 and eClassOWL3.

This scenario naturally leads to Semantic Web Services solutions to e-business.
Nevertheless, we are assuming a situation were the process is not fully automated: the
system makes recommendations based on trust levels, among other factors.

In this scenario, we can devise some trust policies:
• One important factor when buying supplies is the delivery time, so the buyer needs

to trust this information. This depends on the past performance of the vendor: if
great delays already happened, the information supplied by the vendor is untrust-
worthy. Here we link data generated when supplies are received to advertised de-
livery time. The buyer can also choose among vendors with similar delivery times
based on the justification level: the chosen vendor is the one whose delivery time
has the greatest level of justification.

• Another important factor is the internal feedback from the actual users of supplies.
This could be done using a simple ontology, linking a review to a specific pur-
chase, which, in turn, is linked to a vendor. This review should point out some as-
pect advertised by the vendor that was contradicted (or corroborated) by reality.
The system would then assign different justification levels depending on the re-
views available.

• The reviews could also be subject of trust evaluation, as sometimes the internal
clients may have biases toward some vendors. The reviews of an internal client that
are always contradictory to other’s reviews might lose their justification level.
The justification for trust is also useful for the buyer. Sometimes s/he might get

puzzled with the results of trust evaluation, e.g. when the system assigns a high justi-
fication level to a vendor s/he dislikes or when a vendor known to be very good gets a
low justification level. The buyer may ask for the facts used to derive trustfulness and
may be convinced that the levels assigned were right or may change the trust policies
in order to take into account factors that were not contemplated in the trust decision.

4 Building Trust Policies

4.1 A Horn Logic Approach

We will express the model outlined in the previous section, using definite horn claus-
es to build trust policies. We will later discuss the introduction of “negation as
failure” and its consequences.

We assume that the knowledge base of the trusting agent has a domain theory that
defines all predicates unrelated to the trust model.

Facts will be modeled as RDF triples (subject, predicate, object) plus a context,
similarly to other approaches [4, 7], yielding a quadruple, as discussed above. A con-
text may also be the subject of a fact. We assume that there exists a repository from

2 http://www.rorweb.com/
3 http://www.heppnetz.de/eclassowl/

24

which all RDF triples come from. There may be some “context” layer that adds con-
textual information to triples, in the case the repository used does not support this.

A justification class JC is represented by a tuple (J, R), where J is a nonempty set
and R is a total order on J. The elements of J are justification levels. There must be at
least one justification class with at least one justification level. The union of all justifi-
cation levels of all justification classes is called justification space (JS). The support
set of a fact is the set of facts that is used to justify trust on it. A fact may have many
support sets. A trust policy is a predicate with the following signature:

p (fact, j, supportSet)

This predicate means that fact can be trusted with justification level j given the
support set supportSet, which is a list of facts.

Trust policies have the following characteristics:
• A fact can be trusted with more than one pair of justification level-support set, as

the justification level depends on the support set.
• The policy will find fact trustful only if it can deduce the truthfulness of every fact

contained in the support set.
The process of finding the trustfulness of an arbitrary fact is recursive and raises

the question: which trust policy should be used?
A first solution would be to assume that a single trust policy should decide trustful-

ness of all facts. So it would use itself recursively to decide trustfulness of the facts
contained in the support set. However, as the policy is not tied to specific facts, it
does not show clearly the link between the support set and the fact being analyzed.
Another solution would be to have specialized policies, each one for a small set of
facts. This raises another problem: each policy should be aware of all other policies in
order to choose the right one.

We adopt an intermediate solution, assuming the existence of a “general” trust pol-
icy that decides trustfulness of all facts, but building this policy through aggregation
of smaller (i.e., more restricted) ones. Each component policy must be aware only of
the general policy. This general policy identifies itself with the trusting agent’s adopt-
ed trust policy, as it decides the trustfulness of all facts. From now on we will call it
the root trust policy. The aggregation can be done using multiple clauses, each one
aggregating a new policy, so the root trust policy becomes a disjunction of other poli-
cies. For example:

rootTrustPolicy(fact, j1, support1) ← foafPolicy(fact, j1, support1)
rootTrustPolicy(fact, j2, support2) ← dcPolicy(fact, j2, support2)
rootTrustPolicy(fact, j, support) ← systemPolicy(fact, j, support)

Policies other than the root trust policy will be called elementary trust policies or
simply trust policies. In this work we will not go further in the issue of policy compo-
sition, as we are investigating the possibility of adopting Bonatti’s [5] algebra of poli-
cies.

Now we must describe elementary trust policies. An elementary trust policy has
the following components: scope definition, a justification, a trustfulness check and a
justification level assignment.

25

The scope definition is a set of logical conditions that circumscribes the set of facts
that are examined by this policy; facts outside this set are ignored. The simplest re-
striction is to specify the value of some of the components of the fact, e.g. the predi-
cate. More sophisticated scopes could be ones like “all facts belonging to the FOAF
ontology”, “all facts about books written by J. R. R. Tolkien”. The justification is
composed by a set of conditions that link the fact being examined to other asserted
facts (and their components) and put constraints on their values, just like an ordinary
database query. The trustfulness check consists of checking all facts used in justifica-
tion for trustfulness using the root trust policy. The justification level assignment is
the determination of the justification level of the fact being examined. It can be calcu-
lated using facts gathered in the justification step. For example, the justification de-
gree of a fact related to a person might depend to the number of people that stated
friendship with this person.

In this model, the trusting agent has no “privilege”: it is a source of information
like any other. The default policy for self-asserted information would be of accepting
it with a high justification level, but nothing prevents the use of policies that give
more trust to some other person’s statements than to self-asserted ones.

Trust policies are built around sets of facts. For each relevant (from the trusting
agent point of view) set of facts, one or more trust policies can be built. As policies
are specified on a per-fact basis, the relationship among them is always done through
the root trust policy. This makes the trust policy set easily maintainable, as there are
no direct references from one policy to another.

Trust policies may use whatever data is available in the repository. Some policies
might demand strong evidences, like PGP signatures or similar mechanisms; other
may accept lightweight evidence, like FOAF statements gathered from web pages
without further warrants of validity.

Next we show an example of the trust policy “trust the e-mail of a person if s/he is
known by a friend of mine”, along with some explanation. Variables are in italics.

foafMboxPolicy(testFact, justificationLevel, supportSet) ←
testFact = (person1, foaf:mbox, email, context1) AND Fact to be tested
fact1 = (person2, foaf:knows, person3, context2) AND
fact2 = (person3, foaf:mbox_sha1sum, sha1, context2) AND
hasSHA1(email, sha1) AND
fact3 = (myself, foaf:knows, person2, myContext) AND
fact4 = (context2, dc:creator, person2, context2) AND
fact5 = (myContext, dc:creator, myself, myContext) AND

Finds a person that
has the same email
and is known by a
friend of mine

supportSet = {fact1, fact2, fact3, fact5, fact5} AND
isInRepository(supportSet) AND

Tests if the support
set is in the knowl-
edge base

checkTrustPolicy(supportSet) AND Checks support set
trustfulness

justificationLevel = foaf_mbox Assigns justification
level

This example policy supposes a network of friends that exchange lists of hashed
emails, in order to avoid spam without compromising other people’s privacy. Notice
the use the predicate hasSHA1, which must be defined elsewhere.

26

To illustrate the recursive behavior, we can show how a policy that accepts a per-
son as the author (i.e. provenance) of a context would look like:

dcCreatorPolicy(testFact, justificationLevel, supportSet) ←
testFact = (context, dc:creator, person, context) AND
fact1 = (context, wot:assurance, signature, context) AND
fact2 = (person, foaf:mbox, email, context) AND
getPublicKey(email, pubkey, public_key_server) AND
checkSignature(context, signature, pubkey) AND
supportSet = {fact1, fact2} AND
isInRepository(supportSet) AND
checkTrustPolicy(supportSet) AND
justificationLevel = default

This policy uses the Web of Trust vocabulary and custom predicates in order to
check provenance using public key infrastructure.

However, there is a circular dependence: the first policy checks trustfulness of
foaf:mbox facts but needs the second one to check dc:creator statements; the second
one needs to check foaf:mbox statements, which is done by the first.

The solution lies in the use of justification levels: the second policy does not need a
strong verification, as this will be provided by the signature check. So, it can rely on
another policy that assigns a default (and lower) trust level to foaf:mbox statements.
Notice the use of negation as failure:

foafMboxPolicySimple(testFact, justificationLevel, supportSet) ←
testFact = (person1, foaf:mbox, email, context1) AND
supportSet = {} AND
justificationLevel = default

This sample presumes that foaf_mbox > default

4.2 Distrust and the Use of Negation

The use of definite (Horn) clauses to express trust policies restricts the use of nega-
tion. Intuitively, only positive facts can be tested. However, there may be situations
where one understands that the absence of some facts conveys some meaning, as not-
ed in Section 3.1. This can be represented in trust policies by the use of negation as
failure: the negation of a formula is true iff one cannot prove that formula’s truth.

In our model, distrust can be modeled as a trust policy that puts a fact into a unique
justification class, different from all others. Then we can use negation as failure to
says that a fact can only be trusted if it is not trusted within that justification class,
that is, distrust always prevents trust, no matter the justification level achieved.

However, the use of negation raises some issues. Semantic Web technologies are
based on the Open World Assumption, where the absence of a fact does not imply its
falseness. So, when using negation as failure, one assumes a completeness of knowl-
edge that is not warranted by the underlying model of RDF. The only guarantee that

27

s/he has is the control over the repository used to make trust evaluations. Therefore, it
is important for the user to understand whether this assumption is consistent with his
desired meaning for a policy that uses negation, given its goals.

4.3 Limitations of Horn Clauses

The use of horn clauses allows one to express easily reasoning based on material im-
plication, linking a fact to sets of necessary and sufficient evidences. Nonetheless,
they may not be adequate to express some conditions, e.g. those based on quantity
constraints and on statistical calculations.

One possible solution is to use features available in the Prolog implementation, like
findall/3 and is/2 predicates, to overcome some limitations, especially those
related to quantity restrictions. More complex conditions, like ones related to social
network analysis, may be evaluated outside Prolog, given the restriction that only
trusted facts are used in their evaluation. A similar approach is taken in TriQL.P [4].

5 Implementation

We implemented the idea of trusted repositories using a Java library that wraps an ex-
isting RDF repository, runs trust policies on demand and offers programmatic access
to its conclusions: which facts were trusted, the facts used to justify each trusted fact
and their justification levels.

To apply the trust policies, we used XSB Prolog [16]. We choose this Prolog im-
plementation due to its ability to cope nicely with recursive predicates, avoiding infi-
nite loops. The XSB Prolog runs the inference to find out which RDF triples are trust-
worthy; the Java library interfaces with the XSB Prolog code, converting the RDF
triples to be analyzed to Prolog and converting the results back. These results are not
added directly to the repository, although this could be easily done using reification.
However, we opted for a less intrusive approach, leaving to the client application the
decision to store or not the computed trust information in the repository.

Trust information is generated on demand. When new facts are added to the reposi-
tory, it is necessary to run the trust engine again to update trust information. We did
not develop yet a strategy for incremental update.

Justification levels are mapped to a pair (URI, number), where URI denotes the
justification class and number denotes the justification degree, which is an integer
that fulfils the following relation:

j1 = (URI1, n1), j2 = (URI2, n2), URI1 = URI2, n1 ≥ n2 → j1 ≥ j2

This conveys the formal model’s restriction that two justification levels are compa-
rable when they belong to the same justification class. The use of an integer eases the
task of computing and using the results of trust. However, this number just expresses
ordering: there is nothing in the formal model that guarantees meaningfulness of
arithmetic operations on these numbers.

28

RDF statements are converted to Prolog facts with the following form:

fact(Subject, Predicate, Object, Context, ID).

The values of these elements can be URIs, which are mapped to Prolog atoms,
strings, which are also mapped to atoms, and numbers. Blank nodes are mapped back
and forth to fake URIs. Trust policies are represented as Prolog clauses. Logical con-
ditions translate to terms; Prolog’s dynamic database is used as the knowledge base
(in fact, just those terms whose head are of the form fact/5).

Right now, we have a prototype of this library that wraps Jena repositories, Sesame
local repositories, Named Graphs sets [6] and DBin [17] trusted repositories.

6 Related Work

The work of Gerck [10] provides a lengthy discussion on the concept of trust as re-
liance on information. He contrasts this concept with other commonly used defini-
tions for trust. He also offers a conceptual framework to reason about trust levels
grounded on common sense reasoning, where trust on some information is justified if
the trust agent is “convinced” of its truth. Castelfranchi et al. [7] present a cognitive
model of trust, rooted in multi-agent systems domain. They also characterize trust as
reliance, corroborating Gerck’s model with some minor modifications.

Carroll et al. [6] proposes the named graphs extension to RDF, which adds URIs to
graphs under a well-defined semantics. Among other things, this extension opens in-
teresting possibilities to express trust policies based on provenance information, as
shown in their work. These policies are used to build a set of accepted graphs, which
is the set of graphs that contribute to the meaning of the entire knowledge base (in
their terms, the set of named graphs); when specified by trust policies, it is really the
set of trusted graphs. So, an entire named graph could be trusted or not. Our previous
work [2] adopted a similar view: we worked with the set of trusted RDF triples.

The application of named graphs to the trust policies field continued with the work
of Bizer et al. [4] the TriQL.P browser, which enhances the Piggy Bank browser [14]
with trust policies based on the named graphs extension and on TriQL.P query lan-
guage [4]. Our first work on trust modeling [1] used TriQL.P to describe and apply el-
ementary trust policies. A fundamental difference among this work and ours is the re-
cursive nature of our model: trust is always decided based on previously trusted state-
ments. As we needed recursive queries to implement our trust model, we moved away
from TriQL.P to XSB Prolog, in order to express recursive queries more naturally.
Even so, our elementary trust policies greatly resemble this policy language and may
benefit from the explanation engine built into TriQL.P browser.

As our work also uses the idea of trust measurement, it can be compared to other
ones that embrace this idea when specifying trust policies. Golbeck’s work [11] is one
of them. It offers an approach to calculate trust on a web-based social network,
grounded on the concept of trust as reliance among agents in the network. Each agent
states trust on some other agents; this leads to a social network whose directed edges
express trust of an agent on other. This trust attitude has degrees, which are weights
of the graph edges. From this model, Golbeck proposes algorithms to infer trust

29

among people connected only indirectly through the network. We adopt a different
approach to trust measurement, as we believe that assigning numbers to trust relation-
ships and than making computation with these numbers can be misleading, as the se-
mantics of the result is not clear, even if it obeys some kind of intuition about how
trust works in real life. We use the idea of justification levels in order to incorporate
the notion of trust levels while keeping the semantics clear, e.g. forbidding direct
comparison of different justification classes without some underlying theory that jus-
tifies this.

The implementation of trust engines grounded on logic is shared by works like
PeerTrust [15] and SULTAN [12]; they also share the idea of collecting evidence to
decide trustfulness. However, none of them is concerned with Semantic Web data.

7 Conclusions and Future Work

Our goal was to build a model to capture, represent and apply trust policies of an
agent in the scenario of Semantic Web knowledge bases, while preserving real-world
semantics of trust. We first specified a model capturing relevant aspects of the trust
concept, such as reliance, subjectivity, dynamism, justification, measurement. Then
proceeded to build a horn logic model to express trust policies that may be built incre-
mentally through the concepts of elementary trust policies and root trust policies. We
presented a motivating example where the described model offers a solution and de-
scribed a test implementation we have made, which can be used as a trust layer for an
RDF repository.

The next steps in this work include a deeper study of justification levels, in order to
provide a more solid theoretical background to this concept; building guidelines for
defining trust policies, possibly yielding a method; the explicit inclusion of non-
monotonocity in the model, especially negation as failure; exploring the idea of trust
delegation, i.e. using trust information from other agents. We also plan to develop a
case study in a realistic scenario, such as Social Semantic Desktops, Semantic Web
Browsing and Social Semantic Collaborative Filtering, with large trust policies using
RDF data.

8 Acknowledgements

This research was sponsored by UOL (www.uol.com.br), through its UOL Bolsa
Pesquisa program, process number 20060601215400a. We would like to thank the re-
viewers for their valuable comments and suggestions.

30

9 References

1. Almendra, V. S., Schwabe, D. Real-world Trust Policies. In Proceedings of Pro-
ceedings of the Semantic Web and Policy Workshop, 4th International Semantic
Web Conference (Galway, Ireland, November 2005).

2. Almendra, V. S., Schwabe, D., Casanova, M. A. Towards Real-world Trust Poli-
cies. Technical report MCC42/05, Informatics Department, PUC-Rio (2005).

3. Bizer, C., Carroll, J. Modeling Context using Named Graphs. Semantic Web Inter-
est Group Meeting, March 2004, Cannes, France.

4. Bizer, C., Cyganiak, R., Maresch, O., Gauss, T. TriQL.P - Trust Policies Enabled
Semantic Web Browser. http://www.wiwiss.fu-berlin.de/suhl/bizer/TriQLP/
browser/

5. Bonatti, P., Vimercati, S. C., Samarati, P. An Algebra for Composing Access Con-
trol Policies. ACM Transactions on Information and System Security, Vol. 5, No.
1, February 2002, Pages 1–35.

6. Carroll, J. J., Bizer, C., Hayes, P., Stickler, P. Named Graphs, Provenance and
Trust. Technical report HPL-2004-57 (2004).

7. Castelfranchi, C., Falcone, R. Social Trust: A Cognitive Approach. In: Castel-
franchi, C.; Yao-Hua Tan (Eds.): Trust and Deception in Virtual Societies.
Springer-Verlag (2001).

8. Decker, S., and Frank, M. R. The Networked Semantic Desktop. In Proceedings of
the WWW2004 Workshop on Application Design, Development and Implementa-
tion Issues in the Semantic Web (New York, NY, USA, May, 2004).

9. Decker, S., Sintek, M., Billig, A. et al. TRIPLE - an RDF Rule Language with
Context and Use Cases. In Proceedings of W3C Workshop on Rule Languages for
Interoperability, (Washington, DC, USA, April 2005), W3C, 27-28.

10.Gerck, E. Toward Real-World Models of Trust: Reliance on Received Informa-
tion. http://www.safevote.com/papers/trustdef.htm.

11.Golbeck, J., Parsia, B., Hendler, J. Trust Networks on the Semantic Web.
ISWC’03.

12.Grandison, T., Sloman, M. Trust Management Tools for Internet Applications.
Proc 1st Intl. Conference on Trust Management, May 2003, Crete.

13.Guha, R., McCool, R., and Fikes, R. Contexts for the Semantic Web. In Proceed-
ings of the ISWC’04 (Hiroshima, Japan, November 2004), Springer.

14.Huynh, D., Mazzocchi, S., and Karger, D. Piggy Bank: Experience the Semantic
Web Inside Your Web Browser. In Proceedings of ISWC’05 (Galway, Ireland,
November 2005), Springer.

15.Nejdl, W., Olmedilla, D., Winslett, M. PeerTrust: Automated Trust Negotiation for
Peers on the Semantic Web. Workshop on Secure Data Management in a Connect-
ed World (SDM'04) in conjunction with 30th International Conference on Very
Large Data Bases, Aug.-Sep. 2004, Toronto, Canada

16.Rao, P., Sagonas, K. F., Swift, T., Warren, D. S. and Freire, J. 14: A System for
Efficiently Computing Well-Founded Semantics. http://citeseer.csail.mit.edu/
rao97xsb.html

17.Tummarello, G., Morbidoni, C., Puliti, P., Piazza, F. The DBin Semantic Web
platform: an overview. http://www.instsec.org/2005ws/papers/tummarello.pdf.

31

An Access Control Model for Protecting
Semantic Web Resources

Sara Javanmardi, Morteza Amini and Rasool Jalili

Network Security Center, Computer Engineering Department,
Sharif University Of Technology, Tehran, Iran

{s javanmardi, m amini}@ce.sharif.edu, jalili@sharif.edu

Abstract. Semantic Web is a vision for future of the current Web which
aims at automation, integration and reuse of data among different Web
applications. Access to resources on the Semantic Web can not be con-
trolled in a safe way unless the access decision takes into account the
semantic relationships among entities in the data model under this en-
vironment. Decision making for permitting or denying access requests
by assuming entities in isolation and not considering their interrelations
may result in security violations. In this paper, we present a Semantic
Based Access Control model (SBAC) which considers this issue in the
decision making process. To facilitate the propagation of policies in these
three domains, we show how different semantic interrelations can be re-
duced to the subsumption problem. This reduction enhances the space
and time complexity of the access control mechanisms which are based
on SBAC. Our evaluations of the SBAC model along with experimental
results on a sample implementation of the access control system show
that the proposed model is very promising.

1 Introduction

Semantic Web is an extension for the current Web which gives information a
well–defined meaning, making machines capable of interpreting and processing
the information. The shift from current Web to semantic aware environments
such as the Semantic Web poses new security requirements [1, 2] specially in
the field of access control. Access control is a mechanism that allows owners
of resources to define, manage and enforce access conditions applicable to each
resource [3]. A semantic aware access control mechanism should assure that only
eligible users are authorized to be granted an access right and each eligible user
must be able to access all the resources that s/he is authorized for [4]. Traditional
access control models like MAC, DAC and RBAC fail to address these issues
since they do not consider the rich semantic relations in the data model under
the Semantic Web [5]. In other words, decision making based on isolated entities
while ignoring the semantic interrelationships among them may result in illegal
inferences by unauthorized users and incomplete granting of access rights. For
an example of an illegal inference, consider a concept ‘Credit Card’ which is
the union of concepts ‘Master Card’ and ‘VISA Card’. If a user is eligible to

32

2

know about the latest transactions on credit cards issued by a bank while s/he
is prevented from accessing the same information for VISA cards, then s/he can
guess some information about them which is illegal. On the other hand, when
a bank authority needs to know some information about the ‘Letter of Credit’
concept for some decision making then s/he should be also authorized for reading
the information about an equal concept like ‘Documentary Credit’.

To overcome these challenges, there is a need for semantic aware access con-
trol systems. In this paper, we present a Semantic Based Access Control model
(SBAC) that authenticates users based on the credentials they offer when re-
questing an access right. Ontologies are used for modeling entities along with
their semantic interrelations in three domains of access control, namely subject
domain, object domain and action domain. Decision making in SBAC for permit-
ting or denying an access request is automated by inference engines. We show
how semantic interrelations can be used in the authorization process; and for
enhancing the expressiveness of authorization rules defined in SBAC, we show
how rule languages like SWRL [6] can be applied. Since a general semantic re-
lation called subsumption can facilitate the policy propagation, in SBAC we try
to reduce different semantic interrelations to the subsumption problem.

The remainder of this paper is as follows: Section 2 describes the related
works on this topic and section 3 states the fundamentals of SBAC. Semantic
authorization flow of access rights in different levels of an ontology are described
in section 4. In section 5, the formal definition of SBAC is presented and it is
shown how the reasoning can be done in different domains of access control.
Our proposed architecture for implementing the SBAC model is presented in
section 6 and the experimental results and qualitative evaluations of the model
are described in section 7. Finally, section 8 underlines some conclusions and
future research lines.

2 Related Works

Access control systems for protecting Web resources along with credential based
approaches for authenticating users have been studied in recent years [3]. With
the advent of Semantic Web, new security challenges were imposed on security
systems. Bonatti et al in [2] have discussed open issues in the area of policy
for Semantic Web community such as important requirements for access control
policies. Developing security annotations to describe security requirements and
capabilities of web services providers and requesting agents have been addressed
in [7]. Fig. 1 shows the trend of developing security issues in the Semantic web.

Object-Oriented authorization models for databases were the first models
that tried to consider the semantic relationships for authorization. Such models
showed the effect of the semantic relationships like subclass/superclass in ac-
cess decision making [8]. File–level access control systems were studied in [9] for
protecting HTML resources. In the next layer, there are XML based approaches
such as XACML (eXtensible Access Control Markup Language) [10] and XR-
BAC (XML Role-Based Access Control) [11] that have attempted to express

33

3

Fig. 1. SBAC in the Stack of Semantic Web

policies for controlling accesses to XML resources. Finin et al have proposed
policy languages like Rei [12] based on Semantic Web languages like RDF and
DAML+OIL and have developed a framework, Rein, based on Rei. In the on-
tology layer, Qin et. al. [4] proposed a concept level access control model which
considers some semantic relationships in the level of concepts in the objects
domain. In this paper, we present SBAC as an access control model based on
OWL [13] ontology language that considers semantic relationships in different
levels of an ontology (Concept, Property, Individual) and in all the domains of
access control (Subject, Object, Action). For enhancing the expressiveness and
inference abilities, SBAC uses SWRL, a Horn clause rule extension to OWL.

3 Introduction to SBAC

Fundamentally, SBAC consists of three basic components: Ontology Base, Au-
thorization Base and Operations. Ontology Base is a set of ontologies: Subject–
Ontology (SO), Object–Ontology (OO) and Action–Ontology (AO). These on-
tologies are described in the following:

OO : is an Object Ontology for describing objects. Objects are entities which are
accessed and/or modified. An Object–Ontology shows the structure in which
the objects (Concepts, Individuals and Properties) are organized along with
the semantic relationships among them. Fig. 2 is an example OO. It shows
a part of a Bank-Service ontology. The ovals show concepts and individuals
and labels on the directed arcs show axioms and properties. Individuals are
represented by ovals that have arcs with ‘Is A’ labels to other ovals.

