
The DARPA Knowledge Sharing E�ort: Progress Report

Ramesh S. Patil
USC Info. Sci. Inst.

Marina del Rey, California

Richard E. Fikes
Stanford University
Palo Alto, California

Peter F. Patel-Schneider
AT&T Bell Labs

Murray Hill, New Jersey

Don Mckay
Paramax Systems Corp.
Paoli, Pennsylvania

Tim Finin
Univ. of Maryland
Baltimore, Maryland

Thomas Gruber
Stanford University
Palo Alto, California

Robert Neches
USC Info. Sci. Inst.

Marina del Rey, California

Building knowledge-based systems today usually en-
tails constructing a new knowledge base from scratch.
Even if several groups of researchers are working in
the same general area, such as medicine or electronic
diagnosis, each team must develop its own knowledge
base from scratch. The cost of this duplication of ef-
fort has been high and will become prohibitive as we
build larger and larger systems. Furthermore, lack of
methodology for sharing and communicating knowl-
edge poses a signi�cant road-block in developing large
multi-center research projects such as DARPA/Rolm
Laboratory Planning and Scheduling Initative [21]. To
overcome these barrier and advance the state of the
art, we must �nd ways of preserving existing knowl-
edge bases, and sharing, reusing, and building on
them.

The Knowledge-Sharing E�ort, sponsored by the De-
fense Advanced Research Projects Agency (DARPA),
The Air Force O�ce of Scienti�c Research (AFOSR),
the Corporation for National Research Initiative
(NRI), and the National Science Foundation (NSF), is
an initiative to develop the technical infrastructure to
support the sharing of knowledge among systems. [27]
The goal of this e�ort is to develop a technology that
will enable researchers to develop new systems by se-
lecting components from library of reusable modules
and assembling them together. Their e�ort will be fo-
cused on creating specialized knowledge and reasoners
speci�c to the task of their system. Their new sys-
tem would inter-operate with existing systems, using
them to perform some of its reasoning. In this way,
declarative knowledge, problem solving techniques and
reasoning services could all be shared among systems.
The reusable modules in the library them-selves will
bene�t from re�nements that are only possible through
extensive use. This would facilitate building larger
systems cheaply and reliably. The infrastructure to
support such sharing and reuse would lead to greater
ubiquity of these systems, potentially transforming the
knowledge industry.

The work in the Knowledge-Sharing E�ort began with
the identi�cation of the impediments to knowledge

sharing and corresponding needs for the development
of technology to overcome these impediments. Four
key areas were identi�ed for the initial e�ort. They
are: (1) mechanisms for translation between knowl-
edge bases represented in di�erent languages; (2) com-
mon versions of languages and reasoning modules
within families of representational paradigm; (3) pro-
tocols for communication between separate knowledge-
based modules, as well as between knowledge-based
systems and databases; and, (4) libraries of \ontolo-
gies," i.e., pre-fabricated foundations for application-
speci�c knowledge bases in a particular topic area.

A detailed discussion of the impediments, and an anal-
ysis of the issues that motivated us to focus on these
four types, appears in [27]. That article also describes
the working groups (comprised of researchers from
the DARPA AI community and other volunteers) that
were established to address these issues. The next four
sections describe the progress made by each of the four
working groups in addressing these issues through the
development of draft speci�cations, implementations
and experiments.

1 An Interlingua for Knowledge
Interchange

For a knowledge-based system to incorporate encoded
knowledge from a library or to interchange knowledge
with another system, the knowledge must either be
represented in the receiving system's representation
language or be translatable in some practical way into
that language. Since an important means of achiev-
ing e�ciency in application systems is to use special-
ized representation languages that directly support the
knowledge processing requirements of the application,
we cannot expect a standard knowledge representa-
tion language to emerge that would be used generally
in application systems. Thus, we are confronted with a
heterogeneous language problem. We may, however, be
able to deal with that problem by developing a knowl-
edge interchange language that would be commonly
used as an interlingua for communicating knowledge



between computer programs.

Given such an interlingua, a sending system could
translate knowledge from its application-speci�c repre-
sentation into the interlingua for communication pur-
poses and a receiving system could translate knowl-
edge from the interlingua into its application-speci�c
representation before use. In addition, the interlingua
could be the language in which libraries would pro-
vide reusable knowledge bases. An interlingua eases
the translation problem in that without an interlingua
one must write N pairs of translators in order to com-
municate knowledge to and from N other languages.
With an interlingua, one need only write one pair of
translators into and out of the interlingua.

1.1 kif { a Knowledge Interchange Format

The Interlingua Working Group, chaired by Richard
Fikes and Michael Genesereth, is attacking the hetero-
geneous language problem by developing and testing
a language for use as an interlingua called the Knowl-
edge Interchange Format (kif)[16]. The group began
its work by observing that an interlingua needs to be
a language with the following general properties:

� A formally de�ned declarative semantics;

� Su�cient expressive power to represent the
declarative knowledge contained in typical appli-
cation system knowledge bases; and

� A structure that enables semi-automatic transla-
tion into and out of typical representation lan-
guages.

The working group then merged ongoing language de-
sign e�orts to produce a preliminary version of the
kif language which could be used as a straw man in-
terlingua in knowledge interchange experiments and
design discussions. Since then, the language has been
continually evolved and expanded based on feedback
from ongoing e-mail discussions, formal design reviews,
translation of example knowledge bases, and interop-
eration experiments.

kif is an extended version of �rst order predicate logic.
The current 3.0 version of kif has the following fea-
tures:

� Simple list-based linear ASCII syntax suitable for
transmission on serial media. For example, the
following is a kif sentence:

(forall ?x (=> (P ?x) (Q ?x)))

� Model-theoretic semantics with axiomatic char-
acterization of a large vocabulary of object, func-
tion, and relation constants.

� Function and relation vocabulary for numbers,
sets, and lists.

