
sTuples: Semantic Tuple Spaces�

Deepali Khushraj
Nokia Research Center

5, Wayside Road
Burlington, MA 01803

deepali.khushraj@nokia.com

Ora Lassila
Nokia Research Center

5, Wayside Road
Burlington, MA 01803
ora.lassila@nokia.com

Tim Finin
University of Maryland

1000, Hilltop Circle
Baltimore, MD 21250

finin@cs.umbc.edu

Abstract

Tuple Spaces offer a coordination infrastructure for
communication between autonomous entities by provid-
ing a logically shared memory along with data persis-
tence, transactional security as well as temporal and
spatial decoupling– properties that make it desirable in dis-
tributed systems for e-commerce and pervasive computing
applications. In most Tuple Space implementations, tu-
ples are retrieved by employing type-value matching of or-
dered tuples, object-based polymorphic matching, or
XML-style pattern matching. In a heterogeneous environ-
ment, this can pose several limitations. This paper dis-
cusses the architecture and implementation of a prototype
semantic infrastructure, which uses Semantic Web tech-
nologies to represent and retrieve tuples from a Tuple
Space. Semantic Tuple Spaces (sTuples) overcomes lim-
itations of the JavaSpaces Tuple Space implementation,
by making use of a web ontology language and RACER,
a description-logic reasoning engine. The sTuples in-
frastructure extends and integrates with Vigil, a secure
framework for communication and access of intelligent ser-
vices in a pervasive environment. Specialized agents, such
as the tuple-recommender agent, task-execution agent and
publish-subscribe agent, which have a better understand-
ing of the environment, reside on the Tuple Space and
play an important role in providing user-centric reason-
ing.

1. Introduction

The original vision of Pervasive Computing (PerCom)
was formulated by Mark Weiser[28] more than a decade
ago. Since then, there have been significant developments in
wireless technology and device capabilities; however, there

� This work was partially supported by DARPA contract

are significant research challenges that are yet to be com-
pletely addressed. A few important research challenges in
such an environment include auto-configuration of entities,
context-sensitive behavior and the creation of unobtrusive
services. We believe that the Semantic Web[2] can help re-
alize these challenges by providing semantic interoperabil-
ity. Semantic interoperability here refers to a common un-
derstanding of the semantics associated with both data and
services in a pervasive environment.

To enable semantic interoperability, we need semantic
infrastructures and semantic gadgets[18] that would allow
heterogeneous entities to work together in a pervasive envi-
ronment. It is important that semantic gadgets and seman-
tic infrastructures both have built-in capabilities to process
and infer meaningful information from semantic meta data
associated with data and services. In addition to this, se-
mantic infrastructures should also cater to factors such as
network QoS, device limitations, security, transactional in-
tegrity, synchronization, context-based factors etc. The Se-
mantic Tuple Spaces (sTuples) work aims at providing one
such semantic infrastructure by extending the Tuple Space
model.

The Tuple Space model was initially conceived for par-
allel computing in David Gelernter’s Linda system[6]. In
AI parlance, a Tuple Space is similar to a blackboard sys-
tem. It can be viewed as a logically shared memory, where
producers add tuples to the space, while consumers read or
extract tuples from the space using a search template. The
look up for tuples on the space is based on content; hence it
can also be viewed as an associative memory. Although Tu-
ple Spaces were not originally designed to be used as mo-
bile middleware, they provide several features, which make
them an interesting model for the same[20]. One major
shortcoming of Tuple Space implementations that impedes
it from being a suitable infrastructure for PerCom is the way
tuples are represented and retrieved from space. In most
implementations, tuples are retrieved by employing type-
value matching of ordered tuples (e.g. Linda), object-based
polymorphic matching (e.g. JavaSpaces), or XML style pat-

Proceedings of the First Annual International Conference on Mobile and Ubiquitous Systems: Networking and Services (MobiQuitous’04)

0-7695-2208-4/04 $20.00 © 2004 IEEE

tern matching (e.g. Ruple). The shortcomings in these ap-
proaches are discussed in subsequent sections.

In this paper, we present the architecture and implemen-
tation of the sTuples infrastructure. The sTuples infrastruc-
ture overcomes limitations of the JavaSpaces Tuple Space
implementation, by using the web ontology language,
DAML+OIL[12] and RACER[9], a description-logic rea-
soning engine. The sTuples infrastructure also extends and
integrates with Vigil[16], a secure framework for commu-
nication and access of intelligent services in a pervasive
environment.

The key focus of our work is to:
Enhance Tuple Representation and Searches: Repre-

sentation is enhanced by introducing the concept of a Se-
mantic Tuple, and extending it to represent data and service-
descriptions in a pervasive environment. Tuple template
matching is enhanced by using a semantic match on top of
object-based matching.

Provide User Centric Reasoning: This is achieved by
using agents on the space that provide unobtrusive data and
services, that execute atomic or composite tasks on behalf of
the user; and that dynamically deliver/notify data or events
to the user.

Serve as a Semantic Infrastructure in PerCom: This
is achieved by integrating with Vigil, employing constructs
of the Tuple Space and by incorporating semantics in Tuple
Spaces.

The rest of the paper is organized as follows: Section 2.1
provides a discussion on Tuple Spaces, existing implemen-
tations and its attractiveness and shortcomings as a middle-
ware. Section 2.2 provides a description of the Vigil frame-
work. Section 2.3 briefly discusses the role of AI in PerCom
and the Semantic Web. Section 3 motivates the use of sTu-
ples. Section 4 presents how tuples are represented and re-
trieved in sTuples and provides an example of its use. Sec-
tion 5 presents enhancements made to the Vigil framework.
Section 6 discusses the purpose and implementation details
of specialized agents. Section 7 provides implementation
insights, points out possible future work and concludes the
paper.

