
KQML as an Agent Communication Language �

Tim Finin and Richard Fritzson

Computer Science Department

University of Maryland Baltimore County

Baltimore MD USA

�nin@cs.umbc.edu

fritzson@cs.umbc.edu

Don McKay and Robin McEntire

Valley Forge Laboratory

Unisys Corporation

Paoli PA USA

mckay@v
.paramax.com

robin@v
.paramax.com

Abstract

This paper describes the design of and experimentation with
the Knowledge Query and Manipulation Language (KQML),
a new language and protocol for exchanging information
and knowledge. This work is part of a larger e�ort, the
ARPA Knowledge Sharing E�ort which is aimed at devel-
oping techniques and methodology for building large-scale
knowledge bases which are sharable and reusable. KQML is
both a message format and a message-handling protocol to
support run-time knowledge sharing among agents. KQML
focuses on an extensible set of performatives, which de�nes
the permissible \speech acts" agents may use and comprise
a substrate on which to develop higher-level models of in-
teragent interaction such as contract nets and negotiation.
In addition, KQML provides a basic architecture for knowl-
edge sharing through a special class of agent called com-
munication facilitators which coordinate the interactions of
other agents The ideas which underlie the evolving design of
KQML are currently being explored through experimental
prototype systems which are being used to support several
testbeds in such areas as concurrent engineering, intelligent
design and intelligent planning and scheduling.

1 Introduction

The computational environment which is emerging in such
programs as the National Information Infrastructure (NII)
is characterized by being highly distributed, heterogeneous,
extremely dynamic, and comprising a large number of au-
tonomous nodes. An information system operating in such
an environment must handle several emerging problems:

� The predominant architecture on the Internet, the cli-
ent-server model, is too restrictive. It is di�cult for
current Internet information services to take the ini-
tiative in bringing new, critical material to a user's
attention. Some nodes will want to act as both clients

�This work was supported in part by the Air Force O�ce of Sci-
enti�c Research under contract F49620-92-J-0174, and the Advanced
Research Projects Agency monitored under USAF contracts F30602-
93-C-0177 and F30602-93-C-0028 by Rome Laboratory.

To appear in The Proceedings of the Third International
Conference on Information and Knowledge Management
(CIKM'94), ACM Press, November 1994.

and servers, depending on who they are interacting
with.

� Several forms of heterogeneity need to be handled, e.g.
di�erent platforms, di�erent data formats, the capabil-
ities of di�erent information services, and the imple-
mentation technologies employed.

� Many software technologies such as event simulation,
applied natural language processing, knowledge{based
reasoning, advanced information retrieval, speech pro-
cessing, etc. have matured to the point of being ready
to participate in and contribute to an NII type environ-
ment. However, there is a lack of tools and techniques
for constructing intelligent clients and servers or for
building agent{based software in general.

A community of intelligent agents can address each of the
problems mentioned above. When we describe these agents
as intelligent, we refer to their ability to: communicate
with each other using an expressive communication lan-
guage; work together cooperatively to accomplish complex
goals; act on their own initiative; and use local informa-
tion and knowledge to manage local resources and handle
requests from peer agents.

Knowledge Query and Manipulation Language (KQML)
is a language that is designed to support interactions among
intelligent software agents. It was developed by the ARPA
supported Knowledge Sharing E�ort [24, 27] and separately
implemented by several research groups. It has been suc-
cessfully used to implement a variety of information systems
using di�erent software architectures.

The Knowledge Sharing E�ort

The ARPA Knowledge Sharing E�ort (KSE) is a consor-
tium to develop conventions facilitating sharing and reuse
of knowledge bases and knowledge based systems. Its goal
is to de�ne, develop, and test infrastructure and support-
ing technology to enable participants to build much bigger
and more broadly functional systems than could be achieved
working alone. The KSE is organized around four working
groups each of which addresses a complementary problem
identi�ed in current knowledge representation technology:
Interlingua, KRSS, SRKB, and External Interfaces.

The Interlingua Group is developing a common language
for expressing the content of a knowledge-base. This group
has published a speci�cation document describing theKnowl-
edge Interchange Formalism or KIF [15] which is based on
�rst order logic with some extensions to support non-mono-
tonic reason and de�nitions. KIF includes both a speci�ca-

1

tion of a syntax for the language as well as a speci�cation for
the semantics. KIF can be used to support the translation
from one content language to another or as a common con-
tent language between two agents which use di�erent native
representation languages. Information of KIF and associ-
ated tools and is available from http://www.cs.umbc.edu-

/kse/kif/ .
The KRSS Group (Knowledge Representation System

Speci�cation) is focussed on de�ning common constructs
within families of representation languages. It has recently
�nished a common speci�cation for terminological represen-
tations in the KL-ONE family. This document and other
information on the KRSS group is available as http://www.-
cs.umbc.edu/kse/krss/ .