� Support for expression of knowledge about the
properties of functions and relations. Functions
and relations are included in the universe of dis-
course as sets of lists so that they can be argu-
ments to relations (e.g, transitive and one-one)
and functions (e.g., inverse and range). In addi-
tion, a holds relation is included that is true when
its �rst argument denotes a relation that has as
a member the list consisting of the items denoted
by the remaining arguments. So, for example, one
could de�ne transitivity as follows:

(<=> (transitive ?r)
(=> (holds ?r ?x ?y)

(holds ?r ?y ?z)
(holds ?r ?x ?z)))

� A sublanguage for de�ning objects, n-ary rela-
tions, and n-ary functions that enables augmenta-
tion of the representational vocabulary and spec-
i�cation of domain ontologies. De�nitions can be
complete in that they specify an equivalent ex-
pression or partial in that they specify an ax-
iom that restricts the possible denotations of the
constant being de�ned. For example, the follow-
ing is a complete de�nition of the unary relation
bachelor:

(defrelation bachelor (?x) :=
(and (man ?x) (not (married ?x))))

and the following is a partial de�nition of a bi-
nary relation above which speci�es that above is
transitive and holds only for "located objects":

(defrelation above (?b1 ?b2)
:=> (and (located-object ?b1)

(located-object ?b2))
:axiom (transitive above))

� Support for expression of knowledge about knowl-
edge. kif expressions are included as objects (i.e.,
lists) in the universe of discourse, and functions
are available for changing level of denotation. For
example, the following sentence says that Lisa
has the same belief as John about the material
of which things are made:

(=> (believes john '(material ,?x ,?y))
(believes lisa '(material ,?x ,?y))

and the following sentence says that every sen-
tence of the form (=> � �) is true:

(=> (sentence ?p) (true '(=> ,?p ,?p)))

� A sublanguage for stating both monotonic and
nonmonotonic inference rules. For example:

(<<= (flies ?x)
(bird ?x) (consis (flies ?x)))

A KIF reference manual describing the entire language
in detail is available through anonymous FTP from



hudson.stanford.edu[17]. The working group ex-
pects the current language design to remain relatively
stable and for future versions to be essentially exten-
sions to the existing language. Extensions under ac-
tive consideration include support for uncertain knowl-
edge and contexts, and additional support for default
knowledge.

KIF is intended to be a core language which is expand-
able by de�ning additional representational primitives.
For example, one can de�ne a frame language vocabu-
lary of classes, slots, number restrictions, value restric-
tions, etc. (as Gruber has done in [19]) so that knowl-
edge can be expressed in a form directly analogous to
a frame language. Thus, given suitable de�nitions, one
could de�ne a "guest meal" as being a meal in which
there is at least one guest and the food is gourmet as
follows:

(defrelation guest-meal (?m)
:=> (and (meal ?m)

(at-least-fillers ?m guest 1)
(all-fillers ?m food

gourmet-food)))

1.2 Knowledge Interchange Experiments
using kif

The problems involved in interchanging knowledge
bases are not yet well understood, and there is open
debate as to whether a generally useful interlingua can
be speci�ed. The Interlingua Working Group is at-
tempting to inform that debate by developing kif as
a candidate interlingua and by promoting knowledge
interchange experiments designed to substantially test
the viability and adequacy of kif as an interlingua.
Several small scale experiments have been conducted
thus far and multiple projects are underway to build
and test kif translators. These activities, though still
in preliminary stages, have already been very produc-
tive in identifying issues that need to be resolved and
technology that needs to be developed in order for
knowledge interchange to be a practical reality. We
describe three examples of such activities below.

Ramesh Patil built translators to an early version of
kif from CLASSIC [4] and from LOOM [22]. He
then used those translators to produce kif versions
of simple CLASSIC and LOOM knowledge bases. As
expected, such translation experiments highlighted
weaknesses in kif and motivated evolution of the lan-
guage. In general, producing KIF translations of a
wide range of sample knowledge bases is an e�ective
means of evaluating the expressive adequacy of kif
and focusing its continuing development. Building the
translators themselves does not appear to be problem-
atical. The primary issue is whether kif has su�cient
expressive power to represent the declarative knowl-
edge expressible in the source language.

Translating knowledge out of kif is in general an in-
tractable problem because any given proposition can
be expressed in kif in many equivalent but syntacti-
cally di�erent forms and the recognition grammar for
a target language will only be able to recognize some
subset of those forms. The translation task, therefore,
involves applying equivalence preserving rewrite rules
to transform unrecognizable sentences into recogniz-
able forms. Despite the worst-case complexity of logi-
cally complete translation, e�ective translation may be
achievable in most situations by logically incomplete
techniques combined with interactive direction from
the user. To explore that hypothesis, Fikes and Van
Baalen are building a translator development "shell"
which will contain a grammar-based recognizer, a goal-
directed rewrite rule interpreter, a library of general-
purpose rewrite rules, facilities for hand translation of
problematic sentences, etc. [12]. Initial versions of the
basic components of that shell have been implemented
and have been used to successfully translate simple kif
knowledge bases into CLASSIC.

A knowledge interchange capability is important both
to enable incorporation of knowledge into a knowledge-
based system (e.g., during system development) and to
enable interoperation of knowledge-based systems so
that they can cooperatively perform tasks and solve
problems. kif is being used as the knowledge level
inter-agent communication language in multiple inter-
operation experiments, including those conducted by
Mike Genesereth using the Designworld system [15]
and those being conducted by participants in the Palo
Alto Collaborative Testbed (PACT).

Designworld is an automated prototyping system for
small scale electronic circuits built from standard parts
(TTL chips and connectors on prototyping boards).
The design for a product is entered into the system
via a multi-media design workstation; the product is
built by a dedicated robotic cell; and, if necessary, the
product, once built, can be returned to the system
for diagnosis and repair. The system consists of eigh-
teen processes on six di�erent machines. Each of the
eighteen programs is implemented as a distinct agent
that communicates with its peers via messages in a
KQML-like Agent Communication Language (ACL)
that uses KIF as the "content" language.

PACT is a laboratory for exploring the use of knowl-
edge sharing technology and agent-based system inte-
gration architectures to support concurrent engineer-
ing. Participants include research groups at Stanford
University, Lockheed AI Laboratory, Hewlett-Packard
Laboratories, and Enterprise Integration Technologies.
The initial experiments integrated four preexisting
concurrent engineering systems into a common com-
putational framework and explored engineering knowl-
edge exchange in the context of a distributed simula-
tion and simple incremental redesign scenario [9]. In
those experiments, each of the individual systems was



used to model one or more components of an exam-
ple programmable electro-mechanical device, a small
robotic manipulator. The systems interact via soft-
ware agents which use KQML as the "performative"
language and kif as the "content" language during
knowledge interchange.

Although these experiments have not yet placed se-
vere demands on kif as an interlingua, kif successfully
provided what was needed, namely a clearly speci�ed
logical sentence language for interchange of assertions,
queries, and simulation inputs and outputs.

