

Ever since the mid-
seventies, researchers
have recognized that
capturing knowledge
is the key to building
large and powerful Al
systems. In the years
since, we have also
found that represent-
ing knowledge is
difficult and time
consuming. Although
we have developed
tools to help with
knowledge acquisi-
tion, knowledge base
construction remains
one of the major
costs in building an
Al system: For almost
every system we build,
a new knowledge base

Building new knowledge-based systems today
usually entails constructing new knowledge
bases from scratch. It could instead be done by
assembling reusable components. System devel-
opers would then only need to worry about cre-
ating the specialized knowledge and reasoners
new to the specific task of their system. This
new system would interoperate with existing
systems, using them to perform some of its rea-
soning. In this way, declarative knowledge, prob-
lem-solving techniques, and reasoning services
could all be shared among systems. This
approach would facilitate building bigger and
better systems cheaply. The infrastructure to
support such sharing and reuse would lead to
greater ubiquity of these systems, potentially
transforming the knowledge industry. This article
presents a vision of the future in which knowl-
edge-based system development and operation is
facilitated by infrastructure and technology for
knowledge sharing. It describes an initiative
currently under way to develop these ideas and
suggests steps that must be taken in the future
to try to realize this vision.

Sharing and
Reuse

There are many
senses in which the
work that went into
creating a knowl-
edge-based system
can be shared and
reused. Rather than
mandating one par-
ticular sense, the
model described in
this article seeks to
support several of
them. One mode of
reuse is through the
exchange of tech-
niques. That is, the
content of some
module from the
library is not direct-

must be constructed

ly used, but the

from scratch. As a
result, most systems
remain small to medium in size. Even if we
build several systems within a general area,
such as medicine or electronics diagnosis, sig-
nificant portions of the domain must be
rerepresented for every system we create.

The cost of this duplication of effort has
been high and will become prohibitive as we
attempt to build larger and larger systems. To
overcome this barrier and advance the state
of the art, we must find ways of preserving
existing knowledge bases and of sharing,
reusing, and building on them.

This article describes both near- and long-
term issues underlying an initiative to address
these concerns. First, we discuss four bottle-
necks to sharing and reuse, present a vision
of a future in which these bottlenecks have
been ameliorated, and touch on the efforts of
the initiative’s four working groups to address
these bottlenecks. We then elaborate on the
vision by describing the model it implies for
how knowledge bases and knowledge-based
systems could be structured and developed.
This model involves both infrastructure and
supporting technology. The supporting tech-
nology is the topic of our near-term interest
because it is critical to enabling the infras-
tructure. Therefore, we return to discussing
the efforts of the four working groups of our
initiative, focusing on the enabling technology
that they are working to define. Finally, we
consider topics of longer-range interest by
reviewing some of the research issues raised
by our vision.

0738-4602/91/$4.00 ©1991 AAAI

approach behind it
is communicated in
a manner that facilitates its reimplementa-
tion. Another mode of reuse is through the
inclusion of source specifications. That is, the
content of some module is copied into anoth-
er at design time and compiled (possibly after
extension or revision) into the new compo-
nent. A third mode is through the run-time
invocation of external modules or services.
That is, one module invokes another either
as a procedure from a function library or
through the maintenance of some kind of
client-server relationship between the two
(Finin and Fritzson 1989).

These modes of reuse do not work particu-
larly smoothly today. Explaining how to
reproduce a technique often requires commu-
nicating subtle issues that are more easily
expressed formally; whether stated formally
or in natural language, the explanations
require shared understanding of the intended
interpretations of terms. The reuse of source
specifications is only feasible to the extent
that their model of the world is compatible
with the intended new use. The reuse of
external modules is feasible only to the
extent that we understand what requests the
modules are prepared to accept. Let us con-
sider these complexities in more detail by
reviewing four critical impediments to shar-
ing and reuse.

Impediment 1. Heterogeneous Represen-
tations: There are a wide variety of approaches
to knowledge representation, and knowledge
that is expressed in one formalism cannot

Articles

Attempting to
move beyond
the capabilities
of current
knowledge-
based systems
mandates
knowledge
bases that are
substantially
larger than
those we have
today.

FALL 1991 37

Articles

38 Al MAGAZINE

' Instead, the process of building a knowledge-based system will
start by assembling reusable components.

directly be incorporated into another formal-
ism. However, this diversity is inevitable—the
choice of one form of knowledge representa-
tion over another can have a big impact on a
system’s performance. There is no single
knowledge representation that is best for all
problems, nor is there likely to be one. Thus,
in many cases, sharing and reusing knowl-
edge will involve translating from one repre-
sentation to another. Currently, the only way
to do this translating is by manually recoding
knowledge from one representation to anoth-
er. We need tools that can help automate the
translation process.

Impediment 2. Dialects within Language
Families: Even within a single family of
knowledge representation formalisms (for
example, the KL-One family), it can be diffi-
cult to share knowledge across systems if the
knowledge has been encoded in different
dialects. Some of the differences between
dialects are substantive, but many involve
arbitrary and inconsequential differences in
syntax and semantics. All such differences,
substantive or trivial, impede sharing. It is
important to eliminate unnecessary differ-
ences at this level.

Impediment 3. Lack of Communication
Conventions: Knowledge sharing does not
necessarily require a merger of knowledge
bases. If separate systems can communicate
with one another, they can benefit from each
other’s knowledge without sharing a common
knowledge base. Unfortunately, this approach
is not generally feasible for today’s systems
because we lack an agreed-on protocol speci-
fying how systems are to query each other
and in what form answers are to be delivered.
Similarly, we lack standard protocols that
would provide interoperability between
knowledge representation systems and other,
conventional software, such as database man-
agement systems.

Impediment 4. Model Mismatches at the
Knowledge Level: Finally, even if the language-
level problems previously described are
resolved, it can still be difficult to combine
two knowledge bases or establish effective
communications between them. These
remaining barriers arise when different primi-
tive terms are used to organize them; that is,

if they lack shared vocabulary and domain
terminology. For example, the type hierarchy
of one knowledge base might split the concept
Object into Physical-Object and Abstract-
Object, but another might decompose Object
into Decomposable-Object, Nondecompos-
able-Object, Conscious-Being, and Non-Con-
scious-Thing. The absence of knowledge
about the relationship between the two sets
of terms makes it difficult to reconcile them.
Sometimes these differences reflect differ-
ences in the intended purposes of the knowl-
edge bases. At other times, these differences
are just arbitrary (for example, different
knowledge bases use Isa, Isa-kind-of, Sub-
sumes, AKO, or Parent relations, although
their real intent is the same). If we could
develop shared sets of explicitly defined ter-
minology, sometimes called ontologies, we
could begin to remove some of the arbitrary
differences at the knowledge level. Further-
more, shared ontologies could provide a basis
for packaging knowledge modules—describ-
ing the contents or services that are offered
and their ontological commitments in a com-
posable, reusable form.

A Vision: Knowledge Sharing

In this article, we present a vision of the
future in which the idea of knowledge shar-
ing is commonplace. If this vision is realized,
building a new system will rarely involve
constructing a new knowledge base from
scratch. Instead, the process of building a
knowledge-based system will start by assem-
bling reusable components. Portions of exist-
ing knowledge bases would be reused in
constructing the new system, and special-pur-
pose reasoners embodying problem-solving
methods would similarly be brought in. Some
effort would go into connecting these pieces,
creating a “custom shell” with preloaded
knowledge. However, the majority of the
system development effort could become
focused on creating only the specialized
knowledge and reasoners that are new to the
specific task of the system under construction.
In our vision, the new system could interop-
erate with existing systems and pose queries
to them to perform some of its reasoning.

Furthermore, extensions to existing knowl-
edge bases could be added to shared reposito-
ries, thereby expanding and enriching them.

Over time, large rich knowledge bases, anal-
ogous to today’s databases, will evolve. In this
way, declarative knowledge, problem-solving
techniques and reasoning services could all be
shared among systems. The cost to produce a
system would decrease. To the extent that
well-tested parts were reused, a system’s
robustness would increase.

For end users, this vision will change the
face of information systems in three ways.
First, it will provide sources of information
that serve the same functions as books and
libraries but are more flexible, easier to update,
and easier to query. Second, it will enable the
construction and marketing of prepackaged
knowledge services, allowing users to invoke
(rent or buy) services. Third, it will make it
possible for end users to tailor large systems
to their needs by assembling knowledge bases
and services rather than programming them
from scratch.