In this paper, we do not take into account issues related
to scalability and security of Tuple Spaces. We also do not
touch upon issues concerning distributed Tuple Space im-
plementations. These issues have been discussed in [23] and
[10].

2. Background

2.1. Tuple Spaces

Why Tuple Spaces? The Tuple Space paradigm renders
itself as a suitable middleware because it provides proper-
ties like: data persistence, temporal & spatial decoupling,

transactional security, synchronization constructs and asso-
ciative memory lookup. Temporal decoupling is useful be-
cause entities involved in communication do not have to
exist at the same time. The persistent nature of tuples en-
ables the consumer to utilize data, regardless of the connec-
tion state of the producer. Spatial decoupling provides for
group interactions and implicit fault tolerance [24]. Tuple
spaces provide transactional integrity [22] [29], which is an
important requirement for m-commerce applications. Re-
cent implementations of Tuple Spaces allow entities to ex-
change executable code; this facilitates the creation of mo-
bile agents. There are several implementations of lookup
services like Jini’s Reggie service[27]. We believe that the
functionality of a lookup service augments rather than re-
places the functionality of a Tuple Space; thus, they should
be used together.

Existing Tuple Spaces and their Limitations: Several
implementations of Tuple Spaces exist, which essentially
differ in the degree of extensions that they provide. A tu-
ple in Linda [6] is defined as an ordered set of values (or
fields). Tuples can contain actual fields (the value itself)
and formal fields (a wild card). In order to match a tuple
in Linda, the template and tuple should have the same arity
and ordering of fields. The actual matching is done by com-
paring field values (actuals or formals) and field types of
the template and candidate tuples. TSpaces, JavaSpaces and
GigaSpaces are all object-oriented Tuple Spaces. In JavaS-
paces and GigaSpaces tuples have data as well as executable
code, and tuples, in addition to the fields, are typed. The
tuples are stored as serialized objects on the space to al-
low exchange of executable code. These systems support
polymorphic type matching, where the returned result could
be a subtype of the tuple template. The supported opera-
tions include read, write, take and notify. Features such as
transactional security and support for multiple spaces are
also provided[22]. IBM’s TSpaces system is a combina-
tion of Tuple Space and relational database features. It sup-
ports simple types and objects as fields in a tuple as op-
posed to using only serialized objects[29]. Ruple and other
XML Space implementations use a document-centric ap-
proach where XML documents are stored on the space and
retrieved using XML query syntax (XQL)[26]. Lime ex-
tends the Linda model to support mobility in both wired and
ad hoc networks[25]. MARS introduces reactivity in Tuple
Spaces for mobile agent coordination [3].

In all these implementations, we see a general transition
from type-value matching to OO based polymorphic type
matching to XML type querying. There are shortcomings
in all of these approaches. One, it provides only syntactic
interoperability– XML representations can cater to syntac-
tic interoperability; however, they cannot cater to seman-
tic interoperability because the same XML tag can be inter-
preted differently across systems E.g. A field tag could re-

Proceedings of the First Annual International Conference on Mobile and Ubiquitous Systems: Networking and Services (MobiQuitous’04)

0-7695-2208-4/04 $20.00 © 2004 IEEE

fer to magnetic field or a branch of knowledge. Two, exist-
ing implementations do not have representations that are ex-
pressive enough and that can be reasoned by machines. E.g.
a radio service cannot advertise itself as service that does
not play music that belongs to genre hard rock. Three, in-
exact matching– the read and take operations in existing
implementations do not account for subsumption based or
partial matches. E.g. a query for a monochrome printer on
the space will not consider a color printer as a valid match.
Four, need for common ontology– a common ontology to
refer to common terms is required; however, object-based
interfaces and other data-structures cannot be adapted as a
standard to share ontologies, as they do not meet basic re-
quirements of an ontology language[11].

2.2. Vigil

In sTuples, we integrate Tuple Spaces with the Vigil[16]
framework to create clients and services. Vigil realizes the
Smart Home scenario, in which mobile users can access de-
vices like printers, lights etc. over low-bandwidth or short-
range wireless networks. In our system, Vigil acts as a com-
munication gateway by abstracting and translating commu-
nication protocols such as infrared and Bluetooth[5]. The
core component of Vigil is the Service Manager(SM) com-
ponent, which acts as a mediator between services and users
in a particular Smart Home. In our implementation, the SM
integrates with sTuples. SMs are arranged in a hierarchy,
and form the core of the Vigil system. The SM provides the
user with a list of available services and also acts as a bro-
ker to subscribe, unsubscribe or forward commands from
users to the services. The main idea behind the hierarchi-
cal configuration of SMs is the relegation of services on
the basis of domains such as buildings, floors, and partic-
ular rooms [14]. To share services across SMs, messages
are routed to foreign SMs by following the tree hierarchy.
Vigil also provides distributed trust, access control and au-
thentication. Hardware and software services are not distin-
guished so that a mobile user can access them in the same
way. The information flow in the system takes place us-
ing Centaurus Capability Markup Language (CCML)[15],
an XML-based language for data exchange.

2.3. AI and Semantic Web

There are several aspects of AI that help enable seman-
tic interoperability as mentioned in [17]. Aspects of AI that
help achieve this include: knowledge representation and
reasoning through the Semantic Web, automated planning
to enable service composition, machine learning to boot-
strap existing knowledge on the web and the use of soft-
ware agents that act on behalf of the user and exhibit reac-
tivity, pro-activity, autonomy and sociability[13] .