2 The Knowledge Representation
System Speci�cation

Even within a single family of knowledge representa-
tion systems (e.g. kl-one) minor di�erences in syntax
and semantics between systems pose signi�cant barri-
ers to knowledge sharing. The goal of the Knowledge
Representation System Speci�cation (KRSS) group is
to develop common speci�cations for the representa-
tional component of families of knowledge representa-
tion systems. These speci�cations will help facilitate
the transfer of collections of knowledge between knowl-
edge representation systems in the same family, by re-
ducing the representational di�erences among systems
in the family. The intent of the group is to produce,
by-and-large, descriptive speci�cations, although rec-
onciliation of some syntactic di�erences will almost
certainly be required.

Speci�cations produced by the group will concentrate
on the representational components of the family of
knowledge representation systems. Thus, they will
provide a complete de�nition of the representation lan-
guage underlying the family, but will not include a
complete de�nition of the interface functions that are
required in a useful knowledge representation system.
Instead the speci�cations will only de�ne a minimal in-
terface, one that is su�cient to create knowledge bases
and query them in limited ways. Also, speci�cations
will completely ignore user-interface issues.

These speci�cations will de�nitely not be interlinguas.
The representation formalism in the speci�cations will
be speci�c to the family of representation systems un-
der consideration, and will not be general-purpose rep-
resentation logics. The speci�cations also have to be
concerned with the computational properties of the
formalism they de�ne (i.e., how hard inference in the
formalism is), as the aim of the group is to specify
knowledge representation systems, and not just ab-
stract formalisms.

The initial e�ort of the KRSS group is the development
of a speci�cation for knowledge representation systems
based on what are now called description logics (also
known as frame-based description languages, termino-

logical logics, etc.). These systems include BACK [31],
CLASSIC [6], KRIS [2], and LOOM [22]. This group
of systems was chosen partly because there is a large
number of systems that are based on description log-
ics (see above), partly because there was already some
interest in the community of developers of such sys-
tems for a common speci�cation [1], partly because
many of the people in the initial group gathered to-
gether at the start of the DARPA Knowledge Sharing
Initiative were working with such systems, and partly
because such systems have a formal basis that is read-
ily amenable to a well-de�ned speci�cation. There has
also been considerable study of the formal properties
of reasoning in systems based on description logics.
This includes studies of how reasoning should proceed
in such systems [26] and the computational complex-
ity and decidability of reasoning in description logics
[5, 25, 10, 30]. The presence of such a large body of
formal work makes the speci�cation process much eas-
ier.

Although there is a common background for all knowl-
edge representation systems based on description log-
ics, there is surprising variance in several dimensions
in the systems. First, di�erent systems have di�erent
input syntaxes. One goal of the initial KRSS e�ort
is to minimize di�erences in this dimension. Second,
di�erent systems have di�erent interfaces, both func-
tional and user interfaces. Another goal of the initial
KRSS e�ort is to minimize di�erences in the portion of
the functional interface used to construct and directly
query knowledge bases. However, the rest of the inter-
faces of the various systems will not be incorporated
into the speci�cation, as it is outside the goals of the
KRSS group.

The main di�erence between the various systems is
that they take di�erent positions in the trade-o�s
among expressive power, completeness of inference,
and resource consumption. Some systems try to be
as complete as possible in a less-expressive descrip-
tion logic while consuming as few resources as possible,
trading o� expressive power for computational bene-
�ts. Some systems implement complete inference in a
moderately-expressive but decidable description logic,
trading o� possible resource consumption for better
expressive power. Some systems implement only par-
tial inference in an expressively-powerful description
logic, trading o� completeness for expressive power.

Many points in this set of trade-o�s are reasonable, so
a speci�cation has to allow for both the current set of
trade-o�s, and also for possible future trade-o�s. This
means that the speci�cation will not be a complete
speci�cation nor even a nearly complete speci�cation.

The approach that has been taken in the speci�cation
is to de�ne an expressively powerful description logic,
including both a syntax and a semantics, incorporat-
ing those constructs whose meaning has been gener-



ally agreed upon by the community. Along with the
description logic is a set of interface functions that al-
low for the construction, manipulation, and querying
of description-logic knowledge bases. These functions
allow

� the formation of descriptions and sentences;

� the de�nition of concepts and roles from descrip-
tions;

� the assertion of sentences, including ground facts
about individuals and simple rules about con-
cepts;

� the creation of individuals and reasoning about
their identity;

� the making of local closed-world statements;

� the making of default statements about instances
of concepts;

� the retracting of previously-told assertions; and

� the querying of knowledge bases.

The non-query functions are de�ned by their e�ect on
an abstract knowledge base, which is a collection of
statements in the description logic. The results of the
query functions are (mostly) de�ned by semantic rela-
tionships between the knowledge base and the query.

Because it is impossible to e�ciently perform infer-
ence in the full description logic, conforming systems
are not required to completely implement it. Conform-
ing systems are free to recognize only a subset of the
syntax of the logic, and need not even perform com-
plete reasoning in the subset that they do recognize.
However, such systems must use this logic as the ideal
meaning of their knowledge bases, and must perform
\sound" reasoning with respect to the logic.

Conforming systems are not completely free in what
portion of the logic they choose to address. There is
a core portion of the logic that all conforming systems
are required to implement; in this way a minimal com-
petence is required for all conforming systems. The
core is not just a syntactic subset of the full logic|
complete inference on even very minimal subsets of the
logic is very di�cult|but is instead a set of constructs
that must be recognized, along with a set of inferences
that must be performed on these constructs.

Most of the debate on the speci�cation has involved
the details of this core. The constructs to include in
the core, the inferences to perform on them, and how
to specify these inferences have all been subjects of de-
bate. This was to be expected, as the speci�cation of
the core is where the speci�cation is making decisions
on matters that have been decided in di�erent ways by
di�erent systems. Devising a core that is both reason-
able and non-trivial is an interesting exercise in how
to balance various representation and implementation
concerns.

There is now (July 1992) a second draft of the com-
plete speci�cation that has been distributed to inter-
ested parties. Some changes still need to be made to
this draft. First, formal work in description logics has
advanced, and should be incorporated into the speci�-
cation. Second, there are portions of the draft, partic-
ularly in the inferences required in the core, that are
objectionable to some parties. By September 1992,
there should be a third draft prepared and discussed,
and by the end of October 1992 a �nal version of the
speci�cation should be available. Also, a method for
demonstrating compliance with the speci�cation will
be developed.

Future work in the KRSS group e�ort on description-
logic based systems will then consist of augmenting
the speci�cation as new formal work on description
logic produces relevant results and as new implemen-
tation techniques make it possible to extend the core.
Also, other families of knowledge representation sys-
tems may be given the same treatment, provided that
developers are interested.