We also expect changes and enhancements
in the ways that developers view and manipu-
late knowledge-based systems. In particular,
we envision three mechanisms that would
increase their productivity by promoting the
sharing and reuse of accumulated knowledge.
First among these are libraries of multiple
layers of reusable knowledge bases that could
either be incorporated into software or remote-
ly consulted at execution time. At a level
generic to a class of applications, layers in
such knowledge bases capture conceptualiza-
tions, tasks, and problem- solving methods.
Second, system construction will be facilitat-
ed by the availability of common knowledge
representation systems and a means for
translation between them. Finally, this new
reuse-oriented approach will offer tools and
methodologies that allow developers to find
and use library entries useful to their needs as
well as preexisting services built on these
libraries. These tools will be complemented
by tools that allow developers to offer their
work for inclusion in the libraries.

The Knowledge-Sharing Effort

We are not yet technically ready to realize
this vision. Instead, we must work toward it
incrementally. For example, there is no con-
sensus today on the appropriate form or con-
tent of the shared ontologies that we
envision. For this consensus to emerge, we
need to engage in exercises in building shared
knowledge bases, extract generalizations from
the set of systems that emerge, and capture

these generalizations in a standard format
that can be interpreted by all involved. This
process requires the development of some
agreed-on formalisms and conventions at the
level of an interchange format between lan-
guages or a common knowledge representa-
tion language.

Simply enabling the ability to share knowl-
edge is not enough for the technology to
have full impact, however. The development
and use of shared ontologies cannot become
cost effective unless the systems using them
are highly interoperable with both a1 and
conventional software, so that large numbers
of systems can be built. Thus, software inter-
faces to knowledge representation systems
are a crucial issue.

The Knowledge-Sharing Effort, sponsored
by the Air Force Office of Scientific Research,
the Defense Advanced Research Projects
Agency, the Corporation for National Research
Initiatives, and the National Science Founda-
tion (NSF), is an initiative to develop the
technical infrastructure to support the shar-
ing of knowledge among systems. The effort
is organized into four working groups, each
of which is addressing one of the four imped-
iments to sharing that we outlined earlier.
The working groups are briefly described here
and in greater detail later in the article.

The Interlingua Working Group is develop-
ing an approach to translating between
knowledge representation languages. Its
approach involves developing an intermedi-
ary language, a knowledge interchange format
or interlingua, along with a set of translators
to map into and out of it from existing
knowledge representation languages. To map
a knowledge base from one representation
language into another, a system builder
would use one translator to map the knowl-
edge base into the interchange format and
another to map from the interchange format
back out to the second language.

The Knowledge Representation System
Specification (KRSS) Working Group is taking
another, complementary tack toward pro-
moting knowledge sharing. Rather than
translating between knowledge representa-
tion languages, the KRSS group is seeking to
promote sharing by removing arbitrary dif-
ferences among knowledge representation
languages within the same paradigm. This
group is currently working on a specification
for a knowledge representation system that
brings together the best features of languages
developed within the KL-One paradigm. Sim-
ilar efforts for other families of languages are
expected to follow.

The External Interfaces Working Group is

Articles

FALL 1991 39

Articles

[PrDiffusion—Clean

- Oidaion

Material-Processing—Step

. Processing-Step

Data-Processing-Step

Testing-Step < ;

Non-Destructive—Testing—Ste|

Step

Decision—Step<__ i SN

3 Sort-by-Wafer

Figure 1. The mks Ontology of Manufacturing Operations, Elaborated with
Knowledge Specific to Semiconductor Manufacturing.

Ontologies such as this one, in effect, lay the ground rules for modeling a domain by
defining the basic terms and relations that make up the vocabulary of this topic area.
These ground rules serve to guide system builders in fleshing out knowledge bases,
building services that operate on knowledge bases, and combining knowledge bases
and services to create larger systems. For one system to make use of either the knowl-
edge or reasoners of another system, the two must have consistent ontologies.

investigating yet another facet of knowledge
sharing. It is developing a set of protocols for
interaction that would allow a knowledge-
based system to obtain knowledge from
another knowledge-based system (or, possibly,
a conventional database) by posting a query
to this system and receiving a response. The
concerns of this group are to develop the pro-
tocols and conventions through which such
an interaction could take place.

Finally, the Shared, Reusable Knowledge
Bases Working Group is working on overcom-
ing the barriers to sharing that arise from lack
of consensus across knowledge bases on
vocabulary and semantic interpretations in
domain models. As mentioned earlier, the
ontology of a system consists of its vocabu-
lary and a set of constraints on the way terms
can be combined to model a domain. All
knowledge systems are based on an ontology,
whether implicit or explicit. A larger knowl-
edge system can be composed from two
smaller ones only if their ontologies are con-
sistent. This group is trying to ameliorate
problems of inconsistency by fostering the
evolution of common, shareable ontologies.
A number of candidate reusable ontologies
are expected to come from this work. Howev-

40 Al MAGAZINE

er, the ultimate contribution of the group lies
in developing an understanding of the group
processes that evolve such products and the
tools and infrastructure needed to facilitate
the creation, dissemination, and reuse of
domain-oriented ontologies.

Architectures of the Future

In this section, we elaborate on our vision by
describing what we hope to enable concern-
ing both knowledge bases and the systems
that use them. In doing so, we look at how
they are structured and the process by which
they will be built. We also consider the rela-
tionship of this vision to other views that
have been offered, such as Guha and Lenat’s
(1990) Cyc effort, Stefik’s (1986) notion of
Knowledge Media, and Kahn’s notion of
Knowbots (Kahn and Cerf 1988). Finally, we
offer a view of the range of system models
that this approach supports.

Structural and Development Models
for Knowledge Bases

In a AAAI-90 panel on software engineering,
John McDermott (1990) described how Al
could make software development easier:
Write programs to act as frameworks for han-
dling instances of problem classes.

Knowledge-based systems can provide such
frameworks in the form of top-level declara-
tive abstraction hierarchies, which an applica-
tion builder elaborates to create a specific
system. Essentially, hierarchies built for this
purpose represent a commitment to provide
specific services to applications that are will-
ing to adopt their model of the world.

When these top-level abstraction hierar-
chies are represented with enough informa-
tion to lay down the ground rules for
modeling a domain, we call them ontologies.
An ontology defines the basic terms and rela-
tions comprising the vocabulary of a topic
area as well as the rules for combining terms
and relations to define extensions to the
vocabulary. An example is the mks generic
model of manufacturing steps (Pan, Tenen-
baum, and Glicksman 1989), illustrated in
figure 1 along with a set of application-specif-
ic extensions for semiconductor manufactur-
ing. The frame hierarchy in mks defines
classes of concepts that the system’s reason-
ing modules (for example, schedulers and
diagnosers) are prepared to operate on. The
slots and slot restrictions on these frames
define how one must model a particular man-
ufacturing domain to enable the use of these
modules.

Shared ontology

Knowledge Base

Topic—-Iindependent
Fundamental Models (time, causality, ...)

defines a
sub—language for
modelling a topic area
(object types,
relations, and
constraints on
combining them)

Application—
Independent
Models of Domain
Structures

Custom (or extended)
ontology uses the

shared ontology as a Agf:::;’::;
voggft?gilsry - Extznsions to the
g Domain Ontologies
system-specific
model

Instances,
State—dependent
Facts, & Assertions
about Domain
Objects

Assertions capture
state—dependent,
run—time knowledge
of a system

Domain knowledge
captures knowledge of

structure and behavior
of objects

Application—
Independent
Models of Problem—
Solving Tasks and
Methods

Application—
Dependent
Extensions to the
Problem-Solving
Ontologies

Instances,
State—dependent
Facts, & Assertions
about Problem—Solving
Activities

Problem—solving
knowledge captures

to control of the
system’s internal

|
|
: a topic that models the
|
|
[
|

|
|
: knowledge relevant
|
|
|
|

reasoning
processes

Figure 2. The Anatomy of a Knowledge Base.

Application systems contain many different kinds and levels of knowledge. At the top level are ontologies, although
often represented only implicitly in many of today’s systems. The top-level ontologies embody representational choices
ranging from topic independent (for example, models of time or causality) to topic specific but still application-inde-
pendent knowledge (for example, domain knowledge about different kinds of testing operations represented in a man-
ufacturing system or problem-solving knowledge about hypothesis classes in a diagnostic system). This top level of
knowledge is elaborated by more application-specific models (for example, knowledge about chip-testing operations
in a specific manufacturing application or failure modes in a circuit diagnosis system). Together, they define how a
particular application describes the world. At the bottom level, assertions using the vocabulary of these models capture
the current state of the system’s knowledge. Knowledge at the higher levels, being less specialized, is easier to share
and reuse. Knowledge at the lower levels can only be shared if the other system accepts the models in the levels above.