The SRKB Group (Shared, Reusable Knowledge Bases)
is concerned with facilitating consensus on contents of shar-
able knowledge bases, with sub-interests in shared knowl-
edge for particular topic areas and in topic-independent de-
velopment tools and methodologies. It has established a
repository for sharable ontologies and tools which is avail-
able over the Internet as http://www.cs.umbc.edu/kse/srkb/

.
The scope of the External Interfaces Group is the run-

time interactions between knowledge based systems and other
modules in a run-time environment. Special attention has
been given to two important cases { communication between
two knowledge-based systems and communication between a
knowledge-based system and a conventional database man-
agement system [26]. The KQML language is one of the
main results which have come out of the external interfaces
group of the KSE. General information is available from
http://www.cs.umbc.edu/kqml.

2 KQML and Intelligent Information Integration

We could address many of the di�culties of communication
between intelligent agents described in the Introduction by
giving them a common language. In linguistic terms, this
means that they would share a common syntax, semantics
and pragmatics.

Getting information processes, especially AI processes,
to share a common syntax is a major problem. There is no
universally accepted language in which to represent infor-
mation and queries. Languages such as KIF [15], extended
SQL, and LOOM [22] have their supporters, but there is
also a strong position that it is too early to standardize on
any representation language [19]. As a result, it is currently
necessary to say that two agents can communicate with each
other if they have a common representation language or use
languages that are inter-translatable.

Assuming a common or translatable language, it is still
necessary for communicating agents to share a framework
of knowledge in order to interpret message they exchange.
This is not really a shared semantics, but a shared ontology.
There is not likely to be one shared ontology, but many.
Shared ontologies are under development in many impor-
tant application domains such as planning and scheduling,
biology and medicine.

Pragmatics among computer processes includes 1) know-
ing who to talk with and how to �nd them and 2) knowing
how to initiate and maintain an exchange. KQML is con-
cerned primarily with pragmatics (and secondarily with se-
mantics). It is a language and a set of protocols that support
computer programs in identifying, connecting with and ex-
changing information with other programs.

AC D

B

query
handle

next
reply

next
reply

query

reply

reply
subscribe

reply
reply

Figure 1: Several basic communication protocols are sup-

ported in KQML.

Agent Communication Protocols

There are a variety of interprocess information exchange
protocols. In the simplest, one agent acts as a client and
sends a query to another agent acting as a server and then
waits for a reply, as is shown between agents A and B in
Figure 1. The server's reply might consist of a single answer
or a collection or set of answers. In another common case,
shown between agents A and C, the server's reply is not the
complete answer but a handle which allows the client to ask
for the components of the reply, one at a time. A common
example of this exchange occurs when a client queries a rela-
tional database or a reasoner which produces a sequence of
instantiations in response. Although this exchange requires
that the server maintain some internal state, the individual
transactions are as before { involving a synchronous com-
munication between the agents. A somewhat di�erent case
occurs when the client subscribes to a server's output and an
inde�nite number of asynchronous replies arrive at irregular
intervals, as between agents A and D in Figure 1. The client
does not know when each reply message will be arriving and
may be busy performing some other task when they do.

There are other variations of these protocols. Messages
might not be addressed to speci�c hosts, but broadcast to
a number of them. The replies, arriving synchronously or
asynchronously have to be collated and, optionally, associ-
ated with the query that they are replying to.

Facilitators and Mediators

One of the design criteria for KQML was to produce a lan-
guage that could support a wide variety of interesting agent
architectures. Our approach to this is to introduce a small
number of KQML performatives which are used by agents to
describe the meta-data specifying the information require-
ments and capabilities and then to introduce a special class
of agents called communication facilitators [16]. A facilita-
tor is an agent that performs various useful communication
services, e.g. maintaining a registry of service names, for-
warding messages to named services, routing messages based
on content, providing \matchmaking" between information
providers and clients, and providing mediation and transla-
tion services.

As an example, consider a case where an agent A would
like to know the truth of a sentence X, and agent B may
have X in its knowledge-base, and a facilitator agent F is
available. If A is aware that it is appropriate to send a query
about X to B, then it can use a simple point to point protocol
and send the query directly to B, as in Figure 2. If, however,
A is not aware of what agents are available, or which may
have X in their knowledge-bases, or how to contact those of
whom it is aware, then a variety of approaches can be used.
Figure 3 shows an example in which A uses the subscribe
performative to request that facilitator F monitor for the
truth of X. If B subsequently informs F that it believes X
to be true, then F can in turn inform A.

2

F

BA

Figure 2: When A is aware of B and of the appropri-

ateness of querying B about X, a simple point-to-point
protocol can be used.

Figure 4 shows a slightly di�erent situation. A asks F
to �nd an agent that can process an ask(X) performative.
B independently informs F that it is willing to accept per-
formatives matching ask(X). Once F has both of these mes-
sages, it sends B the query, gets a response and forwards it
to A.