3 Knowledge Query And
Manipulation Language (kqml)

The External Interfaces working group was originally
charged with addressing the general problem of de�n-
ing standard high-level interfaces for knowledge repre-
sentation systems. This was seen as including such di-
verse interfaces as those to other KR systems, DBMSs,
active sensors, and human users. Over the past two
years, this working group has focused on and experi-
mented with a somewhat narrowed and more focused
problem { designing a common high-level language
(KQML) and associated protocol which can be used
by software systems for the run-time sharing of infor-
mation and knowledge. This section briey describes
the current status of the e�ort to specify KQML and
experiment with its use in several testbeds.

3.1 Overview

The Knowledge Query and Manipulation Language
(KQML) is both a message format and a message-
handling protocol to support run-time knowledge shar-
ing among agents. KQML can be used as a language
for an application program to interact with an intel-
ligent system or for two or more intelligent systems
to share knowledge in support of cooperative problem
solving. KQML focuses on an extensible set of perfor-
matives, which de�nes the permissible operations that
agents may attempt on each other's knowledge and
goal stores. The performatives comprise a substrate on
which to develop higher-level models of interagent in-
teraction such as contract nets and negotiation [8, 33].

In addition, KQML provides a basic architecture for
knowledge sharing through a special class of agent



Communication

Message

Content

Mechanics of communication: sender,
recipient, unique id, synchonicity, etc.

Logic of Communication: speech act
type, qualifications, etc.

Content of communication as an
expression in some agreed upon
KR language (e.g., KIF).

Figure 1: KQML expressions can be thought of as consisting
of a content expression encapsulated in a message wrapper
which is in turn encapsulated in a communication wrapper.

called communication facilitators. These agents co-
ordinate the interactions of other agents by providing
such functions as:

� identi�cation of other agents with which to com-
municate both explicitly via \names" or \ad-
dresses" or implicitly via declared topics of inter-
est or capabilities,

� maintaining registration databases of knowledge
services o�ered and sought by agents,

� communication services (e.g., forwarding informa-
tion from one agent to other interested agents),
and

� content translation to bridge semantic and onto-
logic di�erences between end agents.

These functions are embodied in special performatives
(which take messages as arguments), and in the way
that facilitators treat messages received from applica-
tion agents.

The ideas which underly the evolving design of KQML
are currently being explored through experimental
prototype systems which are being used to support
two testbeds: the Palo Alto Collaborative Testbed
(PACT) [9] which is focused in the concurrent engi-
neering domain, and the DARPA/Rome Planning Ini-
tiative (DRPI) which deals with military transporta-
tion planning [13].

3.2 kqml Expressions are Layered

KQML expressions consist of a content expression en-
capsulated in a message wrapper which is in turn en-
capsulated in a communication wrapper, as shown in
Figure 1. Thus the language is thought of as being
divided into three layers: content, message and com-
munication. The content layer contains an expression
in some language which encodes the knowledge to be
conveyed. The format of this expression is unimpor-
tant to KQML; it can carry any type of content ex-
pressed in any representation language which follows
some general syntactic constraints (currently, the con-
tent expression must be an s-expression). However,
there are emerging conventions for knowledge repre-

sentation (e.g., Interlingua, KIF [17], etc) and stan-
dards for persistent objects (e.g., the OMG Object Re-
quest Broker) which may prove to be very valuable in
the near future.

The primary purpose of the message layer is to identify
the speech act or performative that the sender attaches
to the content, such as an assertion, a query or a com-
mand, and any of a small set of quali�ers that may be
appropriate to that performative. In addition, since
the the content is opaque to KQML, this layer also in-
cludes optional features describing the content's lan-
guage, the ontology it assumes and a descriptor nam-
ing a topic within the ontology. These features make
it possible for the protocol implementation to analyze,
route and properly deliver messages even though their
content may be inaccessible.

The �nal communication level adds a second layer of
features to the message which describe the lower level
communication parameters, such as the identity of the
sender and recipient, a unique identi�er associated
with the communication and whether the communi-
cation is meant to be synchronous or asynchronous.
These are used by the network layer which provides
reliable transfer of bytes between processes on a net-
work.

3.3 kqml Performatives

The message layer is used to encode a message that one
application would like to have transmitted to another
application and forms the core of the language, de-
termining the kinds of interactions one can have with
a KQML-speaking agent. It can be thought of as a
\speech act layer", since an important attributes to
specify about the content is what kind of \speech act"
it represents { an assertion, a query, a response, an
error message, etc.

Structure. Conceptually, a KQML message consists
of an operator or performative, its associated argu-
ments which constitute the real content of the message
and a set of optional arguments which describe the
content in a standard, language-independent manner.
For example, a message representing a query about the
location of an particular airport might be encoded as:

(ask (geoloc lax (?long ?lat))
:number_answers 1
:ontology drpi_geo)

In this message, the KQML performative is ask,
the content (i.e., knowledge being sought) is
(geoloclax(?long?lat)), the number of answers re-
quested is 1, the language in which the content is ex-
pressed is (by default) kif and the ontology to be as-
sumed is that named by the token drpigeo. The same
general query could be conveyed in using standard Pro-
log as the content language in a form that requests the



set of all answers as:

(ask "geoloc(lax, (Long,Lat))"
:language standard_Prolog
:number_answers all
:ontology drpi_geo)

Semantics. It is our intention to allow the set of
KQML performatives to be extensible. We will iden-
tify a core set of performatives that will have a well
de�ned meaning. An KQML-speaking agent need not
implement or handle all of the performatives in this
core, but for those it does, it must adhere to the stan-
dard semantics. Moreover, it is our goal to provide a
standard mechanism by which one can de�ne the se-
mantics of new performatives, allowing the set to be
extended. The semantics of the core performatives
will be de�ned in terms of a smaller set of primitive
performatives. The semantics of these primitive per-
formatives are de�ned with respect to a simple and
general model of agents in which each agent as a store
of information structures (i.e., \belief" like items) and
a store of goals structures (i.e., items which may e�ect
the agent's future behavior).

Primitive Performatives. We are currently work-
ing with a set of four primitive performatives from
which we believe the core and various interesting ex-
tensions can be de�ned. These four primitives pro-
vide operators to present an agent with items to add
(ADV ISE) and remove (UNADV ISE) from its in-
formation store and to add (ACHIEV E) and remove
from (FORGET ) its goal store. These four perfor-
matives are primarily used as a means to specify the
semantics of the larger core performatives.

Core Performatives. The core set of performatives
is expected to include several dozen operators which
most KQML-speaking agents will support. If an agent
accepts a message with a core performative, it must
adhere to its agreed upon semantics. Some of these
performatives will accept optional arguments which
serve as quali�er. Figure 2 shows some examples of
performatives that are in the current speci�cation.

Messaging via Facilitators. Any substantial col-
lection of interacting agents will require some struc-
ture on information ow [20, 28, 32]. For this reason,
KQML introduces a class of communication facilitator
agents that help manage the message tra�c among ap-
plication agents. Facilitator agents can route perfor-
matives to appropriate agents (MONITOR performa-
tives in particular), record the performative-processing
abilities of new agents, and bridge the capabilities of
super�cially incompatible agents (through bu�ering,
translation, and problem decomposition). These fa-
cilitation functions will be reected in new core per-
formatives, e.g., (FORWARD agent-name message)
and (DISTRIBUTE message).

� (ASSERT P) - Add P to the agent's information
store, performing whatever reasoning the agent
can perform.

� (RETRACT P) - Remove P from the agent's
information store if present, signalling an error if
not present and performing whatever reasoning
the agent can perform.

� (ASK P) - Query the agent's information store
to �nd answers matching query P. The number
of answers returned is governed by an optional
argument.

� (GENERATOR P) - Reply with a generator
that the recipient can use to elicit a stream of
answers to the query P.

� (MONITOR P) - Modify the agent's goal store
to cause it to inform the sender whenever a sen-
tence matching P becomes true.

Figure 2: These are a few of the core KQML performatives.

Software Architecture. As Figure 3 shows, a typ-
ical KQML-speaking agent will be built using two
reusable pieces { an interface between the agent's sys-
tem language (e.g., LOOM or Prolog) which ties com-
munication actions to system actions, and a router
which handles the low-level communication chores nec-
essary to talk to other agents. These might all be done
within a single process (e.g., in Lisp) or might include
several processes (e.g., the router might be done in C
or Perl).

3.4 Status and Open Issues

The ideas which underly the evolving design of KQML
are currently being explored through experimental
prototype systems which are being used to support
two testbeds: the Palo Alto Collaborative Testbed
(PACT) [9] which is focused in the concurrent engi-
neering domain, and the DARPA/Rome Planning Ini-

R
K
R
I
L

KQML
Application

System Language

KQML

KQML Speaking Agent

Figure 3: A typical KQML-speaking agent will be built using
two reusable pieces { an interface between the agent's system
language (e.g., LOOM or Prolog) which ties communication
actions to system actions, and a router which handles the low-
level communication chores necessary to talk to other agents.



Internet

KQML

KQML

KQML

KQML

KQML
KQML

KQML

KQML

KQML

KQML

R

R
R

R

R

R

R

R

R

R

K
R
I
L

KQML

A
G
E
N
T

KQML

K
R
I
L

A
G
E
N
T

IDI KRSL

DB DB DB KB KB KB

KQML

K
R
I
L

DRPI Knowledge Server

LOOM

A
G
E
N
T

DRPI Facilitator

K
R
I
L

KQML

A
G
E
N
T

DART

SOCAP,

K
R
I
L

KQML
A
G
E
N
T

PFE

DRPI Plan Simulator

DRPI Plan Editor

DRPI Plan Generator

DRPI

Figure 4: KQML will be used as communication language
among the various agents which make up the DRPI testbed.
It will be used, for example, to support the interchange of
knowledge among the planner, the plan simulator, the plan
editor and the DRPI knowledge server which is the reposi-
tory for the shared ontology and access point for common
databases.

tiative (DRPI) which deals with military transporta-
tion planning.

KQML use in PACT. The Palo Alto Collabo-
rative Testbed (PACT) uses KQML as its medium
for agent interaction in support of concurrent en-
gineering. PACT participants modi�ed several ex-
isting knowledge-based engineering systems to speak
KQML and thereby exchange design and manufac-
turing knowledge of mutual interest. (For example,
the mechanical modeler sends the controls modeler
knowledge regarding the dynamics of the design; the
power modeler sends the manufacturing process plan-
ner knowledge regarding a motor replacement.) These
agents �nd each other in part through facilitators,
which handle message forwarding, content-based rout-
ing, and simple format translations.

KQML use in DRPI. The DARPA/Rome Plan-
ning Initiative is using KQML as the communication
language among the various agents that make up the
testbed and feasibility demonstrations. Figure 4 shows
KQML being used, for example, to support the in-
terchange of knowledge among the planner, the plan
simulator, the plan editor and the DRPI knowledge
server, which is the repository for the shared ontology
[21] and access point to common databases through
the Intelligent Database Interface [23, 29]

Open Issues. The design of KQML has continued
to evolve as the ideas are explored and feedback is
received from the prototypes and the attempts to use
them in real testbed situations. We mention here a few
of the important issues that we expect to be addressed
in the coming year.

The core set of performatives is still undergoing re-

vision as we experiment with its use. This set needs
to be stabilized and well speci�ed. In particular, we
need to re�ne the model of what a communication fa-
cilitator is and what services it might o�er so that we
develop a good set of performatives to support their
e�ective use.

A method for de�ning new extensions to the core set
needs to be worked out. This includes a method for
de�ning them for humans as well as a method to allow
one agent to de�ne a new performative to another.

The basic model of a knowledge representation agent
that we have been working with is quite simple. One
of several extensions that may be needed, for example,
is a mechanism to de�ne contexts within an agents
information and goal stores.

An important part of KQML will be the protocols as-
sociated with the di�erent performatives. There are
some general issues which go beyond de�ning the se-
mantics of particular performatives that must be ad-
dressed. These general protocols include such things
as refusing to accept a message, error reporting, secu-
rity, and transaction oriented processing.

4 Shared, Reusable Knowledge Bases

The SRKB Working Group (Shared, Reusable Knowl-
edge Bases) of the DARPA Knowledge e�ort is work-
ing on the problem of sharing the content of formally
represented knowledge. Sharing content requires more
than a formalism (KIF) and communication protocol
(KQML). Of course, understanding the nature of what
needs to be held in common between communicating
agents, or between the author of a book and its reader,
is a fundamental question for philosophy and science.
The SRKB group is focusing on the practical prob-
lem of building knowledge-based software that can be
shared and reused as o�-the-shelf technology. The
charter of the group is to identify the technical bar-
riers to the sharing and reuse of formally represented
knowledge by AI programs, and to provide a forum for
experimentation with possible approaches.