The mks example is hardly unique. A number
of systems have been built in a manner con-
sistent with this philosophy, for example,
FIRST-cUT and NexT-cuT (Cutkosky and Tenen-
baum 1990), qre (Forbus 1990), Cyc (Guha
and Lenat 1990), Aries (Johnson and Harris
1990), sace (Roth and Mattis 1990), Carnegie
Mellon University’s factory scheduling and

project management system (Sathi, Fox, and
Greenberg 1990), kips (Smith 1990), and Ees
(Swartout and Smoliar 1989). The notion that
generic structure can be exploited in building
specialized systems has been argued for a long
time by Chandrasekaran (1983, 1986) and
more recently by Steels (1990). The notion
has also long been exploited in knowledge-

Articles

FALL 1991

41

Articles

42 Al MAGAZINE

' An ontology defines the basic terms and relations comprising the

vocabulary of a topic area...

acquisition work, for example, in systems
such as more (Kahn, Nowlan, and McDermott
1984) and ROGET (Bennett 1984).

The range of knowledge captured with
ontologies is described in figure 2. There is
some fuzziness in the figure’s distinction
between shared and custom ontologies
because they are relative terms—any given
knowledge base is custom with respect to the
knowledge it extends and is shared with respect
to the knowledge that extends it. Nevertheless,
the essential idea is that application knowl-
edge bases should consist of layers of increas-
ingly specialized, less reusable knowledge. As
is argued later, explicitly organizing knowl-
edge bases in this fashion is a step on the crit-
ical path to enabling sharing and reuse.

There are a number of uses for ontologies.
The primary uses today are in defining
knowledge-based system frameworks in the
spirit advocated by John McDermott (1990).
However, a number of additional possibilities
open if libraries of these ontologies can be
developed because these libraries define the
common models needed for combining
knowledge bases or successfully communicat-
ing between independent modules. Ontolo-
gies and knowledge bases can also be viewed
as ends in themselves, that is, as repositories
of information in the spirit suggested by Stefik’s
(1986) discussion of knowledge media.

Although every knowledge-based system
implicitly or explicitly embodies an ontology,
ontologies are rarely shared across systems.
Commonalities among existing systems can be
identified and made shareable. For example,
Stanford’s Summer Ontology Project found
that several of the collaborators had built sys-
tems that used models of mechanical devices
based on concepts such as module, port, and
connection (Gruber 1991). However, each
system used slightly different names and for-
malisms. An ontology for lumped element
models that defines these concepts with con-
sistent, shareable terminology is under con-
struction. A library of such shared ontologies
would facilitate building systems by reducing
the effort invested in reconciliation and rein-
vention.

Structural and Development Models
for Knowledge-Based Systems

Figure 3 illustrates the envisioned organiza-
tion of an individual knowledge-based appli-
cation system. The local system consists of a
set of services that operate on combined (or
indistinguishable) knowledge bases and
databases. One uniform user interface man-
agement system mediates interactions with
humans, and a set of agents mediates interac-
tion with other systems.

The services that make up the application
consist of various reasoning modules, which
can be defined at either the level of generic
reasoning and inference mechanism (for
example, forward chaining, backward chaining,
unification) or the task level (for example,
planners, diagnosers). These modules would
typically be acquired off the shelf. At either
level, however, they can be augmented by
special-purpose reasoning modules that pro-
vide custom capabilities for exploiting partic-
ular characteristics of the application domain.
In addition to these reasoning modules, the
application’s services are also likely to include
a number of modules providing conventional
capabilities, such as spreadsheets, electronic
mail, hypermedia, calendar systems, statisti-
cal packages, and accounting systems.

To perform the tasks of the overall system,
modules will need to interact internally (that
is, knowledge base to knowledge base) and
externally (that is, knowledge base-database
to other knowledge-based systems or arbitrary
outside software applications). For external
interaction, the modules will need a language
for encoding their communications. sQL
serves this function for conventional database
interactions, and it appears likely that it will
continue to be used in the future. We call the
analogous programmatic interface for knowl-
edge-based applications koML (knowledge
query and manipulation language). komL will
consist of a language for specifying wrappers
that define messages communicated between
modules. These wrappers will surround decla-
rations that will express whatever knowledge

Library of Reusable Knowledge-Based Software Components

Planners Manufacturing Processes Rule-bas
Diagnosers Electro-Mechanical Devices Logic Prog ing

Schedulersl Natural Language Frame-base

Classifiers Generic Tasks Shipar-
F rient
Reasoning ; 7 Common KR
Modules b Systems

Select zero or more Select one or more Select one

I Put ontology selection(s) into format of 1
L s¢ selected KR System and reasoners

= g/ Assemble selected comporents 1
L to create a specialized shell o

1|

Custom
Application Code

Specialized Generic
Reasoning [Reasoning
Modules

Fextend onroiogEs-to-'

| complete knowledge I

' bases, add custom |< -~ COTS
application code,

\ X
and interface to | Shared Ontology \;?(?;s

other systems

Figure 3. Architecture of a Knowledge-Based System.

We envision that knowledge-based systems will be assembled from components rather than built from scratch. The
components include a framework for local system software in which one or more local knowledge bases are tied to a
shared ontology. Remote knowledge bases can be accessed and are understood by the local system by virtue of being
tied in to the ontology. Specialized reasoning modules (for example, a diagnostic system) and generic reasoning systems
(that is, a representation system) are also tied to the knowledge base(s) through the ontology. In turn, these systems
are glued together with conventional services through specialized, custom application code. Larger systems can be
obtained from smaller ones in this architecture by either expanding the contents of a local system or interlinking mul-

tiple systems built in this fashion.

Articles

FALL 1991 43

Articles

44 Al MAGAZINE

Manufacturing Processes
Diagnosers Electro-Mechanical Devices

Schedulersl Natural Language Frame—based

|

Classifiers | | Generic Tasks i
Reasoning . Common KR
Modules SR Systems

Select one or more

Select zero or more Select one

rAa ontology selecrron(s) into format of 1
L selected KR System and reasoners J

o ASSermBle SElGCTed Comporiants |
L to create a specialized shell d

[

Femngonioges @) A Sossonms [rossonng

I complete knowledge | S citiios Modules

' bases, add custom |< - coTS
application code,

\ ks
and interface to | \ &Qared Ontology vsigers

other systems

Figure 4. Envisioned Phases in Defining a Knowledge-Based System.

With libraries of reusable knowledge-based software components, building an application could become much more of
a configuration task and, correspondingly, less of a programming activity. System builders could select specialized rea-
soning modules and ontologies, converting them to the format required by the selected knowledge representation if
they were not already in this format. This approach gives them a specialized shell with some knowledge built in. This
custom shell can then be utilized to build the application from a higher-level starting point.

the sending module must pass to the receiv-
ing module.

The uniform kQmL communication protocol
will facilitate modular construction of system
components and, thus, facilitate the develop-
ment of libraries of reusable components.
Such libraries will contain generic reasoners
such as truth maintenance systems, task-spe-
cific reasoners (planners, diagnosers, and so
on), and domain-specific reasoners (for exam-
ple, electric circuit simulators). The libraries
will also contain a number of ontologies cov-
ering both structural knowledge and problem-
solving knowledge. Some will be domain
oriented, and some will correspond to particu-
lar reasoners. Also residing in these libraries
will be a collection of knowledge representa-
tion system implementations to choose from.
We expect that several different representation-
al paradigms, or families, might be available
in the library. For each family, we expect mul-
tiple implementations of a common core lan-
guage, similar to Common Lisp (Steele 1984),
which has a core specification and several
competing implementations of this specifica-
tion, each of which offers various performance,
environment, and function enhancements.

As figure 4 illustrates, application-specific
systems will be developed by assembling com-
ponents from a library into a customized
shell, which is then used to develop the appli-
cation. The first task of system developers
would be to configure this specialized shell.
This process will involve selecting ontologies,
specialized reasoning modules, and a knowl-
edge representation system from the library.
As in any configuration task, there are likely
to be constraints that must be respected. For
example, a particular specialized scheduling
module might assume that tasks to be sched-
uled are modeled according to a particular
ontology. The entries in the library must pro-
vide enough information about themselves to
allow system developers to understand these
constraints.