The vision of the Semantic Web[2] expands on the vi-
sion of the WWW by associating accessible formal seman-
tics with content and services. An important characteristic
of the Semantic Web is that it can address “anything”, any
object – virtual or physical – that has a URI. This allows us
to overlay the Semantic Web on a Pervasive Computing en-
vironment, making it possible to represent and interlink de-
vices, their capabilities, and the functionality they offer.

Motivated by the need to automate functions on the Web,
the introduction of semantics offers greater interoperabil-
ity of information systems: via the use of shared ontolo-
gies, semantics enable automated software (such as au-
tonomous agents) to reason about content and services,
and produce intelligent responses even to unforeseen sit-
uations. Ontologies (“specifications of conceptualization”
[7]) are expressed using languages such as RDF [19] or its
more expressive Description Logic (DL) -based extension
DAML+OIL [12]. sTuples currently uses the DAML+OIL
ontology language1.

In DL parlance, the term TBox refers to terminologi-
cal axioms used to define concepts in a domain and ABox
refers to assertional axioms about individuals. RACER im-
plements an optimized tableau calculi algorithm for DL to
enable reasoning over multiple TBoxes and ABoxes. The
use of a DL reasoner – in our case RACER [9] – offers at-
tractive computational characteristics over other forms of
logic and over other types of reasoners.

3. Motivation

Consider the scenario where a user is attending a confer-
ence.
Data Tuple: A registered user at a conference should be
able to accesses data tuples on the space that has informa-
tion about the proceedings and schedule for the conference.
By making use of semantics attached to the data tuple, the
user’s personal agent can then synchronize the conference
schedule with his trip’s schedule and research interests to
help create a personalized conference agenda.
Synchronous Access: The speaker should be able to write
a data tuple that contains his PowerPoint presentation on
the space, and other registered users should be able to ac-
cess the presentation. Users should also be able to add an-
notations to slides, to share their opinion about the presen-
tation with others. The synchronization constructs of the
space help multiple users access the tuple.
Access Rights and Service Tuple: By using access rights
provided by Vigil a registered user gets rights to access
data and services in the conference space based on his reg-
istration type. For example, the user can enroll for aca-
demic, student or industrial track registration. Access rights

1 Eventually we plan to migrate to OWL [21]

Proceedings of the First Annual International Conference on Mobile and Ubiquitous Systems: Networking and Services (MobiQuitous’04)

0-7695-2208-4/04 $20.00 © 2004 IEEE

are also governed by the user’s role in the conference. For
example, invited speakers and authors of accepted papers
should be able to get a handle to service tuples on the space
that would allow them to control the projected presentation
or dim lights or control the speaker volume in the room.
Subscription to Tuples: Conference volunteers can access
the room reservation service to reschedule or handle last
minute changes to the schedule. If the conference schedule
changes, then a user who has subscribed to the conference
schedule tuple through the publish-subscribe agent should
be notified of changes.
Semantic Search: Registered users should also be able to
browse for presentations, or schedule of events on the Tu-
ple Space based on the research track that is of interest to
them. For, example a user should be able to search for all
talks on the space that are related to the work on both Se-
mantic Web and pervasive computing within universities in
the US.
Task-Execution: Users should have the ability to schedule
an atomic task or a set of associated tasks that access data
and service tuples in the conference room E.g. by using the
task-execution agent a speaker can get a control of the Pow-
erPoint service and have the lights switched off when it is
time for him to present the talk
Unobtrusive behavior: Users should only be presented
with tuples that are of interest to them. E.g. advertisement
tuples that represent hotel discounts should not be presented
by the recommender-agent to a user who lives locally.

In order to implement such a scenario we need an in-
telligent middleware infrastructure that has built-in seman-
tic capabilities. Tuples in such a space should be expressive
enough, and should support both syntactic and semantic in-
teroperability.

4. sTuples: Representation and Retrieval

The sTuples system extends Outrigger[22], Sun’s imple-
mentation of the JavaSpaces service specification, to sup-
port intelligent matching of tuples.

A Semantic Tuple in sTuples extends JavaSpace’s object-
based tuple and acts a role marker in the system. For an
object tuple to become a valid semantic tuple, it must con-
tain an object field of type DAML+OIL Individual. This ob-
ject field contains assertional axioms(ABox) about the ser-
vice instance or data instance that is being shared. Alterna-
tively, the object field can provide a URL from where asser-
tional axioms about the shared data or service can be loaded.
From an implementation point of view, a generic Semantic-
Tuple interface that extends the JavaSpace’s Entry[22] in-
terface is introduced. System designers can choose to ex-
tend/implement this interface to create application specific
tuples.

The Semantic Tuple Manager and the Semantic Tuple
Matcher are two primary components that are incorporated
into Outrigger. There are two extensions to the Semantic
Tuple: Service Tuple and Data Tuple. A service tuple is used
to advertise a service, whereas a data tuple is used to share
data/information provided by a service/agent. Each of these
tuple types have specific object fields, which are discussed
in the following section. Figure 1 gives an overview of the
components on the space and the interaction between enti-
ties.

Figure 1. Semantic Space with Specialized
Agents

Semantic Tuple Manager: This component manages the
addition, removal and state changes of tuples. Every time
a write operation is performed all ABoxes associated with
the tuple are asserted into the knowledge base. There are
two modes of operation: one in which the axioms associ-
ated with newly encountered resources and imports are as-
serted into the knowledge base, and the other in which only
the specified axioms are asserted. Before new facts and rules
are committed into the knowledge base, the tuples are vali-
dated and also a check on the consistency of the knowledge
base is performed. If an inconsistency (using Racer macros
abox-consistent? and tbox-coherent?) is detected by the rea-
soner, the description is retracted from the knowledge base
and the write operation fails. Every time a remove operation
is performed the facts are removed from the Tuple Space.