4.1 Strategy: Common Ontologies as a
Sharing Mechanism

The strategy is to focus on common ontology as the
sharing mechanism [27, 18]. What is a common ontol-
ogy? Every knowledge-based system is based on some
conceptualization of the world: those objects, pro-
cesses, qualities, distinctions, and relationships that
matter for performing some task. A program (or
its programmer) makes ontological commitments to a
conceptualization by embodying these concepts, dis-
tinctions, etc. in a formal representation and using
knowledge formulated in that representation during
problem solving. By common ontology we mean



an explicit speci�cation of a the ontological commit-
ments of a set of programs. Such a speci�cation is
an objective description|interpretable outside of the
programs|of the concepts and relationships that the
programs assume and use when interacting with other
programs, knowledge bases, and human users.

Operationally, a common ontology can be speci�ed
as a set of de�nitions of representational terms used
to construct expressions in a knowledge base, such
as classes, relations, slots, and object constants. To
make a common ontology shareable, the de�nitions
should consist of human-readable text and machine-
enforceable, declarative constraints (i.e., axioms) on
the well-formed use of the terminology. The set of
terms in a common ontology need not include all
the terms used internally in participating programs.
Rather, the shared vocabulary de�ned in a ontol-
ogy is used for specifying the coupling between pro-
grams and knowledge bases (at design time) and for
knowledge-level communication among agents (at run
time). We hope to enable large-scale sharing and reuse
of knowledge bases and knowledge based systems by
making common ontologies available as open speci�-
cations, much like interchange formats and communi-
cation protocols.

The initial activities of the working group have been to
explore the research issues in knowledge sharing, and
to identify areas where it might be practical and useful
to specify common ontologies. The Summer Ontology
Project, held at Stanford in 1990, studied the collabo-
rative, multi-disciplinary development of reusable on-
tologies for describing electromechanical devices and
their designs. One outcome was the observation that
several approaches to device modeling, from digital cir-
cuit modeling to rigid body dynamics, seemed to make
commitments to lumped-element models of physical
devices. In a lumped-element model, the behavior of a
device is described in terms of values of functions (state
variables) that map a single independent variable (e.g.,
time, but not space) to physical quantities (position,
force, etc.). A preliminary ontology was proposed to
formalize these concepts.

In March of 1991, the SRKB group met at Pajaro
Dunes to characterize some of the research issues.
There was some controversy about whether it is pre-
mature to \standardize" ontologies of any sort, espe-
cially those designed to be comprehensive over tasks
and domains. Instead, a series of collaborative, grass-
roots experiments were proposed, in which two or
more research groups identify potential candidates for
knowledge sharing.

In the past year, several collaborations have begun,
and a set of ad hoc subgroups have been formed
to study these ontological niches. Each subgroup is
tasked with identifying, collecting, making available,
and analyzing ontologies for knowledge sharing. We
will describe the e�orts of these groups within a frame-

work of models of sharing and reuse.

4.2 Models of Knowledge Sharing and Reuse

Three models of sharing and reuse are being explored,
and in each, common ontologies play an enabling role.

First is the library model, in which bodies of for-
mally represented knowledge are available as o�-the-
shelf products, like books in a library. In this model,
knowledge bases are designed artifacts, and the role of
SRKB to help make them available and reusable.

Two ad hoc subgroups are currently active within the
library model of sharing. One is an e�ort by repre-
sentatives of projects in qualitative physics to spec-
ify a common language for model fragments. Model
fragments are conceptual building blocks for programs
that formulate and assemble engineering models of de-
vice behavior, using techniques such as compositional
modeling [11]. For example, idealized components
such as resistors and physical processes such as liq-
uid ow are represented by model fragments, which
are composed to produce simulation models of com-
plete systems. The language under development is a
uni�cation of model formulation and simulation sys-
tems such as QPE, DME, and QPC, and should enable
a community library of model fragments that can be
directly executed by these systems. The axiomatic se-
mantics of the language will be expressed in KIF, and
the ontological commitments of these programs will be
speci�ed as an ontology.

A second subgroup, following up on the Summer On-
tology Project, is developing a family of ontologies for
specifying various styles of engineering modeling. It is
formalizing the classes of algebras used in constraints
(e.g., with or without di�erential equations; quali-
tative operators), the assumptions underlying com-
ponent/connection topologies, and the various styles
of dynamics analysis (e.g., Newtonian, LaGrangian,
Kane's method). This work is complementary to the
composition modeling e�ort; any of these styles of
modeling can be formulated using the model fragment
language.

A preliminary �nding is that the ontological commit-
ments of a given approach to modeling may be fac-
tored into separate ontologies. These ontologies form
an inclusion hierarchy, where each ontology can inherit
(by set inclusion) the de�nitions of included ontolo-
gies. For example, the original proposal for a lumped-
element ontology has since been divided into sev-
eral ontologies, including continuous-state-space (com-
mits to describing behavior using state variables) and
hierarchical-component-assembly (objects are struc-
tured into components related by connections and
part-of relations). To specify how state variables are
associated with components, one writes a third ontol-
ogy that includes the other two, adding a few addi-
tional constraints. To support this sort of modular



partitioning of ontologies, the interlingua committee
is considering context mechanisms such as Cyc's mi-
crotheories.

A second mode of sharing and reuse under investiga-
tion is the software engineeringmodel. A standard
approach to making software reusable is to decompose
complex programs into modular pieces, and to provide
a formal speci�cation of the inputs, outputs, and func-
tion computed by each piece. Knowledge-based sys-
tems are like other software in this respect, except that
they operate on a special input called the \background
knowledge base" or \domain theory." Reusable mod-
ules are designed so that the same code can be used
on several knowledge bases. However, to write these
knowledge bases the developer needs to understand
the ontological assumptions and commitments made
in the code. An ontology that de�nes the vocabulary
with which to write the knowledge bases can help de-
termine which software module to use on a given prob-
lem, how to provide it the necessary domain knowl-
edge, and whether the knowledge base meets the input
requirements of the software.

A signi�cant e�ort is under way in the knowledge ac-
quisition community to formally characterize the tasks
being performed by knowledge based systems, and to
design modular problem-solving methods that can be
combined to address these tasks [24]. For example,
complex, amorphous tasks such as diagnosis and plan-
ning have been decomposed into more generic sub-
tasks that can be solved with reusable methods such
as simple classi�cation, abductive assembly, and va-
rieties of constraint satisfaction. An subgroup led by
Mark Musen is studying ways to describe these tasks
and methods, and has begun to de�ne ontologies that
specify the input and output assumptions of reusable
methods.