Once the ontologies, specialized reasoning
modules, and a knowledge representation
system have been selected and assembled, the
system developers have a specialized shell for
their application. This shell differs from today’s
shells in that it will come with built-in knowl-
edge, not just specialized programming fea-
tures. The system developers’ tasks are then to
flesh out the knowledge base, add whatever
custom application code is necessary, and
write software interfaces to any other systems
the new application will work with.

In configuring this specialized shell, it
would be highly desirable if there were sup-
port for translation between representations.

Articles

Tool
Builders

Domain
Experts

Interview

Extend
and test

Knowledge-Based
System

Knowledge System
System Engineers / Buig ™
Building refine.
Tools * test

) l

| Import, extend

|
| Revise, extend
I'and reconcile

Study, evaluate
and reuse

I

: Export : and customize

: Advise I

[A

! [q

| | i

‘ r__-'Aiiiij ri‘.‘__J- _____ Il
|1 Public | | Private |
! | Librariesof | | Libraries of |
|| Knowledge || Knowledge |
| | Bases& | | Bases& |
! | Reasoning | | Reasoning |
|| Methods | | Methods |
‘ S ——" 4 fe e o e e = — 4
I

4 i

I

i

«_Librarians -

Figure 5. Current versus Envisioned Models of the Al Software Life Cycle.

Adding knowledge libraries represents a significant change in methodology for building
knowledge-based systems. Knowledge librarians, a new category of participant in the
process, would ensure that submitted ontologies and reasoners were ready for release.
They would help system engineers browse the library and select modules. They would
also help tool builders create tools and development environments to assist in these

activities.

Then, developers would not be obliged to use
the original implementation if their applica-
tion had different performance or function
requirements. For example, a common ontol-
ogy of electromechanical devices could serve
DRAMA (Harp et al. 1991), which analyzes
logistical implications of design changes, and
coMeT (Feiner and McKeown 1990), which
generates multimedia how-to presentations
about maintenance tasks. comeT needs device
models to access related device components
and primarily requires efficient storage and
retrieval from its representation language. In
contrast, brRAMA analyzes implications of large
amounts of changing knowledge and, there-
fore, demands efficient inference mechanisms.

Note that the approach we have been
describing scales with the evolution of infras-

FALL 1991 45

Articles

46 Al MAGAZINE

F.

knowledge base methodology.

tructure for knowledge sharing. It is feasible
with existing technology. If and when common
knowledge representation systems become
available, their use would broaden the porta-
bility and reusability of a given library. Simi-
larly, the development and dissemination of
techniques for translation between different
representation languages would also broaden
the use of a library.

Figure 5 contrasts our model of the life
cycle for knowledge-based software with the
approach followed in expert system software
today. The notion of libraries is a key differ-
ence. In today’s models of expert system
software development, exemplified by Water-
man’s (1986) book on expert systems, there
are at least four classes of participants in the
life cycle. Tool builders create shells and
development environments. System engi-
neers take these tools and create an initial
version of a knowledge-based system by inter-
viewing domain experts. Then, together with
the domain experts, the system engineers
test, extend, and refine the system. Finally,
end users put the system to use. The vision
we propose changes the nature of the system
engineer’s work and has the potential to
merge roles by giving domain experts more
ability to act as system engineers. It also adds
a new participant to the infrastructure: a
knowledge librarian, who serves as a keeper
of reusable ontologies and implementations
of specialized reasoning methods.

The knowledge librarian works with tool
builders on tools and development environ-
ments to help system engineers browse and
select modules from the library. System engi-
neers import, extend, and customize these
modules. They can retain the customized
elements in private libraries for sharing and
reuse within a subcommunity. Alternatively,
they can offer their developments to the
library for possible inclusion as extensions to
the existing set of knowledge.

One of the crucial functions that must be
performed in the management of a knowl-
edge library is the determination of when
submitted knowledge is ready for release. If
knowledge is simply added and edited by all
participants without some discipline, then it

dding a knowledge library represents a significant change to

will be difficult to achieve the level of relia-
bility and stability needed for practical soft-
ware development.

Adding a knowledge library represents a
significant change to knowledge base method-
ology. It transforms the system-building
process away from using power tools for con-
structing essentially custom, one-of-a-kind
systems. Instead, system building becomes a
process of selecting and combining a range of
components. The system engineer becomes
much more like a builder of homes and much
less like a sculptor. A home builder has a range
of components and materials, from bricks
and two-by-fours to prefabricated walls or
even rooms. A home builder has a choice of
building each new home from small compo-
nents that give a lot of design flexibility or
from larger components that trade off reduced
design options for reduced construction
effort. Similarly, system engineers would find
a range of grain sizes among objects in the
knowledge library and would be empowered
to make analogous choices.

Comparison with Other Visions

The model of knowledge-based systems that
we just described bears significant relation-
ships to other notions that have been offered.
One recent example is MCC Corporation’s
Cyc Project (Guha and Lenat 1990), which
seeks to develop an extremely large knowl-
edge base of commonsense knowledge under
which all applications would be built. The
Cyc Project provides a language, Cyc-L, for
implementing its ontology and developing
an application-specific knowledge base.
Because its scope is so broad, Cyc represents
one extreme in the range of efforts compatible
with the model we propose. In our scheme,
Cyc’s knowledge base could be one large
entry in the library of components (or, per-
haps, it might be broken into several smaller
modules, or microtheories). Its implementation
language, Cyc-L, would be one of the entries
in the library of representation systems. If
one chose to build a system entirely within
Cyc, our model of the development process
and that of the Cyc Project are largely consis-

tent. If one wishes to go outside Cyc, our
model is complementary. Potential users
might use our knowledge-interchange format
to translate other knowledge bases into Cyc-L
or, conversely, to translate Cyc’s knowledge
into some other representation system. Alter-
natively, they might use external protocols to
access a module built in Cyc and build other
modules through other means.

If successful, our approach would help make
the knowledge in Cyc accessible even to those
system developers who for one reason or
another do not choose to use the whole Cyc
knowledge base or represent their systems in
Cyc-L.

However, the model we propose also differs
significantly from the Cyc effort. Among
other things, it allows the development of
large systems without having to first commit
to a particular knowledge representation for-
malism; users do not even have to commit to
homogeneity. Furthermore, this approach
allows for the development and use of
ontologies and knowledge bases under a more
conservative, bottom-up development model
as an alternative to committing to a large,
broad knowledge base. Thus, an alternative
use of this model aims for the evolution of
smaller, topic-specific ontologies intended for
sharing by specialized communities. (Over
time, it is possible that these topic-specific
ontologies would grow and merge with others,
so that an eventual end result might be a
broadly encompassing ontology such as that
sought by the Cyc effort.)

Our vision owes a great deal to Mark Stefik’s
(1986) view of knowledge bases as the next
mechanism of information exchange. Stefik
was interested, as are we, in both how sys-
tems of the future will be built and what uses
will be made of them. He suggested that
expert systems were parts and precursors of a
new knowledge medium, a set of interactive
multidisciplinary tools for information
manipulation:

A knowledge medium based on Al
technology is part of a continuum. Books
and other passive media can simply store
knowledge. At the other end of the spec-
trum are expert systems which can store
and also apply knowledge. In between are
a number of hybrid systems in which the
knowledge processing is done mostly by
people. There are many opportunities for
establishing human-machine partnerships
and for automating tasks incrementally.

In these interactive tools, the computer pro-
vides storage, retrieval, and group communi-
cations services as well as languages and tools
that enable precision and explicitness in

manipulating knowledge about a topic.

In producing the new knowledge medium,
Stefik argued that expert systems should be
viewed as complex artifacts, such as automo-
biles or airplanes, which are assembled from
highly sophisticated materials and subassem-
blies. A marketplace that supports the special-
ized suppliers of component technologies
benefits the manufacturer of the end product.
The marketplace provides economies of scale
that make it possible to develop component
technologies of a quality and sophistication
that would be unaffordable if the costs had to
be borne entirely within a single, built-from-
scratch, one-of-a-kind product development
effort. Thus, by analogy, Stefik concluded that

...the “goods” of a knowledge market are
elements of knowledge... To reduce the
cost of building expert systems, we need
to be able to build them using knowledge
acquired from a marketplace. This
requires setting some processes in place
and making some technical advances.