In Figure 5, A uses a slightly di�erent performative to
inform F of its interest in knowing the truth of X. The re-
cruit performative asks the recipient to �nd an agent that
is willing to receive and process an embedded performative.
That agent's response is then to be directly sent to the initi-
ating agent. Although the di�erence between the examples
used in Figures 3 and 5 are small for a simple ask query,
consider what would happen if the embedded performative
was subscribe(ask-all(X)).

As a �nal example, consider the exchange in Figure 6 in
which A asks F to \recommend" an agent to whom it would
be appropriate to send the performative ask(X)). Once F
learns that B is willing to accept ask(X) performatives, it
replies to A with the name of agent B. A is then free to
initiate a dialog with B to answer this and similar queries.

From these examples, we can see that one of the main
functions of facilitator agents is to help other agents �nd
appropriate clients and servers. The problem of how agents
�nd facilitators in the �rst place is not strictly an issue for
KQML and has a variety of possible solutions.

Current KQML-based applications have used one of two
simple techniques. In the PACT project [7], for example,
all agents used a central, common facilitator whose location
was a parameter initialized when the agents were launched.
In the ARPI applications [5], �nding and establishing con-
tact with a local facilitator is one of the functions of the
KQML API. When each agent starts up, its KQML router
module announces itself to the local facilitator so that it is
registered in the local database. When the application exits,
the router sends another KQML message to the facilitator,
removing the application from the facilitator's database. By

F

BA

Figure 3: Agent A can ask facilitator agent F to monitor

for changes in its knowledge-base. Facilitators are agents

that deal in knowledge about the information services
and requirements of other agents and o�er such services

as forwarding, brokering, recruiting and content-based
routing.

F

BA

Figure 4: The broker performative is used to ask a facil-
itator agent to �nd another agent which can process a

given performative and to receive and forward the reply.

convention, a facilitator agent should be running on a host
machine with the symbolic address facilitator.domain and
listening to the standard KQML port.

Scaling up to a national-scale information enterprise will
require the incorporation of new techniques. The current
Internet Domain Name Servers (DNS) use a very simple,
yet robust technique for mapping symbolic names into in-
ternet IP addresses. Similar techniques can be used to map
symbolic agent \names" into speci�c agent references that
can be used to contact the agent. What will be involved is
the development of a hierarchical \ontology" for organizing
information that is orthogonal to the hierarchical scheme
used to organize the Internet. Figure 7 shows such an agent
which could function as such facilitator-agent-server.

The role of KQML

As a communication language for intelligent information
agents, KQML draws on work in both distributed systems
and distributed AI and o�ers a level of abstraction that
should be useful to both.

With respect to distributed software systems in general,
KQML provides an abstraction of a process as an informa-
tion agent as a knowledge-based system (KBS). The KBS
model easily subsumes a broad range of commonly used
information agent models in use today, including database
management systems, hypertext systems, server-oriented soft-
ware (e.g. �nger demons, mail servers, HTML servers, etc),
simulations, etc. Such systems can usually be modeled as
having two virtual knowledge bases { one representing the
agent's information store (i.e., beliefs) and the other repre-
senting its intentions (i.e., goals). We hope that future stan-
dards for interchange and interoperability languages and
protocols will be based on this very powerful and rich model.
This will avoid the built-in limitations of more constrained
models (e.g., that of a simple remote procedure call or rela-
tional database query) and also make it easier to integrate
truly intelligent agents with simpler and more mundane in-
formation clients and servers. Current KQML implementa-
tions have used standard communication and messaging pro-
tocols as a transport layer, including TCP/IP, email, Linda,
HTTP, and CORBA. As standards in this area evolve and

F

BA

Figure 5: The recruit performative is used to ask a fa-
cilitator agent to �nd an appropriate agent to which an

embedded performative can be forwarded. Any reply is
returned directly to the original agent.

3

F

BA

Figure 6: The recommend performative is used to ask a
facilitator agent to respond with the \name" of another

agent which is appropriate for sending a particular per-
formative.

new standards are introduced, we expect that KQML im-
plementations will use them.

The contribution that KQML makes to Distributed AI
research is to o�er a standard language and protocol that
intelligent agents can use to communicate among themselves
as well as with other information servers and clients. The in-
dependence of the communication and content languages af-
fords a
exibility which is quite useful. In designing KQML,
our goal is to build in the primitives necessary to support all
of the interesting agent architectures currently in use. If we
have been successful, then KQML should serve to be a good
tool for DAI research, and, if used widely, should enable
greater research collaboration among DAI researchers.

3 The KQML Language

Communication takes place on several levels. The content
of the message is only a part of the communication. Be-
ing able to locate and engage the attention of someone you
want to communicate with is a part of the process. Pack-
aging your message in a way which makes your purpose in
communicating clear is another.