SO : is the Subject Ontology where subjects are active entities which require
access to objects. Subjects are represented using concepts or individuals in
a Subject-Ontology. Fig. 3.a shows a Subject-Ontology which is based on
credentials. Presenting credentials determine users eligibility for accessing a
resource.

34

4

AO : Actions depend on the type of the actions that subjects aim to execute
on objects. Each action type is a concept in the action ontology. Fig. 3.b
demonstrates an example of Action Ontology.

By modeling the access control domains using ontologies, SBAC aims at
considering semantic relationships in different levels of an ontology to perform
inferences to make decision about an access request. Authorization Base is a set
of authorization rules in form of (s, o,±a) in which s is an entity in SO , o is an
entity defined in OO, and a is an action defined in AO. In other words, a rule
determines whether a subject which presents a credential s can have the access
right a on object o or not. Predefined access rights can be saved in Authorization
Base in the form of authorization rules and for making decisions for incoming
requests (permit/deny), inference is done based on the semantic relationships
between the requested authorization and the explicit authorization rules in Au-
thorization Base. In fact, inferences on the explicit authorization rules result in
some implicit authorization rules. For example, if an explicit authorization rule
states that a subject can read an object of type “Account”, then if s/he requests
an access right to read a subobject of type “ShortTermDeposit”, then the latter
can be inferred from the former without having its authorization rule explicitly.
Since SBAC works based on inference, for preventing propagation of same deci-
sion (permit/deny) on all the inferred rules, it allows the definition of exception
rules with higher priority. For example, an exception rule can be defined if the
authority of a bank wants to prohibit the credit cards issued from a specific
bank from settling money to any account in Bankx while there is another ex-
plicit authorization rule that lets all credit cards settle money in any account.

4 Semantic Authorization Inference

Different semantic relations in an ontology result in semantic authorization flow
among entities in different levels of that ontology. OWL is the W3C recommen-
dation for representing ontologies in a machine–processable format. To automate
the inference process in SBAC, we used this language since its well–defined struc-
ture lets machines automatically process the knowledge described in it; besides
it supports strong semantic relations among concepts. Based on OWL, we have
identified three levels: concept–level, individual–level and property–level where
the semantic authorization flow can occur in each level or between different lev-
els. To simplify the effect of semantic authorization flow in decision making, first
we classify the possible semantic inferences that can occur, and then we explain
different types of inferences in each category. This classification is done based on
the fundamental OWL structures [13] which are OWL Class Axioms, Individual
Axioms, Property Characteristics and Property Restriction.

– Concept-Concept (C-C): Inference can be done in the level of concepts
(between two concepts) in an ontology. Concept constructors in OWL result
in new concepts with an intrinsic semantic authorization flow. For example,

35

5

Fig. 2. A Part of Bank-Service Ontology

Fig. 3. a) A Credential ontology for modeling the subject domain. b) A part of exe-
cutable actions on the Bank-Services ontology.

36

6

when the concept ‘Credit Card’ is defined as the union of ‘Master Card’ and
‘VISA Card’, then access rights such as eligibility of the owner of a credit
card for checking an account will be propagated to both the owner of a
‘Master Card’ and the owner of a ‘VISA Card’.

– Concept-Individual (C-I): All the individuals are influenced by the access
conditions enforced on the concept they belong to.

– Individual-Individual (I-I): Individual axioms cause this kind of autho-
rization flow. For example the ‘same as’ axiom states that two individuals
are semantically equal, hence the access conditions on each of them should
be applied on the other one too.

– Property-Concept (P-C): The semantic authorization flow from proper-
ties to concepts happens when an access right on a property is granted. A
property is interpreted by a set of ordered pairs of individuals where the first
individual is in the domain of the property and the latter is in the range of
it. Therefore, any access right on a property can result in the same access
right on the domain and range of the property. For example, when a subject
can modify a property, s/he should be able to access the domain and range
of that property.

– Property-Property (P-P): Semantic relations between various properties
can result in new properties which are necessary to decision making but are
not explicitly mentioned in the ontology. For example, when a bank authority
wants to prevent master cards supported by Asian banks from settling money
in a special account by defining (AsianMasterCards,Accountx,−settelement),
by having knowledge on two properties ‘Issued in’ and ‘Registered in’, the
new property of ‘Supported by’ can be made. The related SWRL rule is as
follows:

Registered in(Bankx, Asia) ∧ Issued in(MasterCard, Bankx)
→ Supported by(MasterCard, AsianBank)

– Property-Individual (P-I): All the individuals are influenced by the ac-
cess conditions enforced on the property that they belong to. Moreover,
property characteristics like being transitive or symmetric imply member-
ship of some new individuals to the same property which are also affected by
the access conditions defined on the property. For example, if we define the
‘Support Of’ property as a symmetric property then by having the knowl-
edge that (Accountx, Accounty) is an individual of a property then it can
be inferred that (Accounty, Accountx) is also an individual of that property.
An SWRL rule like the following can be added for the inference:

Support of(Accountx, Accounty) → Supported of(Accounty, Accountx)

– Concept-Property (C-P): When an access right on a concept is granted,
then there would be semantic authorization flows from this concept to the re-
stricted concepts that are result of property restrictions on this concept. For
example, when a subject is eligible to ‘Check Balance’ of some credit cards

37

7

then s/he should be authorized to ‘Check Balance’ of any restricted concept
like Issued In.Bankx which returns credit cards issued in the Bankx.
It is worth noting that the ontology languages in the fourth layer of the
Semantic Web stack are not expressive enough to support all of the inference
classifications that should be performed in the machine level. Fig. 4 shows
the degree of coverage of OWL DL and SWRL. As can be seen in this figure,
using SWRL rules provide better expressivity.

Fig. 4. Comparison of inference support in OWL and SWRL

4.1 Reduction to Subsumption

Different kinds of semantic relations and inference problems based on them moti-
vated us to reduce the possible inferences on the semantic relationships in OWL
DL to the general problem of Subsumption. Checking the subsumption property
is the basic reasoning method of description logics [14]. Given two concepts C
and D and a knowledge base Σ, the following expresses that D subsumes C in
Σ: Σ |= C v D. This reasoning based on subsumption proves that D (the sub-
sumer) is more general than C (the subsumee). In SBAC, we use a variant of the
subsumption relation which is represented by � and not only handles concepts
but also considers individuals. It is defined as follows:

A � B =

{
A v B, if A and B are concepts
A Is A B, if A is an individual and B is a concept
A sameAs B, if A and B are individuals

When there is A � B relation between A and B, the authorization rules
enforced on B should also be enforced on A. Table 1 shows the reduction based
on OWL class axioms. Table 2 is for individual axioms and Table 3 shows the
reductions for OWL Property Restrictions. Table 4 shows SWRL rule definition
for OWL Property Characteristics.

5 Formal Definition of Concepts in SBAC

This section presents a formal definition of the topics described informally in
preceding sections. SBAC is defined by the triple (OB, AB, Oprs). OB stands

38

8

Table 1. Reduction in the Scope of OWL Class Axioms

OWL Constructors Affected Group Reduction to Subsumption

C subClassOf D C-C, C-I C � D

C equivalentClass D C-C, C-I C � D ∧D � C

C disjointWith D C-C, C-I C � ¬D ∧D � ¬C

C intersectionOf C1, . . . , Cn C-C, C-I C � C1 ∧ . . . ∧ C � Cn

C unionOf C1, . . . , Cn C-C, C-I C1 � C ∧ . . . ∧ Cn � C

C complementOf D C-C, C-I C � ¬D ∧ ¬D � C

C one of Enumeration E {. . . } C-C, C-I C � E

P1 subPropertyOf P2 C-C, C-I Domain(P1) � Domain(P2)
Range(P1) � Range(P2)

P1 equivalentProperty P2 C-C, C-I Domain(P1) � Domain(P2)
Range(P1) � Range(P2)

Domain(P2) � Domain(P1)
Range(P2) � Range(P1)

Table 2. Reduction in the Scope of OWL Individual Axioms

OWL Individual Axioms Affected Group Reduction to Subsumption

I1 differenetFrom I2 No Affect –

allDifferent No Affect –

sameAs(I1,I2) I-I I1 � I2
I2 � I1

for Ontology Base which contains decision making ontologies (OO, SO, AO). AB
stands for Authorization Base that includes explicit authorization rules. Oprs
are the operations that can be performed on the Authorization Base.

SBAC = (OB, AB, Oprs)
OB = {Ont | Ont = SO ∨Ont = OO ∨Ont = AO}
Ont = (C, T,≤C ,≤T , R, A, σA, σR,≤A,≤R)
AB = {(s, o,±a) | s ∈ SO ∧ o ∈ OO ∧ a ∈ AO}
Oprs = (CA, Grant,Revoke)

In the definition of ontology (Ont), which is from [15], C is a set of concepts,
≤C is the subsumption relation between concepts. The other semantic relations
are presented by σR : R → C ×C. ≤R shows the hierarchy among Object Prop-
erties, meaning one property is subproperty of another property. T is a set of
datatypes with a hierarchy of datatypes, ≤T . DataType Properties are presented
by σA : A → C × T [13].

Access rights are stored in AB in the form of Authorization rules where:

AB ⊆ S ×O ×A

Definition (Authorization Rule)

39

9

Table 3. Reduction in the Scope of OWL Property Restriction

OWL Property Restriction Affected Categories Reduction to Subsumption

C allValuesFrom(P,D) P–C, C–C, C–I C � Domain(P)
D � Range(P)

C someValuesFrom(P,D) P–C, C–C, C–I C � Domain(P)
D � Range(P)

C minCardinality(P) P–C, C–C, C–I C � Domain(P)

C maxCardinality(P) P–C, C–C, C–I C � Domain(P)

Table 4. SWRL Rule Definition in the Scope of OWL Property Characteristics

OWL Property Has Effect Affected SWRL Rules
Characteristics Categories

TransitiveProperty Yes P–I, P–P P (a, b) ∧ P (b, c) → P (a, c)

SymmetricProperty Yes P–I, P–P P (a, b) → P (b, a)

FunctionalProperty No No Affect P (a, b) ∧ P (b, c) → P (a, c)

InverseOfProperty Yes P–I, P–P P (a, b) → P−1(b, a)

InverseFunctionalProperty No No Affect –

An authorization rule is a triple like (s, o,±a) where s ∈ SO, o ∈ OO, and
a ∈ AO.

The knowledge base consists of explicit authorization rules and is formally
defined AB ⊆ S × O × A. An authorization rule is a triple (s, o,+a) where
s ∈ SO, o ∈ OO, a ∈ AO.

Definition (Operations)
The operations are executed on AB and are for making decision about a request,
granting an access right or revoking an access right and the formal definition is
Opr = (CA, Grant,Revoke).

– CA(s, o, a): the function of decision making is CA : S×O×A → {true, false}.
CA(s, o, a) = true, if (s, o,+a) ∈ AB or there is an authorization rule
(si, oj , ak) ∈ AB such that (si, oj ,+ak) → (s, o,+a). CA(s, o, a) = false, if
(s, o,−a) ∈ AB or there is an authorization rule (si, oj , ak) ∈ AB such that
(si, oj ,−ak) → (s, o,−a). Otherwise, due to the close policy the function re-
turns ‘False’. The reasoning ‘→’ from (s, o, a) to (si, oj , ak) can be performed
on domains subject SO, object OO or action AO. Definition of function CA
is as follows:

CA(s, o, a) =

True, (s, o,+a) ∈ AB ∨ (∃(si, oj ,+ak) ∈ AB :
(si, oj ,+ak) → (s, o,+a))

False, otherwise

Conflicts are possible in CA(s, o, a) in the time of decision making. Excep-
tion rules are one of the sources of conflicts. Since for making a decision
about a request two conflicting inferences can lead to different results, con-
flict resolution is necessary in SBAC. Inference from exception rules should

40

10

have higher priority than inference from other explicit rules. Hence for re-
solving the conflict, the inference from the most specific rule which is the
most specific exception takes precedence than other inferences. This conflict
resolution policy is possible since the conflicting sources of inference are on
the same inference path and comparing the conflicting rules is possible. In
the cases that the conflicting rules are not comparable or in other words
they are not on the same inference path, a “negative take precedence” pol-
icy which gives the priority to the negative authorization rule is used for
resolving the conflict.

– Grant(s, o, a): Granting an authorization (s, o, a) means inserting the rule
in AB . This operation is executed by the operation Grant(s, o, a) , which
returns the Boolean value True if the rule is added and False if the rule can
not be added to AB.

Grant(s,o,a):
if (s, o, a) ∈ AB or CA(s, o, a) = true then return false
else

add (s,o,a)
return True

– Revoke(s, o, a): Revoking an authorization (s, o, a) means deleting it from
AB. This operation is executed by the operation Revoke(s, o, a), which re-
turns the Boolean value True if the rule is deleted and False if the rule can
not be deleted from AB.

Revoke(s,o,a):
if (s, o, a) ∈ AB then

delete (s, o, a)
return True

else return false

5.1 Authorization Propagation

In this section, we explain how reducing the inference problem to the subsump-
tion problem can result in an effective way for authorization propagation in three
domains of access control. In the domains of subjects and objects, the authoriza-
tions are propagated from subsumee to subsumer; but the propagation of access
rights in the domain of actions is different and the negative access rights will be
propagated from subsumer to subsumee. It means that the subsumee can not
have a positive right while the subsumer does not have it. But the positive access
rights are propagated in the opposite direction. In other words, if the subsumee
has a positive access right, the subsumer should also have it. The following is a
formal description of the propagation mechanism:

– Propagation in subject domain: Given (si, o,±a), If sj � si then the
new authorization rule (sj , o,±a) can be derived by inference from si to sj ,
we denote this rule as (si, o,±a) → (sj , o,±a).

41

11

– Propagation in object domain:Given (s, oi,±a), If oj � oi then the new
authorization rule (s, oj ,±a) can be derived by inference from oi to oj , we
denote this rule as (s, oi,±a) → (s, oj ,±a).

– Propagation in action domain:

• Given (s, o,+ai), If aj � ai then the new authorization rule (s, o,+ai)
can be derived by inference from ai to aj , we denote this rule as (s, o,+ai) →
(s, o,+aj).

• Given (s, o,−aj), If aj � ai then the new authorization rule (s, o,−ai)
can be derived by inference from aj to ai, we denote this rule as (s, o,−aj) →
(s, o,−ai).

6 A Proposed Architecture for implementing the SBAC
Model

Fig. 5 shows our proposed architecture for implementing the SBAC model. This
architecture shows the details of the authorization process which is used dur-
ing the decision making process in SBAC. This architecture contains a number
of external components and a number of authorization components which are
described in the following:

External Components: External components are subjects, ontological defin-
itions of credentials, objects, and actions, Reputation system, and adminis-
tration tools. Subjects are the ones that request for access rights. ontological
definitions of credentials, objects, and actions are as described in previous
sections. The reputation system is used for checking the validity of credentials
that are provided by subjects. Administration tools are used for managing
the Authorization Base. For example, adding or revoking rules in this base
are performed using these tools.

Authorization Components: Authorization components are as follows:

– Authorization Base: which includes the explicit authorization rules that
are defined by security administrators of system.

– Ontology Base: which includes ontologies that describe different domains
of access control.

– Ontology Parser: which receives an ontology as input and applies the
reduction algorithm of section 4.1 on it.

– Reduced Ontologies: these are the ontologies that are parsed by the
Ontology Parser component and are ready to be used with the Semantic
Authorizer component.

– Semantic Authorizer: which after receiving a request from a subject uses
its inference engine to determine whether this subject should be autho-
rized to access the requested object.

42

12

Reputation
System

Inference
Engine

Ontology Parser

Authorization Base

Administration
Tools

Subjects

Objects

Semantic
Authorizer

Ontology Base

Authorization System

Request Permit / Deny

Reduced Ontologies

Actions

Credentials

Fig. 5. Proposed Architecture for implementing the SBAC model

7 Evaluation

The most obvious advantage of SBAC compared with other access control models
is its Semantic–awareness property. But, besides Semantic-awareness SBAC has
the following advantages:

– Interoperability: Interoperating across administrative boundaries is achieved
through exchanging authorizations for distributing and assembling autho-
rization rules. The ontological modeling of authorization rules in SBAC re-
sults in a higher degree of interoperability compared with other approaches
to access control. This is because of the nature of ontologies in providing
semantic interoperability.

– Expressivity: The expressiveness of the security policies directly depends
on the expressiveness of the language using which the policies are described.
SBAC authorization rules are defined using OWL DL which is based on
an expressive description logic namely, SHOIN (D) [16]. For enhancing the
expressiveness, SBAC also uses SWRL rules.

– Ease of Implementation and Integration with Semantic Web tech-
nologies: Security models designed for Semantic Web should be compatible
with the technology infrastructure under it. In other words, the implemen-
tation of security mechanisms should be possible based on the semantic
expression models. SBAC is designed based on the widely accepted semantic
web languages, OWL and SWRL, therefore its implementation can be easily
achieved by existing tools designed for working with these languages.

– Generality: Modeling different domains of access control has added a con-
siderable generality to the model. In the subject domain, SBAC uses cre-
dentials which are going to be universally used for user authentication. In

43

13

the domain of object, different kinds of resources such as web pages or web
services can be modeled and can be identified by their URI in authorization
rules.

– Space Efficiency: Implicit authorization in SBAC results in a certain level
of efficiency since it is not necessary to store all the authorizations rules
explicitly when they can be inferred from other stored authorizations. Be-
sides implicit authorizations allow continuous changing of semantic relations
(ontology evolution).
On the other hand, as is shown in Fig. 6, for representing the expression
C = C1 ∪ . . . ∪ Cn using RDF triples, 2n + 1 triples are required. While
as is shown in Fig. 7 after reducing this expression using the subsumption
relation, only n triples are required. This situation is valid for most of the
other OWL constructors. In order to experimentally show this fact, we gen-
erated random ontologies and created a program called OntGenerator which
receives three parameters, namely conceptCount, expCount, and expMaxSize,
as input parameters and generates a random ontology based on the values of
these parameters. conceptCount shows the number of atomic concepts and
expCount shows the number of complex concepts in this ontology. expMax-
Size shows the maximum number of concepts (whether atomic or complex)
that are used for creating each complex concept.
Table 5 shows number of statements in standard and reduced ontologies for
random ontologies generated for different values of conceptCount, expCount,
expMaxSize. As can be seen in this table, the number of statements is re-
duced after applying the reduction algorithm on these ontologies. This shows
that, SBAC needs to work with smaller ontologies and therefore it requires
a lower space capacity.

unionOf A0

DB

first

A2

C

first

rest A1

first

rest rest nil

Fig. 6. Representing A = B ∪ C ∪D using RDF triples

A

DB
C

subClassOf
subClassOf

subClassOf

Fig. 7. Reduced version of A = B ∪ C ∪D

– Low Response Time: most of the time complexity of decision making func-
tions refers to the reasoning part. Since we have reduced reasoning problems
to the subsumption problem and because of the existence of highly efficient
subsumption reasoners, the response time of SBAC is very promising. For
evaluating the reasoning time of SBAC, we designed an experiment. In our
experiment, we used the PELLET reasoner which is a highly efficient OWL

44

14

Table 5. Number of statements in standard and reduced ontologies

conceptCount expCount expMaxSize Statements of Statements of
Standard Ontology Reduced Ontology

100 20 10 390 239
1000 20 10 1262 1130
1000 100 10 2382 1688
500 200 10 3158 1825
1000 200 10 3600 2300
5000 500 20 16194 10593

Table 6. Comparison of reasoning times

conceptCount expCount expMaxSize Reasoning time on Reasoning time on
Standard Ontology Reduced Ontology

100 20 10 969 843
1000 20 10 7484 1156
1000 100 10 7907 1172
500 200 10 3938 1141
1000 200 10 8781 1219
5000 500 20 156687 2204

DL reasoner for reasoning on standard ontologies. On the other hand, since
reduced ontologies only include subsumption relation between concepts, we
designed and implemented a fast reasoning engine which can only handle the
subsumption relation but in a better time period compared with reasoners
such as PELLET. In fact, this point that SBAC can do its decision making
using reasoning engines that only need to handle the subsumption relation
is one of the biggest strengths of this model. Table 6 shows a comparison
of reasoning time of the PELLET reasoner which must work with the stan-
dard ontology and the reasoning time of our reasoner which can work with
the reduced ontology. As can be seen in this table, our reasoner can do the
decision making process in a smaller time period.

8 Conclusions and Future Work

In this paper, we presented SBAC as an access control model for protecting Se-
mantic Web resources. SBAC takes into account semantic interrelations among
entities in the domains of decision making of access control. Automated decision
making in SBAC for permitting or denying an access request is done through in-
ference processes based on the semantic relation among entities. We have shown
that SBAC can provide space-efficient expression of rules with faster reasoning
time than by using a standard ontology.

One of the useful features that is not addressed in SBAC is context-awareness.
For example, currently a security administrator can not specify “(s,o,a) allowed
only between 9am–5pm”. One of our future works is to extend SBAC to DSBAC

45

15

(Dynamic SBAC) which uses context ontologies to capture the current context
and use it for more expressive reasoning.

To enhance the expressiveness of the model for describing the authorization
rules, more expressive logics in logic layer of Semantic Web stack can be applied.
Since more expressive logics are less decidable, approaches like client based access
control approaches [17] seems suitable for delegating some access control phases
to the client side.

References

1. Hengartner, U., Steenkiste, P.: Exploiting information relationships for access
control. In: proceeding of third IEEE International Conference on Pervasive Com-
puting and Communications, Percom 2005, Kauai, Island HI (2005) 278–296

2. Bonatti, P.A., Duma, C., Fuchs, N., Nejdi, W., Olmedila, D., Peer, J., Shahmehri,
N.: Semantic web policies – a discussion of requirements and research issues. In:
ESWC 2006. (2006) 712–724

3. Samarati, P., di Vimecati, S.C.: Access control: Policies, models, architectures. In:
FOSAD 2000. Volume 2171 of LNCS., Springer-Verlag (2001) 137–196

4. Qin, L., Atluri, V.: Concept-level access control for the semantic web. In: ACM
Workshop on XML Security, Fairfax, VA, USA (2003) 94–103

5. Yague, M., Mana, A., Lopez, J.: Applying the semantic web layers to access
control. In: Proceeding of 14th IEEE International Workshop on Database and
Expert Systems Applications. (2003) 622–626

6. Hayes, P., Horrocks, I., Patel-Schneider, P., Boley, Tabet, S., Grosof, B., Dean, M.:
SWRL: A Semantic Web Rule Language Combining OWL and RuleML (2004)

7. Denker, G., Kagal, L., Finin, T., Paolucci, M., Sycara, K.: Security for daml web
services: Annotation and matchmaking. In: Proceedings of the 2nd International
Semantic Web Conference, Sanibel Island, Florida, USA (2003)

8. Rabitti, F., Bertino, E., Kim, W., Woelk, D.: A model of authorization for next-
generation database systems. ACM TODS 16(1) (1991)

9. Prud’hommeaux, E.: W3C ACL System (2001)
10. Moses, T.: (eXtensible Access Control Markup Language (XACML), version 2.0)
11. Joshi, J.: Access-control language for multi domain environments. IEEE Internet

Computing 8(6) (2004) 40–50
12. Kagal, L., Finin, T., Joshi, A.: A policy language for a pervasive computing en-

vironment. In: Proceeding of 4th IEEE International Workshop on Policies for
Distributed Systems and Networks. (2003) 63–74

13. Patel-Schneider, P., Hayes, P., Horrocks, I.: OWL: Web Ontology Language Se-
mantics and Abstract Syntax, W3C Recommendation (2004)

14. Horrocks, I.: The fact system. In: Automated Reasoning with Analytic
Tableaux and RelatedMethods: International Conference Tableaux’98, Springer-
Verlag (1998) 307–312

15. Ehrig, M., Haase, P., Stojanovic, N., Hefke, M.: Similarity for ontologies - a compre-
hensive framework. In: Workshop Enterprise Modelling and Ontology: Ingredients
for Interoperability, PAKM 2004. (2004)

16. Parsia, B., Sirin, E.: Pellet: An OWL DL Reasoner. In Moller, R., Haaslev, V.,
eds.: Proceedings of the International Workshop on Description Logics (DL2004).
(2004)

17. Bauer, L., Schneider, M., Felten, E.: A general and flexible access-control system
for the web. In: Proceedings of the 11th USENIX Security Symposium. (2002)

46

Context-aware Trustworthiness Evaluation
with Indirect Knowledge

Santtu Toivonen1, Gabriele Lenzini2, and Ilkka Uusitalo3

1 VTT Technical Research Centre of Finland
P.O.Box 1000, FIN-02044 VTT, Finland

santtu.toivonen@vtt.fi
2 Telematica Instituut

P.O.Box 589, 7500 AN Enschede, The Netherlands
gabriele.lenzini@telin.nl

3 VTT Technical Research Centre of Finland
P.O.Box 1100, FIN-90571 Oulu, Finland

ilkka.uusitalo@vtt.fi

Abstract. Commonly, when a Trustor evaluates a Trustee’s trustworthiness, it
is assumed that the evaluation is based on information directly available to the
Trustor. This can concern for example the reputation and recommendations char-
acterizing the Trustee. In cases of context-aware trust, this is further restricted by
concentrating mainly on information in a similar enough context as is effective at
trust evaluation time. However, this information is not necessarily available to the
Trustor. Surprisingly, in such scenarios the literature suggests either to wait for
someone else to collect the needed experience, or to trust blindly. In this paper,
we discuss solutions that help the Trustor to conduct its evaluation even if direct
knowledge about the Trustee is lacking. We approach this by allowing the Trustor
to make use of networks connecting the Trustor and the Trustee, as well as the
context information characterizing the entities appearing in these networks.