In particular, Stefik urged combining work
on expert system shells with work on stan-
dard vocabularies and ways of defining things
in terms of primitives. This suggestion is simi-
lar to the notion of ontologies proposed in
this article. However, Stefik questioned (as do
we) the feasibility of relying entirely on the
development of standard vocabularies or
ontologies for domains. The key to their
effectiveness lies in how these ontologies are
analyzed, combined, and integrated to create
large applications. Tools and methods are
needed to support this process. Our vision
seeks to extend Stefik’s by trying to further
define the process as well as the supporting
tools and methods.

Our particular extensions also have some
kinship to the architecture of the national
information infrastructure envisioned by
Kahn and Cerf (1988) for the Digital Library
System. Their vision of the library of the
future consists of information collections
bearing some analogies to Stefik’s knowledge
media. The Digital Library System provides a
distributed network architecture for accessing
information. The architecture contains
database servers, various accounting and
billing servers, servers to support placing
knowledge into the library and extracting
knowledge from it, and servers for translating
knowledge flowing to and from the library
into different forms. The Digital Library
System suggests a model for how our vision of
development, distribution, and dissemination
of knowledge-based systems might be realized
in the future. At the same time, our vision
proposes supporting technology—for example,

Articles

FALL 1991 47

Articles

There

are many
unanswered
questions
about how
large-scale
systems can
best be built.

48 Al MAGAZINE

Centralized

Hierarchies or Blackboards

Figure 6. A Range of (potentially heterogeneous) System Models.

The technology described in this article enables experimentation with alternative models for architectures of knowl-
edge-based systems. Shared ontologies provide the basis for protocols that link separate modules.

representation systems and translators— that
could help realize the Digital Library System.

Supporting a Range of System
Architectures

The technology described in this article is
intended to provide enabling tools for build-
ing a range of architectures for large, knowl-
edge-based systems. Figure 6 illustrates one
dimension of this range. Within the scope of
our vision, a system might be built as a
single, large, integrated, centralized package
(as depicted in figure 4). In this model, shar-
ing and reuse occur at design time. Software-
engineering concerns such as modularity can
be achieved by partitioning the knowledge in
this system into multiple bases linked by
shared ontologies. Alternatively, however, the
large system could be factored into multiple
separate modules, communicating according
to any of a number of alternative control
regimes. Sharing and reuse in this fashion
occur at run time. Modularity for software-

engineering reasons can be handled by the
separation of modules as well as by the same
internal structuring, as in the first case. Some
control regimes seemingly require that each
module know a great deal about the others;
the duplication of information in each
module that is entailed is usually regarded as
a potential maintenance bottleneck. However,
the architecture provides natural mechanisms
(ontologies and standard communications
components) for encapsulating the knowledge
needed for intermodule communication.
Over and above module structuring, system
models can vary along a number of other
dimensions in this scheme. These dimensions
include the choice of representation languages
used within modules, the homogeneity or
heterogeneity of representation systems across
modules, the use of specialized reasoning
modules, the nature of ontologies, the con-
tent of the knowledge bases, the partitioning
of the knowledge bases, the tightness of cou-
pling with databases, the degree of trans-
parency of modules (black boxes versus glass

boxes), and the locus of control.

There are many unanswered questions
about how large-scale systems can best be
built. Although sharing and reuse are clearly
essential principles, the best way to make
them operational remains to be understood.
What are the trade-offs between sharing ser-
vices at run time versus sharing knowledge
bases at design time? On what scale and under
what circumstances is translation viable?
When are shared formalisms, rather than
translation, required? How do domain-specif-
ic considerations drive choices of system
models? What are the constraints on the
usability of knowledge originally recorded for
different purposes? What mechanisms best
facilitate convergence between multiple users
on a mutually satisfactory representation?

The intent behind the framework we out-
lined is not to enshrine a particular set of
answers to such questions. Rather, our goal is
to identify enabling technologies that make it
easier to search the space of possible answers.
The right answers will emerge only if we first
make it easier for the Al community to explore
the alternatives empirically—by building a
number of large systems.

Working Groups in the
Knowledge-Sharing Initiative

The desire to collaborate through knowledge
sharing and reuse has arisen within a segment
of the broad knowledge representation com-
munity that is interested in scaling up to
larger systems and that views the sharing and
reuse of knowledge bases as a means to this
end. Closely related to this effort is a concern
for building embedded systems in which
knowledge representation systems support
certain functions rather than act as ends in
themselves.

In particular, our goal is to support researchers
in areas requiring systems bigger than a single
person can build. These areas include engi-
neering and design domains, logistics and
planning domains, and various integrated
modality areas (for example, multimedia
interfaces). Researchers working on such topics
need large knowledge bases that model com-
plex objects; because these models drive com-
plex systems, they cannot be skeletons. Putting
together much larger systems, of which vari-
ous stand-alone systems being built today are
just components, is an interesting challenge.

The creation of such knowledge resources
requires communitywide effort. This effort
engenders a need for agreed-on conventions
to enable us to build pieces that fit together.
Eventually, in pursuing the goal of large,

shared knowledge bases as part of a nation-
wide information infrastructure, these con-
ventions might become objects of study for
the definition of more formal standards. (For
those interested in the role of standards in
computing infrastructure, Cargill [1989] is a
useful entry point into the topic.) Currently,
however, the conventions are intended to
support experiments in knowledge sharing
among interested parties.

The next part of this article focuses on
making our vision operational by developing
these conventions. Doing so is an essential
precursor to larger aspects of our vision, such
as libraries of ontologies, reasoning modules,
and representation systems. This section
describes the activities of our four working
groups on these foundation-laying activities.
For each group, we summarize the problem
being addressed, the approach being taken,
and the outcomes sought.

Interlingua

The Interlingua Working Group is headed by
Richard Fikes and Mike Genesereth, both of
Stanford University.

Problem Formulation. The Interlingua
Working Group focuses on the problems
posed by the heterogeneity of knowledge rep-
resentation languages. Specifically, to inter-
change knowledge among disparate programs
(written by different programmers, at differ-
ent times, in different languages), effective
means need to be developed for translating
knowledge bases from one specialized repre-
sentation language into another. The goal of
this group is to specify a language for com-
municating knowledge between computer
programs (as opposed to a language for the
internal representation of knowledge within
computer programs). This language needs
(1) an agreed-on declarative semantics that
is independent of any given interpreter, (2)
sufficient expressive power to represent the
declarative knowledge contained in typical
application system knowledge bases, and (3)
a structure that enables semiautomated trans-
lation into and out of typical representation
languages.

Approach. This group is specifying a lan-
guage (kiF [knowledge interchange format])
that is a form of predicate calculus extended
to include facilities for defining terms, repre-
senting knowledge about knowledge, reifying
functions and relations, specifying sets, and
encoding commonly used nonmonotonic rea-
soning policies. The group is also conducting
knowledge-interchange experiments to sub-
stantially test the viability and adequacy of

Articles

The creation
of... knowl-
edge resources
requires
community-
wide effort.

FALL 1991 49

Articles

50 Al MAGAZINE

between computer programs...

the language. The experiments focus on
developing and testing a methodology for
semiautomatic translation to and from typi-
cal representation languages and the use of
the interchange format as an intermodule
communication language to facilitate inter-
operability.

Outcomes. The specification for interlingua
will evolve in a set of layers. The innermost
layer will be a core, analogous to the primi-
tives in Lisp, providing basic representational
and language extension functions. The next
layer will provide idioms and extensions that
make the language more usable, analogous to
the set of functions provided by Common
Lisp. This working group will be responsible
for developing these specifications. Its output
will be (1) a living document containing the
current kiF specification, describing open
issues, and presenting current proposals for
modification and (2) a corpus of documented
microexamples, using fragments of knowledge
bases to illustrate how they translate into kir
and to point out open issues.

By the time this group has completed its
work, we expect that the documented inter-
lingua specification will define a language in
which the sharing and reuse of the contents
of individual knowledge bases can be accom-
plished by transmitting specifications using
KIF as the medium for expressing these lan-
guages. The language will be oriented toward
supporting translation performed with a
human in the loop, and we expect that sever-
al prototype translation aids will be devel-
oped during the course of this work.

Knowledge Representation System
Specifications

The KRSS working group is headed by Bill
Swartout of University of Southern Califor-
nia/Information Sciences Institute (USC/ISI)
and Peter Patel-Schneider of AT&T Bell Labs.