When using KQML, a software agent transmits content
messages, composed in a language of its own choice, wrapped
inside of a KQML message. The content message can be ex-
pressed in any representation language and written in either
ASCII strings or one of many binary notations (e.g. network
independent XDR representations). All KQML implemen-
tations ignore the content portion of the message except to
the extent that they need to recognize where it begins and
ends.

The syntax of KQML is based on a balanced parenthesis
list. The initial element of the list is the performative and
the remaining elements are the performative's arguments as
keyword/value pairs. Because the language is relatively sim-
ple, the actual syntax is not signi�cant and can be changed
if necessary in the future. The syntax reveals the roots of
the initial implementations, which were done in Common
Lisp, but has turned out to be quite
exible.

KQML is expected to be supported by an software sub-
strate which makes it possible for agents to locate one an-
other in a distributed environment. Most current implemen-
tations come with custom environments of this type; these
are commonly based on helper programs called routers or
facilitators. These environments are not a speci�ed part of
KQML. They are not standardized and most of the cur-
rent KQML environments will evolve to use some of the
emerging commercial frameworks, such as OMG's CORBA
or Microsoft's OLE2, as they become more widely used.

The KQML language supports these implementations by
allowing the KQML messages to carry information which is

Agent Cache
Maintenance
 Server

Agent
Cache

Internet

Facilitator
 Agent

Facilitator + Agent Server

Figure 7: Some facilitator agents will specialize in know-
ing how to contact other agents (among other things)

and can thus act as \agent-servers".

useful to them, such as the names and addresses of the send-
ing and receiving agents, a unique message identi�er, and
notations by any intervening agents. There are also optional
features of the KQML language which contain descriptions
of the content: its language, the ontology it assumes, and
some type of more general description, such as a descriptor
naming a topic within the ontology. These optional fea-
tures make it possible for the supporting environments to
analyze, route and deliver messages based on their content,
even though the content itself is inaccessible.

The forms of these parts of the KQML message may
vary, depending on the transport mechanism used to carry
the KQML messages. In implementations which use TCP
streams as the transport mechanism, they appear as �elds
in the body of the message. In an earlier version of KQML,
these �elds were kept in reserved locations, in an outer wrap-
per of the message, to emphasize the di�erence from other
�elds. In other transport mechanisms the syntax and con-
tent of these message may be di�erent. For example, in the
E-mail implementation of KQML, these �elds are embedded
in KQML mail headers.

The set of performatives forms the core of the language.
It determines the kinds of interactions one can have with
a KQML-speaking agent. The primary function of the per-
formatives is to identify the protocol to be used to deliver
the message and to supply a speech act which the sender
attaches to the content. The performative signi�es that the
content is an assertion, a query, a command, or any other
mutually agreed upon speech act. It also describes how the
sender would like any reply to be delivered, that is, what
protocol will be followed.

Conceptually, a KQML message consists of a performa-
tive, its associated arguments which include the real content
of the message, and a set of optional arguments transport
which describe the content and perhaps the sender and re-
ceiver. For example, a message representing a query about
the price of a share of IBM stock might be encoded as:

(ask-one
:content (PRICE IBM ?price)
:receiver stock-server
:language LPROLOG
:ontology NYSE-TICKS)

In this message, the KQML performative is ask-one, the
content is (price ibm ?price), the ontology assumed by the
query is identi�ed by the token nyse-ticks, the receiver of the
message is to be a server identi�ed as stock-server and the
query is written in a language called LPROLOG. A similar
query could be conveyed using standard Prolog as the con-

4

tent language in a form that requests the set of all answers
as:

(ask-all
:content "price(IBM, [?price, ?time])"
:receiver stock-server
:language standard_prolog
:ontology NYSE-TICKS)

The �rst message asks for a single reply; the second asks
for a set as a reply. If we had posed a query which had
a large number of replies, would could ask that they each
be sent separately, instead of as a single large collection by
changing the performative. (To save space, we will no longer
repeat �elds which are the same as in the above examples.)

(stream-all
;;?VL is a large set of symbols
:content (PRICE ?VL ?price))

The stream-all performative asks that a set of answers be
turned into a set of replies. To exert control of this set of
reply messages we can wrap another performative around
the preceding message.

(standby
:content (stream-all

:content (PRICE ?VL ?price)))

The standbyperformative expects a KQML language con-
tent and it requests that the agent receiving the request take
the stream of messages and hold them and release them one
at a time, each time the sending agent transmits a message
with the next performative. The exchange of next/reply
messages can continue until the stream is depleted or until
the sending agent sends either a discard message (i.e. dis-
card all remaining replies) or a rest message (i.e. send all
of the remaining replies now). This combination is so useful
that it can be abbreviated:

(generate
:content (PRICE ?VL ?price)))

A di�erent set of answers to the same query can be ob-
tained (from a suitable server) with the query:

(subscribe
:content (stream-all

:content (PRICE IBM ?price)))

This performative requests all future changes to the an-
swer to the query, i.e. it is a stream of messages which are
generated as the trading price of IBM stock changes. An
abbreviation for subscribe/stream combination is known a
monitor.