1 Introduction

Trust is an increasingly important phenomenon to grasp and support in open environ-
ments, such as the Internet, where participants are not necessarily in direct contact with
each other. A common scenario is that a the subject of trust (Trustor) is searching for
a service or a product (Trustee) for a certain purpose. Semi-automatic trustworthiness
evaluation is of special relevance on the Semantic Web, where Trustors can be software
agents in addition to human beings, and Trustees are software agents or web pages
carrying information for Trustors to depend on. To perform an appropriate evaluation,
Trustors request Trustees’ credentials, often expressed in terms of profiles, reputation
descriptions, and recommendations (cf. [1]). The difference between reputation and rec-
ommendation is that reputation is based on the Trustor’s personal experiences, whereas
recommendations are communicated experiences of others.

Context-awareness is also an emerging computer science trend, which takes situa-
tional details into account. Generally, in computer science context refers to any infor-
mation characterizing the situation of any entities considered relevant to the interaction

47

2

between a user and an application, including the user and theapplication themselves,
as well as their surroundings [2, 3]. Note that since we are operating in environments
where the entities are often software programs, it is relevant to consider their context
too [4]. In the scope of the Semantic Web, one important task where the notion of con-
text can assist is aggregation, that is, the activity of integrating data or information from
multiple sources [5]. In our work aggregation is not so much directed to the semantics of
descriptions characterizing various entities, but ratherto combining the trustworthiness
values of these entities.

Many research efforts in addition to ours also acknowledge that context information
may help to define trust credentials (cf. [6, 7, 8]). In [9], wediscuss context-aware
trust functions; as relevant credentials, we identified thequality attributes of a Trustee,
the context attributes (of the Trustee, Trustor, and the surrounding environment), the
Trustee’s reputation in the eye of the Trustor, as well as recommendations about the
Trustee put forward by others.

Trust management frameworks operate under the assumption that the Trustor can
directly access the information he requires to complete thetrustworthiness evalua-
tion [10]. In the global computing paradigm this assumptionseems sometimes too opti-
mistic. Trustee’s credentials may not be available (e.g., when a new service is deployed,
or when this information is protected by privacy policies),or reputation data and rec-
ommendations may refer to Trustee’s behavior in contexts which are too different from
the present one for them to be of use.

In this paper, we study context-aware trust establishment by considering scenarios
where direct information about the Trustee is not necessarily available to the Trustor.
We claim that even in such situations there are better options for Trustors to choose from
than to trust/distrust blindly. For example, the Trustor can evaluate the trustworthiness
of another entity somehow related to the Trustee. In many real situations humans act
like this. We trust a car manufactured in a certain country, if our previous experiences
with cars manufactured in that particular country are good,even if we have no experi-
ences of that particular make. In many cases this kind of indirect evaluation suffices to
accomplish a fair judgment to start with.

The particular cases we consider are the following : (i) Trustee’s behavioracross
contexts is unknown to the Trustor, meaning that the Trustor has no previous knowl-
edge of any behavior of the Trustee; (ii) Trustee’s behaviorin the current context is
unknown to the Trustor, meaning that the Trustor might know the Trustee, but not how
the Trustee behaves in the current context; (iii) Trustee’srecommender and/orrecom-
mendations are unknown or unaccessible to the Trustor. Cases (i) and (ii) are targeted to
reputation information, as they are dependent on the Trustor’s knowledge and opinions
on past states-of-affairs. Case (iii) relies on recommendations available to the Trustor,
although the mechanisms to be considered in terms of (i) and (ii) could be plugged in it
too. Note that we consider the context to be fully observable[11] to the Trustor, mean-
ing that there is access to all relevant contextual information characterizing the Trustee,
the environment, as well as the Trustor. In addition, we assume that the Trustee’s quality
attributes are also available to the Trustor, meaning that we do not tackle the problem
of indirect quality attribute information, albeit it couldfollow the same lines of investi-
gation.

48

3

The rest of the paper is organized as follows. In Section 2, wepresent some relevant
related work. In order to pinpoint the contribution of this paper, in Section 3 we then
present the baseline case where there is complete and directinformation influencing
trustworthiness evaluation available. We also formalize operational semantics for the
trustworthiness evaluation process; it will help us later on to discuss the changes in
the trustworthiness evaluation process when only indirectinformation is available. In
Section 4, we delve into the scenarios where the Trustor has little or no reputation
knowledge about the Trustee. Section 5 considers the case where recommender is not
known to the Trustor. Finally, Section 6 concludes the paperand outlines some future
work.

2 Related Work

The interaction between trust and context has attracted theattention of researchers on-
ly recently, and from different perspectives. In the Web Services domain, for example,
context is used to anonymize the authentication procedure [12], or to decide whether
granting the access to distributed resources [13, 4]. Here,differently from our approach,
context is not used to evaluate the degree of users’ trustworthiness. Instead, users’ cre-
dentials are assumed to originate from trusted certification authorities and, together with
the context, it is checked to satisfy the access conditions.

In [14], the authors use context in conjunction with contentto label Semantic Web
data. Only trustful (vs. merely known or untrustful) data satisfies the user-defined trust
policies and is recognized by web consumers. We do not discern between trusted and
merely known data in an a-priori fashion, but instead rely onrecommendations and
reputations to smooth out the negative effect of potentially malicious information in the
evaluation process.

The problem of inferring trust from recommendations has appeared in the litera-
ture for a long time. Yahalomet al. [15] were one of the first to separate direct trust
from recommendation-based trust and to propose an algorithm to derive new trust val-
ues given a graph of trust relationships. In [16], Bethet al. quantify trust, both direct
and recommendation-based, as probability of the Trustee tobehave as expected, and
as a degree of similarity between Trustor’s and recommenders’ respective experiences
with the Trustee. Subsequent solutions are, synthetically, extensions of the previous ap-
proaches. For example, Subjective Logic’s (SL) opinions are used to model the degree
of trust as well as the degree of distrust and uncertainty [17]. Alternatively, SL can be
used to aggregate trust across different recommendation paths and to concatenate trust
along recommendation chains [18].

Richardsonet al. explicitly address belief composition in the Semantic Web do-
main [19]. They suggest software agents to maintain a table where to store their friends’
beliefs as a group of statements (directed to Semantic Web data) and the agents’ per-
sonal trust in their friends. The belief in unknown statements is derived though iterative
merging of beliefs along paths of trust. In that work, differently from ours, there is no
distinction between trust on an entity’s opinion (direct trust) and trust on an entity in
recommending someone else’s opinion (recommendation, or referral, trust). Also, the
notion of context is not visible in that work.

49

4

O’Hara et al. analyze costs and benefits in different paradigms (optimism, pes-
simism, centralized, investigation, and transitivity) ofdealing with trust in Semantic
Web [20]. They also identify the challenges that have motivated our research. First of
all, trust must be subjective and distributed, and it also needs to be combined with per-
sonal experiences of agents. Secondly, trust should approached as context-dependent,
and it needs a bootstrap procedure when there are not enough transactions to make
firm judgments. Our proposal of using indirect information is an attempted answer to
the bootstrap problem. It must be emphasized that existing approaches to trust manage-
ment are able to deal with incomplete knowledge and uncertainty (cf. [21, 22]), but they
resort mainly on the existence of recommendations. This would be impossible in case
of a completely new Trustee, for example. In this paper, we argue that a Trustor can
benefit from indirect sources to bring the trustworthiness evaluation to a start, and we
propose methods for doing it.

3 Baseline: Direct Information Available to the Trustor

This section summarizes the formal definitions of context-aware trust evaluation func-
tions we introduced in [9]. Additionally, it introduces anddiscusses an abstract opera-
tional semantics for the trustworthiness evaluation process. The operational semantics
show the dynamics of the trustworthiness evaluation process when the Trustor has di-
rect access to information characterizing the Trustee. Sections 4 and 5, which capture
the main contribution of this paper, will show how this dynamics changes in reaction to
using indirect knowledge.

3.1 From Context-independent to Context-aware Trust Evaluation Functions

In [9] we formalized acontext-independent trust evaluation function as follows:

trustA,σ : Quality× TValues× 2TValues → TValues (1)

Here,trustA,σ is A’s subjective function that returns a measurem ∈ TValues of
A’s trust in a Trustee. The trust purposeσ (cf. [23]) indicates for what targetA should
trust the Trustee e.g., performing a certain task.TValues can be a set of binary values
(e.g., trusted, not trusted), or discrete (e.g., strong trust, weak trust, weak distrust, strong
distrust), or continuous in some form (e.g., measure of a probability or a belief). The
special symbol⊥ represents an undefined trust measure. In all the examples ofthis
paper we will assumeTValues to be the so called “triangle of opinion” [24]; thus,
a trust value is a triple(b, d, u) ∈ [0, 1]3, and it represents the Trustor’s subjective
belief, disbelief and uncertainty respectively (withb + d + u = 1) in the Trustee to be
trustworthiness for the purposeσ.

Function (1) inputs a description of the Trustee in terms of the following parameters:
(a) a setQ ∈ Quality of Trustee’s quality attributes; (b) a trust valuem ∈ TValues;
(c) a setM ⊆ TValues of trust values. SetQ models any information thatA knows
directly about Trustee, such as the Trustee’s profile. Valuem models the Trustee’s rep-
utation in the viewpoint ofA, that is a trust value stored inA’s local space. SetM

50

5

represents recommendations, which are Trustee’s trust values based on the viewpoints
of recommenders.

It is recognized that trust changes over time [25]. If we assume a discrete time-line,
A’s trust at timei+1 can differ fromA’s trust at timei. With trusti

A(B) we represent
the trust thatA has inB at timei ≥ 0. It results from calling (1) on the inputs available
to A at timei.

trust0
A,σ(B) := trustA,σ(Q0

B,⊥, M0
B) (2)

trusti
A,σ(B) := trustA,σ(Qi

B, mi
B, M i

B)

whereQi
B ∈ Quality are the quality attributes ofB at timei, ⊥ is an undefined trust

measure,mi
B ∈ TValues is the reputation ofB (recommendation inA’s viewpoint) at

time i, andM i
B ⊆ TValues are recommendations onB at timei.

Definitions (1) and (2) can be extended to deal with context. Their context-aware
counterpart is written as follows [9]:

ctrustA,σ : Quality× Context× TValues× 2TValues → TValues (1′)

Here,Context models the set of context attributes, which can concern the Trustor, the
Trustee, and of their interaction. An empty context is denoted with ǫ. Following the
notation used for context-independent trust, withctrusti

A(B) we represent the result
of (1′) called on the inputs, among which the contextCi

AB, available toA at timei. This
is plugged in the context-independent trust evaluation as follows:

ctrusti
A(B) := Ci

AB ⊙ trusti
A(B) i ≥ 0 (2′)

The operator⊙, such thatǫ ⊙ m = m, returns a context-aware measure of trust,
given a context-independent trust valuem and a context. In [9], where we assumed
TValues = [0, 1], the operator⊙ updates the current trust value by processing each
contextual attributes in sequence. The amount of update depends on the weighting that
the attributes have in Trustor’s viewpoint.

3.2 Inference Rules for Context-aware Trustworthiness Evaluation

Definitions (2) and (2′) describe only partially the evolution of the trustworthiness eval-
uation process. Its understanding requires an operationalformalization, that we now
give in terms of an inference system. Each step of evaluationis described by an infer-
ence rule with the premises and the conclusion as predicatesin the form:

A
∗;(i,m)
−−−−→

C σB

stating that, for the trust purpose4 σ, A hasm degree of context-dependent∗-trust on
B, when context isC and time isi. Here, “∗” stands for a class of trust. For example, we
distinguish between two classes of trust relation:functional trust andreferral trust [17].

4 In the following we assume trust always implicitly referring to the same trust purposeσ, and
we omit the subscriptσ to make the notation more readable.

51

6

The former concernsA’s trust in B performing a task; the latter concernsA’s trust
in B giving a recommendation about someone else doing a task. Functional trust can
easily be reformulated in a context-dependent manner if it concernsA’s trust in B

performing a task (trust purpose) in a certain contextC. Referral trust, instead, is left
context-independent:A’s trust inB as a recommender does not depend on any context
attributes. Naturally, this restriction could be relaxed too by letting the recommenders’
contexts have influence on the trustworthiness evaluation.The predicates expressing
context-dependent functional trust and referral trust, respectively, are as follows:

A◦
(i,m)
−−−→

C
B A

rt;(i,m)
−−−−−→ B (3)

Martinelli [26] adopts a similar notation for modeling functional and referral trust, but
without any reference to time or context. We also identify two sub-relations of context-
aware functional trust:direct andindirect trust (also pointed out in [17]). Direct trust
emerges when the Trustor’s trust is based on at least some personal experiences, that
is, quality attributes and reputation; indirect trust is established when the Trustor judge-
ment is based on someone else’s opinions only (i.e., recommendations). We write the
predicates expressing direct and indirect functional trust, respectively, as follows:

A◦
dt;(i,m)
−−−−−→

C
B A◦

it;(i,m)
−−−−−→

R,C
B (4)

Here,R is the set of recommenders whose opinion has been consideredwhen com-
posingm. The semantics of context-aware trust evaluation is definedas an inference
system, as depicted in Figure 1. We now comment each rule separately.

Rule (5) defines the scheme of our inference system’s axioms.If A’s subjective
evaluation ofB’s qualities at timei evaluates tom and if C is the context available at
timei, thenA trustsB in measurem′ = C⊙m, where the operator⊙ is that of equation
(2′). Premises in brackets (e.g., [trustA(Qi

B)] = m) are evaluated at a meta level.
Rules (6) formalize the operational management of recommendations. In particular,

rule (6.a) shows that an indirect trust onB derives fromA’s referral trust inD and
from the (direct) trust thatD already has inB; rule (6.b) and rule (6.c) show how
to concatenate referral trust along a chain of reference andhow to aggregate indirect
trust across multiple paths of recommendations, respectively. Accordingly to [17], rules
(6.a)-(6.c) show that indirect trust always originates from a direct trust at the end of a
chain of references. Referral trust can be computed as stated in [23]; we do not give the
specification here. In Section 5 we will show how (6) can be applied in case the Trustor
does not have a measure of referral trust in the available recommenders. Finally, rule
(6.d) formalizes our proposal of dealing with context in recommendations. Context acts
as a filter in favor of those recommendations experienced in contexts that are≡-related
with the present contextC.

Note 1. The semantics of rules (6) are incomplete unless we give the semantics of the
two operators⊗ and⊕.

Reasonably,⊕ must be at least associative and commutative (to be order-independent)
and⊗ at least associative (along a chain of recommendations). Some authors (e.g.,

52

7

[27]) suggest the use of semirings [28] to deal with a networkof recommendations.
Alternative solutions are described in [18]. Throughout the paper we assume trust values
to be Subjective Logic’s opinions, and⊕ and⊗ to be operators on opinions called
Bayesian consensus and discounting, respectively [24]. Given the opinionsm, m′, ω,
the opinionm ⊕ m′ reflectsm andm′ in a fair and equal way, whilstω ⊗ m is the
opinion expressing once applied the discount ratew to m.

Note 2. Relation≡ ⊆ Context × Context needs to be instantiated to complete the
semantics of rules (6) and (7).

In its simplest form,≡ interprets as identity: a reputation or recommendation is ade-
quate only if performed in the same context. Alternatively,≡ can be an equivalence
relation between contexts—only experience performed within an equivalent context
can contribute to present trust—or≡ can be a reflexive and symmetric relation mod-
eling a semantic closeness. For example, ifd is a distance between contexts,≡ can be
d(C, C′) ≤ r, wherer is the radius of the neighborhood. In case≡ is not the identity, it
is reasonable to expect the derived trust to be< m ⊕ m′. Closer study of this modified
version of the rule is left as future work.

Rules (7) define how to obtain direct functional trust. More specifically, rule (7.a)
models the aggregation of a direct functional trust. Rule (7.b) models our approach of
dealing with reputation as a (direct) past experience that is combined with the present
direct trust. Similarly to the recommendation rules, here context acts as a filter in favor
of those experiences occurred in a≡-related context. Finally, rule (7.c) states that a past
experience can be used as if it was a new experience presently, at the price of some trust
decay (here represented by the constant discountω).

Note 3. In rules (7.b) and (7.c) constraints over time can guide the search strategy in the
past. Each strategy reflects a different attitude in considering reputation (e.g., choosing
a maximalj implies the consideration of most recent experience storedin the reputation
base).

Rules (8) define functional trust (the goal of our proof system) as a generalization of
direct and indirect trust.

As a final remark, we observe that our inference systems allows different proof
searches with different result for the same goal. Various implementations and optimiza-
tion strategies are possible, but we do not discuss them in this paper.

4 Indirect Reputation Information

So far we have implicitly assumed that the Trustee’s qualityand contextual attributes
needed in order to evaluate trust are directly available to the Trustor. In real situations,
we may be obliged to relax this assumption. Consider, for example, a situation where
we would like to evaluate the quality of a new scientific conference. Due to its new-
ness, the conference is not ranked yet. Moreover, we will notfind anyone known to us
recommending it either. In such a situation, we basically have only two alternatives: to
give up the evaluation (i.e., blindly trust/distrust), or to look for and rely on indirect in-
formation. For example, we can evaluate the prestige of the publisher of the conference

53

8

(INIT-RULES)

[trustA(Qi
B) = m] [Ci

AB = C]

A◦
dt;(i,C⊙m)
−−−−−−−→

C
B

(5)

(RECOMMENDATION-RULES)

(a)
A

rt;(i,m)
−−−−−→ D D◦

dt;(i−1,m′)
−−−−−−−→

C
B

A◦
it;(i,m⊗m′)
−−−−−−−−→

{D},C
B

i > 0 (b)
A

rt;(i,m)
−−−−−→ D D

rt;(i,m′)
−−−−−→ B

A
rt;(i,m⊗m′)
−−−−−−−−→ B

(6)

(c)

A◦
it;(i,m)
−−−−−→

R,C
B A◦

it;(i,m′)
−−−−−→

R′,C
B

A◦
it;(i,m⊕m′)
−−−−−−−−→

R∪R′,C
B

(d)

A◦
dt;(i,m)
−−−−−→

C
B A◦

it;(i,m′)
−−−−−→

R,C′
B [C′

≡ C]

A◦
dt;(i,m⊕m′)
−−−−−−−−→

C
B

(REPUTATION-RULES)

(a)
A◦

dt;(i,m)
−−−−−→

C
B A◦

dt;(i,m′)
−−−−−→

C
B

A◦
dt;(i,m⊕m′)
−−−−−−−−→

C
B

(7)

(b)
A◦

dt;(i,m)
−−−−−→

C
B A◦

dt;(j,m′)
−−−−−−→

C′
B [C′

≡ C]

A◦
dt;(i,m⊕m′)
−−−−−−−−→

C
B

j < i (c)
A◦

dt;(i−1,m)
−−−−−−−→

C
B

A◦
dt;(i,ω⊗m)
−−−−−−−→

C
B

i > 0

(ADDITIONAL-RULES)

(a)
A◦

dt;(i,m)
−−−−−→

C
B

A◦
(i,m)
−−−→

C
B

(b)

A◦
it;(i,m)
−−−−−→

R,C
B

A◦
(i,m)
−−−→

C
B

(8)

Fig. 1. Abstract inference systems for context-aware trust evaluation.

proceedings, or we can look for the reputation of its programchairs and committees.
In the case of a new workshop colocated with a conference having a history, we can
also consider the quality of the conference when evaluatingthe workshop. This section
studies how trust can be evaluated in such situations.

4.1 Absent Reputation Information Across Contexts

If we come across a Trustee not known to us, that is, we possessno prior reputation
information about the Trustee, how should we go about evaluating the trustworthiness?
One well-known solution in the literature is to ask for recommendations. In Section 5
we discuss recommendations and how to deal with them. Here, instead, we analyze

54

9

a complementary solution, namely utilizing direct information of entities known to the
Trustor and “related” to the Trustee (see Figure 2 (a)). Let us consider again the example
about evaluating the trustworthiness of a new scientific conference. Due to the absence
of any information about the conference, we can find it satisfactory to evaluate the
trustworthiness of the conference proceedings publisher,as well as those of the program
chairs and committee members.

From a formal point of view, the previous solution is expressed by the following
additional (to the INIT-RULE) inference rule (9) where a trust relationship withB in a
certain contextC is deduced by a trust relationship with another Trustee “related” toB

in the same context.

A◦
dt;(i,m)
−−−−−→

C
D [D ∼ B]

A◦
dt;(i,m′)
−−−−−→

C
B

m′ ≤ m (9)

Here, the semantics of the rule requires us to instantiate the relation∼; it can be an
equivalence relation, or a reflexive and symmetric relationamong Trustees that defines
the concept of entity neighborhood. For example, Figure 2 (a) suggests the use of a
measure of closeness among entities (see also Section 5). Inthis caseA ∼ B if and only
if cls(A, B) ≥ th whereth is a threshold. In the following, we assume the closeness
metric ranging in[0, 1] where1 stands for maximal closeness. In (9) we constrained
m′ to be at mostm; more solutions are possible, so we left the way to calculateit
unspecified. Reasonablym′ depends onm and on the nature of the relationship between
D andB. For example,m′ = ωs⊗m where the opinionωs = (s, 1−s, 0) is the discount
that reflects the closenesss = cls(D, B) betweenD andB.

Figure 2(a) suggests also a generalization of rule (9); it considers a set of entities
from which to extrapolate a measurement ofB’s trustworthiness. Formally the rule can
be expressed as follows:

⋃N
k=1{A◦

dt;(i,mk)
−−−−−−→

C
Dk} [Dk ∼ B]

A◦
dt;(i,m′)
−−−−−→

C
B

m′ ≤ m (9′)

Here,m′ can be computed either as⊕kmk (e.g., the consensus among all the trust val-
ues) or as the trust value of the entity, amongstD1, . . . , DN that has maximal closeness
with B.

4.2 Absent Reputation Information in the Current Context

This section describes the case, where the Trustor wishes toevaluate the trustworthiness
of a Trustee so that albeit knowing the Trustee beforehand, the Trustor has no idea of
how the Trustee will behave in the current context. The Trustor has the possibility of
adopting the same approach as presented above, namely, considering entities which are
close enough to the Trustee and utilize their behavior as a guideline for evaluating the

55

10

trustor

trustee tr
C

cls(tr,E)≥thx

Alternative 1:

Eavg(r x)

Alternative 2:

m such that

(tr,E
_xE

x) = max{ (tr,)}Ecls cls

entities
,E ,...,EE 1 2 n={E }

trustor

trustee

C

trustee

C1

C2

Cn

cls(C,C)≥thx

Alternative 1:

Cavg(r x)

Alternative 2:

m such that

cls(C,C
C_x

x) = max{cls(C,)}C

contexts
,C ,...,CC 1 2={C }n

(a) (b)

Fig. 2. (a) Considering past behavior of similar (e.g., closer thana certain threshold) entities as
the Trustee in the current context. The reputation taken is either that of the entity the most similar
to the Trustee, or an average reputation among the chosen entities. (b) Considering Trustee’s past
behavior in similar context(s) as the current one. The reputation is calculated as the reputation of
the Trustee in contexts that are close enough (e.g., closer than a certain threshold) to the current
context. Either the Trustee’s reputation in the closest context, or the average of the reputations
among the selected contexts is then chosen.

trusworthiness of the Trustee (Figure 2 (a)). However, it isenvisaged that often more
appropriate results can be obtained by considering the Trustee itself, and its behavior in
contexts which are similar enough with the current one (Figure 2 (b)).

Let us continue with the scientific conference example, but this time from the con-
ference chair’s point of view. Suppose that the chair is gathering a program committee
for the new conference. Here subject areas of the conferencecall for papers constitute
the relevant attributes, which guide the conference chair in inviting appropriate mem-
bers for the program committee. More specifically, the chairhas two major options:
In the case of previous conference chair experience in similar enough conferences, the
chair can go about evaluating the performance of the PC members in those conferences
and make up his mind based on that. Alternatively, the chair can look up other good and
similar enough conferences, and count the most frequent PC members and invite them
to join.

From a formal point of view, the previous solution is expressed by the following
additional rule (as part of REPUTATION-RULES):

A◦
dt;(i,m)
−−−−−→

C′
B [C′ ≡ C]

A◦
dt;(i,m′)
−−−−−→

C
B

(10)

Again,≡ can be an equivalence relation, or a reflexive and symmetric relation among
contexts that defines the concept of context neighborhood. Figure 2(b) suggests one
implementation of relation≡ based on context similarity;C ≡ C′ whencls(C, C′) is
greater than a thresholdth. The inferred trust valuem′, here left unspecified, reasonably
depends onm and on the nature of the relationship betweenC′ andC. For example,

56

11

m′ = ωs ⊗ m whereωs = (s, 1 − s, 0) is the discount build froms = cls(C, C′)
betweenC andC′.