Semantic Tuple Matcher: This component implements
the algorithm for matching templates and interfaces with
Racer to draw additional inferences, which is achieved by
classifying the TBox [9] and realizing the ABox. A tuple
can be retrieved from space by performing a read or take
operation. In order to invoke these operations, a semantic
template that best matches the consumer’s requirements is
passed as an input. A semantic tuple template is a special

Proceedings of the First Annual International Conference on Mobile and Ubiquitous Systems: Networking and Services (MobiQuitous’04)

0-7695-2208-4/04 $20.00 © 2004 IEEE

case of a semantic tuple where assertional axioms are based
on terminological axioms provided by the TupleTemplate
ontology. A snapshot of the template ontology is given in
figure 2.

Figure 2. Semantic Tuple Template Ontology

The TupleTemplate class has several properties. The has-
Field property links a TupleTemplate with a TupleField. The
TupleField class is an abstract class with two subclasses:
DesiredField and UndesiredField, where both classes are
disjoint. The TupleField class has two properties fieldType
and fieldValue. The range of the fieldType property is a
Property– this property makes it similar to the property
daml:onProperty used to express restrictions on properties
using daml:Restriction. The fieldValue property can point to
any Resource. It also has a property called priorityNumber,
which indicates how important a particular field is with re-
spect to other fields. The tuple template has the hasDegree-
OfMatch property, using which the user can specify the type
of matches that are acceptable, which could be one of Ex-
actMatch, PluggedInMatch or SubsumptionMatch. The tu-
ple template’s hasTupleCategory property refers to the pos-
sible classes that the tuple can be an individual of. The has-
FieldGroup property is used to map a tuple template to a
FieldGroup, which essentially is a collection of TupleFields
with a requiredCardinality restriction.

Template matching is done by posing several queries to
the reasoning engine. The matching algorithm works as fol-
lows: The matcher first validates the incoming tuple tem-
plate instance.It then searches for candidate tuples. A se-
mantic tuple becomes a candidate result, only if the has-
TupleCategory field is satisfied. The TBox is classified and
the Abox is realized, before the reasoner gets queried– this
is done so that all hidden classes that an individual belongs
to become visible. It then iterates over every TupleField in
the tuple template to select matches from the list of candi-
date semantic tuples. Since the fieldValue’s range is any re-

source, it could be of type instance, class or qualified value.
Based on the type of the fieldValue property, and the ac-
ceptable degree of match, different cases are handled. The
property name that the fieldType refers to, is used as an ar-
gument for queries about related-individuals and also to re-
trieve individual-role-fillers [8].

The following steps are performed for every TupleField
of the tuple template:

1. The first step is to find an exact match, which occurs
when a tuple and a template are equivalent. In our pro-
totype, a template is considered equivalent to a tuple
if all the TupleField properties (including the Desired-
Field and UndesiredField properties) specified by the
template “exactly match” the description of a tuple.

2. Subsumption Matches– if there are no exact matches
and if the preferred degree of match indicates sub-
sumption as valid then queries are posed to find sub-
sumption based relations.

3. Plugged-In Matches– if there are no exact matches and
if the preferred degree of match indicates plugged-in
as valid, queries are posed to extract plugged-in tuples.

4. If none of the above worked then the match has failed
and no tuple is returned.

At each step a weight is assigned to every tuple that gets
selected, based on its degree of match. The weights given
for each of these matches is configurable. If an undesired
field is present in the tuple, then there is a clash of inter-
est due to which the tuple is assigned a negative weight. For
FieldGroups the procedure remains the same except that the
required cardinality should be satisfied in the group. After
processing all the TupleFields in the template, the tuple with
the highest weight gets selected.

Due to ontology modeling errors, the knowledge base
can become inconsistent. The evaluation functions in
RACER are used to detect such errors. The ABox query-
ing mechanism enables us to detect the consistency of an
ABox in context of a TBox. Other ABox and TBox re-
trieval queries are used to derive most specific instantiators
of an individual, to query for related individuals, to deter-
mine concept/role descendants and ancestors, to ascertain
equivalent concepts etc.

There are two inference modes that Racer supports to
classify and realize the knowledge base. In the eager mode
answering queries requires only a knowledge base lookup.
The lazy mode avoids computations that are unrelated to a
query. When a write operation is performed on the space,
only a knowledge base coherency check is required. Since
this can be done even when the knowledge base is not classi-
fied, we operate the reasoner in lazy mode. However, based
on the system load, the knowledge base is classified at regu-
lar intervals– this is done to reduce the time required to per-
form operations such as read and take.