(monitor
:content (PRICE IBM ?price)))

Though there is a prede�ned set of reserved performa-
tives, it is neither a minimal required set nor a closed one.
A KQML agent may choose to handle only a few (perhaps
one or two) performatives. The set is extensible; a commu-
nity of agents may choose to use additional performatives if
they agree on their interpretation and the protocol associ-
ated with each. However, an implementation that chooses
to implement one of the reserved performatives must imple-
ment it in the standard way.

Basic query performatives:

� evaluate, ask-if, ask-in, ask-one, ask-all, : : :

Multi-response query performatives:

� stream-in, stream-all, : : :

Response performatives:

� reply, sorry, : : :

Generic informational performatives:

� tell, achieve, cancel, untell, unachieve, : : :

Generator performatives:

� standby, ready, next, rest, discard, generator, : : :

Capability-de�nition performatives:

� advertise, subscribe, monitor, import, export, : : :

Networking performatives:

� register, unregister, forward, broadcast, route, : : :

Figure 8: There are about two dozen reserved performa-

tive names which fall into seven basic categories.

Some of the reserved performatives are shown in Fig-
ure 8. In addition to standard communication performatives
such as ask, tell, deny, delete, and more protocol oriented
performatives such as subscribe, KQML contains performa-
tives related to the non-protocol aspects of pragmatics, such
as advertise - which allows an agent to announce what kinds
of asynchronous messages it is willing to handle; and recruit
- which can be used to �nd suitable agents for particular
types of messages. For example, the server in the above
example might have earlier announced:

(advertise
:ontology NYSE-TICKS
:language LPROLOG
:content (monitor

:content (PRICE ?x ?y)))

Which is roughly equivalent to announcing that it is a stock
ticker and inviting monitor requests concerning stock prices.
This advertisemessage is what justi�es the subscriber's send-
ing the monitor message.

4 KQML Software Architectures

KQML was not de�ned by a single research group for a
particular project. It was created by a committee of rep-
resentatives from di�erent projects, all of which were con-
cerned with managing distributed implementations of sys-
tems. One was a distributed collaboration of expert systems
in the planning and scheduling domain. Another was con-
cerned with problem decomposition and distribution in the
CAD/CAM domain. A common concern was the manage-
ment of a collection of cooperating processes and the simpli-
�cation of the programming requirements for implementing
a system of this type. However, the groups did not share a
common communication architecture. As a result, KQML
does not dictate a particular system architecture, and sev-
eral di�erent systems have evolved.

Our group has two implementations of KQML. One is
written in Common Lisp, the other in C. Both are fully in-
teroperable and are frequently used together. The design of
these implementations was motivated by the need to inte-
grate a variety of preexisting expert systems into a collab-
orating group of processes. Most of the systems involved
were never designed to operate in a communication oriented

5

N
et

w
or

k

KQML
strings

Network
connections

KQML
objects

Function
calls

R
ou

te
r

K
R

IL Agent

Figure 9: A router gives an application a single interface
to the network, providing both client and server capabil-

ities, managing multiple simultaneous connections, and
handling some KQML interactions autonomously. The

KRIL is the interface to the agent application and pro-
vides internal access points to which the router deliv-

ers incoming messages, analyzes outgoing messages for
appropriate domain tagging and routing, and provides

application speci�c interface and procedures for commu-
nication access.

environment. The design is built around two specialized pro-
grams, a router and a facilitator, and a library of interface
routines, called a KRIL.

KQML Routers

Routers are content independent message routers. Each
KQML speaking software agent is associated with its own
separate router process. All routers are identical; each is just
an executing copy of the same program. A router handles
all KQML messages going to and from its associated agent.
Because each program has an associated router process, it is
not necessary to make extensive changes to each program's
internal organization to allow it to asynchronously receive
messages from a variety of independent sources. The router
provides this service for the agent and provides the agent
with a single point of contact for the rest of the network. It
provides both client and server functions for the application
and manages multiple simultaneous connections with other
agents.

The router never looks at the content �elds of the mes-
sages it handles. It relies on the KQML performatives and
its arguments. If an outgoing KQML message speci�es a
particular Internet address, the router directs the message
to it. If the message speci�es a particular service, the router
will attempt to �nd an Internet address for that service and
deliver the message to it. If the message only provides a de-
scription of the content (e.g. query, :ontology \geo-domain-
3", :language \Prolog", etc.) the router may attempt to �nd
a server which can deal with the message and it will deliver
it there, or it may choose to forward it to a smarter com-
munication agent which may be willing to route it. Routers
can be implemented with varying degrees of sophistication
{ they can not guarantee to deliver all messages.