Problem Formulation. This group is con-
cerned with specification on a separate
family-by-family basis of the common ele-
ments within individual families of knowl-
edge representation system paradigms. The
intent is not to develop a “be-all, end-all”
knowledge representation system. The group

' The goal... is to specify a language for communicating knowledge

is not trying to develop one language that
encompasses all approaches to knowledge
representation; rather, it seeks to create speci-
fications that incorporate the good features
within families and develop a common ver-
sion that is reasonably comprehensive yet
pragmatic for each individual family. An
example of one such family is the set of KL-
One descendents, that is, object-centered lan-
guages with definitional constructs, such as
CLASSIC, LOOM, BACK, SB-One, and omMEGA. The
effort should be viewed more as an attempt
to develop a Common Lisp rather than a PL-1
or Ada. The analogy to Common Lisp is
imperfect, however. Knowledge representation
systems perform inference on the informa-
tion represented within them; programming
languages do not. Thus, specifying what
inferences should be performed is an addi-
tional issue in specifying a knowledge repre-
sentation system.

Approach. The goal of this group is to
allow system builders working within a
family to provide a common set of features
that have consensus within this paradigm in
addition to the augmentations that they
regard as their research contribution. The
resulting language will serve as a medium for
sharing knowledge bases as well as a means
for communicating ideas and issues among
researchers. Potential benefits are the abilities
of users to more readily convert between sys-
tems and to borrow models originally built to
run in other systems. The trade-offs assumed
by this group are the mirror image of those
faced by the Interlingua Working Group:
They eliminate the problem of translating
knowledge bases between systems but require
one to work within a given formalism to
obtain this benefit.

Specifying a knowledge representation
system poses the interesting challenge of
specifying just what kinds of inference the
system should perform. From Brachman and
Levesque (1984), we know that if the system
is expressive enough to be useful, the infer-
ences that its reasoner draws will be incom-
plete. How should this incomplete inference
be specified? The group’s approach is to con-
struct a layered specification. There will be an
inner core of the language, which will consist

of a few constructs. Because this inner core
will have limited expressivity, it will be possi-
ble to perform complete inference on it.
Another layer, the outer core, will be built on
the inner core. This layer will significantly
extend the expressivity of the language, but
inference on it will be incomplete. To specify
the inferences that should be performed, the
group will provide an abstract algorithm
for drawing just those inferences that are
required by the specification. Implementers
of the specification must provide a reasoner
at least as powerful as the one specified by
this algorithm.

Outcomes. The group is seeking to develop
a published specification and at least one ini-
tial implementation of a common language.

External Interfaces

The External Interfaces Working Group,
cochaired by Tim Finin of the Unisys Center
for Advanced Information Technology and
Gio Wiederhold of Stanford University, focus-
es on interfaces that provide interoperability
between a knowledge representation system
and other software systems.

Problem Formulation. The time is ending
when an intelligent system can exist as a
single, monolithic program that provides all
the functions necessary to do a complex task.
Intelligent systems will be used and deployed
in environments that require them to interact
with a complex of other software compo-
nents. These components will include con-
ventional software modules, operating system
functions, and database servers as well as
other intelligent agents. There is a strong
need to develop standard interface modules
and protocols to make it easier to achieve this
interoperability. The working group is con-
cerned with three aspects of this problem:
providing interoperability with other intelli-
gent agents, conventional (for example, rela-
tional) database management systems, and
object-oriented database systems.

Approach. To provide run-time interoper-
ability between knowledge representation sys-
tems, we need a language or protocol that
allows one system to pose queries or provide
data to another. The group has begun the
specification of such a language, kQmL. The
intent is that komL will be to knowledge repre-
sentation systems what sQL has become to
database management systems—a high-level,
portable protocol for which all systems will
provide interfaces. The current specification is
organized as a protocol stack in which the
lowest information-conveying layer is based

on the interlingua. Higher layers in this stack
provide for modality (for example, assert,
retract, query), transmission (for example, the
specification of the recipient agent or agents),
and complex transactions (for example, the
efficient transmission of a block of data).

The integration of Al and database manage-
ment system technologies promises to play a
significant role in shaping the future of com-
puting. As noted by Brodie (1988), this inte-
gration is crucial not only for next-generation
computing but also for the continued devel-
opment of database management system
technology and the effective application of
much of a1 technology. The need exists for (1)
access to large amounts of existing shared
data for knowledge processing, (2) the effi-
cient management of data as well as knowl-
edge, and (3) the intelligent processing of
data. The working group is studying the
many existing interfaces between knowledge
representation systems and relational databas-
es (for example, Mckay, Finin, and O’Hare
[1990]) and is attempting to develop specifi-
cations for a common one. The primary issues
here are the various ways in which the data in
the databases can best be mapped into the
knowledge representation objects.

The third task that the group is looking at
is providing interfaces between knowledge
representation systems and object-oriented
databases. The goal here is to be able to use
an object-oriented database as a substrate
under the knowledge representation system
to provide a persistent object store for knowl-
edge base objects. This work is exploratory,
but the potential benefits in the long run are
significant. They include (1) building and
managing knowledge bases much larger than
the current technology will support and
(2) providing controls for transactions and
concurrent access to knowledge bases at an
object level.

Outcomes. The External Interfaces Working
Group is concentrating on the development
of the kQmL protocol as its first goal. It hopes
that an early implementation will be used to
help build test beds for several distributed,
cooperative demonstration systems. With
regard to database interfaces, several working
group members are attempting to integrate
existing models for interfaces between knowl-
edge representation systems and relational
databases and to produce a specification of a
common one. The working group is also plan-
ning an experiment in which a simple inter-
face will be built to allow an existing
object-oriented database to be used as a sub-
strate under one of the representation systems
being investigated by the KRSS working

Articles

FALL 1991 51

Articles

52 Al MAGAZINE

' ... the goals proposed in this article suggest a number of high-
payoff research questions for the entire research community.

group. This approach will provide a feasibility
test and generate data for further exploration.

Shared, Reusable Knowledge Bases

The Shared, Reusable Knowledge Bases Group
is headed by Tom Gruber of Stanford Univer-
sity and Marty Tenenbaum of ElTech, Inc.

Problem Formulation. This group is work-
ing on mechanisms to enable the develop-
ment of libraries of shareable knowledge
modules and the reuse of their knowledge-
level contents. Today’s knowledge bases are
structured as monolithic networks of highly
interconnected symbols, designed for specific
tasks in narrow domains. As a result, it is dif-
ficult to adapt existing knowledge bases to
new uses or even to identify the shareable
contents. To enable the accumulation of
shareable knowledge and the use of this
knowledge by multiple systems, we need a
means for designing composable modules of
knowledge. The working group is chartered to
identify the barriers to the building and use
of shared knowledge modules, characterize
potential approaches to overcoming these
barriers, and conduct experiments exploring
mechanisms for knowledge sharing.

Approach. The working group supports
three kinds of activity. One is the identification
of important research issues for knowledge
sharing, including problems of methodology
(for example, multidisciplinary, collaborative
knowledge base design) as well as engineering
(for example, scalability, shareability). A
second activity is the development of ontolo-
gies that define terminology used to represent
bodies of shareable knowledge. The task
includes (1) identifying bodies of knowledge
worth the effort to formally represent and
make shareable and (2) defining coherent sets
of terms that characterize the ontological
commitments and representational choices
for modeling these bodies of knowledge. A
third type of working group activity is the
coordination of collaborative experiments in
knowledge sharing in which multiple research
groups attempt to share and use each other’s
knowledge bases (for example, libraries of

device models). Some experiments will evalu-
ate the use of ontologies as a mechanism for
sharing (that is, for modularity and compos-
ability of knowledge modules and the specifi-
cation of their contents).

Outcomes. To these ends, the working
group is concentrating on three objectives.
The first is a survey of the state of the art in
research on knowledge sharing and reuse,
which identifies the techniques currently
being explored and recommends research on
the critical problems to be solved. A second
outcome is a set of results from the collabora-
tive experiments on knowledge sharing,
including the ontologies used for each experi-
ment and lessons learned about tools and
methodologies for developing them. An
immediate subgoal for this outcome is to
develop a mechanism for representing these
ontologies in portable form, building on the
work of the other three working groups. The
third, more long-term objective is to develop
a suite of exemplary shared ontologies and
the knowledge bases using them. These
ontologies will serve as research test beds,
playing a role analogous to the E. coli bacteri-
um in biology: a well-understood, complete
example on which to perform a variety of
experiments.