Proceedings of the First Annual International Conference on Mobile and Ubiquitous Systems: Networking and Services (MobiQuitous’04)

0-7695-2208-4/04 $20.00 © 2004 IEEE

A simplified view of the modifications made to the Out-
rigger matching scheme is discussed below. All operations
on the space use the Entry class to either store objects on the
space or, as a template, to search for objects from the space.
The EntryRep class, which represents the Entry object that
gets marshalled from the client to the space, was modified
to keep track of indexes corresponding to fields that con-
tain semantic information. The space maintains a TypeTree
object that keeps track of all the entry types and subtypes
that the space has encountered thus far. It also maintains an
EntryHolderSet for every entry type in the TypeTree. In the
object-based match, an entry holder set is first selected from
the tree based on type of the incoming template. A hash
code is then computed for every entry in the holder set, and
if the hash value of the template and the entry matches then
the match is considered valid. The new matching scheme
works as follows: If the template does not have any semantic
content then we can do the regular object-based match, else
we go further and try to find a semantic match for the tem-
plate. Based on the EntryRep index the DAML content is
extracted and the data is sent to the Semantic Tuple Matcher
component. If there are any matches, then the Semantic Tu-
ple Matcher returns a vector of all tuples that match the
template description. The tuples in the vector are ordered
in descending degree of match. After the semantic matches
are retrieved, an object-based match is performed on the se-
lected tuples to ensure that a tuple where both the semantic
match and object-based match succeed gets selected. The
first tuple in the vector that passes the object-based match
gets selected and is passed back to the client.

4.1. An Example

To advertise service tuples on the space we created sev-
eral service ontologies like Light Service, Printer Service,
Room Reservation Service, Music Service etc. All our ser-
vice related ontologies are sub-classed from the TupleSer-
vice class.

A snapshot of the Light Service instance in the LAIT Lab
at UMBC is shown in Figure 3. The LAIT Lab Light Ser-
vice is an instance of a LightService that provides light from
a source that is located on a table, which is used for read-
ing and whose energy source in electric. The light service
also happens to be a secondary light source in the room.

Alice enters the room and wants to get control of a light
service so that she can read a book in the room. She searches
for tuples on the space using the template as shown in Fig-
ure 4:

The template indicates that she is looking for an electric
reading light that is located on a table or on the floor. It also
indicates that the user wants control of only a non-primary
light source in the room.

Figure 3. Light Service Instance

sTuples searches for all tuples on the space that can pro-
vide the best match for Alice’s query. Using the classifica-
tion support provided by the reasoner, the space figures out
that LAITLabLightService provides a light source that be-
longs to the class FluorescentReadingLight. From, the ser-
vice ontology it also figures out that a FluorescentReading-
Light had energy source Electric and therefore it also be-
longs to the class ElectricReadingLight. Since the LAITLab-
LightService’s location, category and control type all match
with the template the service tuple gets selected as a valid
match.

5. sTuples with Vigil

The Semantic Tuple Space can be viewed as an ex-
tension layer to the Service Manager(SM) component in
the original Vigil framework discussed in Section 2.2. The
Service Manager still acts as a mediator between the ser-
vices and mobile users; however, it now uses constructs of
the Tuple Space to incorporate features such as data per-
sistence, leasing, transactional integrity, spatial decoupling
etc. The persistent nature of tuples on the space, allows the
data and its state to be preserved even when the system
goes down. The leasing mechanism on the space is used
to handle unwanted and outdated tuples. Transactional in-
tegrity is preserved by using constructs of the Tuple Space
(this feature is not used by current implementations of Vigil
Clients/Services). Producers and Consumers of data tuples
do not have to be present in the vicinity at the same time
to share information– this kind of spatial decoupling is very
useful in a pervasive environment where network QoS can
keep changing and where the communicating entities are
constantly moving in and out of a given space.

The following enhancements were made to the Vigil
framework:

1. Service Registration: A Vigil service can now adver-
tise itself by registering a service tuple with the SM.
A service tuple instance contains the service id, the
DAML+OIL instance describing the service, a free-
text message describing service functionality, a service

Proceedings of the First Annual International Conference on Mobile and Ubiquitous Systems: Networking and Services (MobiQuitous’04)

0-7695-2208-4/04 $20.00 © 2004 IEEE

Figure 4. Light Service Search Template

icon, a limit on the number of sharable instances of
the service, an associated lease and an indication of
whether the service is location dependent or not. The
CCML service registration message is extended to in-
clude content of the service tuple. Upon receiving a
registration request, the SM registers a service tuple on
the space by forwarding the CCML message to the Tu-
ple Manager component.

2. Object Registration: The CCML object registration
message is introduced to publish data tuples on the
space. An object tuple contains a unique id to identify
the producer of the tuple, a DAML+OIL instance of

the sharable data and a list of users who are subscribed
to this object. The subscribed user’s list is required to
handle user movement across multiple spaces.

3. Leasing: The leasing mechanism on the space is used
to maintain semantic tuples on the space. A timer
thread is associated with Vigil’s Service Client to re-
new objects and service registrations that have expired.

4. CCML Translator: The CCML translator utility mod-
ule creates semantic tuples from CCML messages
for service and object registration. The special-
ized agents make use of this module to understand
incoming CCML messages for interest registra-
tion, object subscription, task execution etc.

5. Specialized Agents: Communication between the spe-
cialized agents and the service clients take place
through the SM in the current implementation. New
CCML message types such as Interests Registra-
tion Request/Response/Update, Published Object Sub-
scription Request/Response and Task Execution Re-
quest/Response etc. are introduced in the system. The
CCML Parser is updated to understand these new mes-
sages.

6. Inter-space Communication: The service managers in
the Vigil system are arranged in a tree-like hierarchy.
Every Service Manager uses its own Semantic Tuple
Space and specialized agents. The specialized agents
allow clients and services to do read operations on data
and services across spaces and to do a take operation
across spaces, when appropriate delegation and access
rights are available.