KQML Facilitators

To deliver messages that are incompletely addressed, routers
rely on facilitators. A facilitator is a network application
which provides useful network services. It maintains a reg-
istry of service names; it will forward messages on request
to named services. It may provide matchmaking services
between information providers and consumers. Facilitators
are actual network software agents which have their own

KQML routers to handle their tra�c and deal exclusively in
KQML messages. There is typically one facilitator for each
local group of agents. This can translate into one facilitator
per local site or one per project; there may be multiple local
facilitators to provide redundancy. When each application
starts up, its router announces itself to the local facilitator
so that it is registered in the local database. When the ap-
plication exits, the router sends another KQML message to
the facilitator, removing the application from the facilita-
tor's database. In this way applications can �nd each other
without there having to be a hand maintained list of local
services.

KQML KRILs

Since the router is a separate process from the application,
it is necessary to have a programming interface between the
application and the router. This application program inter-
face (API) is called a KRIL (KQML Router Interface Li-
brary). While the router is a separate process, with no un-
derstanding of the content �eld of the KQML message, the
KRIL API is embedded in the application and has access
to the application's tools for analyzing the content. While
there is only one piece of router code, which is instantiated
for each process, there can be various KRILs, one for each
application type and one for each application language. The
general goal of the KRIL is to make access to the router as
simple as possible for the programmer.

To this end, a KRIL can be as tightly embedded in
the application, or even the application's programming lan-
guage, as is desirable. For example, an early implementation
of KQML featured a KRIL for the Prolog language which
had only a simple declarative interface for the programmer.
During the operation of the Prolog interpreter, whenever
the Prolog database was searched for predicates, the KRIL
would intercept the search; determine if the desired predi-
cates were actually being supplied by a remote agent; for-
mulate and pose an appropriate KQML query; and return
the replies to the Prolog interpreter as though they were
recovered from the internal database. The Prolog program
itself contained no mention of the distributed processing go-
ing on except for the declaration of which predicates were
to be treated as remote predicates.

It is not necessary to completely embed the KRIL in the
application's programming language. A simple KRIL gen-
erally provides two programmatic entries. For initiating a
transaction there is a send-kqml-message function. This
accepts a message content and as much information about
the message and its destination as can be provided and re-
turns either the remote agent's reply (if the message trans-
mission is synchronous and the process blocks until a reply
is received) or a simple code signifying the message was sent.
For handling incoming asynchronous messages, there is usu-
ally a declare-message-handler function. This allows the
application programmer to declare which functions should
be invoked when messages arrive. Depending on the KRILs
capabilities, the incoming messages can be sorted according
to performative, or topic, or other features, and routed to
di�erent message handling functions.

In addition to these programming interfaces, KRILs ac-
cept di�erent types of declarations which allow them to reg-
ister their application with local facilitators and contact re-
mote agents to advise them that they are interested in re-
ceiving data from them. Our group has implemented a va-
riety of experimental KRILs, for Common Lisp, C, Prolog,
Mosaic, SQL, and other tools.

6

5 Experience with KQML

The KQML language and implementations of the protocol
have been used in several prototype and demonstration sys-
tems. The applications have ranged from concurrent de-
sign and engineering of hardware and software systems, mil-
itary transportation logistics planning and scheduling,
ex-
ible architectures for large-scale heterogeneous information
systems, agent-based software integration and cooperative
information access planning and retrieval. KQML has the
potential to signi�cantly enhance the capabilities and func-
tionality of large-scale integration and interoperability ef-
forts now underway in communication and information tech-
nology such as the national information infrastructure and
OMG's CORBA, as well as in application areas electronic
commerce, health information systems and virtual enter-
prise integration. The content languages used have included
languages intended for knowledge exchange including the
Knowledge Interchange Format (KIF) and the Knowledge
Representation Speci�cation Language (KRSL) [21] as well
as other more traditional languages such as SQL. Early ex-
perimentations with KQML began in 1990. The following
is a representative selection of applications and experiments
developed using KQML.

The design and engineering of complex computer sys-
tems, whether exclusively hardware or software systems or
both, today involves multiple design and engineering disci-
plines. Many such systems are developed in fast cycle or
concurrent processes which involve the immediate and con-
tinual consideration of end-product constraints, e.g., mar-
ketability, manufacturing planning, etc. Further, the design,
engineering and manufacturing components are also likely to
be distributed across organizational and company bound-
aries. KQML has proved highly e�ective in the integration
of diverse tools and systems enabling new tool interactions
and supporting a high-level communication infrastructure
reducing integration cost as well as
exible communication
across multiple networking systems. The use of KQML in
these demonstrations has allowed the integrators to focus
on what the integration of design and engineering tools can
accomplish and appropriately deemphasized how the tools
communicate [17, 23, 8, 10].

We have used KQML as the communication language
in several technology integration experiments in the ARPA
Rome Lab Planning Initiative. One of these experiments
supported an integrated planning and scheduling system for
military transportation logistics linking a planning agent (in
SIPE [30, 4]), with a scheduler (in Common Lisp), a knowl-
edge base (in LOOM [22]), and a case based reasoning tool
(in Common Lisp). All of the components integrated were
preexisting systems which were not designed to work in a
cooperative distributed environment.