Long-Term Research Issues

The preceding description of the working
groups focused on near-term issues. However,
the goals proposed in this article suggest a
number of high-payoff research questions for
the entire research community. In this sec-
tion, we want to focus on longer-term con-
cerns by reviewing some of these questions.

A number of issues raised by this vision
were also identified by Ron Brachman (1990)
in his AAAI-90 address on the future of
knowledge representation. High on his list of
issues were knowledge representation ser-
vices, knowledge base management, and the
usability of knowledge representation sys-
tems. Brachman pointed out that the idea of
a single, general-purpose knowledge represen-
tation system with optimal expressive power

might not meet real needs. Instead, he urged,
we must look at different levels of service and
understand what it means to offer them, how
to characterize the capabilities of different ser-
vices, and what the cost is of invoking them.
The management of very large knowledge
bases poses some fascinating research ques-
tions, including methods for handling global-
ly inconsistent but locally reasonable
knowledge, higher-level principles for orga-
nizing knowledge, and techniques for belief
revision as knowledge bases evolve over time.
As large knowledge bases come into widespread
use, they will need to be built, extended, and
used by a wider range of users. Because these
users will likely be less forgiving than aca-
demic researchers using products of their own
making, a number of questions arise concern-
ing presenting knowledge, browsing, query-
ing, and explaining.

Other relevant issues raised by Brachman
include the integration of multiple paradigms,
extensible representation systems, and effi-
ciency concerns. In addition, each of the four
working groups has questions that present
challenges to the research community.

The notion of translation implied by inter-
lingua raises a number of questions about
tools and methodologies for translation. As
the work on interlingua has progressed, a
much better understanding has grown about
the distinction between communication
codes and representation codes (these two
terms were introduced into the discussion by
Pat Hayes). A communication code captures
knowledge for the purposes of exchanging it
or talking about it, and a representation code
attempts to capture knowledge for the pur-
pose of supporting the efficient implementa-
tion of inference mechanisms. As the effort
proceeds, it is likely to spawn a great deal of
work on understanding and recording the
design rationale behind representation codes
to facilitate greater automation in translating
them into and out of communication codes.

A number of issues in representation lan-
guages remain as research topics. Belief has
already been mentioned. Others include
defaults and inheritance, negation, disjunc-
tion, metadescriptions, higher-order logics,

description of inference, predicate reification,
causality, and time.

External interfaces present a range of both
short- and long-term research issues. Exam-
ples include the verification of protocols for
asynchronous operation of multiple end user
applications with many knowledge bases, the
assessment of possible degrees of parallelism,
and deeper investigation into requirements
for supporting interactive user interfaces.
Longer-range issues include mechanisms for
specifying the quantity and quality of infor-
mation to be returned by a knowledge base in
response to a request, means for dealing with
uncertainty, and methods for optimizing the
performance of distributed systems.

Finally, the notion of shared, reusable
knowledge bases provides a tremendous
amount of grist for the research mill. Most
obviously, researchers will be exploring ques-
tions about the content of specific reusable
ontologies for some time to come. In addi-
tion, there are a number of ancillary ques-
tions: How is consensus on a group ontology
best achieved? How can consensus be main-
tained as needs change over time? What
kinds of automated assistance and interactive
tools will be beneficial? How can we verify
compatibility with an ontology? How can we
support correspondence theories that allow
knowledge base developers to express and
reason about mappings between different
ontologies?

The efforts described in this article to devel-
op conventions for sharing and reuse repre-
sent the start—rather than the culmination—
of a large body of research activity. We believe
that this area is one in which conventions
will serve to focus and enable research, not
codify and terminate it.

Conclusion

Attempting to move beyond the capabilities
of current knowledge-based systems mandates
knowledge bases that are substantially larger
than those we have today. However, represent-
ing and acquiring knowledge is a difficult and
time-consuming task. Knowledge-acquisition

' The time is ripe to start building the infrastructure for
integrating Al software at the knowledge level.

Articles

FALL 1991 53

Articles

54 Al MAGAZINE

tools and current development methodolo-
gies will not make this problem go away
because the root of the problem is that knowl-
edge is inherently complex and the task of
capturing it is correspondingly complex.
Thus, we cannot afford to waste whatever
knowledge we do succeed in acquiring. We
will be hard pressed to make knowledge bases
much bigger than we have today if we con-
tinue to start from scratch each time we con-
struct a new system. Building qualitatively
bigger knowledge-based systems will be possi-
ble only when we are able to share our
knowledge and build on each other’s labor
and experience.

The time is ripe to start building the infras-
tructure for integrating A1 software at the
knowledge level, independent of particular
implementations. Today, there is a significant
body of ongoing work in Al and application
domains on pieces of the problem, such as
basic knowledge representation; knowledge-
acquisition tools; task-specific architectures;
and domain-oriented, multiuse models. What
is lacking is an integrating framework, the
means for describing, connecting, and
reusing knowledge-based technology.

Addressing these concerns will open the
doors to the development of much larger-
scale systems, structured in a fashion that
facilitates their development, maintenance,
and extension. Furthermore, it will eliminate
barriers to embedding Al components in
larger, mostly conventional software systems.
This approach will lead to a great expansion
in the range of applicability for al technology,
which, in turn, will greatly enhance its utility
and significantly expand the commercial
marketplace.

The knowledge representation technology
that supports these goals will have four key
characteristics:

First, it will offer libraries of reusable
ontologies, that is, knowledge base frameworks
consisting of (1) formal definitions of the
terms that can be used to model a domain or
class of domains and (2) assertions that
govern the requirements and constraints for
creating valid models within a domain by
combining and relating terms and term
instances.

Second, it will offer powerful, expressive,
and efficient interpreters and compilers for
knowledge representation systems (knowledge
bases combined with inference mechanisms)
in which these ontologies are embedded.
These systems will likely be structured as ser-
vices oriented toward a client-server model of
interaction.

Third, it will provide system builders with
tools for translating between alternative rep-
resentation systems. These tools will enable
them to create efficient, optimized systems by
making choices about alternative implemen-
tations without losing the opportunity to
reuse representational work from other, dif-
ferent formalisms.

Fourth, it will embed these interpreters and
compilers in architectures that support com-
plete interoperability not just between multi-
ple knowledge-based systems but also with
conventional software systems. In particular,
there will be a convenient, standard applica-
tion programming interface and tight inter-
connection with databases.

This article attempted to articulate a vision
of the necessary knowledge representation
system technology and a path to achieving it.
It also argued that progress in this area will
dramatically change for the better the way
that knowledge-based systems are built and
the way they are perceived by their users.
Central to this vision is the notion of estab-
lishing an information infrastructure for pro-
moting the sharing and reuse of knowledge
bases in the development and application of
large, enterprise-level software systems.

Acknowledgments

This effort is supported by NSF grant IRI-900-
6923, NASA-Ames contract NCC 2-520, and a
cooperative agreement between USC/ISI and
the Corporation for National Research Initia-
tives. Steve Cross, Mike Genesereth, Bob
Kahn, Bill Mark, Ron Ohlander, Peter Patel-
Schneider, Marty Tenenbaum, and Gio
Wiederhold deserve particular acknowledg-
ment for their respective important roles in
shaping the efforts presented in this article.
The authors would like to acknowledge bene-
ficial discussions with Brad Allen, Giuseppe
Attardi, R. Bhaskar, Danny Bobrow, B. Chan-
drasekaran, Randy Davis, Helen Gigley, Pat
Hayes, Phil Hayes, Alan Lawson, Bob Mac
Gregor, Elaine Rich, Luc Steels, Mark Stefik,
Abe Waksman, Chuck Williams, and Mike
Williams. Sheila Coyazo’s copyediting assis-
tance was extremely valuable.

References

Bennett, J. S. 1984. roGeT: Acquiring the Conceptu-
al Structure of a Diagnostic Expert System. In Pro-
ceedings of the IEEE Workshop on Principles of
Knowledge-Based Systems, 83-88. Washington,
D.C.: IEEE Computer Society.

Brachman, R. J. 1990. The Future of Knowledge
Representation. In Proceedings of the Eighth
National Conference on Artificial Intelligence,
1082-1092. Menlo Park, Calif.: American Associa-
tion for Artificial Intelligence.

Brachman, R. J., and Levesque, H. J. 1984. The
Tractability of Subsumption in Frame-Based
Description Languages. In Proceedings of the Third
National Conference on Artificial Intelligence,
34-37. Menlo Park, Calif.: American Association for
Artificial Intelligence.