6. sTuples: Specialized Agents

Specialized agents reside on the Semantic Tuple Space
to off-load the user and to incorporate user semantics in de-
livering data and services to the user. Our prototype im-
plements three specialized agents as shown in figure 1.
These agents make use of service tuples and data tu-
ples. Several concepts from ontologies like DAML Time
(http://www.kestrel.edu/DAML/2000/12/TIME.daml) and
Cyc (http://opencyc.sourceforge.net/daml/cyc.daml) were
used to create ontologies in sTuples. For the sake of con-
ciseness, the ontology modeling details are excluded.

Tuple Recommender Agent: In the original Vigil
framework, the client’s service list was created based on ac-
cess rights only; however, in a pervasive environment since
there can be a plethora of data and service tuples, cus-
tomized recommendations is important. This agent pushes
unwanted data and services into the periphery of user’s at-
tention and presents only services or data tuples that are of
interest to the user.

Proceedings of the First Annual International Conference on Mobile and Ubiquitous Systems: Networking and Services (MobiQuitous’04)

0-7695-2208-4/04 $20.00 © 2004 IEEE

There are several aspects of context: location, temporal
information, user preferences, environmental factors (like
light, temperature etc.), proximity of resources, resource
availability, schedules etc.[4]. Our interest registration on-
tology takes into account only factors related to temporal
information(like time and date), user preferences and loca-
tion.

The client registers interests with the recommender
agent by sending a CCML message of the type Interests-
Registration-Request to the Service Manager. The Service
Manager forwards this request to the recommender gent af-
ter verifying the validity of the CCML message using
the digital signature attached to the message. Upon re-
ceiving the request, the recommender agent checks to see
if the message is from a valid Service Manager, other-
wise it drops the request. The client expresses his prefer-
ences in the message using a pre-defined ontology. This
ontology captures the user’s preferences (specified us-
ing the tuple template ontology) along with time and lo-
cation factors. The incoming DAML+OIL instance is
parsed using the Jena API to extract individual inter-
est descriptions from the incoming DAML+OIL instance.
An entry is created for every individual interest descrip-
tion; each entry contains: the client id, the DAML data
describing the kind of service, or object that it is in-
terested in, location preference, time preference and an
expiration time associated with the interest registration re-
quest. All entries are added to the interested-entries table
and are indexed using a unique id. Two lists are main-
tained: the active-entries-list and the passive-entries-list.
Entries are moved from the passive list to the active list
by checking the time preference of every entry in the pas-
sive list regularly. A non-blocking readIfExists operation is
performed on every entry in the active list where the time-
out is set to NO WAIT. If the read operation does not
return back any tuple from the space, then a notify is reg-
istered with the space, with the lease time set accord-
ing to the time out of the interest registration request.
When a matching tuple is acquired from space, a ser-
vice description of the service tuple or an instance of
object tuple is sent back to the client that initiated the re-
quest. To avoid too many Interests-Registration-Response
messages from being sent back to the client the re-
sults are buffered for a short time span, after which a single
Interests-Registration-Response message is sent.

The user can specify his time preference as: all-the-time,
morning, noon, night etc. Or, he could specify a time range
using day, month, year, hour, minute etc. The location pref-
erence can be specified to access services that do not belong
to the same Service Manager. The Service Managers cre-
ate an instance of the location class of the space ontology
to specify where they are. A mapping of the location name
to the Vigil handle is specified using this instance. Using

this mechanism clients can register for all services or ob-
jects that are available on a particular floor, building etc. A
few of the services or objects might not be accessible to the
client; however, the client can request for permissions to ac-
cess them.

Task-Execution Agent: The key idea of this agent is to
off-load certain well-defined tasks that the user performs by
acting as a proxy on behalf of the user. The client regis-
ters tasks with the task-execution agent the same way it reg-
isters tasks with the recommender agent. The CCML mes-
sage type for task registration is Task-Execution-Request.
The ontology used to express tasks includes two types of
tasks: simple and composite. Every simple task specifies
the time at which the task should get executed. The tuple
template associated with a task is used to search for tuples
on the space. The agent performs a read operation on the
space to acquire a desirable tuple associated with the task.
If the desired tuple is a service tuple, then the agent tries
to subscribe to the task by sending a CCML message of
type Subscription-Request to the Vigil service. If the sub-
scription fails due to lack of access right and delegation,
then the agent does another read operation on the space to
look for alternate service tuples. If a match takes place, then
a subscription request is sent out to the new service. If the
Subscription-Response is a success, then the CCML Service
Parameters[16] from the response are stored in a parameter-
list. In Vigil, commands (like switching the light ON or
OFF) are executed by modifying the value associated with
parameters in the list and sending the updated parameter-list
back to the service. The task ontology allows the specifica-
tion of these commands. It also provides a wait time asso-
ciated with every command in the task. The agent can exe-
cute the next command of the task only after the wait time
for the last command has expired. After a command is exe-
cuted an update is received from the service which contains
a new CCML Service Parameter list. The task ontology also
allows the specification of output parameters. The values as-
sociated with output parameters from the parameter-list are
sent back to the user or might serve as an input for other
tasks.
Example Scenario: A user might register a task with the ex-
ecution agent to turn off the music service 5 minutes after
all people in the room have left.