In a second experiment, we developed a information agent
consisting of CoBASE [6], a cooperative front-end, SIMS
[1, 2], an information mediator for planning information ac-
cess, and LIM [26], an information mediator for translating
relational data into knowledge structures. CoBASE pro-
cesses a query, and, if no responses are found relaxes the
query based upon approximation operators and domain se-
mantics and executes the query again. CoBASE generates a
single knowledge-based query for SIMS which using knowl-
edge of di�erent information sources selects which of sev-
eral information sources to access, partitions the query and
optimizes access. Each of the resulting queries in this ex-
periment is sent to a LIM knowledge server which answers
the query by creating objects from tuples in a relational

database. A LIM server front-ends each di�erent database.
This experiment was run over the internet involving three,
geographically dispersed sites.

Agent-Base Software Integration [18] is an e�ort under-
way at Stanford University which applying KQML as an
integrating framework for general software systems. Using
KQML, a federated architecture incorporating a highly so-
phisticated facilitator is developed which supports an agent-
based view of software integration and interoperation [16].
The facilitator in this architecture is an intelligent agent
used to process and reason about the content of KQML
messages supporting tighter integration of disparate soft-
ware systems.

We have also successfully used KQML in other smaller
demonstrations integrating distributed clients (in C) with
mediators which were retrieving data from distributed da-
tabases. Mediators are not just limited distributed database
access. In another demonstration, we experimented with a
KQML URL for the World Wide Web. The static nature
of links within such hypermedia structures lends itself to
be extended with virtual and dynamic links to arbitrary
information sources as can be supported easily with KQML.

6 Conclusion

This paper has described KQML { a language and associated
protocol by which intelligent software agents can communi-
cate to share information and knowledge. We believe that
KQML, or something very much like it, will be important in
building the distributed agent-oriented information systems
of the future.

The design of KQML has continued to evolve as the ideas
are explored and feedback is received from the prototypes
and the attempts to use them in real testbed situations.
Furthermore, new standards for sharing persistent object-
oriented structures are being developed and promulgated,
such as OMG's CORBA speci�cation and Microsoft's OLE
2.0. Should any of these become widely used, it will be
worthwhile to evolve KQML so that its key ideas the collec-
tion of reserved performatives, the support for a variety of
information exchange protocols, the need for an information
based directory service can enhance these new information
exchange languages.

Additional information on KQML, including papers, lan-
guage speci�cations, access to APIs, information on email
discussion lists, etc, can be obtained via the world wide web
as http://www.cs.umbc.edu/kqml/ and via ftp from ftp.cs.-
umbc.edu in pub/kqml/.

References

[1] Yigal Arens. Planning and reformulating queries for
semantically-modeled multidatabase systems. In First
International Conference on Information and Knowl-
edge Management, October 1992.

[2] Yigal Arens, Chin Chee, Chun-Nan Hsu, Hoh In, and
Craig A. Knoblock. Query processing in an informa-
tion mediator. In Proceedings of the ARPA/Rome Lab
1994 Knowledge-Based Planning and Scheduling Initia-
tive Workshop, February 1994.

[3] External Interfaces Working Group ARPA Knowledge
Sharing Initiative. Speci�cation of the KQML agent-
communication language. Working paper. Available as
http://www.cs.umbc.edu/kqml/papers/kqml-spec.ps, De-
cember 1992.

7

[4] Marie Bienkowski, Marie desJardins, and Roberto Des-
imone. SOCAP: system for operations crisis action
planning. In Proceedings of the ARPA/Rome Lab 1994
Knowledge-Based Planning and Scheduling Initiative
Workshop, February 1994.

[5] Mark Burstein, editor. Proceedings of the ARPA/Rome
Lab 1994 Knowledge-Based Planning and Scheduling
Initiative Workshop. Morgan Kuafmann Publishers,
Inc., February 1994.

[6] Wes Chu and Hua Yang. Cobase: A cooperative query
answering system for database systems. In Proceed-
ings of the ARPA/Rome Lab 1994 Knowledge-Based
Planning and Scheduling Initiative Workshop, Febru-
ary 1994.

[7] M. Cutkosky, E. Engelmore, R. Fikes, T. Gruber,
M. Genesereth, and W. Mark. PACT: An experiment
in integrating concurrent engineering systems. IEEE
Computer, pages 28{38, January 1993.

[8] D. Kuokka et. al. Shade: Technology for knowledge-
based collaborative. In AAAI Workshop on AI in Col-
laborative Design, 1993.

[9] J. McGuire et. al. Shade: Technology for knowledge-
based collaborative engineering. Journal of Concurrent
Engineering: Applications and Research (CERA), 1(2),
September 1993.

[10] William Mark et. al. Cosmos: A system for supporting
design negotiation. Journal of Concurrent Engineering:
Applications and Research (CERA), 2(3), 1994.