Brodie, M. 1988. Future Intelligent Information Sys-
tems: a1 and Database Technologies Working
Together. In Readings in Artificial Intelligence and
Databases, eds. J. Mylopoulos and M. Brodie,
623-641. San Mateo, Calif.: Morgan Kaufmann.

Cargill, C. F. 1989. Information Technology Standard-
ization: Theory, Process, and Organizations. Bedford,
Mass.: Digital.

Chandrasekaran, B. 1986. Generic Tasks in Knowl-
edge-Based Reasoning: High-Level Building Blocks
for Expert System Design. IEEE Expert 1(3): 23-30.

Chandrasekaran, B. 1983. Toward a Taxonomy of
Problem-Solving Types. Al Magazine 4(4): 9-17.

Cutkosky, M. R., and Tenenbaum, J. M. 1990. A
Methodology and Computational Framework for
Concurrent Product and Process Design. Mechanism
and Machine Theory 25(3): 365-381.

Feiner, S. K., and McKeown, K. R. 1990. Coordinat-
ing Text and Graphics in Explanation Generation.
In Proceedings of the Eighth National Conference
on Artificial Intelligence, 442-449. Menlo Park,
Calif.: American Association for Artificial Intelligence.

Finin, T., and Fritzson, R. 1989. How to Serve
Knowledge—Notes on the Design of a Knowledge
Server. Presented at the AAAI Spring Symposium on
Knowledge System Tools and Languages, 28-30
March, Stanford, Calif.

Forbus, K. 1990. The Qualitative Process Engine. In
Readings in Qualitative Reasoning about Physical Sys-
tems, eds. D. Weld and J. de Kleer, 220-235. San
Mateo, Calif.: Morgan Kaufmann.

Gruber, T. R. 1991. An Experiment in the Collabora-
tive Development of Shared Ontology, Technical
Report, KSL 91-51, Knowledge Systems Laboratory,
Stanford University. Forthcoming.

Guha, R. V., and Lenat, D. B. 1990. cvc: A Mid-Term
Report. Al Magazine 11(3): 32-59.

Harp, B.; Aberg, P.; Benjamin, D.; Neches, R.; and
Szekely, P. 1991. prama: An Application of a Logis-
tics Shell. In Proceedings of the Annual Conference
on Artificial Intelligence Applications for Military
Logistics, 146-151. Williamsburg, Va.: American
Defense Preparedness Association. Forthcoming.

Johnson, W. L., and Harris, D. R. 1990. Require-
ments Analysis Using Aries: Themes and Examples.
In Proceedings of the Fifth Annual Knowledge-
Based Software Assistant Conference, 121-131. Liv-
erpool, N.Y.: Rome Air Development Center.

Kahn, R. E., and Cerf, V. E. 1988. An Open Architec-
ture for a Digital Library System and a Plan for Its
Development, Volume |: The World of Knowbots,
Technical Report, Corporation for National
Research Initiatives, Reston, Virginia.

Kahn, G.; Nowlan, S.; and McDermott, J. 1984. A
Foundation for Knowledge Acquisition. In Proceed-
ings of the IEEE Workshop on Principles of Knowl-
edge-Based Systems, 89-96. Washington, D.C.: IEEE
Computer Society.

McDermott, J. 1990. Developing Software Is Like
Talking to Eskimos about Snow. In Proceedings of
the Eighth National Conference on Artificial Intelli-
gence, 1130-1133. Menlo Park, Calif.: American
Association for Artificial Intelligence.

Mckay, D.; Finin, T.; and O’Hare, A. 1990. The Intel-
ligent Database Interface. In Proceedings of the
Eighth National Conference on Artificial Intelli-
gence, 677-684. Menlo Park, Calif.: American Asso-
ciation for Artificial Intelligence.

Pan, J. Y.-C.; Tenenbaum, J. M.; and Glicksman, J.
1989. A Framework for Knowledge-Based Comput-
er-Integrated Manufacturing. IEEE Transactions on
Semiconductor Manufacturing 2(2): 33-46.

Roth, S., and Mattis, J. 1990. Data Characterization
for Intelligent Graphics Presentation. In Proceed-
ings of CHI-90, The Annual Conference on Com-
puter-Human Interaction, 193-200. New York:
Association of Computing Machinery.

Sathi, A.; Fox, M. S.; and Greenberg, M. 1990. Rep-
resentation of Activity Knowledge for Project Man-
agement. IEEE Transactions on Pattern Analysis and
Machine Intelligence PAMI-7(5): 531-552.

Smith, D. R. 1990. A Semiautomatic Program Devel-
opment System. IEEE Transactions on Software Engi-
neering SE-16(9): 1024-1043.

Steele, G. R. 1984. Common Lisp: The Language. Bed-
ford, Mass.: Digital.

Steels, L. 1990. Components of Expertise. Al Maga-
zine 11(2): 29-49.

Stefik, M. 1986. The Next Knowledge Medium. Al
Magazine 7(1): 34-46.

Swartout, W. R., and Smoliar, S. 1989. Explanation:
A Source for Guidance in Knowledge Representa-
tion. In Knowledge Representation and Organization in
Machine Learning, ed. K. Morik, 1-16. New York:
Springer-Verlag.

Waterman, D. A. 1986. A Guide to Expert Systems.
Reading, Mass.: Addison-Wesley.

Articles

FALL 1991 55

Articles

56 Al MAGAZINE

Robert Neches is head of the
Integrated User-Support Envi-
ronments Group at USC/Infor-
mation Sciences Institute and a
research associate professor in
the Computer Science Depart-
ment at USC. His current
research topics include intelli-
gent interfaces and develop-
ment methodologies for large systems integrating
Al and conventional technology. Since November
1989, he has been serving as coordinator for a uni-
versity, government, and private industry effort to
develop conventions that facilitate the sharing and
reuse of Al knowledge bases and knowledge repre-
sentation system technology.

Richard Fikes is a research pro-
fessor in the Computer Science
Department at Stanford Univer-
sity and is co-director of the
Heuristic Programming Project
in Stanford’s Knowledge Sys-
tems Laboratory. Fikes is a
fellow of the American Associa-
tion for Artificial Intelligence
and is prominently known as co-developer of the
sTRIPS automatic planning system and one of the
principal architects of IntelliCorp’s Kee system.

Tim Finin is professor and
chairman of the Computer Sci-
ence Department at the Univer-
sity of Maryland. Prior to
joining the University of Mary-
land, he was a technical director
at the Unisys Center for
Advanced Information Technol-
ogy, a member of the faculty of
the University of Pennsylvania, and on the
research staff of the Massachusetts Institute of
Technology Al Laboratory. He has had over 20 years
of experience in the applications of Al to problems
in database and knowledge base systems, expert
systems, natural language processing, and intelli-
gent interfaces. Finin holds a B.S. degree in electri-
cal engineering from the Massachusetts Institute of
Technology and a Ph.D in computer science from
the University of Illinois.

/8 AN

Thomas Gruber is a research
scientist in the Knowledge Sys-
tems Laboratory, Stanford Uni-
versity. His current research
interests include the develop-
ment of shared ontologies for
knowledge sharing and reuse,
the acquisition and generation
of design rationale, and the
computer-assisted formulation of engineering
models. His earlier work at the University of Mas-
sachusetts was in the areas of knowledge-based
communication prosthesis and automated knowl-
edge acquisition for expert systems.

Ramesh Patil recently joined
the Intelligent Systems Division
of USC/ Information Sciences
Institute as a project leader after
serving as an associate professor
of computer science at MIT. His
Ph.D. work on multilevel causal
reasoning systems for medical
diagnosis, performed in the
Computer Science Department at MIT, was the
basis for his receiving the American Association for
Medical Systems and Informatics Young Investiga-
tor Award in Medical Knowledge Systems. His cur-
rent research interests include knowledge
representation, signal interpretation, qualitative
reasoning, and diagnostic reasoning in medicine
and electronics.

Ted Senator is chief of the Artificial Intelligence
Division in the Financial Crimes Enforcement Net-
work of the U.S. Treasury Department. In his prior
position with the Department of the Navy, he man-
aged the Navy’s applications under the Strategic
Computing Initiative.

William R. Swartout is director
of the Intelligent Systems Divi-
sion and an associate research
professor of computer science at
USC/Information Sciences Insti-
tute. He is primarily known for
his work on explanation and
new expert system architectures.

Swartout was co—program chair
for the 1990 National Conference on Artificial
Intelligence and is currently serving on the Board
of Councilors of the American Association of Artifi-
cial Intelligence.