Figure 2(b) suggests also a generalization of rule (10); it considers a set of≡-related
contexts whereB acted. Formally the rule can be expressed as follows:

⋃N
k=1{A◦

dt;(i,mk)
−−−−−−→

Ck

B} [Ck ≡ C]

A◦
(i,m′)
−−−−→

C
B

(10′)

Here,m′ can be computed either as⊕kmk (e.g., the consensus among all the trust
values) or as the trust value of the context that has maximal similarity with C.

5 Indirect Recommendation Information

In rules (6) recommendations carry the contextC′ they relate to. Recommendations are
considered only if≡-related with the current contextC. Dealing with recommendations
in this way is possible only if the Trustor knows the recommenders. We now loosen
this requirement. In essence, we allow entities not directly known to the Trustor to
be included in the trustworthiness evaluation process as recommenders. In this case, a
Trustor may deduce indirect trust directly from an entity, if the entity is “close enough”
to the Trustor. In other words, referral trust is approximated by the semantic distance be-
tween entities, with the intuitive meaning that “the closer, the more trusted”. Formally,
this new evaluation step is synthesized by the following variant of rule (6.a):

(a)
[A ∼ D] D◦

dt;(i−1,m)
−−−−−−−→

C
B

A◦
it;(i,m′)
−−−−−→
{D},C

B

m′ ≤ m (6.a′)

Here, the calculus ofm′ depends on the nature of the relation betweenA andD; for
example,m′ = ωs⊗m whereωs is the discount(s, 1−s, 0) that reflects the closenesss

betweenA andD. The relative importance of a given recommender is estimated based
on its relation with the Trustor.

The closeness between two entities can be grounded on the number of links between
the Trustor and the recommender. Figure 3 depicts this. Notethat there can be multiple
parallel paths from the Trustor to the recommender, and theycan be taken into account
in differing ways. Only the shortest path can be considered,or alternatively all (or some
reasonable amount of the) paths can be included in the calculation. The underlying idea
is that the more paths there are between the Trustor and the recommender and the shorter
they are, the more relevant the recommender is in the eye of the Trustor. Closeness is
expressed by the following formula:

cls(A, D) =
∑

k∈I

1
♯|pk|

√

|pk| + 1 · k

57

12

trustor

trustee

links
={LL 1 2 n},L ,...,L }

recommends

entities
,E ,...,EE 1 2 n={E }

recommender

avg(rec x x)L E

Fig. 3. Considering the opinion of a recommender unknown to the Trustor, but connectable to
entities known to the Trustor.

wherep1, p2, ..., pn ∈ P is the ordered set of alternative parallel paths found between
the Trustor and the recommender so that|p1| indicates the number of links in the short-
est path,|p2| in the second-shortest, and so on.

Note that there can be multiple paths that have the same amount of links. As a
representative for each set of paths that have an equal amount of links we choose the
path with the smallest index. An ordered set of indexesI is created so that only the
indexes of the representatives∈ I. If all paths∈ P have a different amount of links,
thenI = {1, . . . , n}. With ♯|pk| (for all k ∈ I) we mark the number of paths, in the
set of equal length paths, represented bypk.

As an illustrative example, consider again the conference chair as TrustorA and the
proposed PC member’s colleague or boss as recommenderD and two paths between
them. One of the paths has one link and the other two. (If only the shortest path was
considered, the closeness metric of the recommender would be 1

2·1 = .5). The closeness
metric taking into account both paths is12·1 + 1

3·2 = 2
3 ≈ .67, andI = {1, 2}. If

we add yet another path to the picture, this time with five links, the closeness metric
is 1

2·1 + 1
3·2 + 1

6·3 = 13
18 ≈ .72. HereI = {1, 2, 3}. Now, consider there are three

paths between the TrustorA and TrusteeD, two having one link each and one having
five links. The set of indexes becomesI = {1, 3} and the closeness metric becomes

1
2
√

2·1 + 1
6·3 ≈ .76

Two main approaches concerning different link kinds can be distinguished. In the
first of these approaches, all link kindsL1, L2, ..., Ln ∈ L—be they based on pro-
fession, kin, plain acquaintance, and so on—are consideredas equally important with
regard to the trustworthiness evaluation. The second, in turn, makes distinctions be-
tween different link kinds and values some over others. For example, with regard to
the program committee membership, professional links can be put more emphasis than
acquaintanceships or family relations.

To make distinctions between different link kinds∈ L we add a weighting to them.
Let wpkj

∈ R be a weighting for a link in pathpk, wherej = 1, . . . , |pk|. The mean
link weight for pathpk is defined as

Wpk
=

∑|pk|
j=i wpkj

|pk|
.

58

13

For a set of pathsP = p1, p2, . . . , pn, we normalize the path weightsWpk
to [0, 1] as

follows:

W ′
pk

=
Wpk

max{Wpj
| j = 1, . . . , n}

.

In case there are paths that have an equal amount of links, themean of their normalized
path weights is used. Finally, the weighted closeness metric wcls(A, D) becomes

wcls(A, D) =
∑

k∈I

W ′
pk

♯|pk|
√

|pk| + 1 · k

Let us continue with the conference example. Suppose we havethe same two paths
between the TrustorA and recommenderD as earlier. But now the shorter path consists
of one link of type “family relation”, weighted at 2.5, whereas the path with two links
consists of professional links with corresponding weights4 and 6. The mean link weight
for the shorter path is 2.5, and 5 for the longer path. The normalized link weights are

thus 1
2 and1, respectively. The weighted closeness metric of these paths is

1

2

2·1 + 1
3·2 =

5
12 ≈ .42. Suppose that at a later time the family member whose relation was weighted
at 2.5 becomes an assistant, and the weight of this relation is 4. In this case the weighted

distance metric of these paths becomes
4

5

2·1 + 1
3·2 = 17

30 ≈ .57.

6 Conclusions and Future Work

We described and formalized means for evaluating trustworthiness in cases where the
Trustor does not possess direct information about the Trustee. We considered both the
absence of direct reputation information, that is, lack of Trustor’s personal experiences
of the Trustee, and the absence of direct recommendation information, that is, lack
of recommendations transmitted to the Trustor by entities known to the Trustor. We
discussed cases where the Trustee/Recommender is unknown to the Trustor across con-
texts, meaning that the Trustor has no knowledge whatsoeverabout the actions taken
by the Trustee/Recommender. In addition, we considered cases where the Trustor has
some knowledge about the Trustee/Recommender, but not in the current context.

As a solution we propose to use measures of similarities among entities, and among
contexts. Similar entities to the Trustee and a recommendercan be used instead, in case
Trustee and/or recommenders are unreachable to the Trustor. Additionally, the Trustor
can search for a Trustee’s reputation in a similar context, if information concerning the
Trustee’s reputation in the present context is missing. Whilst formalizing our approach,
we illustrated its usage via a running example.

Our future work around the area includes further investigating the relationships be-
tween the Trustor and the Trustee. Research questions are for example comparing dif-
ferent similarity metrics connecting the Trustor with the Trustee (via multiple paths
containing recommenders and other acquaintances, as well as varying contexts). In ad-
dition, we plan to empirically test and evaluate these metrics.

59

14

7 Acknowledgements

This work has been supported by the EU-ITEA project “Trust4All”. In addition to the
project consortium and financiers, the authors would like tothank the anonymous re-
viewers of the 2nd International Semantic Web Policy Workshop (SWPW’06), as well
as Sami Kauppinen for his useful comments on the final versionof the paper.

References

[1] Shmatikov, V., Talcott, C.: Reputation-based trust management. Journal of Computer
Security13(1) (2005) 167–190

[2] Dey, A., Salber, D., Abowd, G.: A Conceptual Framework and a Toolkit for Supporting the
Rapid Prototyping of Context-Aware Applications. Human-Computer Interaction (HCI)
Journal16((2-4)) (2001) 97–166

[3] Brézillon, P.: Focusing on context in human-centered computing. IEEE Intelligent Systems
18(3) (2003) 62–66

[4] Martin, D.: Putting web services in context. ElectronicNotes in Theoretical Computer
Science146(1) (2006) 3–16

[5] Guha, R., McCool, R., Fikes, R.: Contexts for the semantic web. In McIlraith, S., Plex-
ousakis, D., van Harmelen, F., eds.: Proceedings of the International Semantic Web Confer-
ence (ISWC 2004). Volume 3298 of Lecture Notes in Computer Science., Berlin, Germany,
Springer-Verlag (2004) 32–46

[6] Mostefaoui, S., Hirsbrunner, B.: Context aware serviceprovisioning. In: Proceedings of
the IEEE/ACS International Conference on Pervasive Services (ICPS 2004), IEEE (2004)
71–80

[7] Robinson, P., Beigl, M.: Trust context spaces: An infrastructure for pervasive security in
context-aware environments. In Hutter, D., et al., eds.: Security in Pervasive Computing,
First International Conference, Boppard, Germany, March 12-14, 2003, Revised Papers.
Volume 2802 of Lecture Notes in Computer Science., Springer(2004) 157–172

[8] Toivonen, S., Denker, G.: The impact of context on the trustworthiness of communication:
An ontological approach. In Golbeck, J., Bonatti, P.A., Nejdl, W., Olmedilla, D., Winslett,
M., eds.: Proceedings of the Trust, Security, and Reputation on the Semantic Web work-
shop, held in conjunction with the 3rd International Semantic Web Conference (ISWC
2004), Hiroshima, Japan, November 7, 2004. Volume 127 of CEUR Workshop Proceed-
ings., CEUR-WS.org (2004)

[9] Toivonen, S., Lenzini, G., Uusitalo, I.: Context-awaretrust evaluation functions for dynam-
ic reconfigurable systems. In: Proceedings of the Models of Trust for the Web workshop
(MTW’06), held in conjunction with the 15th International World Wide Web Conference
(WWW2006) May 22, 2006, Edinburgh, Scotland. CEUR WorkshopProceedings, CEUR-
WS.org (2006)

[10] Blaze, M., Feigenbaum, J., Lacy, J.: Decentralized trust management. In: Proc. of the
1996 IEEE Symposium on Security and Privicay, Oakland, CA, USA, 6-8 May 1996, IEEE
Computer Society (1996) 164–173

[11] Russell, S., Norvig, P.: Artificial Intelligence: A Modern Approach. Prentice-Hall, Engle-
wood Cliffs, NJ (1995)

[12] Hulsebosch, R.J., Salden, A.H., Bargh, M.S., Ebben, P.W.G., Reitsma, J.: Context sensi-
tive access control. In: Proc. of SACMAT ’05: Proceedings ofthe 10th ACM symposium
on Access control models and technologies (SACMAT 05), June1-3, 2005, Stockholm,
Sweden, ACM Press (2005) 111–119

60

15

[13] Bhatti, R., Bertino, E., Ghafoor, A.: A trust-based context-aware access control model for
web-services. Distributed and Parallel Databases18(1) (2005) 83–105

[14] da Almendra, V., Schwabe, D.: Real-world trust policies. In Kagal, L., Finin, T., Hendler,
J.A., eds.: Proc. of the International Semantic Web and Policy Worshop, Nov. 7, 2005,
Galway, Irland, UMBC eBiquity (2005)

[15] Yahalom, R., Klein, B., Beth, T.: Trust relationships in secure systems–A distributed au-
thentication perspective. In: Proc of the IEEE Computer Society Symposium on Research
in Security and Privacy, May 24-26, 1993, Oakland, California, IEEE Computer Society
(1993) 150–163

[16] Beth, T., Borcherding, M., Klein, B.: Valuation of trust in open networks. In: Proc. 3rd Eu-
ropean Symposium on Research in Computer Security – ESORICS, Brighton, UK, Novem-
ber 7-9, 1994. Volume 875 of LNCS., Springer (1994) 3–18

[17] Jøsang, A., Gray, L., Kinateder, M.: Simplification andanalysis of transitive trust networks.
Web Intelligence and Agent Systems Journal4(2) (2006) 139–161

[18] Wang, Y., Singh, M.P.: Trust representation and aggregation in a distributed agent system.
In: Proc. of the Twenty-First National Conference on Artificial Intelligence and the Eigh-
teenth Innovative Applications of Artificial IntelligenceConference (AAAI), July 16-20,
2006, Boston, Massachusetts, USA, AAAI Press (2006)

[19] Richardson, M., Agrawal, R., Domingos, P.: Trust management for the semantic web. In
Fensel, D., Sycara, K.P., Mylopoulos, J., eds.: Proc. of theInternational Semantic Web
Conference (ISWC 2003), Sanibel Island, FL, USA, 20-23 October 2003. Volume 2870 of
LNCS., Springer-Verlag (2003) 351–368

[20] O’Hara, K., Alani, H., Kalfoglou, Y., Shadbolt, N.: Trust strategies for the semantic web. In
volbeck, J., Bonatti, P.A., Nejdl, W., Olmedilla, D., Winslett, M., eds.: Proceedings of the
Trust, Security, and Reputation on the Semantic Web workshop, held in conjunction with
the 3rd International Semantic Web Conference (ISWC 2004),Hiroshima, Japan, Novem-
ber 7, 2004. Volume 127 of CEUR Workshop Proceedings., CEUR-WS.org (2004)

[21] Jøsang, A., Ismail, R., Boyd, C.: A survey of trust and reputation systems for online service
provision. Decision Support Systems (2005) (available on line on ScienceDirect) in press.

[22] Ruohomaa, S., Kutvonen, L.: Trust management survey. In: Proceedings of the iTrust 3rd
International Conference on Trust Management, 23–26, May,2005, Rocquencourt, France.
Volume 3477 of LNCS., Springer-Verlag (2005) 77–92

[23] Abdul-Rahman, A., Hailes, S.: Supporting trust in virtual communities. In Society, I.C.,
ed.: Proc. of the 334rd Hawaii International Conference on System Sciences (HICSS33),
(CD/ROM), Maui, Hawaii, 4-7 January 2000. Volume 6 of HICSS Digital Library., IEEE
Computer Society (2000) 1–9

[24] Jøsang, A.: A logic for uncertain probabilities. International Journal of Uncertainty, Fuzzi-
ness and Knowledge-Based Systems9(3) (2001) 279–312

[25] Grandison, T., Sloman, M.: A survey of trust in internetapplications. IEEE Communica-
tions and Survey, Forth Quarter3(4) (2000) 2–16

[26] Martinelli, F.: Towards an integrated formal analysisfor security and trust. In Steffen,
M., Zavattaro, G., eds.: Proc. of the Formal Methods for OpenObject-Based Distributed
Systems, 7th IFIP WG 6.1 International Conference, FMOODS 2005, Athens, Greece, June
15-17, 2005. Volume 3535 of LNCS., Springer-Verlag (2005) 115–130

[27] Theodorakopoulos, G., Baras, J.S.: Trust evaluation in ad-hoc networks. In: Proc. of the
2004 ACM workshop on Wireless security (WiSe 2004), 1st October 2004, Philadelphia,
PA, USA, New York, NY, USA, ACM Press (2004) 1–10

[28] Bistarelli, S.: Semirings for Soft Comstraint Solvingand Programming. Volume 2962 of
LNCS. Springer-Verlag (2004)

61

The Virtuous Circle of Expressing Authorization
Policies

David Chadwick1, Angela Sasse2

1 Computing Laboratory, University of Kent, Canterbury, CT2 7NF, UK
2 Computer Science, University College London, Gower St, London, WC1E 6BT, UK

Abstract. This short paper reports on a current project to conduct a detailed
investigation into non-security professionals’ vocabulary and understanding of
e-infrastructure and assets, with the longer term aim of building an ontology
and controlled natural language interface that will allow them to build security
policies, incorporating complex concepts such as delegation of authority,
separation of duties (SoD), obligations and conditions. The interface is
designed around the principle of the virtuous circle, whereby the user’s
controlled natural language input is converted into machine processable XML,
and then converted back again into natural language, so that the user can
compare the computer’s understanding of his policy with his own. The user can
then iteratively alter his policy until the input and output are semantically the
same. To date, two GUI interfaces have been constructed that aid users in the
construction of authorization policies, and produce natural language output.
This will serve as a benchmark for measuring the ease of use and effectiveness
of the controlled natural language interface. Work has started on the controlled
natural language interface, and the first results are reported.

Keywords: Authorization, Policies, Controlled natural language, Virtuous
Circle, XML.

1. Introduction

If web services and Grids are to become widely used, they need to be accessible to
their target research communities, be secured well enough to be available as needed
and function reliably. A key element in realising this ambition is that the owners and
donors of web services need to retain control of their resources, and ensure their
availability and integrity. To do this, resource owners need to express their policies
for who can use their resources, and how. This is termed authorization. Saltzer and
Schroeder define authorization as “grant(ing) a principal access to certain
information” [1]. Several things are needed to ensure that the authorization policy that
the owner intended to be enacted, is the policy that will finally be implemented by the
resource’s PDP (policy decision point). Firstly resource owners need to be able to
state their security requirements correctly and efficiently. In the world of work, this is
done through written security policies. In today’s computer systems, this is typically
done via command line or graphical user interfaces (GUIs) which use specialised

62

2 David Chadwick1, Angela Sasse2

security terminology. However, as [3] points out, many computer resources owners
fail to even approach this task because they cannot translate their knowledge of
resources and access into the computer security terminology used in the GUIs.
Secondly, the policy’s author needs to be assured that the policy recipients have
received the policy and have interpreted it correctly, and behave as intended. In the
world of work, policies are circulated to all employees and contractors of a business,
in the expectation that they will read and obey them. In the case of computing
resources, the policy generated by the interface is translated into a machine
processable format, and transferred to the resource PDP for it to enforce. Thirdly, the
policy owner needs to periodically check that the policy is indeed being enforced. In
the world of work, this might be through periodic reports, audits or spot checks. For
computer resources, the PDP will typically write its access control decisions to an
audit log that can be periodically inspected by the IT staff. In this way, it is possible
to belatedly check, after the fact, that the actual users who eventually gained access to
the resource were exactly equal to those that the resource owner intended them to be.
A fourth – and key – aspect in the policy specification and enactment process is that
the resource owner did not make a mistake in specifying the policy in the first place.
By “mistake” we mean that unintended consequences arise from enforcement of the
policy (granting access to those who should not have it, or denying access to those
who should). These mistakes are caused by misconceptions (in human error
terminology) as opposed to errors in executing an intended policy incorrectly, e.g.
through typing errors or confusing resource names (“slips” or “lapses” in human error
terminology) [4]. When policies are written in controlled natural language, the scope
for misconceptions is much reduced, and slips or lapses are more easily detected.
Misconceptions can be due to the complexity of the policy, and the likelihood of
specifying ambiguities or mutually exclusive clause. The audit log is currently the
only (post-facto) way of determining if mistakes were made in the policy
specification, as well as in its enforcement. Something better is needed, namely a pre-
facto way of determining if the policy specification is correct before enforcement
starts.

2. The Virtuous Circle

When specifying web services and grid authorization policies, ideally we want the
policy tool to support the resource owner in the entire process of correct policy
specification, and improve his/her understanding of access policies as a result of
repeated interaction and feedback. In figure 1 below we show a ‘virtuous circle’ in
which the computer system itself helps the user:

- to specify a correct policy,
- ensure that this is the policy that the user intended to specify, and then
- to confirm to the user that this is the policy that will finally be implemented

by the PDP.
In figure 1, the user starts with a mental concept of the policy that he intends to enact,
and the first step is to transcribe this into the written word in natural language. The
language and vocabulary used to describe the policy are underpinned by an ontology

63

The Virtuous Circle of Expressing Authorization Policies 3

that we are currently developing. The natural language policy is then parsed and
processed by the computer and converted into a machine understandable policy,
written in XML. We have chosen to use XML, since several policy decision points
(PDPs) already exist that can read in XML policies and enforce them e.g. XACML
[7] and PERMIS [6]. The XML is then processed with an XSL stylesheet, converted
back into natural language and displayed to the user. The display not only shows the
machine’s understanding of the policy, but also is capable of printing out diagnostic
error and warning messages to show the user where his policy is wrong, inconsistent
or contains superfluous elements. This allows the user to compare the machine’s
understanding of his policy with his own, and also to correct the errors in his policy.

3. Progress to Date

To date, we have captured a basic security ontology from interactions with the user
community, and built a graphical user interface (GUI), the Policy Editor (see Figure
2) that allows a user to specify a basic authorization policy using this vocabulary. A
fuller description of this can be found in [2]. We also have a Policy Wizard variant
(see Figure 3) that takes the user step by step through the process of creating a policy,
using individual windows from the Policy Editor. The Wizard allows the user to
easily create several flavours of a basic authorization policy, but editing an existing
policy or adding additional features to a basic policy created by the Wizard, is
achieved via the main Policy Editor.

Both GUI tools have screens which display the final policy in either natural
language (Figure 4) or XML. The natural language display enables the user to
validate, in terms of his own understanding, what the policy actually means to the
computer system. This forms the second half of the virtuous circle shown in Figure 1.

64

4 David Chadwick1, Angela Sasse2

Figure 2. The GUI Policy Tool

Figure3. The Policy Wizard

65

The Virtuous Circle of Expressing Authorization Policies 5

Figure 4. The Policy Specified in Natural Language

Note that the policy is displayed to the user in full natural language using an XSL
style sheet. In the next stage of the project the user will be allowed to create a new
authorisation policy using controlled natural language.

4. Controlled Natural Language

Natural language processing (NLP) is very hard due to the ambiguities and complex
structure of natural language. Machine translation has been continuously refined for
decades. Major industry leaders are still performing research into machine translation,
paraphrasing and information extraction [8, 9]. However, they provide no free tools to
academia. A number of universities in the UK are developing NLP and Information
Extraction technologies. However, they are mostly directed at annotating scientific
texts and analysing vast sources of information in natural language to spot pieces of
text that are of interest to a scientist [12, 13].

In controlled natural language either the vocabulary and/or grammar that can be
used are limited, being a subset of natural language. This makes machine processing
much easier and more tractable than using free form natural language. The GATE

66

6 David Chadwick1, Angela Sasse2

project (http://gate.ac.uk/), lead by the University of Sheffield, has produced a natural
language processing kit [5]. It includes a set of tools and grammars that allow English
and other texts to be analysed. In the project SEKT (Semantic Knowledge
Technology – http://www.sekt-project.com/), the GATE team has investigated the
application of controlled languages [10] to the provision of natural language
interfaces for tasks such as web service protocol description or ontology construction.
Sheffield has developed a Controlled Language Information Extraction [11] tool
(CLIE) to aid users in their task. The number of sentence structures allowed by CLIE
is very limited, which means that it is very easy to learn to use, much easier than for
example OWL or RDF or tools such as Prodigy. However, the vocabulary for classes
and instances is unlimited, which means that complex ontologies can still be created.

We are experimenting with using CLIE to construct ontologies for authorization
policies. CLIE supports three sentence constructs for creating class and instance
hierarchies. “There are <class>”, “<subclass> is a type of <superclass>” and
“<Instance> is a <class>”. CLIE supports one sentence construct for defining
relationships between classes “<class> (can) have <class>”, and a similar one for
adding properties to classes “<class> (can) have textual <property name>”. CLIE
supports two sentence constructs for setting property values for instances:
“<instance> has <instance>” and “<instance> has property <property> with value
<instance>”. This limited language allows us to reproduce nearly all the functionality

There are policies.
“My AC policy” is a policy.
There are resources and users.
David is a user.
Printer is a type of resource.
“HP Laserjet4” is a printer.
There are domains.
Kent is a domain.
There are “User Account Administrators”.
Peter is a User Account Administrator.
There are actions and parameters.
Print is an action.
Delete is an action.
Pause and resume are actions.
 “No of pages” is a parameter.
Actions have parameters.
Print has action with value “No of pages”.
There are roles.
Student is a role.
Staff is a role.
Resources have actions.
“HP Laserjet4” has action with value print.
“HP Laserjet4”has action with value delete.
“HP Laserjet4” has action with value pause.
“HP Laserjet4” has action with value resume.

Table 1. An Example Authorisation Policy Ontology using CLIE

67

The Virtuous Circle of Expressing Authorization Policies 7

of 6 of the 8 tabs in our Policy Editor. (The two tabs that currently cannot be specified
are the Account Administrator Privileges and the Users’ Privileges.) The left hand
column of Table 1 shows the policy sentences typed in by the user, and the right hand
column shows the resulting class-instance hierarchy ontology created by CLIE (note
that properties and instance property value assignments are not shown in the right
hand column).

5. Future Work

CLIE is a good start but still needs some enhancements. A current limitation is that it
only allows the “(can) have” relationship between classes and instances. We have a
requirement to specify new types of relationship, such as the superior/subordinate
relationships in role hierarchies, and the “can assign” relationship between
administrators and roles. Sometimes simpler sentence constructs would be more user
friendly, for example, making “with value” optional when setting property values.
More complex sentence constructs are also needed such as “users with these
properties can access resources with these properties providing these conditions are
met”. This will require us to tailor the GATE software to use the specific grammar of
these authorisation sentences using the base ontology provided by CLIE. GATE
creates an in-memory semantic representation of the user’s newly created sentences
using the ontology. Any unrecognised or erroneous words will be highlighted,
prompting the user to take some clarifying action. Plugin tools will be developed to
extract the user’s intended semantics from unrecognised words, from partially
specified conditions (e.g. If later than 5), ambiguous phrases (e.g. double negatives)
or conflicting semantics (e.g. employees can print but managers cannot, when
managers are superior to employees). Finally, the in-memory semantic representation
of the policy will be compiled into two XML authorisation policy languages
(XACML and PERMIS) so that they can then be displayed in natural language via
style sheets, and subsequently read into their respective PDPs for access control
decision making.