[11] Tim Finin, Rich Fritzson, and Don McKay. A high-
level language and protocol to support intelligent agent
interoperability. InWorkshop on Enabling Technologies
for Concurrent Engineering, April 1992.

[12] Tim Finin, Rich Fritzson, and Don McKay. A
knowledge query and manipulation language for in-
telligent agent interoperability. In Fourth Na-
tional Symposium on Concurrent Engineering, CE
& CALS Conference, June 1{4 1992. Available as
http://www.cs.umbc.edu/kqml/papers/cecals.ps.

[13] Tim Finin, Don McKay, Rich Fritzson, and Robin
McEntire. KQML: an information and knowledge
exchange protocol. In International Conference on
Building and Sharing of Very Large-Scale Knowl-
edge Bases, December 1993. A version of this pa-
per will appear in Kazuhiro Fuchi and Toshio Yokoi
(Ed.), "Knowledge Building and Knowledge Shar-
ing", Ohmsha and IOS Press, 1994. Available as
http://www.cs.umbc.edu/kqml/papers/kbks.ps.

[14] Tim Finin, Charles Nicholas, and Yelena Yesha, editors.
Information and Knowledge Management, Expanding
the De�nition of Database. Lecture Notes in Computer
Science 752. Springer-Verlag, 1993. (ISBN 3-540-57419-
0).

[15] M. Genesereth and R. Fikes et. al. Knowledge inter-
change format, version 3.0 reference manual. Technical
report, Computer Science Department, Stanford Uni-
versity, 1992.

[16] Michael R. Genesereth and Steven P. Katchpel. Soft-
ware agents. Communications of the ACM, 37(7):48{53,
147, 1994.

[17] Mike Genesereth. Designworld. In Proceedings of the
IEEE Conference on Robotics and Automation, pages
2,785{2,788. IEEE CS Press.

[18] Mike Genesereth. An agent-based approach to software
interoperability. Technical Report Logic-91-6, Logic
Group, CSD, Stanford University, February 1993.

[19] Matt Ginsberg. Knowledge interchange format: The
KIF of death. AI Magazine, 1991.

[20] Yannis Labrou and Tim Finin. A semantics approach
for KQML { a general purpose communication language
for software agents. In Third International Conference
on Information and Knowledge Management, Novem-
ber 1994. Available as http://www.cs.umbc.edu/kqml/-

papers/kqml-semantics.ps.

[21] Nancy Lehrer. The knowledge representation speci�ca-
tion language manual. Technical report, ISX Corpora-
tion, Thousand Oaks, California, 1994.

[22] Robert MacGregor and Raymond Bates. The LOOM
knowledge representation language. Technical Report
ISI/RS-87-188, USC/ISI, 1987. Also appears in Pro-
ceedings of the Knowledge-Based Systems Workshop
held in St. Louis, Missouri, April 21{23, 1987.

[23] M.Tenenbaum, J. Weber, and T. Gruber. Enterprise
integration: Lessons from shade and pact. In C. Petrie,
editor, Enterprise Integration Modeling. MIT Press,
1993.

[24] R. Neches, R. Fikes, T. Finin, T. Gruber, R. Patil,
T. Senator, and W. Swartout. Enabling technology
for knowledge sharing. AI Magazine, 12(3):36{56, Fall
1991.

[25] Je� Y-C Pan and Jay M. Tenenbaum. An intelli-
gent agent framework for enterprise integration. IEEE
Transactions on Systems, Man and Cybernetics, 21(6),
December 1991. (Special Issue on Distributed AI).

[26] Jon Pastor, Don McKay, and Tim Finin. View-
concepts: Knowledge-based access to databases. In
First International Conference on Information and
Knowledge Management, October 1992.

[27] R. Patil, R. Fikes, P. Patel-Schneider, D. McKay,
T. Finin, T. Gruber, and R. Neches. The DARPA
knowledge sharing e�ort: Progress report. In Princi-
ples of Knowledge Representation and Reasoning: Pro-
ceedings of the Third International Conference, Novem-
ber 1992. Available as http://www.cs.umbc.edu/kqml/-

papers/kr92.ps.

[28] R. Patil, R. Fikes, P. Patel-Schneider, D. McKay,
T. Finin, T. Gruber, and R. Neches. The DARPA
knowledge sharing e�ort: Progress report. In B. Nebel,
C. Rich, and W. Swartout, editors, Principles of
Knowledge Representation and Reasoning: Proc. of the
Third International Conference (KR'92), San Mateo,
CA, November 1992. Morgan Kaufmann.

[29] Gio Wiederhold, Peter Wegner, and Stefano Ceri. To-
ward megaprogramming. Communications of the ACM,
33(11):89{99, November 1992.

[30] David Wilkins. Practical Planning: Extending the Clas-
sical AI Planning Paradigm. Morgan Kaufmann Pub-
lishers, Inc., San Mateo, CA., 1988.

8