A second subgroup, headed by Ed Hovy and Doug
Skuce, is identifying and analyzing the comprehen-
sive, top-level ontologies that are intended to be gen-
eral across domains and tasks. A motivating applica-
tion for such ontologies is natural language process-
ing. NLP techniques needs a way to couple to do-
main knowledge bases (for something to talk about)
without committing the programs to particular sub-
ject matter areas. For example, the Penman language
generation system's \Upper Structure" ontology [3] di-
vides the world up according to the major type distinc-
tions made in English and German (Objects of various
types, Processes and Relations of various types, Qual-
ities, etc.). A developer customizes Penman to a par-
ticular application domain by de�ning the domain's
concepts as specializations of the appropriate Upper
Structure concepts. As a result, the domain concepts
inherit the necessary linguistic annotations from their
Upper Structure ancestors. In general, such top-level
ontologies can be viewed as a software reuse mecha-
nism for programs parameterized by large knowledge

bases.

Another subgroup is looking at ontologies that spec-
ify semiformal representations of decision making and
design rationale (Je� Bradshaw, Jin Tae Lee, and
Charles Petrie). In semiformal rationale support sys-
tems, users organize text describing design decisions in
to a hypertext document that supports a �xed vocab-
ulary of node types (classes) and link types (relations).
For example, in the gIBIS ontology [7], decisions are
described in terms of issues, arguments, and positions,
and these node types are linked by relations such as
supports and objects-to. The documents structured by
these terms are called semiformal or semistructured,
since only the node and link types are machine inter-
pretable and the contents of the nodes are not formal-
ized. Several methodologies for developing semiformal
documents, and tools to support them, are based on
these ontologies of node and link types.

A third kind of sharing and reuse is the reference
model, typically used to de�ne an integration frame-
work for a family of application programs. A reference
model de�nes the concepts in a domain and/or prob-
lem area that are common to the set of application
tasks. For example, a reference model for digital cir-
cuits includes a formalism for describing the netlist,
which is a representation of circuit topology. The ref-
erence model ontology commits the participating tools
to the existence of shared objects such as components
connected by ports in a netlist; this is necessary to
enable tools to exchange data.

An international standards e�ort called PDES/STEP
is working on a family of reference-model ontologies
for product data, starting by de�ning primitives for
geometry and working toward high level descriptions
of behavior and functionality. The DARPA knowl-
edge sharing e�ort is exploring avenues for collabora-
tion with the PDES organization.

Within the SRKB working group, ad hoc subgroups
are studying reference-model ontologies for user in-
terface toolkits (Jim Foley and Bob Neches), man-
ufacturing enterprise models (Mark Fox), and plan-
ning/scheduling (Don McKay, Masahiro Hori).

4.3 Technical Support for Ontologies {
Ontolingua

Each of the subgroups of the SRKB are charged with
identifying and collecting ontologies, and making them
available in a form amenable to analysis and possible
reuse. However, existing ontologies are either incom-
pletely formalized or written in a speci�c knowledge
representation tool. To address this problem, a system
called Ontolingua has been developed [19]. Ontolingua
is a mechanism for de�ning ontologies portably, that
is, independent of speci�c representation systems. It
allows the de�nition of classes, relations, and distin-
guished objects using KIF sentences, and translates



these de�nitions into several implemented representa-
tion systems.

Ontolingua's design demonstrates the use of a com-
mon ontology to facilitate sharing and reuse (in this
case, of ontologies). Translation from a very expressive
language (KIF) into restricted languages is inherently
incomplete. Therefore, Ontolingua supports a subset
of legal sentences that can be translated into a class
of commonly-used representation systems: the object-
centered or frame-based systems. These implemented
systems commit to particular ways of organizing and
specifying knowledge about objects, such as inheri-
tance hierarchies and slot descriptions. These ontolog-
ical commitments are captured in the Frame Ontology,
which de�nes a vocabulary for describing classes, bi-
nary relations, and second-order relationships among
them (e.g., subclass, instance, class partitions, slot-
value restrictions). Ontolingua recognizes the use of
Frame Ontology concepts in KIF sentences, and trans-
lates them into the special syntax of each target rep-
resentation system. The Frame Ontology, on top of
a syntactically restricted KIF, de�nes a language for
portable ontologies. The Ontolingua software opera-
tionalizes the language by providing automatic trans-
lation into implemented representation systems.

5 Summary

Moving beyond the capabilities of current knowledge-
based systems will require development of knowledge
bases that are substantially larger than those we have
today. It will require knowledge-based systems to
communicate with other knowledge-based systems and
conventional software systems in carrying out their
functions. Meeting these challenges on a broad scale
will require development new knowledge-sharing tech-
nology and shared conventions. The on-going e�orts
in the Knowledge Sharing E�ort represent steps in this
directions. The e�orts underway are neither complete
nor comprehensive { they represent an initial �rst steps
that will result in valuable experience and understand-
ing, will identify shortcomings in current methods and
point to new research directions, will encourage others
to focus on solving problems encountered in knowl-
edge sharing, to explore alternatives and to enhance
the state of the art.

Acknowledgments

This e�ort is supported by NSF grant IRI-9006923,
DARPA/NASA-Ames contract NCC 2-719, and a co-
operative agreement between USC/ISI and the Cor-
poration for National Research Initiative. We would
also like to acknowledge members of the Knowledge
Sharing E�ort, too numerous to name individually.

References

[1] Franz Baader, Hans-J�urgen B�urckert, Jochen
Heinsohn, Bernhard Hollunder, J�urgen M�uller,
Bernhard Nebel, Werner Nutt, and Hans-J�urgen
Pro�tlich. Terminological knowledge representa-
tion: A proposal for a terminological logic. A
DFKI note., June 1991.

[2] Franz Baader and Bernhard Hollunder. KRIS:
Knowledge Representation and
Inference System|system description. Technical
Memo TM-90-13, Deutsches Forschungszentrum
f�ur K�unstliche Intelligenz, November 1990.

[3] John A. Bateman. Upper modeling: A gen-
eral organization of knowledge for natural lan-
guage processing. Penman development note,
USC/Information Sciences Institute, 1989.

[4] A. Borgida, R. J. Brachman, D. L. McGuin-
ness, and L. A. Resnick. CLASSIC: A structural
data model for objects. In Proceedings of the
1989 ACM SIGMOD International Conference on
Management of Data, Portland, Oregon, 1989.

[5] Ronald J. Brachman and Hector J. Levesque.
The tractability of subsumption in frame-based
description languages. In Proceedings of the
Fourth National Conference on Arti�cial Intelli-
gence, pages 34{37, Austin, Texas, August 1984.
American Association for Arti�cial Intelligence.

[6] Ronald J. Brachman, Deborah L. McGuinness,
Peter F. Patel-Schneider, Lori Alperin Resnick,
and Alex Borgida. Living with CLASSIC: When
and how to use a KL-ONE-like language. In Sowa
[34], pages 401{456.

[7] Je� Conklin and M. L. Begeman. gIBIS: A hy-
pertext tool for exploratory policy discussion. In
Proceedings of the 1988 Conference on Computer
Supported Cooperative Work (CSCW-88), pages
140{152, Portland, Oregon, 1988. ACM.

[8] Susan E. Conry, Robert A. Meyer, and Victor R.
Lesser. Multistage negotiation in distributed
planning. In Alan H. Bond and Les Gasser, ed-
itors, Readings in Distributed Arti�cial Intelli-
gence, pages 367{384. Morgan Kaufman, 1988.

[9] Mark Cutkosky, Robert Engelmore, Richard
Fikes, Thomas Gruber, Micheal Genesereth,
William Mark, Jay Tenenbaum, and Jay Weber.
Pact: An experiment in integrating concurrent
engineering systems. IEEE Computer, 1992. To
appear in a special issue on computer-supported
concurrent engineering.

[10] Francesco M. Donini, Maurizio Lenzerini, Daniele
Nardi, and Werner Nutt. The complexity of con-
cept languages. In Proceedings of the Second In-
ternational Conference on Principles of Knowl-
edge Representation and Reasoning, pages 151{
162. Morgan Kaufmann, May 1991.



[11] Brian Falkenhainer and Ken Forbus. Composi-
tional modeling: Finding the right model for the
job. Arti�cial Intelligence, 51:95{143, 1991.

[12] Richard Fikes, Mark Cutkosky, Tom Gruber, and
Je�rey Van Baalen. Knowledge sharing technol-
ogy project overview. Technical Report KSL 91-
71, Stanford University, Knowledge Systems Lab-
oratory, 1991.

[13] T. Finin, R. Fritzson, and D. McKay et. al. A lan-
guage and protocol to support intelligent agent in-
teroperability. In Proceedings of the CE & CALS
Washington `92 Conference, June 1992.

[14] T. Finin, R. Fritzson, and D. McKay et. al. An
overview of KQML: A knowledge query and ma-
nipulation language. Technical report, Depart-
ment of Computer Science, University of Mary-
land Baltimore County, 1992.

[15] Michael R. Genesereth. Designworld. In Pro-
ceedings of the 1991 International Conference
on Robotiocs and Automation, pages 2785{2788,
1991.

[16] Michael R. Genesereth. Knowledge interchange
format. In James Allen, Richard Fikes, and Erik
Sandewall, editors, Proceedings of the Confer-
ence of the Principles of Knowledge Representa-
tion and Reasoning, pages 599{600.Morgan Kauf-
mann Publishers, Inc., 1991.

[17] Michael R. Genesereth, Richard E. Fikes, and
et al. Knowledge interchange format, version 3.0
reference manual. Technical Report Logic-92-1,
Computer Science Department, Stanford Univer-
sity, 1992.

[18] Thomas R. Gruber. The role of common on-
tology in achieving sharable, reusable knowledge
bases. In J. A. Allen, R. Fikes, and E. Sandewall,
editors, Principles of Knowledge Representation
and Reasoning: Proceedings of the Second Inter-
national Conference, pages 601{602, Cambridge,
MA, 1991. Morgan Kaufmann.

[19] Thomas R. Gruber. Ontolingua: A mechanism
to support portable ontologies. Technical Report
KSL 91-66, Stanford University, Knowledge Sys-
tems Laboratory, 1992. June 1992 Revision.

[20] Michael N. Huhns, David M. Bridgeland, and Na-
traj V. Arni. A DAI communication aide. Tech-
nical Report ACT-RA-317-90, Microelectronics
and Computer Technology Corporation, Micro-
electronics and Computer Technology Corpora-
tion, 3500 West Balcones Center Drive, Austin
TX 78759-6509, October 1990.

[21] Nancy Lehrer. DARPA/Rolm Laboratory Plan-
ning and Scheduling Initiative, Knowledge Repre-
sentation Speci�cation Language: KRSL Version
2.0. Language speci�cation and manual, 1992.

[22] Robert MacGregor. Loom users manual. Work-
ing Paper ISI/WP-22, USC/Information Sciences
Institute, 1990.

[23] Don McKay, Tim Finin, and Anthony O'Hare.
The intelligent database interface. In Proceedings
of the 7th National Conference on Arti�cial Intel-
ligence, August 1990.

[24] Mark A. Musen. Overcoming the limitations of
role-limiting methods. Knowledge Acquisition,
4(2):165{170, 1992.

[25] Bernhard Nebel. Terminological reasoning is
inherently intractable. Arti�cial Intelligence,
43(2):235{249, May 1990.

[26] Bernhard Nebel. Terminological cycles: Seman-
tics and computational properties. In Sowa [34].

[27] Robert Neches, Richard Fikes, Tim Finin,
Thomas Gruber, Ramesh Patil, Ted Senator, and
William R. Swartout. Enabling technology for
knowledge sharing. AI Magazine, 12(3):16{36,
1991.

[28] Mike P. Papazoglou and Timos K. Sellis. An or-
ganizational framework for cooperating intelligent
information systems. International Journal on
Intelligent and Cooperative Information Systems,
1(1), (to appear) 1992.

[29] J. Pastor, D. McKay, and T. Finin. Viewcon-
cepts: Knowledge-based access to databases. In
Proceedings of the First International Conference
on Information and Knowledgement, November
1992.

[30] Peter F. Patel-Schneider. Undecidability of
subsumption in NIKL. Arti�cial Intelligence,
39(2):263{272, June 1989.

[31] Christof Peltason, Albrecht Schmiedel, Carsten
Kindermann, and Joachim Quantz. The BACK
system revisited. KIT-Report 75, Department of
Computer Science, Technische Universit�at Berlin,
September 1989.

[32] Kirk Sayre and Michael A. Gray. Backtalk: A
generalized dynamic communication system for
DAI. Technical Report CSIS-91-004, The Ameri-
can University, Washington DC, August 1991.

[33] Sandip Sen and Edmund H. Durfee. A formal
study of distributed meeting scheduling: prelim-
inary results. In Proceedings of the ACM Con-
ference on Organizational Computing Systems,
pages 55{68, November 1991.

[34] John Sowa, editor. Principles of Semantic Net-
works: Explorations in the representation of
knowledge. Morgan-Kaufmann, San Mateo, Cali-
fornia, 1991.