Turning to the GUI tools, we are currently increasing the ontology used in them
and incorporating more complex security concepts such as separation of duties,
mutually exclusive roles, obligations and constraints. This is being done by analysing
transcript’s from interviews with researchers recorded during previous e-Science
research projects, collected over the past few years. The extracted ontology will be
validated by testing it with potential e-Science users. The users will be asked to
specify polices in natural language for a number of scenarios set in their own research
environments, and to interpret a number of semi-structured policies and queries.

The final evaluation trial is planned to be conducted with e-Science researchers
from a variety of projects – medicine and bioinformatics, sciences, social science,
data grids and computational grids. They will be asked to carry out a set of
standardised policy specification tasks using the natural language tool and the existing
GUI tools. With participants’ permission, the interactions will be recorded (both on
the system and with a video camera), and participants will be asked to think aloud
while carrying out the tasks and when interpreting feedback received from the tools.

68

8 David Chadwick1, Angela Sasse2

This will be followed by a brief questionnaire to assess user satisfaction and perceived
user effort. The ease of use and effectiveness of the natural language interface will be
compared and contrasted with that of the GUI and Wizard interfaces.

References

1 Saltzer, J.H., and Schroeder, M.D. “The Protection of Information in Computer Systems,”
Proceedings of IEEE, 63(9), 1278-1308, 1975.

2 Brostoff, S., Sasse, A., Chadwick, D., Cunningham, J., Mbanaso, U., Otenko, S. ““R-What?”
Development of a Role-Based Access Control (RBAC) Policy-Writing Tool for e-
Scientists” to appear in Software Practice and Experience, 2005

3 Barman, S. “Writing Information Security Policies”. New Riders 2001
4 Reason, J. “Human Error”. Wiley 1990.
5 H. Cunningham, D. Maynard, K. Bontcheva, V. Tablan. GATE: A Framework and Graphical

Development Environment for Robust NLP Tools and Applications. Proceedings of the 40th
Anniversary Meeting of the Association for Computational Linguistics (ACL'02).
Philadelphia, July 2002.

6 D.W.Chadwick, A. Otenko, E.Ball. “Role-based access control with X.509 attribute
certificates”, IEEE Internet Computing, March-April 2003, pp. 62-69.

7 OASIS “eXtensible Access Control Markup Language (XACML) Version 2.0” OASIS
Standard, 1 Feb 2005

8 Quirk, C., Brockett, C., and Dolan, W.B. “Monolingual Machine Translation for Paraphrase
Generation”, In Proceedings of the 2004 Conference on Empirical Methods in Natural
Language Processing, 25-26 July 2004, Barcelona Spain, pp. 142-149.

9 Jennifer Chu-Carroll, Krzysztof Czuba, John Prager, and Abraham Ittycheriah, "In Question
Answering, Two Heads are Better Than One", Human Language Technology Conference
(HLT/NAACL), 2003

10 S. Pulman. Controlled Language for Knowledge Representation. In CLAW96: Proceedings
of the First International Workshop on Controlled Language Applications, pages 233–242,
Leuven, Belgium, 1996.

11 Valentin Tablan, Tamara Polajnar, Hamish Cunningham, Kalina Bontcheva. “User-friendly
ontology authoring using a controlled language”. Proceedings of the 5th International
Conference on Language Resources and Evaluation (LREC), Genoa, Italy, May 2006

12 Briscoe, E. J. and J. Carroll. “Robust accurate statistical annotation of general text”. In
Proceedings of the 3rd International Conference on Language Resources and Evaluation
(LREC 2002).

13 Alex Morgan, Lynette Hirschman, Alexander Yeh, and Marc Colosimo. “Gene name
extraction using FlyBase resources”. In Sophia Ananiadou and Junichi Tsujii (eds.),
Proceedings of the ACL 2003 Workshop on Natural Language Processing in Biomedicine.

69

Aligning WSMO and WS-Policy ?

Dumitru Roman, Jacek Kopecký, Ioan Toma, and Dieter Fensel

Digital Enterprise Research Institute, Innsbruck, Austria
{firstname.lastname }@deri.org

Abstract. Service-Oriented Architectures (SOAs) suggest that IT systems should
be developed from coarse-grained, loosely coupled, business-aligned components,
so called services. One way towards loose coupling is to refrain from hard-coding
policies in the system and to represent them explicitly. Semantic Web Services
(SWS) add semantics to Web services (main realization of SOAs). However, SWS
research currently ignores most of the work done on Web service policies, there-
fore in this paper we present a proposal for combining WSMO, a major SWS
framework, and WS-Policy Framework, a set of specifications with heavy in-
dustrial backing. The resulting combination is aimed at serving as the basis of
applying the logical reasoning capabilities that have been developed (or are being
developed) for WSMO to WS-Policy, and the basis for integrating WSMO in the
WS-Policy framework.

1 Introduction

Semantic Web based approaches to policies have been recently advocated (in e.g. [2, 16,
11, 7, 8, 15]) in order to cope with some of the limitations of traditional policy handling
systems (e.g. policy systems existing before the era of Web services) where the poli-
cies are hard coded into a system according to the functional requirements, language
features, and design decisions, without separating policy specification from policy im-
plementation, and thus making difficult and expensive to change and enforce policies.
Policy specification, enforcementand revisionare three basic tasks a policy-handling
system must provide. In this paper we focus on issues related to policy specification
in semantically enriched service-oriented environments. Policy specification languages
enable policies to be captured independent from a concrete system implementation.
Such languages are to be interpreted by a policy engine at runtime, which makes dy-
namic policy changes possible; they formalize the intent of the designer into a form that
can be analyzed and interpreted by a policy-aware system.

In this context, we are interested in identifying the potential relations between the
policy languages and the so-called Semantic Web Services [10, 6]. Semantic Web Ser-
vices have emerged as a combination of Semantic Web and Web services technologies
with the aim of automating different service-related tasks, such as Web service discov-
ery, composition, mediation, or execution. Several proposals have been put forward in
this area.1 In this paper we choose the WSMO approach [13] for analysis of its rela-
tion to policy domain because, in contrast to other approaches, it provides a unifying

? The work is funded by the European Commission under the projects ASG, DIP and SWING.
1 We refer the reader to [12] for a detailed discussion on the SWS approaches.

70

framework combining a conceptual model (Web Service Modeling Ontology), a formal
syntax and language (Web Service Modeling Language), and an execution environment
(Web Service Execution Environment).

Common denominators have been identified between policies that may be leveraged
to improve policy uniformity and streamline service-oriented enterprise-wide policy
implementation. In particular, a set of new enforcement policies were proposed in the
industry using novel policy concepts together with building blocks from e.g. XACML,
WS-Policy and SAML. For the purpose of this paper, we have chosen to use the Web
Services Policy Framework (WS-Policy) [5], a general purpose model and a syntax to
describe the policies of a Web Service. Our choice is motivated by the fact that WS-
Policy has significant industry backing. Interested parties are already creating policy
assertions for various domains and the major commercial Web services infrastructure
stacks already have or are building support for policy-based Web service invocations.

The aim of this paper is to investigate the potential relations between the WSMO
approach to SWS and the WS-Policy framework, and to offer a basis for further re-
search on the use of policies in the context of semantically enriched service environ-
ments. Issues like policy conformance checking, policy-based semi-automatic negoti-
ations between users and services, or policy-based matchmaking etc., are important in
our context, however they are out of scope of this paper. The scope of this paper is lim-
ited to identifying the commonalities and differences between the conceptual models of
WSMO and WS-Policy, and proposing a concrete way for combining them.2

Despite the differences in terminology, we can say that both WSMO and WS-Policy
describe the capabilities and constraints of Web services. On one side, WSMO uses
very clearly defined terms likeWeb service, Capability, Interfaceetc. to capture all the
relevant properties of Web services. On the other side, WS-Policy talks about generic
assertions, focusing on their combinations in whole policies, and then attaching these
policies to various subjects, among which Web service endpoints are especially relevant
for our work.

We can identify two generic concepts from the WS-Policy framework that could
encompass elements from WSMO: Policy Assertion and Policy Subject. In other words,
parts of a WSMO description can be mentioned as assertions in some policy, or a policy
could be attached to parts of a WSMO description. We describe these two directions and
the syntax realizing the actual connections in the following two sections (Section 2 and
Section 3). In Section 4 we briefly highlight related works, and in Section 5 we conclude
this paper and point out potential directions for future work.

2 Attaching Policies to WSMO

To analyze how policies can be attached to WSMO, we need first to introduce a distinc-
tion between functional and non-functional properties.3 In any application, thefunc-

2 Because of the limited space we do not provide an overview of the concepts that WSMO and
WS-Policy introduce, however, we refer the reader to [13] and [5] for a detailed introduction
to WSMO and WS-Policy, respectively.

3 A more detailed discussion on functional vs. non-functional properties can be found in the
position paper for the W3C Workshop on Constraints and Capabilities for Web Services [1].

71

tional part of any data contains crucial information necessary for the application to do
its job. Non-functionalproperties (NFPs), on the other hand, contain such additional
data that may help the application do a better job, or to refine its functionality.

For example, one of the aims of WSMO is Web service discovery (we can see
WSMO as an application for service discovery), and to enable discovery, WSMO de-
scribes clientGoalsand theCapabilitiesof the available service.GoalsandCapabili-
tiesare the the necessary inputs to a matching algorithm, therefore they are functional
aspects of WSMO descriptions. While pure Web service discovery only requires the
CapabilitiesandGoals, the match maker can also take into account preferences and
constraints over parameters like the price, availability or quality of a service. Because
such parameters are not critical for the match maker, they are modeled as non-functional
properties.

The distinction between functional and non-functional parameters depends highly
on the application that uses the particular parameter — a functional parameter of one
application can be non-functional in another. For instance, Semantic Web Services are
an application that automates the use of Web services, and the price of a service is
generally modeled as a non-functional property; however a shopping agent application
will have price as one of its main functional parameters.

In WSMO, the distinction between functional and non-functional properties is made
very clear: WSMO enumerates all the relevant functional properties (for exampleWeb
servicehasCapabilityandInterfaceas its functional properties) and it allows an exten-
sible bag of NFPs everywhere. WS-Policy does not have any such distinction, so it can
be used to express both functional and non-functional policy assertions, depending on
the application that employs policies. Since WSMO enumerates in its conceptual model
all the parameters that are functional for the aim of WSMO, policies can be treated as
non-functional data, therefore when a WS-Policy is attached to a WSMO element, it is
abstractly added to the non-functional properties of that element.

Fig. 1.Attaching Policies to WSMO Elements

Figure 1 shows how WSMO elements can be used as policy assertions in a policy
that is then attached to a particular policy scope. In particular, a policy is attached here
to a WSMO Web service description, and it is treated as a non-functional property of
that service. Due to the way policy attachment works syntactically, the policy is in fact
embedded or referenced from within the non-functional properties block of the Web
service description.

To summarize, WSMO elements can serve as WS-Policy Policy Subjects, and any
policies attached to those WSMO elements are treated as non-functional properties. In

72

the following, we present the syntax for including policies as non-functional properties
in WSMO descriptions. Using this mechanism, the existing and future policy assertions
can usefully complement the Dublin Core NFPs [18] currently used by WSMO.

To attach policies generically to XML elements such as WSDL descriptions, the
WS-PolicyAttachment specification [4] defines an XML attribute calledPolicyURIs
and an XML element calledPolicyReference . Both the attribute and the element
point to external policies using URIs. WS-PolicyAttachment introduces both of them
because some XML languages restrict attribute or element-based extensibility.

In WSMO, we use the namespace-qualified namewsp:PolicyReference for
an NFP; its value is one or more URIs of policies attached to the owner WSMO element:

01 service ACMEService
02 nonFunctionalProperties
03 wsp#PolicyReference hasValue
04 {_"http://fabrikam123.example.com/policies/DSIG",
05 _"http://fabrikam123.example.com/policies/SECTOK"}
06 endNonFunctionalProperties

In some cases it can be useful for manageability reasons to include the whole policy
in the WSMO description, especially when the policy is fairly small. For this purpose
we reuse the namespace-qualified namewsp:Policy as the name of a non-functional
property whose content is the XML serialization of the wholePolicy element. This
is illustrated by the following example:

01 service ACMEService
02 nonFunctionalProperties
03 wsp#Policy hasValue
04 "<wsp:Policy>
05 <wsp:ExactlyOne>
06 <wsse:SecurityToken>
07 <wsse:TokenType>wsse:Kerberosv5TGT
08 </wsse:TokenType>
09 </wsse:SecurityToken>
10 <wsse:SecurityToken>
11 <wsse:TokenType>wsse:X509v3
12 </wsse:TokenType>
13 </wsse:SecurityToken>
14 </wsp:ExactlyOne>
15 </wsp:Policy>"
16 endNonFunctionalProperties

To summarize, we allow attaching both external and embedded policies to WSMO
elements, treating the attached policies as non-functional properties. For this, we reuse
the WS-Policy element names (wsp:PolicyReference and wsp:Policy) as
NFP identifiers in WSMO.

3 WSMO as Policy Assertions

WS-Policy is a mechanism of combining domain-specific policy assertions and attach-
ing them to various policy subjects. WSMO descriptions can be viewed as policy as-
sertions and combined with others in policy alternatives. Figure 2 shows how WSMO
elements can be used as policy assertions in a policy that is then attached to a particular
policy scope, for example a Web service endpoint. Such a policy would thus attach the
WSMO Web service description to that endpoint.

73

Fig. 2.Using WSMO Elements as Policy Assertions

We can envision, for example, a policy that ties the capabilities of a Web service
with various security settings. A service may offer some basic functionality with strong
authentication but weak communication channel encryption, and more advanced func-
tionality can be available provided that strong encryption is employed.

WSMO currently does not have any specific mechanism for expressing that alterna-
tive WSMO descriptions are in effect in conjunction with various non-functional prop-
erties,4 and WS-Policy seems to be a widely-adopted mechanism for expressing exactly
such alternatives, therefore even though WSMO descriptions would not normally be
treated as policy assertions, such an approach may prove beneficial.

Because policy assertions must be XML elements, we can reuse WSML/XML se-
rialization format (see [3]) for representing WSMO descriptions as policy assertions in
WS-Policy. To attach a whole WSMO description as a single policy assertion, we use
the elementwsml:wsml .5 For finer granularity (e.g. only asserting a single capability
description) we can reuse the appropriate elements likewsml:capability .

In some situations it may be beneficial only to refer to a WSMO description (as op-
posed to including it inline as a policy assertion). For referring to a whole WSML file
we introduce the elementwsml:descriptionReference that refers to a WSML
document, and similarly we can introduce specific elements for referring to specific
elements of WSMO, for instance to refer to a capability or an interface we can use ele-
mentswsml:capabilityReference andwsml:interfaceReference that
would refer to the identifiers of the WSMO capability or interface descriptions.

The listing in Figure 3 is a policy that claims the policy subject is described by
the WSMO services http://example.org/services/ticketService and http://example.org/
services/billingService. Lines 2–7 show a WSML/XML elementwsml:webService
that, in this context, means a policy assertion assigning a WSMO service description
defined inline. Similarly, lines 13–15 show a reference to such a description, using the

4 See Section 2 for discussion of why WSMO treats WS-Policy as non-functional properties.
5 The firstwsml is a namespace prefix and the second is the name of the XML element container

for WSML/XML syntax.

74

Fig. 3.Example policy with WSMO webService as policy assertion

01 <wsp:Policy>
02 <wsml:webService
03 name="http://example.org/services/ticketService">
04 <wsml:capability name="ticketing">
05 ...
06 </wsml:capability>
07 </wsml:webService>
08 <wsml:ontology
09 name="http://example.org/ontologies/ticketing/">
10 <wsml:concept name="Ticket"/>
11 ...
12 </wsml:ontology>
13 <wsml:serviceReference>
14 http://example.org/services/billingService
15 </wsml:serviceReference>
16 </wsp:Policy>

new elementwsml:serviceReference . Finally, lines 8–12 contain an ontology
which is used by the ticketService definition.

The conclusion is that to represent a policy assertion “the policy subject has the
following WSMO description” we can use any global WSML/XML element as appro-
priate, and to represent an assertion only referencing a WSMO description we have to
create specific elements for each type of WSMO entity that we want to reference.

4 Related Works

To the best of our knowledge, the approach presented in this paper is the first attempt
to combine the WSMO approach to SWS with policies. However, it is worth mention-
ing other works that deal with combining policies and Semantic Web technologies in
general. Such approaches differ from our work in the sense that they are focused on
Semantic Web technologies other than WSMO, and some of them are aimed at solv-
ing a specific policy-related task (e.g. policy conformance check, matchmaking of Web
services, etc.), whereas we are mainly focused in this paper on combining WSMO and
WS-Policy, without emphasizing at this stage any particular policy-related task.

We can classify relevant related works as those that deal directly with WS-Policy,
and those which take a more general approach to policies, and thus not committing to
WS-Policy as a framework for representing policies.

Among works that deal directly with WS-Policy, [9] provides a mapping of WS-
Policy to OWL-DL in order to use OWL-DL reasoners to check policy conformance,
[17] uses OWL ontologies for creating policy assertions with semantics in WS-Policy
in order to enable matching the non-functional properties of Web Services represented
using WS-policy, and [14] proposes an approach to behaviour-based discovery of Web
Services by which business rules that govern service behaviour are described as a policy,
in the form of ontological information; here WS-Policy is used to associate such a policy
to the Web Service.

Works that do not deal directly with WS-Policy (but which take into account Seman-
tic Web based approaches to policies) focus more on administrative policies such as se-
curity and resource control policies. In this category it is worth mentioning KAoS [16]

75

as one of the first efforts to represent policies using OWL, [11] that discusses how to
represent policy inheritance and composition based on credential ontologies and for-
malizes these representations in Frame-Logic, [15] that proposes a hybrid approach for
policy specifications which exploits the expressive capabilities of Description Logic
languages and Logic Programming approaches; and Rein [8],6 which is a framework
for representing and reasoning over policies in the Semantic Web.

5 Conclusions and Outlook

This paper is a first step to combine WS-Policy (a policy framework with significant
industry backing) and the WSMO approach to Semantic Web Services (one of the most
important proposals for Semantic Web Services to date). We identified potential ways
of combining them, and provided the necessary syntax. The new syntax elements are
summarized in Table 1.

Table 1.Syntax for combining WSMO and WS-Policy

Name Type Description

wsp#PolicyReference NFP identifier non-functional property referring to an ex-
ternal policy file by URI

wsp#Policy NFP identifier non-functional property containing an XML
serialization of a policy

wsml:wsml XML Element the root element of WSML/XML syntax,
reused as a policy assertion “the embed-
ded WSML description applies (to the pol-
icy subject)”

wsml:webService
wsml:goal
. . .

XML Element other WSML/XML elements reused as a
policy assertion “the embedded WSML de-
scription applies (to the policy subject)”

wsml:descriptionReference
wsml:webServiceReference
wsml:goalReference
. . .

XML Element policy assertions that refer to WSMO defini-
tions by their identifier URIs

The proposals presented in the paper represent the basis for enabling the use of
policies from SWS environments for tasks such as policy-based semi-automatic nego-
tiations between users and services, policy-based matchmaking between users requests
and services, scheduling of service compositions under certain constraints, etc; but also
for enabling the use of semantic descriptions as policy assertions.

In future work, we plan to investigate concrete applications of the combination of
WSMO and WS-Policy presented in this paper, especially applying existing reasoning
techniques developed in the context of WSMO to policy specification, as well as devel-
oping new techniques in order to provide automated support for Web service discovery,
negotiation, selection, composition, invocation and monitoring with policy awareness.

6 http://dig.csail.mit.edu/2006/06/rein/

76

References

1. S. Arroyo, C. Bussler, J. Kopecký, R. Lara, A. Polleres, and M. Zaremba. Web Service
Capabilities and Constraints in WSMO. InW3C Workshop on Constraints and Capabilities
for Web Services, September 2004.

2. P. A. Bonatti and D. Olmedilla. Semantic Web Policies: Where are we and What is still Miss-
ing? A tutorial at ESWC’06, 2006. Available athttp://www.l3s.de/ ∼olmedilla/
events/2006/ESWC06/ESWC06 Tutorial.html .

3. J. de Bruijn, H. Lausen, R. Krummenacher, A. Polleres, L. Predoiu, M. Kifer, and D. Fensel.
The Web Service Modeling Language WSML. Available viahttp://www.wsmo.org ,
October 2005.

4. C. Sharp (editor) et al. Web Services Policy 1.2 – Attachment (WS-PolicyAttachment).
Technical note, April 2006. Available viahttp://www.w3.org/ .

5. J. Schlimmer (editor) et al. Web Services Policy 1.2 – Framework (WS-Policy). Technical
note, April 2006. Available viahttp://www.w3.org/ .

6. D. Fensel and C. Bussler. The Web Service Modeling Framework WSMF.Electronic Com-
merce Research and Applications, 1(2), 2002.

7. L. Kagal, T. Berners-Lee, D. Connolly, and D. Weitzner. Self-Describing Delegation Net-
works for the Web. InProceedings of the Seventh IEEE International Workshop on Policies
for Distributed Systems and Networks (POLICY’06), pages 205–214, 2006.

8. L. Kagal, T. Berners-Lee, D. Connolly, and D. J. Weitzner. Using Semantic Web Technolo-
gies for Policy Management on the Web. InAAAI, 2006.

9. V. Kolovski, B. Parsia, Y. Katz, and J. A. Hendler. Representing Web Service Policies in
OWL-DL. In International Semantic Web Conference, pages 461–475, 2005.

10. S. McIlraith, T. Son, and H. Zeng. Semantic Web Services. InIEEE Intelligent Systems
(Special Issue on the Semantic Web), 2001.

11. W. Nejdl, D. Olmedilla, M. Winslett, and C. C. Zhang. Ontology-Based Policy Specification
and Management. In2nd European Semantic Web Conference (ESWC), pages 290–302,
2005.

12. D. Roman, J. de Bruijn, A. Mocan, I. Toma, H. Lausen, J. Kopecky, D. Fensel, J. Domingue,
S. Galizia, and L. Cabral. Semantic Web Services – Approaches and Perspectives. In
J. Davies, P. Warren, and R. Studer, editors,Semantic Web Technologies: Trends and Re-
search in Ontology-based Systems, pages 191–236. John Wiley & Sons, 2006.

13. D. Roman, U. Keller, H. Lausen, J. de Bruijn, R. Lara, M. Stollberg, A. Polleres, C. Feier,
C. Bussler, and D. Fensel. Web Service Modeling Ontology.Applied Ontology, 1(1):77–106,
2005.

14. N. Sriharee, T. Senivongse, K. Verma, and A. P. Sheth. On Using WS-Policy, Ontology, and
Rule Reasoning to Discover Web Services. InINTELLCOMM, pages 246–255, 2004.

15. A. Toninelli, J. Bradshaw, L. Kagal, and R. Montanari. Rule-based and Ontology-based
Policies: Toward a Hybrid Approach to Control Agents in Pervasive Environments. InPro-
ceedings of the Semantic Web and Policy Workshop, November 2005.

16. A. Uszok, J. M. Bradshaw, R. Jeffers, A. Tate, and J. Dalton. Applying KAoS Services to En-
sure Policy Compliance for Semantic Web Services Workflow Composition and Enactment.
In International Semantic Web Conference, 2004.

17. K. Verma, R. Akkiraju, and R. Goodwin. Semantic Matching of Web Service Policies. In
SDWP Workshop, 2005.

18. S. Weibel, J. Kunze, C. Lagoze, and M. Wolf. Dublin Core Metadata for Resource Discovery.
RFC 2413, IETF, 1998.

77

WS-Policy and Beyond: Application of OWL Defaults to
Web Service Policies

Vladimir Kolovski1 and Bijan Parsia2

1 Department of Computer Science,
University of Maryland, College Park, MD USA,

kolovski@cs.umd.edu
2 School of Computer Science,

The University of Manchester, UK,
bparsia@cs.man.ac.uk

Abstract. Recently, there has been an increased amount of attention dedicated to
WS-Policy - it has become a W3C submission and a working group was formed
to standardize the specification. In our previous work, we provided a mapping of
WS-Policy to OWL-DL. In this paper, we continue that work by analyzing the op-
eration of policy intersection (determining whether two web service policies are
compatible). We show how this operation motivates the use of a non-monotonic
extension of OWL in the form of OWL default rules. We discuss our prototype
implementation of an OWL defaults reasoner based on Baader and Hollunder’s
terminological defaults.

1 Introduction

Recently, there have been many different web service policy language proposals with
varying degrees of expressivity and complexity [21, 6, 1]. One of these languages, WS-
Policy became a W3C member submission and is the basis for the WS-Policy working
group3.

In previous work [13] we described a translation of WS-Policy to a standardized
logic (OWL-DL). This mapping essentially provided a formal semantics for the frame-
work, and allowed us to use an OWL DL reasoner for policy processing tasks such as
determining policy equivalence, incompatibility, containment, incoherence and expla-
nation. In this paper, we provide additional results on the translation by exploring the
operation of policyintersection. This operation determines whether two policies are
compatible and generally involves domain-specific processing. In the official specifica-
tion of WS-Policy [21], only an approximation algorithm is defined for this operation.
Instead, we describe an algorithm based on OWL-DL extended with default rules. Be-
cause default logic is computationally more expensive than the logic behind OWL-DL,
we do provide clear motivations for our usage of defaults.

To provide reasoning support for OWL defaults we have extended an open-source
OWL-DL reasoner (Pellet). Our implementation is based on Baader and Hollunder’s

3 WS-Policy Working Group web site: http://www.w3.org/2002/ws/policy/

78

2

terminological default logic [3] (adapted to OWL-DL). To retain decidability, the ter-
minological default logic of Baader and Hollunder restricts the default rules to named
individuals only, similar to DL-safe rules. We provide a brief description of our system
in Section 6.

2 Preliminaries

In this section we provide brief overview of the WS-Policy framework and Reiter’s
default logic, which served as the basis of our implementation.

2.1 WS-Policy Framework Overview

The WS-Policy Framework provides a general purpose model and syntax to describe
the policies of a Web service. Its scope is limited to allowing endpoints to specify re-
quirements and capabilities needed for establishing a connection. Its initial goal is not
to be used as a language for expressing more complex, application-specific policies that
take effect after the connection is established. For this purpose, WS-Policy introduces
a simple and extensible grammar that consists ofassertionsandalternatives.

An assertion is the basic unit of a policy. For example, an assertion could declare that
the message should be encrypted. The actual definitions and meaning of the assertions
are domain-dependent and not defined in the WS-Policy Framework. An assertion is
defined by a unique Qualified Name, and can be a simple string or a complex object
with many sub elements and attributes. Note that an assertion can contain a nested
policy expression.

A set of assertions is called a policy alternative, and a set of alternatives comprises
a policy. For an alternative to be supported by a web service requester, all assertions in
that alternative have to be satisfied by that requester. For a policy to be supported by a
requester, one or more alternatives need to be supported. Following is a schema outline
for the normal form of a policy expression:

<wsp:Policy>
<wsp:ExactlyOne>

[<wsp:All> [<Assertion> </Assertion>] * </wsp:All>] *
</wsp:ExactlyOne>

</wsp:Policy>

2.2 Default Logic

Reiter’s default logic is a nonmonotonic formalism for expressing commonsense rules
of reasoning. These rules, called default rules (or simplydefaults), are of the form:

α : β

γ

whereα, β, γ are first-order formulae. We sayα is theprerequisiteof the rule,β is
the justificationandγ theconsequent. Intuitively, a default rule can be read as: if I can
prove the prerequisite from what I believe, and the justification is consistent with what
I believe, then add the consequent to my set of beliefs.

79

3

Definition 1 A default theory is a pair〈W, D〉 whereW is a set of closed first-order
formulae (containing the initial world description) andD is a set of default rules. A
default theory is closed if there are no free variables in its default rules.

Possible sets of conclusions from a default theory are defined in terms ofextensions
of the theory. Extensions are deductively closed sets of formulae that also include the
original set of facts from the world description. Extensions are also closed under the
application of defaults inD - we keep applying default rules as long as possible to
generate an extension.

Default rules can conflict. A simple example is when two defaultsd1 andd2 are
applicable yet the consequent ofd1 is inconsistent with the consequent ofd2. We then
typically end up with two extensions: one where the consequent ofd1 holds, and one
where the consequent ofd2 holds.

3 Updated OWL-DL Mapping

In [13] we presented a mapping of WS-Policy to OWL-DL based on the idea that ser-
vice policy assertions and alternatives were mapped to classes, and web service re-
questers are mapped to OWL individuals. With this mapping, checking whether a web
service requester satisfies a particular policy can then be reduced to simply checking
whether the OWL individual representing the requester is a member of the OWL class
representing the policy. The mapping was relatively simple since there are only two rel-
evant constructs in a WS-Policy in a normal form (<wsp:exactlyOne>, <wsp:All>).
Due to the name of one of the operators (<wsp:exactlyOne>) and the ambiguity in
the WS-Policy specifications, we translated it to a logical XOR. Thus the policyP =
ExactlyOne(A, B) was mapped to the description logic expression:P = (At B) u
¬(Au B) (<wsp:All> was mapped to logical conjunction).

However, due to the open world assumption present in OWL-DL, our previous map-
ping produces non-intuitive results. For example, if a requestr comes in such thatr : A,
and the policyP contains only two alternatives,A andB, we will not be able to infer
that the requestr satisfiesP (i.e., r is of type(A t B) u ¬(A u B)) unless we ex-
plicitly state thatr : ¬B. To solve this issue, we simplified the mapping to represent
<wsp:exactlyOne> as logical disjunction (inclusive OR), and in addition we have made
the classes representing the alternatives pair-wise disjoint, so even though a requester
supports more than one alternative, he cannot use more than one at a time. This updated
translation is more concise than the old one (compareAtB with (AtB) u ¬(AuB)).
In this scenario, if a requester comes in that is a member of two alternatives, we will get
an inconsistency.

Example 1.Consider the example policy in Figure 1. For each policy assertion, we
have a separate OWL class (RequireDerivedKeys , WssUsernameToken10 ,
WssUsernameToken11). Then, each alternative is simply the conjunction of its as-
sertions.

Alt 1 ≡ RequireDerivedKeys uWssUsernameToken10
Alt 2 ≡ RequireDerivedKeys uWssUsernameToken11

80

4

(01)<wsp:Policy
xmlns:sp=”http://schemas.xmlsoap.org/ws/2005/07/securitypolicy”
xmlns:wsp=”http://www.w3.org/2006/07/ws-policy”>

(02) <wsp:ExactlyOne>
(03) <wsp:All>
(04) <sp:RequireDerivedKeys />
(05) <sp:WssUsernameToken10 />
(06) </wsp:All>
(07) <wsp:All>
(08) <sp:RequireDerivedKeys />
(09) <sp:WssUsernameToken11 />
(10) </wsp:All>
(17) </wsp:ExactlyOne>
(18)</wsp:Policy>

Fig. 1.Example policy

The policy classP is equivalent to the disjunction of the alternative classes:

P≡ Alt 1 t Alt 2

In addition, we add a disjoint axiom for the alternatives:

Alt 1 v ¬Alt 2.

4 Policy Processing Services

In our previous work [13] on WS-Policy, we described the services that DL reason-
ers provide regarding policies: containment, equivalence, incompatibility, incoherence
(nothing can satisfy the policy) and policy conformance, among others. Thus, the map-
ping allows us to use an off-the-shelf OWL reasoner as a policy engine and analysis
tool, and an off-the-shelf OWL editor as a policy development and integration environ-
ment. OWL editors can also be used to develop domain specific assertion languages
(essentially, domain ontologies) with a uniform syntax and well specified semantics.

There is one additional reasoning service that is useful for policies and warrants
more discussion. It has been argued (see [4] for example) that explanation is a crucial
requirement for a policy language. To address this requirement, we can use recent ad-
vances in the field of debugging OWL ontologies [11], esp. in providing explanations
for both ontology inconsistencies and arbitrary entailments for OWL-DL.

For example, thewhyquery mentioned in [4] can be handled by the explanation for
arbitrary entailments. If a user asks why the requesterr satisfies the policyP, then the
debugging framework is simply asked to provide justification for the type assertionr :P.
On the other hand, if a web service request causes an inconsistency (for example be-
cause of violating a domain disjointness constraint), then the debugging framework can
provide explanation of why the inconsistency occurred. More specifically, if an OWL-
DL ontology is inconsistent, [11] provides the minimal set of axioms in the ontology
that causes the inconsistency (the set of axioms is called ajustification).

81

5

These techniques are already implemented in Pellet, and there is also a UI for de-
bugging implemented in SWOOP.

5 Policy Intersection

Policy intersection is used when a web service requester and provider both express
policies and want to compute the compatible policy alternatives between them. This
commutative and associative function takes two policies as input and returns a policy
containing the compatible alternatives. As defined in [21], two alternatives are com-
patible if each assertion in the first alternative is compatible with an assertion in the
second, and vice-versa. If two policy alternatives are compatible, their intersection is an
alternative containing all of the assertions in both alternatives.

Determining whether two policy alternatives are compatible involves domain-specific
processing. In an attempt to automate the operation, one might be tempted to mark the
incompatible policy assertions as mutually disjoint classes. Then, to determine whether
two policiesA andB are compatible we only check whetherAu B is satisfiable. How-
ever, this will prevent us from having entities support assertions of different types, since
it will render the policy ontology inconsistent. Since it is usually the case that entities
do support different assertion types (example: an entity can support some specific en-
coding and some type of reliability, and encoding and reliability are different assertion
types), the simple approach of marking incompatible assertions as disjoint classes is
incorrect.

To overcome this problem, we introduce an additional property in the policy ontol-
ogy -compatibleWith . Then, for two policy assertion classesAandB, if we want to
say thatA is not compatible withB, we can simply useAv ¬∃compatibleWith .B.

As stated in [21], assertion authors are encouraged to factor assertions such that two
assertions of the same assertion type are typically compatible. We can model this using
inheritance hierarchies (with exceptions). For instance, the policy modeler can state that
for two classes representing assertionsC,D, which she knows are compatible, every
pair of classesCi, Di that are subclasses ofC,D (i.e., Ci v C andDi v D) is also
compatible by default. This can be expressed with the following default rule:

C(x) ∧ D(y) : compatibleWith (x, y)
compatibleWith (x, y)

In the cases when two assertions are incompatible (even though they are a inherit
from the same type) the policy developer can add a disjoint axiom by hand, overriding
the default rule above.

The basic algorithm would be as follows: for two policiesA andB and a default the-
ory KB = 〈W,D〉 (whereW is an OWL-DL ontology andD is a set of defaults), to
determine whether they are compatible start with the alternatives ofAand try to find one
compatible alternative inB, and vice-versa. If for at least one alternative in one policy,
we succeed in finding compatible alternatives in the other policy, we conclude that the
policies can intersect. The intersection of the policies is the policy containing the mutu-
ally compatible set of alternatives. To determine whether two alternatives are compati-
ble, we try to match their assertions. For each assertionAssert a ∈ A, we try to find

82

6

an assertionAssert b ∈ B s.t.KB |= compatibleWith (Assert a , Assert b).
If the assertion has a nested policy, then we try to match it with a nested policy from the
other alternative, by asking recursively whether they are compatible.

6 OWL Defaults

Both of the default logic scenarios described above could be plausibly met with Reiter’s
default logic, which is one of the most studied non-monotonic logics. Reiter’s default
logic, while very expressive, is, like many non-monotonic formalisms, known to be
computationally difficult even in the propositional case. In [3], Baader and Hollunder
showed that even a restricted form of defaults coupled with a description logic that con-
tains a smaller set of constructors than OWL-DL was undecidable. They also showed
that if one restricted the defaults to apply only to named individuals (or, equivalently,
restricted the logic to closed defaults), then a robust decidability ensued.

We have implemented a prototype of the terminological defaults of Baader and Hol-
lunder that is based on recent advances in description logic reasoning: tableaux tracing
for the description logicSHOIN and incremental reasoning support. The implemen-
tation is provided as an extension to Pellet and it providesrealizationof individuals in
terminological default theories. We have also provided a UI for defaults by extending
the open source OWL Ontology editor SWOOP. More specifically, we added support
for default rules editing and updating the current ontology with the set of inferred facts
from the defaults. We refer the reader to [12] for more details.

7 Related Work

There have been a number of proposals for ontology-based web policy systems [16, 10,
18, 8] - because of lack of space, we will only briefly cover Rei and KaOS.

Rei [10] is a policy specification language based on a combination of OWL-Lite,
logic-like variables and rules. It allows users to develop declarative policies over domain
specific ontologies in RDF and OWL. Rei allows policies to be specified as constraints
over allowable and obligated actions on resources in the environment. A distinguishing
feature of Rei is that it includes specifications for speech acts for remote policy manage-
ment and policy analysis specifications like what-if analysis and use-case management.
Our goal is to encode WS-Policy in a not very expressive logic formalism (so as to be
able to perform policy analysis), and our opinion is that we do not need a language as
expressive as Rei for WS-Policy.

KaOS Policy and Domain Services [18] use ontology concepts encoded in OWL
to build policies. These policies constrain allowable actions performed by actors which
might be clients or agents. The KAoS Policy Service distinguishes between authoriza-
tions and obligations. The applicability of the policy is defined by a class of situa-
tions which definition can contain components specifying required history, state and
currently undertaken action. Even though we use the same representation language as
KaOS (OWL-DL), our reasoning support is provided by tableaux-based description
logic reasoners which are sound and complete for OWL-DL. In addition, by using Pel-
let we were able to leverage its ontology debugging support.

83

7

In addition, there are a number of proposals [20, 14] of policy/authorization lan-
guages based on logic programs extended with default rules - the difference with our
approach is that we use description logics as the underlying logic formalism.

8 Conclusions and Future Work

While most policy language proposals are based on logic programs, in this paper we
explored the alternative of using OWL-DL as a language for expressing web service
policies. We argued that the policy services that DL reasoners provide out of the box,
the advances in explanation mechanisms for DL, and the ability to closely integrate
OWL-DL with default logic make an OWL-based policy framework worth exploring.
Also, OWL-DL is a W3C standard, a language with clear syntax and semantics that is
ubiquitous in the Semantic Web. As a consequence, the number of reasoners and OWL-
DL editors has been growing steadily. A policy language based on OWL-DL should be
able to capitalize on the popularity of OWL-DL.

Despite the advantages mentioned above, policies, being associated with rules first
and foremost, seem to demand greater expressivity than OWL-DL (as argued in [9],
for example) in the form of monotonic rules. However, because of the recent advances
in hybrid (description logic + logic programs) knowledge bases, and successful imple-
mentations ([15]) we believe that OWL-DL combined with rules is reaching a maturity
level where it will be a suitable alternative for a policy framework.

During the past couple of years, there has been great advances [7, 5, 19, 17] in the
area of automated trust negotiation (ATN) between policy entities. ATN deals with the
problem of exchanging of sensitive credentials between strangers in order to establish
trust. We plan to investigate how we can integrate our OWL-based system with such
mechanisms.

Finally, it is unfortunate that we cannot provide clear semantics for policy inter-
section because its dependence on domain-specific reasoning. The WS-Policy frame-
work requires each domain to specify its own policy assertions, but there is no generic,
domain-independent language for expressing these assertions. As a result, every do-
main has its own language (with unclear semantics) that makes it hard to reason and
analyze the assertions. We plan to investigate how we could couple OWL with concrete
domains (e.g. XPath) so as to be able to express and give semantics to some of these
domains. A promising step toward a domain-independent policy assertions language is
[2]; we plan to investigate the idea further.

References

1. A. H. Anderson. An introduction to the web services policy language. InFifth IEEE Inter-
national Workshop on Policies for Distributed Systems and Networks (POLICY’04), 2004.

2. Anne Anderson. WS-PolicyConstraints: A domain-independent web
services policy assertion language, November 2005. Available at
http://research.sun.com/projects/xacml/IntroToWSPolicyConstraints.pdf.

3. Franz Baader and Bernhard Hollunder. Embedding Defaults Into Terminological Knowledge
Representation Formalisms.J. Autom. Reasoning, 14(1):149–180, 1995.

84

8

4. P.A. Bonatti, G. Antoniou, M. Baldoni, C. Baroglio, C. Duma, N. Fuchs, A. Martelli, W. Ne-
jdl, D. Olmedilla, J. Peer, V. Patti, and N. Shamheri. The rewerse view on policies.

5. Piero A. Bonatti and Pierangela Samarati. A uniform framework for regulating service access
and information release on the web.J. Comput. Secur., 10(3):241–271, 2002.

6. Jacques Durand et al. Wsdl annotation proposal. http://lists.oasis-
open.org/archives/wsrm/200403/msg00082.html.

7. R. Gavriloaie, W. Nejdl, D. Olmedilla, K. Seamons, and M.Winslett. No registration needed:
How to use declarative policies and negotiation to access sensitive resources on the semantic
web. InEuropean Semantic Web Symposium, May 2004.

8. Stephan Grimm, Steffen Lamparter, Andreas Abecker, Sudhir Agarwal, and Andreas Eber-
hart. Ontology based specification of web service policies. InSemantic Web Services and
Dynamic Networks Workshop, 2004.

9. R. Montanari J. Bradshaw, L. Kagal and A. Toninelli. Rule-based and ontology-based poli-
cies: Toward a hybrid approach to control agents in pervasive environments. InProceedings
of the ISWC2005 Semantic Web and Policy Workshop, 2005.

10. L. et al Kagal. A policy language for a pervasive computing environment. InIEEE 4th
International Workshop on Policies for Distributed Systems and Networks, June 2003.

11. Aditya Kalyanpur, Bijan Parsia, Evren Sirin, and James Hendler. Debugging unsatisfiable
classes in owl ontologies.Journal of Web Semantics - Special Issue of the Semantic Web
Track of WWW2005, 3(4), 2005.

12. Vladimir Kolovski, Bijan Parsia, and Yarden Katz. Implementing owl de-
faults. Technical report, University of Maryland - College Park, 2006.
http://www.mindswap.org/ kolovski/defaults.pdf.

13. Vladimir Kolovski, Bijan Parsia, Yarden Katz, and Jim Hendler. Representing web service
policies in owl-dl. InInternational Semantic Web Conference (ISWC), 2005.

14. Ninghui Li, Benjamin N. Grosof, and Joan Feigenbaum. Delegation Logic: A logic-based
approach to distributed authorization.ACM Transaction on Information and System Security
(TISSEC), February 2003.

15. Boris Motik, Ulrike Sattler, and Rudi Studer. Query answering for owl-dl with rules. In
Proc. of ISWC 2004, pages 549–563.

16. W. Nejdl, D. Olmedilla, M. Winslett, and C. Zhang. Ontology-based policy specification and
management. In2nd European Semantic Web Conference (ESWC), May 2005.

17. K. Seamons, M. Winslett, and T. Yu. Limiting the disclosure of access control policies during
automated trust negotiation, 2001.

18. A. Uszokand and J. Bradshaw. Kaos policies for web services. InW3C Workshop on Con-
straints and Capabilities for Web Servies, October 2004.

19. W. Winsborough, K. Seamons, and V. Jones. Automated trust negotiation. Technical Report
TR-2000-05, 24 2000.

20. T. Y. C. Woo and S. S Lam. Authorization in distributed systems : A formal approach. In
Proceedings of the IEEE Symposium on Security and Privacy, pages 33–51, 1992.

21. WS-Policy. Web services policy framework (ws-policy). http://www-
106.ibm.com/developerworks/library/specification/ws-polfram/.

85

Semantics in Model-Driven Business Design

Mark H. Linehan

IBM T. J. Watson Research Center
Yorktown Heights, NY 10598

mlinehan@us.ibm.com

Abstract. This position paper describes ongoing work in applying the new
OMG standard called Semantics in Business Vocabulary and Rules (SBVR) to a
model-based approach to business design and implementation. The work ex-
plores methods of specifying semantics and rules in SBVR’s “Structured Eng-
lish” as extensions of business models that are automatically translated to ex-
ecutable solutions.

Introduction

The Object Modeling Group’s (OMG’s) Model-Driven Architecture [13] concept de-
fines a multi-layered approach to defining business solutions, as shown in figure 1.

Platform Independent Model (PIM)

Platform Specific Model (PSM)

Business
model

Technology
independent

model

Technology
specific model

M
apping

M
apping

Business Model
(CIM or Computation Independent Model) e.g. business processes, organization

structure, business metrics – expressed
without implementation details

e.g. BPDM (Business Process Definition
Metamodel from OMG)

e.g. BPEL (Business Process
Execution Language) flows

e.g. models tied to J2EE, .Net

Fig. 1. OMG Modeling Layers

Figure 2 summarizes OMG efforts to define standards for rules at the top two layers.
The Semantics of Business Vocabulary and Rules [15] activity is defining a “Struc-
tured English” approach to vocabulary and rules at the Business Model or Computa-

86

mailto:mlinehan@us.ibm.com

tion Independent Model layer. The Production Rules Representation [14] aims to
specify a standard Unified Modeling Language (UML) model for rule structures.

Platform Independent Model (PIM)

Platform Specific Model (PSM)
M

apping
M

apping

Semantics of Business
Vocabulary & Rules

(SBVR)
Business

Vocabulary
Business

Rules

Production Rules
Representation (PRR)

• Forward chaining

• Sequential Rules

Vendor-Specific Rule or
Other Language

Business Model

business guidelines

e.g. “the duration of each rental
must be at most 90 days”

rules located within a solution

e.g. “in the rental pickup flow, if the rental
duration is greater than 90 days then …”

e.g. “in the rental reservation UI, if the rental
duration is greater than 90 days then …”

?

?

rule language or hard code

e.g. “if rental.duration > 90 then ….”

Fig. 2. Rules in the MDA Layers

This paper summarizes an ongoing effort to implement a subset of SBVR in the con-
text of an existing Model Driven Business Transformation project [10] at IBM Re-
search.

MDBT – Model-Driven Business Transformation

MDBT is a methodology and matching toolkit for defining a business solution at the
business modeling layer, and then semi-automatically transforming the solution into a
PIM-layer and then a PSM-layer implementation. A business analyst applies the
methodology by defining a business model using the IBM WebSphere Business Mod-
eler [7] tool and the MDBT semantics. The analyst then converts the business model
to a PIM-layer model using the IBM Rational Software Architect [6] product, and fur-
ther transforms the PIM-layer model to an executable implementation using the IBM
WebSphere Integration Developer [8] tool and IBM WebSphere Process Server [9]
runtime. The generated implementation includes Data Definition Language (DDL)
statements to generate relational database tables, state machine definitions for execut-
ing the solution, skeleton user interface Java Server Pages (JSPs), and service defini-
tions in the form of Web Services Definition Language (WSDL) files. The imple-
mentation incorporates business performance monitoring functions and dashboards, as
described in [2].

The transformation process from business layer to implementation can be fully auto-
mated in a “rapid prototyping” mode. Manual intervention at the PIM and PSM lay-

87

ers are needed to produce production-quality user interfaces and adapters for invoking
legacy systems as services.

user role

business
artifact

verbs: reject,
validate

Fig. 3. Business-Layer Model of a Driver’s License Bureau

Figure 3 shows a simple solution example at the business layer. This shows the proc-
essing flow of a Driver’s License Bureau which handles License Applications. The
flow starts at the dot on the left, and proceeds through the illustrated stages. The
rounded squares show processing tasks, while the database icons show repositories
for holding in-process work. The rectangular callouts indicate the three primary con-
cepts captured in this model: user roles, verbs associated with the output sides of
tasks, and the business artifacts processed by the solution.

Fig. 4. Business Artifact

88

At the business layer, artifacts are detailed in terms of their attributes. Figure 4 shows
that a License Application contains various fields, similar to properties in UML
classes.

What’s missing from the business-layer model is any concept of business rules. For
example, perhaps the applicant must be at least 18 years old to get a driver’s license.
In the current MDBT approach, such rules must be implemented manually at the PSM
layer. A method of specifying such rules at the business layer and then transforming
them to the implementation would improve the MDBT methodology. The objective
of this project is to examine the suitability of SBVR for this purpose.

SBVR

SBVR provides a framework for defining business vocabulary and rules at the busi-
ness modeling layer using “Structured English” and applying stylized text to four key
concepts:

− The ‘term’ style applies to noun concepts, such as ‘License Application’.
− The ‘Name’ style designates individual concepts, such as a clerk named ‘Bill’.
− The ‘verb’ style identifies fact types, which define relationships between concepts.

For example, ‘clerk validates application’.
− The ‘keyword’ style distinguishes various words used to construct vocabulary defi-

nitions and rule statements. The keywords designate built-in SBVR concepts such
as ‘it is permitted that’ and ‘exactly one’.

SBVR supports standard logical operations (‘and’, ‘or’, and so forth) and first order
predicate logic (e.g. ‘each’, ‘some’). SBVR also supports certain modal logic con-
cepts such as necessity, possibility, obligation, and permission. Some example rules
given in “Structured English” are:

It is permitted that each clerk validates each license application only if the current

age of the license application is greater than 18.

It is obligatory that each applicant pass the written test.

Note the influence of the vocabulary design on the expression of the rules. The first
example references the “the current age of the license application,” rather than “…of
the applicant,” because “current age” is a field of the “license application” artifact.
The vocabulary – and perhaps the underlying application – would have to be restruc-
tured to enable a more natural rule statement.

The project described here is creating a prototype tool to evaluate the technical issues
involved in writing SBVR rules, and then transforming them to executable implemen-
tations.

89

Prototype Design

Business Model
with restricted permission
rules expressed in SBVR,

using an extension of
IBM WebSphere Business

Modeler

Platform Independent
Model (PIM)

with rules expressed as
OCL preconditions on

artifact operations, using
IBM Rational Software

Architect

Platform Specific
Model (PSM)

implementation
with rules implemented

in Java, using
IBM WebSphere

Integration Developer

Fig. 5. Prototype Summary

The SBVR prototype is designed as an extension of the MDBT project, in order to
build upon the existing MDBT modeling and transformation technology. As shown
in figure 5, the rules are entered in a new tool added onto the WebSphere Business
Modeler, and then transformed into a PIM-layer solution, and then further trans-
formed into a PSM-level implementation.

Specifying Rules in the Business Model

The SBVR specification is large and fairly complex. Rather than attempt to support
the entire specification, this prototype focuses on a limited subset called “restricted
permission rules”. These are rules expressed as permissions (someone or something
may do something) associated with conditions. The first example rule given above is a
restricted permission rule. In the prototype, all such rules are associated with an
MDBT business model such as the one shown above. Each rule references a user
role, an action, and a business artifact in the model.

start
select

role/verb/artifact
used in rule

select “not”
if desired

enter first
operand

select fact
type

appropriate
to operand

enter
second
operand

another
clause?

select
“and”, “or”,
“xor”, etc.

done

if unary

no

yes

Fig. 6. Rule Wizard Navigation Path

90

Tw imagined. One involves a tool that parses

his prototype employs an alternate approach in which rules are entered through a

Transforming from Business Model to Platform Independent (PIM) Model

Following the MDBT technology, the rules entered through the wizard are converted

dvantages of OCL for this purpose include the fact that it is an established standard,

o methods of entering rules could be
“Structured English” text and attempts to discover the underling meaning. The prob-
lem with that approach is that all text – even “Structured English” – has ambiguities.
Manual user involvement would be required to resolve those ambiguities.

T
tool “wizard” that guides users, step-by-step, through the process of creating a com-
plete rule. Figure 6 summarizes the wizard steps. Advantages of this approach are
two-fold: (a) users can only enter valid rules; (b) the meaning of the rules is explicit.

to a PIM-layer solution as part of the overall MDBT transformation. MDBT models
the PIM layer using UML class, state, and use case diagrams. This prototype extends
the class diagrams by converting the rules to pre-conditions on the class operations.
These pre-conditions are expressed using the Object Constraint Language [17].

A
the potential to convert to any appropriate PIM-layer implementation, and OCL’s
built-in collection operators. The latter facilitate SBVR’s use of universal and exis-
tential logic. For example, a rule fragment such as “each line item of the order is
complete” may be converted to an OCL fragment such as
“lineItems select(isComplete)”.

Transforming from Platform Independent Model to Platform Specific (PSM)

The transformation from PIM-layer to PSM-layer potentially converts the pre-

or simplicity, this prototype converts the OCL preconditions only to Java. The

Model

conditions to equivalent tests in various aspects of the implementation. These include
code that enables or disables buttons in the user interface, guards on state machine
transitions, and potentially access control statements in a language such as the eXten-
sible Access Control Markup Language (XACML) [12]. The first example rule given
above might map to all of these. This illustrates the power of SBVR and the MDBT
approach: a single rule given at the business layer potentially drives multiple aspects
of the ultimate solution.

F
transformation is simple, except that collection operators must be generated as corre-
sponding “for” loops. Mappings to implementations such as rule languages,
XACML, script languages, and others are possible and relatively easy with the
MDBT approach.

91

Related Work

Since SBVR is quite new, relatively little work has been published about it. One an-
nounced commercial implementation and a research prototype of SBVR exist:

• RuleExpress is a commercial SBVR tool produced by a collaboration of Business

Rule Solutions, LLC [1] and LibRt [11]. The website [16] says RuleExpress pro-
vides “Business-people capabilities for business rules … capture, expression, vali-
dation, verification, visualization, management, publication, audit.”

• SBeaVer [3] is an open-source SBVR tool created by Maurizio De Tommasi and
Pierpaolo Cira at the University of Lecce in Italy, in a project funded by the Euro-
pean Digital Business Ecosystem [4] project. This tool runs as a plugin for the
Eclipse [5] tools platform, and provides for creation, editing, validation, verifica-
tion, and export of both vocabulary and rules.

These tools enable entry and modification of rules and vocabulary using “Structured
English”. In contrast, the work described here focuses upon transformation of the
rules to executable code.

Summary and Outlook

The project experience so far is that entering rules in SBVR “Structured English”
seems to be a useful adjunct of the existing Model-Driven Business Transformation
(MDBT) technology. Conversion of the limited subset of SBVR supported by this
prototype into OCL and Java is straightforward.

This prototype addresses a small portion of the concepts defined by SBVR. Features
of particular interest for future work include:

• Synonyms to permit alternative terms and part of speech in rules. For example, a

‘License Application’ might also be named an ‘Application’.
• Noun and fact type definitions to simplify the expression of certain rules. For ex-

ample, rather than specifying rules for when a clerk may validate an application,
one might define a ‘valid application’ according to a set of conditions.

• Additional modalities, such as necessities and obligations. The second example
above gives an example of an obligation rule.

These three require very different kinds of technology. Synonyms are entirely a mat-
ter of tools function. Definitions and other modalities require either new transforma-
tions among modeling levels or new execution mechanisms such as inferencing.

SBVR brings together concepts from several distinct traditional academic subjects:
philosophy (modal logics, taxonomies), linguistics (semantics, pragmatics), and
mathematics (first order logic). The application of these concepts to computer science
topics such as modeling, model transformation, Description Logics, and rules, offers

92

rich opportunities for scientific and technical progress. The expression of these con-
cepts in “Structured English” promises to make rules practical and useful for every-
day business solutions.

References

1. Business Rule Solutions, LLC. See http://www.brsolutions.com/.
2. Chowdhary, P., Bhaskaran, K., Caswell, N. S., Chang, H., Chao, T., Chen, S.-K., Dikun, M.,

Lei, H., Jeng, J.-J., Kapoor, S., Lang, C. A., Mihaila, G., Stanoi, I., Zeng, L. “Model Driven
Development for Business Performance Management.” IBM Systems Journal, Volume 45,
Number 3, Page 587 (2006). Available at http://www.research.ibm.com/journal/sj45-3.html

3. De Tommasi, Maurizio, Cira, Pierpaolo. SbeaVer Business Modeler Editor. Available at
http://sbeaver.sourceforge.net.

4. Digital Business Ecosystem project, “an Internet-based software environment in which busi-
ness applications can be developed and used”. Available at http://www.digital-
ecosystem.org/.

5. “Eclipse is an open source community whose projects are focused on providing an extensi-
ble development platform and application frameworks for building software.” Available at
http://www.eclipse.org/.

6. IBM Rational Software Architect. See http://www-
306.ibm.com/software/awdtools/architect/swarchitect/index.html.

7. IBM WebSphere Business Modeler. See
 http://www-306.ibm.com/software/integration/wbimodeler/.
8. IBM WebSphere Integration Developer. See
 http://www-306.ibm.com/software/integration/wid/.
9. IBM WebSphere Process Server. See
 http://www-306.ibm.com/software/integration/wps/.
10. Koehler, Jana; Hauser, Rainer; Kapoor, Shubir; Wu, Fred Y.; and Kumaran, Santhosh. A

Model-Driven Transformation Method. In Proceedings of the Seventh International Confer-
ence on Enterprise Distributed Object Computing, pages 186--197. IEEE, September 2003.
Available at http://doi.ieeecomputersociety.org/10.1109/EDOC.2003.1233848.

11. LibRT. See http://www.librt.com/.
12. Organization for the Advancement of Structured Information Standards (OASIS). eXtensi-

ble Access Control Markup Language (XACML). See http://www.oasis-
open.org/committees/tc_home.php?wg_abbrev=xacml.

13. Object Modeling Group (OMG). MDA Guide, version 1.01, 2003. Available at
http://www.omg.org/docs/omg/03-06-01.pdf.

14. Object Modeling Group (OMG). Production Rules Representation Revised Submission,
June 5, 2006.

15. Object Modeling Group (OMG). Semantics of Business Vocabulary and Rules Specifica-
tion Drafted Adopted Specfication, March 2, 2006.

16. RuleExpress, “The business tool for expressing and communicating business rules.” Avail-
able at http://www.rulexpress.com/index.php.

17. Warmer, Jos, Kleppe, Anneke. The Object Constraint Language: Getting Your Models
Ready for MDA. second edition, Addison-Wesley Professional; 2003; ISBN 0321179366.

93

http://www.brsolutions.com/
http://www.research.ibm.com/journal/sj45-3.html
http://sbeaver.sourceforge.net/
http://www.digital-ecosystem.org/
http://www.digital-ecosystem.org/
http://www.eclipse.org/
http://www-306.ibm.com/software/awdtools/architect/swarchitect/index.html
http://www-306.ibm.com/software/awdtools/architect/swarchitect/index.html
http://www-306.ibm.com/software/integration/wbimodeler/
http://www-306.ibm.com/software/integration/wid/
http://www-306.ibm.com/software/integration/wps/
http://doi.ieeecomputersociety.org/10.1109/EDOC.2003.1233848
http://www.librt.com/
http://www.oasis-open.org/committees/tc_home.php?wg_abbrev=xacml
http://www.oasis-open.org/committees/tc_home.php?wg_abbrev=xacml
http://www.omg.org/docs/omg/03-06-01.pdf
http://www.rulexpress.com/index.php

Non-Boolean Authentication
Alec Yasinsac

Florida State University, Computer Science Department
Tallahassee, Florida 32306-4530 USA

Abstract. Traditional authentication is two valued. Unfortunately, authentication
mechanisms cannot perfectly establish electronic participant’s identity. Despite years of
research and its manifestations such as digital signatures, zero knowledge proofs, public
key infrastructures, certificates, biometric tools, etc. the best authentication evidence is a
combination of multiple factors. All authentication systems are imprecise, but there are
no existing systems that capture or that facilitate reasoning about this property. This
paper introduces many fundamental issues in multi-tiered authentication systems.

1 Introduction and Motivation
In theory, authentication is Boolean; either someone is who they say they are, or they
are not. Unfortunately, as any good practioner will tell you: "In theory, theory and
practice are the same, but in practice, they are not". Unfortunately for information
security, this "practicality axiom" holds true with authentication; that is, in general it is
practically impossible to establish absolute authentication. Sophisticated intruders can
guess, mine, or acquire passwords through social engineering. Private keys can be
stolen or (more likely) mishandled. Adversaries can electronically capture biometric
information or compromise underlying biometric security protocols.
Still, most trust systems treat authentication as though it were Boolean. Even in
systems that partition trust into levels [1] there are few approaches (if any) that can
cope with varying authentication confidence levels.
We introduce a model, architecture, and mechanisms that accommodate the reality that
authentication is rarely Boolean. We rely on abstract notions of limited transitive trust
with time-sensitive, information maturity and growth in a multi-level authentication
model. Our architecture is a two-tiered structure that allows action categories that
active responses offset as additional authentication information emerges. Our
mechanisms focus on independent, cooperating identity sensors and state reversion.

1.1 Multi-State Authentication
Security systems canonically have two authentication states, roughly corresponding to
(1) Identity Authenticated and (2) Identity Not Authenticated. Until we properly enter
our account identifier and password, we are "not authenticated", so we receive no
access privileges. We are so accustomed to this paradigm that it may be hard to
imagine how an n-tiered authentication confidence scheme may work. Let us illustrate.
Most of us have experienced account suspense as a result of failing to correctly enter
our password in three attempts. Account suspense after three failed authentication tries
is one common practice that recognizes a third authentication class, call it Identity
Claim Disproven (ICD). Essentially, the ICD authentication category reflects a negated
identity claim or that a mechanism verified that a false identity claim occurred. Thus,
we identify the following authentication classes within this three state paradigm: (1)
Identity Unknown, (2) Identity Authenticated, and (3) Identity Claim Disproven.

94

Non-Boolean Authentication

-2-

The three state authentication paradigm leads to numerous research questions, e.g.:
1. Can we systematically categorize authentication confidence states?
2. What are legitimate actions/responses for a given n-state authentication

system and how can this state/action relationship be best represented?
3. Can we characterize the optimum, minimum, and maximum number of

authentication states for a given protection system?
4. Can we capture the essential authentication properties to allow continuous,

incremental re-authentication?
Earlier work [2] investigates possible responses to incomplete authentication based on
vanilla services. This notion leverages traditional access control and information flow
models [3, 4], particularly that different objects have different protection requirements.
Intuitively, objects with minimal sensitivity need the minimum or vanilla protection.
A complementary issue relates to proactive responses to incremental authentication and
re-authentication. For example, we consider whether or not it is reasonable to reverse
actions taken by a partially authenticated party if their identity claim is later refuted or
its confidence level downgraded. We offer a general approach that we call Rollback.
A fundamental component of this research is to determine if rollback is essential for
incremental authentication confidence systems. This idea appears intuitive, i.e. an act
made while masquerading should be reversed when the masquerade is discovered.
There is little in the literature on systematic approaches to backing-out to a previous
secure state, though there is related work concerning disaster recovery that we address
in the next section.

1.2 Theoretic Foundations
In their seminal paper, Harrison, Ruzzo, and Ullman introduce mathematical security
models for managing computer access control [4]. There are many similar models [1],
evaluations [5], and refinements [3] in the literature and research continues [6, 2] with
significant interest in access control models for ubiquitous computing [7, 8]. Different
environments demand different security models, and computing continues to change at
breakneck pace. Access control models are not keeping pace with this change.
The literature is also rich with works targeting authentication definition [9,10] and
properties [11] with an early, extended bibliography in [12]. Most recent work focuses
on cryptographic authentication techniques triggered by [13], with seminal works by
Burrows, et al.[14], Lampson et al. [15], Diffie, et al. [16], and Bird et al. [17] with a
litany of variations [18, 19, and many others].
A common thread of this work is that it distinguishes only two authentication states.
Work in threshold cryptography [20] offers an environment that has inherent
opportunity for multi-state authentication and response, but we have seen no such work
in the literature. We examine the opportunity in this area in this paper.

2 Multi-tiered Authentication Confidence States

2.1 Foundations in the Three State Model
We begin this description by adopting the three-tiered three state model, as described
earlier, as our foundation. We fix the endpoints at "perfect confidence" with the

95

Non-Boolean Authentication

-3-

Identity Authenticated state on one flank and Identity Claim Disproven (ICD) on the
other. ICD users are denied all access while access for fully identity authenticated users
are controlled by the normal access control system. Our primary interest lies in the
middle state: Identity Unknown.
We consider the three level model foundational because here we prove and exercise the
concept of vanilla access that is granted to Identity Unknown subjects. The term
"vanilla" seems particularly applicable as an intentional double-entendre. First, it
reflects a plainness that characterizes the least protection afforded objects in a
protection system. Vanilla objects require no special access control because they are
not sensitive, either for confidentiality, integrity, or availability. Since they require
[essentially] no protection, unknown subjects may access them. Depending on the
environment, there may be a rich set of vanilla services, or there may not be any.

2.2 Vanilla Users
The vanilla user notion is evident in a variety of open laboratory environments. For
example, many university libraries do not require user authentication on library
computers. In some cases, the only applications available on accessible terminals
provide library search capabilities. In general, such library search applications are not
sensitive; in fact library patrons are encouraged to utilize these systems to locate
resources without engaging reference personnel. We might call this system, vanilla-
only access or a single state model.
A mild adjustment to the library illustration of requiring authentication for system
administrators using library computers reflects the earlier described two-state model. In
this scenario, an authentication system partitions users into the identity unknown and
identity authenticated classes. Once authenticated, administrators have special access
privileges not available to vanilla (unknown) users. A central theme of our paper is that
access states may be monotonic, e.g. administrators are inherently vanilla users and
need not be authenticated to receive vanilla access.
To extend the library illustration to a three state model, we require weak authentication
for all users. For example, the authentication may be so simple as swiping a student
identification card or entering a library issued group key, reflecting the likely status of
the user being a university student. The classes in the illustration are:
(1) [Specific] Identity Unknown: Vanilla university students
(2) Identity Authenticated: System administrators
(3) Identity Claim Disproven: Users failing student authentication

In this simple illustration, system responses for vanilla users seem reasonably clear.
They may access any provided library applications as often as they like, for as long as
they like. If the applications allow file writing, the user may write to the files through
applications. Of course, some libraries may set more liberal or more restrictive access
policies for vanilla users, but these seem to reflect vanilla access for this illustration.
The more interesting question relates to limitations on vanilla users. Clearly, they are
not allowed to perform system administration functions, such as installing programs or
editing existing program or system configuration. Possibly not so clear is whether other
general, non-sensitive functions (such as web browsing, Internet chat, even simple file
editing, say through Notepad) are available. In the three state model, the system owner

96

Non-Boolean Authentication

-4-

must decide if any of these applications should be available on the library nodes, and if
they should be available only to system administrators or to all vanilla users.

2.3 The N-State Model
The core of this paper is to partition the vanilla state to
form an n-state model, where n is greater than three, e.g.
Figure 1. We begin by describing a state split to form a
four state model, and then give a theory regarding further
partitioning and refinement. Central to this process is how
we identify vanilla session classes that correspond to
vanilla object classe, and reasonable respective responses.

2.3.1 Incremental Session Re-authentication

Many security models (e.g. [1]) are founded on the notion
of tranquility, that is, that subjects and objects’ security
posture does not change. Conversely, a foundation of this
paradigm is that while objects are tranquil, the
authentication posture of each subject in every session may continuously change. For
most cases, we expect to gain authentication confidence with time, eventually reaching
the identity authenticated state and remaining in that state with access controlled by the
normal protection system.
Conversely, we contend that re-authentication should be continuous as, e.g.:
(1) An authentic user is unable to successfully complete the authentication process
(2) An intruder advances into a vanilla authentication state
(3) A session involving an authenticated, or partially authenticated, user is hijacked

by an intruder
While these are three distinct situations, each can be resolved by invoking a continuous
authentication process along with a dynamic access control mechanism. Many identity
indicators support continuous inspection and incremental reevaluation.
1. Personal Entropy. Beyond biometric mechanisms that may comprise normal
authentication systems, humans have characteristic, involuntary behavior that can
uniquely identify them. Keystroke pattern (made famous during Carnivore [21]
discussions) is one such behavior.
2. Functional behavior. Humans are creatures of habit, thus form behavior patterns
that identify them as distinctly as physical and biological characteristics. Intrusion
detection systems adopted behavioral profiling as early as 1986 [22].
3. Password hamming Distance. One of the most common authentication errors is
the mis-typed password. Present password protection approaches are designed to
prevent, rather than leverage, password similarity analysis. We examine mathematical
metrics to password protection measure password accuracy.
4. Stored semi-private information. A common authentication approach is to store
semi-private user information. Items such as birthday, mother’s maiden name, etc. are
public information, thus are not strong authentication. In combination with other
mechanisms, they provide corroboration that is the essence of vanilla access control.

Vanilla

Identity
Authenticated

ICD

Figure 1

97

Non-Boolean Authentication

-5-

5. Peer confirmation. Though not fool-proof, personal identification is one of the
most reliable authentication mechanisms.
6. Threshold schemes. Threshold schemes [20] partition a secret (e.g. that proves
identity) and distribute the shares to several different share-holders. In this paper, we
investigate threshold mechanisms that recognize the number of accumulated signatures.
Incremental identification allows vanilla user partitioning so that object access can
receive appropriate protection in an unsure world. We make a simple extension, this
time of the three state model, to generate a four state model. For example, we may
categorize a session as strong vanilla if the user entered (1) A correct account identifier
(2) An entry that differed from the correct password by a hamming distance of one, or
(3) Both of these entries were accomplished on the first try.
The authentication classes in this four state model are:

(1) Vanilla Access objects in the lowest protection level
(2) Strong Vanilla Users surpassed some, but not all, authentication
(3) Identity Authenticated Authentication process completed
(4) Identity Claim Disproven Users whose identity claim is refuted

Classes (1), (3), and (4) are exclusive in the sense that they share no members. Class
(2) is a subset of (1). We
illustrate these relation-
ships in Figure 2, part a.
We then add a fifth class
we call pure vanilla. We
show this class as a
subset of strong vanilla in
Figure 2 b, but it need not
be so. Multiple vanilla
classes may form that are
proper subsets (as shown
in Figure 2), others that are exclusive to one another, and others that overlap, possibly
combining all of these architectures within a single protection system.

2.3.2 Classifying Services for Multi-tiered Authentication

We consider how to answer the question of what objects are accessible for a subject-
initiated vanilla session. In the three state model, sensitivity is the deciding factor (non-
sensitive objects are available to vanilla users). In the four state model, there are two
flavors of vanilla sessions, pure vanilla and strong vanilla. We may form corresponding
object classes that we may call (1) vanilla and (2) [integrity] sensitive, but recoverable.
The intuition behind this partitioning is that all users whose identity is unsure may
access all non-sensitive vanilla data, while users that achieve a threshold of identity
confidence may be granted access to sensitive processes as along as the results of those
processes are easily reversible (can be rolled back). For example, strong vanilla users
may be allowed to add an entry onto the personal calendar associated with its account.
These vanilla calendar entries are easily removed if the authentication is later refuted.
Notice, we intentionally did not suggest that existing calendar events be revealed to
strong vanilla users. The difference is that once revealed information is difficult or

Figure 2. Vanilla Session Access Classes

Identity
Authenticated

Vanilla

Identity
Claim

Negated

Strong
Vanilla

Identity
Authenticated

Vanilla

Identity
Claim

Strong Vanilla

Pure Vanilla

98

Non-Boolean Authentication

-6-

impossible to rollback. This does not preclude protection systems from partitioning the
vanilla states to allow sensitive information to be revealed to vanilla users, but it is
likely that criteria other than rollback potential would guide that permission.

2.3.3 A Mild Formalization

In order to use incremental authentication, we need an implementation structure that
supports its semantics. Notionally, we want to be able to add granularity to the access
decision. While classification partitions access into sensitivities
Consider a mandatory access control security system consisting of subjects (S), objects
(O), classification (C), privileges, and an identity confidence level (ICL), a variation of
[1], where classification is a small, ordered, discrete set while the ICL is a continuous
vector between zero and one. Subjects and objects are labeled with their classification,
which is tranquil. Objects are also labeled with a set of pairs containing a privilege and
an ICL, which are also tranquil. When a subject enters the system, they are associated
with a dynamic ICL. The security system manages this attribute through mechanisms
such as the ones we mention above.
An access request is a triple of the form: AR = {s, o, p}. The access algorithm contains
two steps: (1) Decide if the subject and object classifications support granting the
desired permission and (2) Ensure that the subject’s ICL is high enough to allow the
requested action. The former generally follows the Bell-LaPadula structure. We give a
simple algorithm for the later in Figure 3. The object icl is extracted from the
[classically] static security system object identification file. The subject icl comes from
a dynamic record that continuously monitors the subjects’ actions and adjusts the icl
(again, based on the approaches we mentioned earlier). Security system policy dictates
complete mediation, or requires re-authentication when an access durations surpasses
some time or volume threshold, this algorithm fully supports the non-tranquility of
continuous authentication.

2.3.4 Service Recoverability and Rollback

Previous results [2] identify two situations that allow
access privileges to be granted to users that are not fully
authenticated. The first is that the information
sensitivity does not demand the strongest protection
that the security mechanisms provide. The second is
whether vanilla privileges actions are reversible, or as
we term, can be rolled back.
The former is mostly a matter of information categorization, similar to that in a multi-
level security model such as Bell and LaPadula [1]. An important distinction between
Bell and LaPadula and our approach is rollback. Bell-LaPadula-based models assume
tranquility because they cannot seamlessly handle down-graded [subject] clearances or
upgraded [object] classification. Rollback is one vehicle to offset this dilemma.
Many computer systems and applications require Rollback-type capabilities. Consider
file backup systems included in business continuity plans. When important files are
lost, properly administered backup systems can return lost files in good working order.
File backup issues include currency, immediacy, granularity, history, backup volume

boolean id_confident (s,o,p)
 icl := get_sub_icl(s);
 icl’ := get_obj_icl(o,p);
 if icl ≥ icl’ return true;
 else return false;
Figure 3. ICL Algorithm

99

Non-Boolean Authentication

-7-

capability, and responsiveness, among others. Database recovery systems face similar,
though more tightly granular, challenges.
Rollback for security faces many challenges. It is naturally difficult to identify
rollback-capable transactions. Clearly, once information is divulged, “forced
forgetfulness” is not an option. However, some data items can be easily changed if
changed to respond to a dynamic security state. Others cannot be “retracted”.
Similar to other multi-level security models, we must correlate vanilla session state and
object vanilla access class. The starting point here is access control matrices and lattice
structures, as we illustrate earlier. The novelty lies in the ability to handle dynamic
authentication status. Rollback is an essential element. We can also partition
confidentiality, integrity [23, 24], and conflict of interest [25] sensitivities where such
partitioning facilitates vanilla access capabilities.

3 Conclusion
Authentication has a rich bibliography in theoretical and applied researchfrom some of
the top information security researchers in the world. We recognize a reality that is not
addressed in previous work, that authentication is not Boolean in practice and that
Boolean mechanisms cannot properly characterize security properties in the dynamic
Internet and mobile computing environments. This work is particularly relevant to
wireless computing environments where peer-to-peer authentication has yet to
overcome sophisticated attacks such as Sybil [26] and the invisible node attack [27].
Where absolute authentication is impossible, there must be mechanisms that deal with
the uncertain identities. Non-Boolean Authentication enables such mechanisms and
offers dynamic multi-level access control designed to leverage (where classical and
present operational models prohibit) dynamic privilege assignment and privilege
reassignment including classification upgrade and clearance downgrade.
We additionally offer a novel approach to security recovery based on Rollback. Again,
we rely on existing work in business continuity planning and database recovery as the
foundation for our work. We extend these notions to fit the security perspective and the
dynamic authentication environment of worst case attack and Byzantine adversaries.
We base our work on advances that are well-documented in the literature. We leverage
lessons learned in security models for confidentiality, integrity, conflict of interest,
threshold cryptography, business continuity planning, and many other known
technologies to form a comprehensive approach to handle dynamic [re] authentication,
classification, and access control.

4 REFERENCES

[1] D. E. Bell and L. LaPadula, "Secure Computer Systems: Mathematical Foundations and
Model, M74-244, MITRE Corp. Bedford, MA, 1973

[2] Mike Burmester, Breno DeMederios, and Alec Yasinsac, "Community-centric vanilla-
rollback access…", 13th International Workshop on Security Protocols, April 20-22, 2005

[3] D. Denning, "A Lattice Model of Secure Information Flow," Communications of the ACM 19
(5), pp. 236-243 (May 1976)

100

Non-Boolean Authentication

-8-

[4] M. A. Harrison, W. L. Ruzzo and J. D. Ullman. Protection in Operating Systems,

Communications of ACM, Volume 19. No. 8. August 1976.
[5] Anita Jones, "Protection Mechanism Models: Their Usefulness", In Foundations of Secure

Computation, 1978, pp. 237-252
[6] Ravi S. Sandhu, Edward J. Coynek, Hal L. Feinsteink and Charles E. Youmank, "Role-Based

Access Control Models", IEEE Computer, Volume 29, Number 2, February 1996, pp. 38-47
[7] International Workshop on Ubiquitous Access Control, July 17-21, 2006 - San Jose,

California, USA, http://www.mobiquitous.org/
[8] The Second International Workshop on Security in Ubiquitous Computing Systems

(SecUbiq-06), August 1-4, 2006, Seoul, Korea
[9] Dieter Gollman, "What do we mean by Entity Authentication?", In Proceedings of the IEEE

1996 Symposium on Research in Security and Privacy, pages 46--54. IEEE, 1996
[10] R. R. Jueneman, S. M. Matyas, and C.H. Meyer, "Message Authentication", IEEE

Communications Magazing, Vol. 23, No. 9, September 1985
[11] Martin Abadi, Cedric Fournet, Georges Gonthier, "Authentication Primitives and their

Compilation", Proc. of the 27th ACM Symp. on Prin. of Prog. Lang. (Jan. 2000), 302-315.
[12] Armin Liebl, "Authentication in Distributed Systems: A Bibliography", Operating Systems

Review, 27(4):31--41, October 1993
[13] Roger M. Needham, Michael D. Schroeder, "Using Encryption for Authentication in Large

Networks of Computers", Comm. of the ACM, Dec, 1978, Vol. 21, N0. 12, pp. 993-999
[14] Burrows, M., Abadi, M., and Needham, R. M. "A Logic of Authentication", In Proceedings

of the Royal Society of London, A 426:233-271, 1989
[15] B. Lampson, M. Abadi, M. Burrows, and E. Wobber, "Authentication in Distributed

Systems: Theory and Practice", ASM OS Review, Vol 25, No. 5, pp. 165-182
[16] W. Diffie, P. C. van Oorshot, and M. J. Wiener, "Authentication and Authenticated Key

Exchanges", Designs, Codes and Cryptography, 2(2):107-125, June 1992
[17] Ray Bird, Inder Gopal, et al. "Systematic Design of a Family of Attack Resistant Authenti-

cation Protocols", IEEE Journal on Selected Areas in Comm., Vol. 11, No. 5, June 1993
[18] Wm. A. Wulf, Alec Yasinsac, Katie S. Oliver, and Ramesh Peri, "Remote Authentication

Without Prior Shared Knowledge", Proceedings of the Internet Society Symposium on
Network and Distributed System Security, February 2-4, 1994, San Diego, Ca., pp. 159-164

[19] Gavin Lowe, "Casper: A Compiler for the Analysis of Security Protocols", Journal of
Computer Security, Volume 6, pp 53-84, 1998.

[20] Y. Desmedt and Y. Frankel, "Threshold Cryptosystems," In Crypto 89, Springer-Verlag
Lecture Notes in Computer Science (Vol. 435), pp. 307-15, 1990

[21] Independent Review of the Carnivore System, Final Report, Contract No. 00-C-0328, IITRI
CR-030-216, IIT Research Institute, 8 December, 2000

[22] Dorothy E. Denning, "An Intrusion-Detection Model," Proceedings of the 1986 IEEE
Symposium on Security and Privacy, p. 118

[23] K. Biba, “Integrity Considerations for Secure Computer Systems,” Technical Report MTR-
3153, MITRE Corporation, Bedford, MA (Apr. 1977)

[24] D. Clark and D. Wilson, “A Comparison of Commercial and Military security Policies,
“Proceedings of the 1987 Symposium on Security and Privacy, pp. 184-194, (Apr. 1987)

[25] D. Brewer and M. Nash, “The Chinese Wall Security Policy,” Proceedings of the 1989
Symposium on Security and Privacy, pp. 206-214 (May 1989)

[26] J. Douceur. "The Sybil Attack," In Proceedings of the 1stInternational Workshop on Peer-
to-Peer Systems, (IPTPS), 2002

[27] J. Marshall, V. Thakur, and A. Yasinsac, "Identifying Flaws in the Secure Routing
Protocol", Proc. of 22nd Intl. Perf., Comp., and Comm. Conf., Apr. 9-11, 2003, pp. 167-174

101

Semantic Digital Rights Management for
Controlled P2P RDF Metadata Diffusion

Roberto García, Giovanni Tummarello

GRIHO – Human-Computer Interaction Research Group
Universitat de Lleida, Spain - roberto@griho.net

SEMEDIA – Semantic Web and Multimedia Group
http://semedia.deit.univpm.it - g.tummarello@gmail.com

Since the early works in the W3C Semantic Web initiative, RDF has been
generically indicated as a potential basis for legally binding exchange of
semantically structured information. In this paper we introduce and detail a
procedural framework that could support such legally binding exchange. The
proposed methodology is based on a Copyright Ontology, a copyright
conceptualisation which includes concrete rights expression languages like
MPEG-21 REL, and RDF model decomposition based on the Minimum Self
Contained Graph theory. The procedure seems particularly useful when applied
to P2P semantic web scenarios.

1. Introduction

The knowledge representation capabilities of RDF are agnostic with respect to the
content and the purpose for which it is used. Since the early works in the W3C
Semantic Web initiative, however, a few use cases stood out and among these there
was the idea that RDF might have been potential basis for legally binding exchange of
semantically structured information [1].

In this paper we address a scenario which is becoming more and more common on
both the Semantic Web and in “Web 2.0” websites; information does not simply go
directly from the source to the intended destination. Instead, information is mashed
up, aggregated, filtered, republished, annotated, etc. This happens notably with RSS
feeds but more on the “Semantic Web”, with frameworks such as DBin [2] where
peers collect bits of RDF (related to resources of common interest) which can then be
redistributed either to other peers or web republished.

Clearly however, not all data sources would in any case agree on uncontrolled use
and redistribution of their produced content. For example, a stock price web service
might be willing to provide real time information to a subscriber as long as “it is not
publicly redistributed before 10 minutes”. Similarly, in a DBin P2P RDF group, a
user might want to give information to other peers “as long as it is redistributed only
to those who have a verified @deit.univpm.it address”.

 In such scenarios, simple access control to the information sources (e.g. password
protected) does not suffice and a non machine readable licence (e.g. a fixed licence
that one has to agree with a “I understand the terms and condition” checkbox at sign

102

2 Roberto García, Giovanni Tummarello

up time) would not allow any automatic and dynamic handling of such information
distribution scenarios.

The procedure we discuss in this paper addresses such needs and enables a source
peer (from here on source) to provide a piece of RDF to a receiving peer (receiver) in
a manner which could provide the technical basis for legal protection.

2. The proposed exchange procedure: outline

In this section we describe the procedure by which the source provides RDF to the
receiver along with a licence which specifies how such information may be used. The
procedure involves multiple steps requires trust of the identity of the remote party, i.e.
the parties must know or have a way to track the legal identity of the creator of the
public key that will verify the signing of the licences. There are many ways by which
this can be achieved (e.g. via a certifying third party like for example Verisign) so the
discussion of these is outside the scope of this paper.

For the rest of the discussion we will use the term cite to indicate a pointer to the
information, e.g. an URL. A non dereferenciable citation is a citation by the way of,
for instance, a digital hash: a receiver can check that it refers to the information just
when it has the information itself or via a third party. With the term quote we indicate
providing the information itself along with additional control information.
In time steps, the exchange proceeds as follows:

1) R makes a request to S. As a result of such request R expects S to give

information expressed in RDF. Optionally: The request is digitally signed so to
provide R with a way to make a “personalized” licence offer

2) S receives the request, creates the RDF for the answer and uses the minimum self
contained graph (MSG) decomposition as highlighted in the next chapter to obtain
a set of digital hashes which enable to cite in a non dereferenciable way the
information it is willing to give. Uses the hashes in a licence created with the
methodology described in section 3 and sends the result, from here on called
proposal, to R. Optionally: signs the proposal so to provide S with the guarantee
that if agreed, the answer will actually be provided within the specified terms

3) R receives the proposal and, if it decides that the terms are agreeable, signs it and
returns it to S. Optionally: thanks to the properties of MSGs, R can check if the
answer correspond to information which is already locally known. In this case R
could drop the request as not interesting, or proceed, e.g., in case it is important
for R to prove that the information was in fact legally acquired.

4) S receives the signed proposal, stores it and replies with the answer computed in
2). Optionally: the signed proposal might be countersigned to allow R to prove
that the information was obtained by legal means.

103

Semantic Digital Rights Management for Controlled P2P RDF Metadata Diffusion 3

2.1. An introduction to the Minimal Self Contained Graph theory

In this section we will illustrate the Minimum Self Contained Graph (MSG) theory.
The discussion will deepen that first illustrated in [3] and will provide the bases for
the understanding precisely the procedure.

Let's first define what is the minimum “standalone” fragment of an RDF model. As
blank nodes are not addressable from outside a graph, they must always be considered
together with all surrounding statements, i.e. stored and transferred together with
these. MSG are the smallest components of a lossless decomposition of a graph which
does not take into account inference such as provided by OWL, as concepts such as
RDF-Molecules show [4] We will here give a formal definition of MSG (minimum
Self-contained Graph) and will cite some important properties (for proofs, see [3]).

Def 1. An RDF statement involves a name if it has that name as subject or object.
Def 2. An RDF graph involves a name, if any of its statements involves that name.
Def 3. Given an RDF statement s, the Minimum Self-contained Graph (MSG)
containing that statement, written MSG(s), is the set of RDF statements comprised
of the statement in question and, recursively, for all the blank nodes involved by
statements included in the description so far, the MSG of all the statements
involving such blank nodes;
It is possible to show however that the choice of the starting statement is arbitrary

and this leads to a unique decomposition of the RDF graph into MSGs.
It is also possible to prove that:
Theorem 1. If s and t are distinct statements and t belong to MSG(s), then MSG(t)

= MSG(s).
Theorem 2. Each statement belongs to one and only one MSG.
Corollary 1. An RDF model has a unique decomposition in MSGs.
This is a consequence of theorem 2 and of the determinism of the procedure.

As a consequence of the Corollary 1, a graph can be incrementally transferred
between parties by decomposition into MSGs and transfers with granularity down to
one MSG at a time. Such transfer would be, as consequence of theorem 2, maximally
network efficient as statements would never be repeated.
Definition 4. The RDF Neighbourhood (RDFN) of a resource is the graph composed
by all the MSGs involving the resource itself.

Content based identifiers for MSGs
MSGs are standalone RDF graphs. As such they can be processed with algorithms
such as canonical serialization. We use an implementation of the algorithm described
in [5], which is part of the RDFContextTools Java library [6], to obtain a canonical
string representing the MSG and then we hash it to an appropriate number of bits to
reasonably avoid collisions. This hash acts as a unique identifier for the MSG with the
fundamental property of being content based, which implies that two remote peers
would derive the same ID for the same MSG in their DB. Sets of such IDs are used to
identify the information covered in the licences.

104

4 Roberto García, Giovanni Tummarello

3. Semantic Digital Rights Management

Lately, there have been great works and debate surrounding Digital Rights
Management, or DRM. A DRM system (DRMS) is composed of IT components and
services along with corresponding law, policies and business models which strive to
enable controlled distribution of content and associated usage rights.

It is important for different DRMSs to interoperate. One of the main initiatives for
DRM interoperability is the ISO/IEC MPEG-21 standardisation effort. The main
interoperability facilitation components are the Rights Expression Language (REL),
which is based on a XML grammar and so syntax-based, and the MPEG-21 Rights
Data Dictionary (RDD) which captures the semantics of the terms employed in the
REL [7]. This one, however, does so without defining a formal semantics [8].

The limitations of a purely syntactic approach and the lack of formal semantics can
be overcome using a semantics based approach based on ontologies [9]. Web
ontologies are used in order to benefit from the Semantic Web initiative efforts and
facilitate its integration in the Web context. The Copyright Ontology [10], of which
we give here an overview, is a conceptualisation effort based on OWL.

The copyright domain is a very complex one and its conceptualization is a very
challenging task. In order to facilitate this, the Copyright Ontology conceptualisation
task has been divided in three parts. Each part concentrates on a portion of the
problem. The conceptualisation starts from building a model for the more primitive
part, the Creation Model. Then, the following step is to build the Rights Model, and,
finally, the Action Model on the roots of the two previous ones. This section just
sketches the main points of these three models. For more details, see [11].

The Creation Model defines the different forms a creation can take. These can be
classified on the three top categories common in many upper ontologies: Abstract, a
mental concept, Object, a continuant or endurant and Process, an occurrent or
perdurant. [12].

The Rights Model follows the World Intellectual Property Organisation (WIPO)
recommendations in order to define the rights hierarchy. There are the economic
rights plus the moral rights, as promoted by the WIPO and adopted by all the
countries adhered to the Berne Convention [13].

The more relevant rights in the DRM context are the economic rights as they are
related to productive and commercial aspects of copyright. The Action Model
corresponds to the primitive actions that can be performed on the concepts defined in
the Creation Model and which are regulated by the rights in the Right Model.

For instance, for the economic rights, these are the actions governed by them:
• Reproduction Right: reproduce, commonly speaking copy.
• Distribution Right: distribute. More specifically sell, rent and lend.
• Public Performance Right: perform; it is regulated by copyright when it is a

public performance and not a private one.
• Fixation Right: fix, or record.
• Communication Right: communicate when the subject is an object or

retransmit when communicating a performance or previous communication,
e.g. a re-broadcast. Other related actions, which depend on the intended
audience, are broadcast or make available.

105

Semantic Digital Rights Management for Controlled P2P RDF Metadata Diffusion 5

• Transformation Right: derive. Some specialisations are adapt or translate.
The action concepts are complemented with a set of relations that link them to the

action participants. The relations are adopted from the linguistics field and they are
based on case roles [14].

The previously introduced pool of primitive actions can be combined in order to
build different value chains in the copyright domain. It is complemented with a set of
axioms that restrict the ways actions, rights and creation types are related.

The P2P RDF metadata diffusion scenario is governed by the Reproduction and
Communication Rights. The Reproduction Right governs the Copy action that
reproduces a piece of metadata from Peer A, where the piece resides originally, to
Peer B, where the piece also resides when the copy is completed.

The Communication Right governs the generic action Communicate. This action
corresponds, among others, to the situation where the agent responsible for a peer
makes content available to others from the place and time individually chosen by
them. Therefore, in the context of P2P diffusion, this is the right required by a peer in
order to make a piece of metadata available for others to copy.

In order to complete the action model, there are also the licensing actions: Agree
and Disagree, the building blocks for any license, as the one shown in. Fig. 1.

Fig. 1. Model for an agreement on a copy action pattern plus a condition

The deontic operators are implicit in the agreement model. The agreement theme
corresponds to an implicit permission, i.e. the theme of an agreement is permitted.
The condition on the agreement theme corresponds to an obligation, i.e. in order to
fulfil the theme action it is necessary to satisfy the pattern defined by the condition
property object. Finally, it is also possible to model prohibitions. This can be done in
two ways, by agreeing on a negated pattern or by using the Disagree action.

106

6 Roberto García, Giovanni Tummarello

3.1. License Checking, an example

The main objective has been to provide a straightforward and efficient
implementation geared towards an extensive use of DL (Description Logic) reasoners.

Licenses are modelled as OWL Classes and copyrighted content intended uses are
modelled as instances. In order to check if a usage (instance) is authorised by a set of
licenses (classes) a DL reasoner is used to classify the instance in the available
classes. If the instance is classified into a class that models an agreement, the Agree
class as specified in the Copyright Ontology, the usage is authorised.

Suppose, for example, that we want to model a license that allows the agent
"granted" to copy the metadata "fragment01" from "peerA" to either "peerB", "peerC"
or "peerD". Additional restrictions are that at most it can be simultaneously copied to
2 peers (as a result of an individual copy action) and that the copy can be performed
from January 1st 2006 to June 30th 2006.

Table 1 shows the class pattern for the theme values of the license Agree. The
pattern is for Copy actions, so it is a subclass of Copy, and it is equivalent to the class
resulting from the intersection of four OWL restrictions, which constitute the
necessary and sufficient conditions that would trigger the classification of authorised
usage instances.

Table 1. Class pattern for the actions authorised by the example license

Pattern ⊑ Copy (1)

Pattern ≡ ∀pointInTime.≥ 2006-01-01T00:00:00, ≤ 2006-06-30T23:59:59 ⊓ (2)

 ∃agent.{granted} ⊓ ∃origin.{peerA} ⊓ ∃theme.{fragment0001} ⊓ (3)

 (≤ 2 recipient) ⊓ (4)

 ∀recipient.{peerC, peerD, peerB} (5)

3.2. Implementation

The Semantic DRMS is implemented at two levels. The ground level is about OWL-
DL and can be implemented with a common Description Logic reasoner. Pellet1 has
been selected because it can reason over custom data types and this has been very
useful to check licensing time ranges.

This however must be complemented with a metalevel that implements the deontic
aspects that are implicit in the conceptual model. This metalevel guides the DL
checks that have to be performed in order to capture the semantics of the implicit
obligations, permissions and prohibitions. The metalevel has been also implemented
programmatically.

 MSG theory and tools has been implemented in [2] based on the Jena and the
Sesame toolkits. The entire procedure as described in this paper is covered in the
implementation of an upcoming version of the DBin platform [2] but it will be made
available as a standalone library to be used embedded in other applications which
exchange RDF.

1 Pellet OWL Reasoner, http://www.mindswap.org/2003/pellet

107

Semantic Digital Rights Management for Controlled P2P RDF Metadata Diffusion 7

4. Conclusions

The copyright ontology constitutes a complete framework for representing copyright
value chains and the associated flow of rights situations, agreements, offers, etc. This
general framework can be specialised and used in conjunction with the Minimum Self
Contained RDF graph theory to implement a P2P RDF diffusion mechanism which
could form a base for legally binding agreements.

The proposed methodology works based on typical semantic web tools. Licences
are implemented as an OWL-DL ontology so an implementation only needs a
Description Logic classifier to determine if an action is permitted.

One could say that the proposed approach would be limited to the case of
protection against “verbatim” redistribution of information. While this is the case
technically (MSG IDs would change with any simple modification, e.g., the insertion
of a meaningless triple attached to any blank node), this does not change the validity
and applicability of the procedure. It is in fact long established that copyright laws
protect not only the exact representation of the protected work but also derived
representations. The case is similar to one licensing a photo from a collection,
changing a single pixel and wanting to redistribute it as one’s own production outside
fair use limits.

We believe this work can have wide applicability and cover real world
requirements. The development of this idea was in fact motivated by the need to
support much requested use cases in the Semantic Web P2P framework of DBin. As
per DBin version 0.4, information is in fact exchanged just based on a URI based
request. Under this condition, all that is known by a peer which involves that URI (at
MSG level) is shipped to the requesting peer. Thanks to the procedure we propose in
this paper it will be now possible to support important use cases involving
information which should be exchanged but just in controlled conditions.

4.1. Related Work

While we consider DRM a natural approach for the purpose of this paper, there
exist several general policy system which have been applied to SW scenarios.
Ontology-based approaches rely on the expressive capabilities of Description Logic
languages, such as OWL. DL reasoners can be then used to classify policies and
contexts and enable deductive inferences for policy checking.

This is the approach for the Copyright Ontology implementation presented in this
paper. A generic policy language also following this approach is KAoS [15] which
can reason about licenses by ontological subsumption. KAoS requires however OWL-
Full reasoning capabilities and its implementation is based on a theorem prover.

In contrast, rule-based approaches take the perspective of Logic Programming to
encode policies as rules with variables. Rei is a policy framework based on rules [16].
Rules are expressed as triples following a pattern that is typical of logical languages
like Prolog. In fact, Rei is developed using the XSB Prolog engine. Rei overcomes the
variables limitation and enables the definition of policies that refer to dynamically
determined values. However, this prevents it from exploiting the full potential of the

108

8 Roberto García, Giovanni Tummarello

OWL language. In fact, Rei rules knowledge is treated separately from OWL
ontology knowledge due to its different syntactical form.

To overcome the limitations of this trade-off between ontology and rule-based
policies, some have proposed a hybrid solutions [17]. This is also the choice for the
Copyright Ontology implementation, as in fact SWRL is used for some axioms and
for metalevel reasoning.

References

 1. Resource Description Framework (RDF): Concepts and Abstract Data Model. W3C

Working Draft 2002. RDFhttp://www.w3.org/TR/2002/WD-rdf-concepts-20020829
 2. G. Tummarello, C. Morbidoni, P. Puliti, F. Piazza, "The DBin Semantic Web platform: an

overview", WWW2005 Workshop on The Semantic Computing Initiative (SeC 2005)
 3. Tummarello G.,;Morbidoni C.; Puliti P; Piazza F. "Signing individual fragments of an

RDF graph" , 2005, World Wide Web Conference 2005 Poster Track
 4. Ding L.; Finin, T; Peng, Y; Pinheiro da Silva, P; , McGuinness, D , "Tracking RDF Graph

Provenance using RDF Molecules" , 2005, Proceedings of the Fourth International
Semantic Web Conference, November 2005

 5. Carroll, J "Signing RDF Graphs", 2003, International Semantic Web Conference 2003
 6. Tummarello, G.; Morbidoni C.; "RDFContext Tools 0.2",

http://semedia.deit.univpm.it/tiki-index.php?page=RdfContextTools
 7. Wang, X.; DeMartini, T.; Wragg, B.; Paramasivam, M.; Barlas, C.: "The MPEG-21 rights

expression language and rights data dictionary". IEEE Transactions on Multimedia, Vol. 7,
No. 3, pp. 408-417, 2005

 8. García, R.; Delgado, J.: "An Ontological Approach for the Management of Rights Data
Dictionaries". In Moens, M. & Spyns, P. (ed.): "Legal Knowledge and Information
Systems". IOS Press, Frontiers in Artificial Intelligence and Applications Vol. 134, 2005

 9. García, R.; Gil, R.; Delgado, J.: "A Web Ontologies Framework for Digital Rights
Management". In press, Journal of Artificial Intelligence and Law, Springer, 2006

10. Copyright Ontology, http://rhizomik.net/ontologies/copyrightonto
11. García, R.: "A Semantic Web Approach to Digital Rights Management". PhD Thesis,

Technologies Department, Universitat Pompeu Fabra, Barcelona, ES, 2006.
http://rhizomik.net/~roberto/thesis

12. Niles, I.; Pease, A.: "Towards a Standard Upper Ontology". In Welty, C.; Smith, B. (eds.):
Proceedings of the 2nd International Conference on Formal Ontology in Information
Systems (FOIS), Maine, USA, 2001

13. Berne Convention, http://www.wipo.int/treaties/en/ip/berne
14. Sowa, J.F.: "Knowledge Representation. Logical, philosophical and computational

foundations". Brooks Cole Publishing Co., 2000
15. Uszok, A., et al.: "KAoS policy management for semantic web services". IEEE Intelligent

Systems, Vol. 19, Num. 4, pp. 32-41, 2004
16. Kagal, L.: "A Policy Based Approach to Governing Autonomous Behavior in Distributed

Environments". PhD Thesis, University of Maryland, Baltimore County, USA, 2004
17. Bradshaw, J.; Kagal, L.; Montanari, R.; Toninelli, A.: "Rulebased and ontology-based

policies: Toward a hybrid approach to control agents in pervasive environments". In
Proceedings of the ISWC2005 Semantic Web and Policy Workshop, 2005

109

Author Index

Almendra, Vinicius da Silva 17

Amini, Morteza 32

Chadwick, David 62

Denker, Grit . 1

Fensel, Dieter . 70

Gabriele, Lenzini 47

Garcia, Roberto102

Jalili, Rasool . 32

Javanmardi, Sara 32

Kolovski, Vladimir 78

Kopecky, Jacek 70

Linehan, Mark . 86

Paschke, Adrian . 2

Roman, Dumitru 70

Sasse, Angela . 62

Schwabe, Daniel17

Toivonen, Santtu 47

Toma, Ioan . 70

Tummarello, Giovanni 102

Uusitalo, Ilkka . 47

Yasinsac, Alec .94

110