The client specifies the task by creating an instance of
a SimpleTask or CompositeTask class. A composite task is
composed of several atomic tasks. The ontology supports
control constructs to execute Sequential, Concurrent and
Unordered tasks. Sequence allows a sequence of atomic
tasks to be performed one after the other; Concurrent al-
lows the parallel execution of multiple atomic tasks; and
Unordered allows the atomic tasks to be executed in some
unspecified order. The user can also specify the start time
and stop time of atomic task for tasks that do not require

Proceedings of the First Annual International Conference on Mobile and Ubiquitous Systems: Networking and Services (MobiQuitous’04)

0-7695-2208-4/04 $20.00 © 2004 IEEE

immediate execution.
Publish-Subscribe Agent: This agent dynamically de-

livers data to subscribed users. A service/agent can pub-
lish data or events that are meant to be shared by multi-
ple users by writing a data tuple on the semantic space. The
subscription request to this agent is routed the same way
as it is done for the other agents. The CCML message type
for the request is Published Object Subscription. The de-
scription of the subscription object is provided by using the
tuple template ontology. Upon receiving a subscription re-
quest from the user, the agent searches the space for pub-
lished data tuples that best matches the user’s subscription
request. If such a data tuple exists, it does a take operation
on the tuple, updates its list of subscribed users, and writes
the updated tuple back to space. The actual data associated
with the selected object tuple is sent back to the client us-
ing the response message. This agent registers a notify op-
eration for every subscription request to get notified of new
objects or changes to objects that might occur on the space.
Example Scenario: As mentioned in the motivating scenario
section, users can subscribe to the conference schedule tu-
ple. If the schedule changes then the subscribed users get
notified of this change. Users could also subscribe to spe-
cialized advertisements on the conference space that offer
discounts or special deals. For example, registered users in
a conference might be entitled to special discounts in shops
located close to the venue of the conference. As part of fu-
ture work, we want to support subscription requests that
contain rules, based on which the user gets notified.

7. Conclusions

In order to verify the semantic matching that sTuples per-
forms; ontologies were created for the printer service, mu-
sic service, light service and room-recommender service. A
vCard ontology was created to create data tuples. Several
instantiations of these services and data tuples were writ-
ten on the space and different types of tuple templates were
created to see what service instances get picked up by sTu-
ples. The reaping interval to eliminate unused entries on the
space was set to about 3 minutes. The matching algorithm
on sTuples, increased the time required to retrieve a tuple to
a couple of seconds under low-load conditions (where there
are about 2 to 3 candidate service instance matches). Under
high-load conditions (where there are about 12 to 15 candi-
date service instance matches) the retrieval time increased
to approximately 3 seconds. As part of future work several
optimizations can be performed on the Tuple Space, to en-
able a faster retrieval of tuples. Further empirical evaluation
is beyond the scope of this paper.

As part of current work, the recommender agent is under-
going enhancements to do semantic association rule learn-
ing. The recommender agent should be able to recommend

tuples based on the access patterns of users on a particular
space. Consider the scenario where a user wants to access
the postal address of the current location from the space. It
is likely that he will next try to look for a map quest agent
that gives directions from the current location to the clos-
est airport(or some other destination). It is also likely that
he will next try to get a handle to the closest printer service
on the space to print out directions. There are several such
usage patterns of data and services in a space based on the
context of deployment. Such patterns can be mined by mak-
ing use of an association-based rule learning algorithm such
as the Apriori algorithm[1]. The semantic knowledge about
data and services can be used to deduce more that what a
traditional association rule mining algorithm can achieve.
For example, the recommender agent might mine an associ-
ation rule, which indicates that every time a map quest ser-
vice tuple is used a laser printer service tuple is also used.
By looking at the description of the tuples it can infer that
a laser printer is a type of printer; hence when a map quest
service tuple is used there is a good chance that any printer
service tuple is used(not just laser printers).

In the future, semantic descriptions can be introduced
to express the functionality of methods/behaviors in addi-
tion to data in a tuple. This will enable heterogeneous mo-
bile agents to use sTuples. sTuples should also migrate from
DAML+OIL to OWL. Most constructs outside the scope of
OWL DL such as qualified cardinality restrictions were not
used while developing our ontologies. However, in some
ontologies the type separation between Classes and Indi-
viduals was not always maintained. With minor modifica-
tions to our ontologies we should be able to migrate from
DAML+OIL to OWL DL. Currently the Centaurus Client
is made available to the user through a fairly primitive
graphical interface. The user specifies preferences, regis-
ters tasks and subscribes to data services using this inter-
face. In the future we would like to integrate the Centau-
rus Client/Service with the user’s Personal Agent to better
understand preferences and usage patterns. Also, the task-
execution agent in our system does not currently use a plan-
ner to execute composite tasks. In the future, we would like
to recommend composable tasks. In addition to the secu-
rity provided by JavaSpaces and Vigil additional security
can be enforced on tuples by using the policy ontologies.

In this paper, we have presented a Tuple Space based Se-
mantic Infrastructure that overcomes shortcomings of ex-
isting Tuple Space implementations by introducing seman-
tic matching of tuples on top of object based polymorphic
matching. The sTuples system provides a generic frame-
work to implement clients and services in a pervasive envi-
ronment by introducing semantic tuples and its extensions,
service tuple and data tuple. sTuples integrates with Vigil,
which serves as a communication gateway and provides dis-
tributed trust and access control. Specialized agents cater to

Proceedings of the First Annual International Conference on Mobile and Ubiquitous Systems: Networking and Services (MobiQuitous’04)

0-7695-2208-4/04 $20.00 © 2004 IEEE

unobtrusive behavior of data and services, task execution
and subscription to data tuples. The use of semantics enable
clients and services developed by heterogeneous systems
to work together by making use of shared ontologies and
generic tools to process web ontologies. sTuples uses Racer,
a sound and complete description-logic reasoner to detect
inconsistencies and inferred subsumptions. The OWA(Open
World Assumption) that Racer makes is a desirable fea-
ture since, in a pervasive environment, information can be
incomplete. The Tuple Space’s notify operation is imple-
mented by making use of Racer’s publish-subscribe mecha-
nism. The Semantic Tuple Spaces system helped us validate
our ideas, and makes us believe that entering the Semantic
Web can help realize the original vision of Pervasive Com-
puting by providing Semantic Interoperability.

References

[1] R. Agrawal and R. Srikant. Fast Algorithms for Mining As-
sociation Rules. In J. B. Bocca, M. Jarke, and C. Zaniolo, ed-
itors, Proc. 20th Int. Conf. Very Large Data Bases, (VLDB),
pages 487–499. Morgan Kaufmann, 12–15 1994.

[2] T. Berners-Lee, J. Hendler, and O. Lassila. The Semantic
Web. Scientific American, 284(5):34–43, May 2001.

[3] G. Cabri, L. Leonardi, and F. Zambonelli. MARS: A
programmable coordination architecture for mobile agents.
IEEE Internet Computing, 4(4):26–35, 2000.

[4] G. Chen and D. Kotz. A Survey of Context-Aware Mobile
Computing Research. Technical report, Dept. of Computer
Science, Dartmouth College, 2000.

[5] T. Finin, A. Joshi, L. Kagal, O. Ratsimore, V. Korolev, and
H. Chen. Information Agents for Mobile and Embedded De-
vices. Lecture Notes in Computer Science, 2182:264–286,
2001.

[6] D. Gelernter. Generative Communication in Linda. ACM
Transactions on Programming Languages and Systems,
7(1):80–112, 1985.

[7] T. R. Gruber. A Translation Approach to Portable Ontology
Specifications. Knowledge Aquisition, 5(2):199–220, 1993.

[8] V. Haarslev and R. Moller. RACER User’s Guide and Refer-
ence Manual.

[9] V. Haarslev and R. Möller. RACER System Description.
Lecture Notes in Computer Science, 2083:701ff, 2001.

[10] R. Handorean and G.-C. Roman. Secure Sharing of Tuple
Spaces in Ad Hoc Settings. Technical report, Washington
University in St. Louis, 2003.

[11] J. Heflin, R. Volz, and J. Dale. Requirements for a Web On-
tology language. Technical report, 2002.

[12] J. Hendler and D. L. McGuinness. The DARPA Agent
Markup Language. IEEE Intelligent Systems, 2000.

[13] N. R. Jennings and M. J. Wooldridge. Software Agents. IEE
Review, pages 17–20, 1996.

[14] L. Kagal and J. U. et al. Vigil: Providing Trust for Enhanced
Security in Pervasive Systems. Technical report, University
of Maryland, Baltimore County, 2002.

[15] L. Kagal, V. Korolev, S. Avancha, A. Joshi, T. Finin, and
Y. Yesha. Centaurus: An Infrastructure for Service Manage-
ment in Ubiquitous Computing Environments. Wireless Net-
works, 8(6):619–635, 2002.

[16] L. Kagal, J. Undercoffer, A. Joshi, and T. Finin. Vigil: En-
forcing Security in Ubiquitous Environments. In Grace Hop-
per Celebration of Women in Computing 2002, 2002.

[17] O. Lassila. Serendipitous interoperability. In Eero Hyvönen,
editor, The Semantic Web Kick-off in Finland – Vision,
Technologies, Research, and Applications, HIIT Publications
2002-001. University of Helsinki, 2002.

[18] O. Lassila and M. Adler. Semantic Gadgets: Ubiqui-
tous Computing Meets the Semantic Web. In D. Fensel,
J. Hendler, W. Wahlster, and H. Lieberman, editors, Spin-
ning the Semantic Web, pages 363–376. MIT Press, 2003.

[19] O. Lassila and R. R. Swick. Resource Description Frame-
work (RDF) Model and Syntax Specification. W3C Recom-
mendation, World Wide Web Consortium, February 1999.

[20] C. Mascolo, L. Capra, and W. Emmerich. Middleware for
Mobile Computing. In NETWORKING Tutorials, pages 20–
58. Springer, 2002.

[21] D. L. McGuinness and F. van Harmelen. OWL Web Ontol-
ogy Language Overview. W3C Working Draft, World Wide
Web Consortium, March 2003.

[22] S. Microsystems. JavaSpace Specification, 1998. Sun
Microsystems. JavaSpace Specification, March 1998.
http://java.sun.com/products/jini/specs.

[23] P. Obreiter and G. Graef. Towards Scalability in Tuple
Spaces. In Symposium of Applied Computing (SAC) Spe-
cial Track on Coordination Models, Languages and Appli-
cations, pages 344–350. ACM, 2002.

[24] S. Paul. An Investigation into the use of the Tuple Space
Paradigm in Mobile Computing Environments. Master’s the-
sis, Lancaster University, 1999.

[25] G. P. Picco, A. L. Murphy, and G.-C. Roman. LIME: Linda
Meets Mobility. In International Conference on Software
Engineering, pages 368–377, 1999.

[26] P. Thompson. Ruple: an XML Space Implementation. In In
XML 2002 Conference and Exposition, 2002.

[27] Waldo. Jini architecture overview. Technical report, SUN-
LABS, July 1998.

[28] M. Weiser. The Computer for the 21st Century. Scientific
American, 265(3):66–75, 1991.

[29] P. Wyckoff, S. McLaughry, T. Lehman, and D. Ford. T
spaces. IBM Systems Journal, 37(3):454–474, 1988.

Proceedings of the First Annual International Conference on Mobile and Ubiquitous Systems: Networking and Services (MobiQuitous’04)

0-7695-2208-4/04 $20.00 © 2004 IEEE

	footer1:

