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A Brief Bio of Zhongli Ding

The Long Path
• Grown up in south China
• Earned B.S. in July 1999 from USTC, Hefei
• Started graduate study in September 1999
• Earned M.S. in May 2001 from UMBC
• Decided to continue the study in September 2001
• Advanced to candidacy in July 2003

Publications (partial list)
• BayesOWL: Uncertainty Modeling in Semantic Web Ontologies (Book Chapter)
• A Bayesian Network Approach to Ontology Mapping (ISWC 2005)
• Modifying Bayesian Networks by Probability Constraints (UAI 2005)
• A Bayesian Methodology towards Automatic Ontology Mapping (AAAI C&O'05)
• A Bayesian Approach to Uncertainty Modeling in OWL Ontology (AISTA-2004)
• A Probabilistic Extension to Ontology Language OWL (HICSS-37)
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Motivation

Partial or incomplete knowledge

• degree of inclusion
• degree of overlap

• degree of closeness
• degree of similarity
• noisy or uncertain input in reasoning

• uncertainty in concept mapping (loss of information)

Probability theory and Bayesian networks
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Thesis Statement

None of the existing ontology languages, including 
OWL, provides a means to quantify the degree of 
overlap or inclusion between concepts, or to support 
reasoning with uncertain information and knowledge in 
ontology engineering. 

This work is an attempt to develop a framework which 
augments and supplements OWL with additional 
expressive power for representing and reasoning with 
uncertainty based on Bayesian networks (BNs).
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Brief Background – 1
Semantic Web, Ontology, Bayesian Networks

Semantic Web: Provides semantics for 
information exchanged over Internet.
Ontology: An explicit specification of a 
conceptualization.
• RDF(S) and OWL: Define concepts and relations 

about concepts in a particular domain.
• Description Logics (DLs): Provide decidable and 

sound inference mechanism.
Bayesian Networks (BNs): DAG + CPT
• Chain Rule: 
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Brief Background – 2
Evidences in BNs

Hard Evidence: Instantiates a node to a particular state.
• i.e., Pr(Xi = xi) = 1 and Pr(Xi = xi’ ≠ xi) = 0

Soft Evidence: Gives a distribution of a node on its states.
• hard evidence is a special case of soft evidence

Virtual Evidence: The likelihood of a variable’s distributions.
• the probability of observing Xi being in state xi if its true state is xi’
• virtual evidence is equivalent to soft evidence in expressiveness

Xi

Oi
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Brief Background – 3
Works on Extending DLs with BNs – 1

P-CLASSIC (can not handle “Equivalence” operator)
PTDL (TDL includes only “Conjunction” and “Role Quantification”
operators)

PR-OWL extends OWL with full first-order expressiveness based 
on MEBNs
OWL_QM extends OWL to support the representation of PRMs

Holi and Hyvönen uses BNs to model degrees of conceptual 
overlap only for ontologies encoded in RDF(S)

9/65

Brief Background – 4
Works on Extending DLs with BNs – 2

Sometimes it is difficult 
or even impossible for 
P-CLASSIC to assign 
CPTs to some nodes.

disjoint
subclass

subclass

subclass

overlap

disjoint

DAG construction in P-
CLASSIC is arbitrary, 
no specific rules to 
follow.
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Brief Background – 5
Works on Representing Probabilistic Information

Fukushige proposes an extended vocabulary for 
describing probabilistic relations in a way that is both 
semantic web compatible and easy to map to a BN.

The OWL_QM system includes an OWL implementation 
of PRM constructs about facets, slot chains, an owl class 
named “ProbabilisticRelationship” for casual relations, 
and a set of vocabularies to define the probability 
distributions or tables in a probabilistic relationship.
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My Work

OWL 
Taxonomy 
Ontology

Probabilistic 
Constraints

E-IPFP
D-IPFP 
SD-IPFP

Modifying Modifying 
CPTs of BNs CPTs of BNs 
by Probabilistic by Probabilistic 
ConstraintsConstraints

BayesOWLBayesOWL

Structural 
Translation (DAG)

CPT Construction

Translated BN
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Preliminary – 1
I-divergence, Total Variance, Dominance, I1-projection

I-divergence Total Variance

Dominance
meansmeans

I1-projection
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Preliminary – 2
IPFP (Iterative Proportional Fitting Procedure), C-IPFP

IPFP

C-IPFP

Here

Modify the joint 
distribution to meet 
one constraint at 

each step.

Converge to distribution Q*, 
which is an I1-projection of 
the initial distribution Q(0) .
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The Problem – 1

Modifying CPTs of a BN to meet a set of given low-
dimensional probabilistic constraints is important when
• designing new BNs
• merging small BNs into a large one
• refining an existing BN with new or more reliable probabilistic 

information
because it is not that easy to obtain the CPTs for each 
of the variables since experts’ opinions are often
• coarse
• not in a uniform scale
• not in the form of CPTs

Learning CPTs from statistical data usually requires 
samples of complete instantiations of all variables
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The Problem – 2

Problem Definition:
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The Problem – 3

Compiled Version

DAG+CPT

Original JPD
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The Problem – 4

JPD obtained by IPFP

extracts

Compiled Version

DAG+CPT
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The Problem – 5

JPD obtained by IPFP

extracts

DAG+CPT

Compiled Version

JPD of Modified BN
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E-IPFP – 1
Extend IPFP to handle requirement 1: the solution 
distribution should be consistent with the network 
structure, i.e.,

Treat this requirement as the (m+1)th probabilistic 
constraint to IPFP, name it “structural constraint”, i.e.,

We can prove that this process converges to a 
distribution          and          is an I1-projection on 
constraint set  
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E-IPFP – 2
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E-IPFP – 3

Modified BN by E-IPFP 
DAG+CPT

JPD of Modified BN
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D-IPFP – 1
The computation of both IPFP and E-IPFP is on the entire joint 
distribution of X at every iteration expensive, i.e.,     

for priors or                          for conditionals.

Can we utilize the interdependencies imposed on the 
distribution by the network structure and only update some 
selected CPTs?

Decomposes the global E-IPFP (the one involving all n
variables) into a set of local E-IPFP, each for one constraint           
(or               ), on a small subnet of      that contains    
(or             ), i.e.,           (or               ) is used to 
modify                  .
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D-IPFP – 2
and and

How to get Y?

(Y1) Y=X, S=∅

(Y2) Y=Yi (or Y=Yi ∪ Zi for conditionals)

(Y3) Get initial Y and S as (Y2), then 
repeat the following process until 
nothing more could be added to Y:
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D-IPFP – 3

We can prove that:
• each iteration of D-IPFP for one constraint produces an 

I1-projection of the previous distribution on a constraint 
set

• the complete D-IPFP process converges to a 
distribution          which is an I1-projection of on 
constraint set 

Sacrifice I-divergence for significant saving in 
computation:
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D-IPFP – 4

Modified BN by D-IPFP
DAG+CPT

JPD of Modified BN
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SD-IPFP – 1

A probabilistic constraint is local if it contains only 
one variable and some of its parents. Thus,

Similar equations can be obtained in case of conditional
constraint.
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SD-IPFP – 2

JPD of Modified BN

Modified BN by SD-IPFP
DAG+CPT
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The IPFP API
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Experiments – 1
4 constraints: (2 local ones + 2 non4 constraints: (2 local ones + 2 non--local ones)local ones)
Local Marginal (1): {P(B)}
Local Conditional (1): {P(G|C)}
Non-local Marginal (1): {P(R,D)}
Non-local Conditional (1): {P(J|R)}

8 constraints: (5 local ones + 3 non8 constraints: (5 local ones + 3 non--local ones)local ones)
Local Marginal (3): {P(B), P(C), P(H)}
Local Conditional (2): {P(F|C), P(N|K)}
Non-local Marginal (1): {P(R,D)}
Non-local Conditional (2): {P(N|R,D), P(Q|R,D)}

16 constraints: (10 local ones + 6 non16 constraints: (10 local ones + 6 non--local ones)local ones)
Local Marginal (5): {P(A), P(B), P(C), P(H), P(M)}
Local Conditional (5): {P(E|B,D), P(F|B), P(F|C), P(G|C), P(N|K)}
Non-local Marginal (3): {P(R,D), P(K,L), P(N,Q)}
Non-local Conditional (3): {P(J|R), P(N|R,D), P(Q|R,D)}
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Experiments – 2
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Summary
What have already been done
• E-IPFP extends IPFP to modify probability distributions represented as BNs
• Significant savings in computational cost by D-IPFP which decomposes the 

global E-IPFP into local ones with a much smaller scale
• D-IPFP is simplified and rewritten to SD-IPFP when only dealing with local 

constraints (priors or pair-wise marginals)
• SD-IPFP is further extended in BayesOWL for CPT construction under the 

condition of a given set of hard evidences
What else could be done
• How to improve efficiency

• The order of applying constraints may further reduce the speed 
• Divide a large constraint into smaller ones by exploring independence between the 

variables (possibly based on the network structure)
• Other optimizations, such as parallelizing, approximation, etc.

• How to handle inconsistent constraints
• In what situations the modification of only CPTs is no longer sufficient or 

desirable and the DAG need also be changed in order to better satisfy given 
constraints
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BayesOWL – A Probabilistic 
Extension to OWL 

Representing Probabilistic Information
• Not supported by current OWL
• Define new classes for prior and conditional probabilities

Structural Translation
• Class hierarchy: set theoretic approach
• Logical relations (equivalence, complement, disjoint, union, intersection): introducing L-Nodes

CPT Construction
• SD-IPFP

Semantics of BayesOWL
• Preserve semantics of the original ontology
• Encoded probability distributions among relevant variables

Reasoning
• Concept Satisfiability
• Concept Overlapping
• Concept Subsumption

The OWL2BN API
Comparison to Existing Works
Summary
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Representing Probabilistic 
Information – 1

Concept C is mapped to a binary random variable with two states, 
c and 
P(C = c) is interpreted as the prior probability or one's belief that 
an arbitrary individual belongs to class C
P(C = c | D = d) is interpreted as the conditional probability that 
an individual of class D also belongs to class C

Two kinds of probabilistic information / constraints
• Prior or marginal probability P(C): for classes
• Conditional probability P(C|OC), where OC ⊆πC, πC≠∅, OC≠∅: 

especially for pair-wise conditionals for RDF triples

Three new OWL classes: “PriorProb”, “CondProb”, “Variable”
• PriorProb: “hasVarible” (1), “hasProbValue” (1)
• CondProb: “hasCondition” (1 or more), “hasVariable” (1), 

“hasProbValue” (1)
• Variable: “hasClass” (1), “hasState” (1)
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Representing Probabilistic 
Information – 2

Example 1: P(c) = 0.8
<Variable rdf:ID="c">

<hasClass>C</hasClass>
<hasState>True</hasState>

</Variable>
<PriorProb rdf:ID="P(c)">

<hasVariable>c</hasVariable>
<hasProbValue>0.8</hasProbValue>

</PriorProb>

Example 2: P(c|p1,p2,p3) = 0.8
<Variable rdf:ID="c">

<hasClass>C</hasClass>
<hasState>True</hasState>

</Variable>
<Variable rdf:ID="p1">

<hasClass>P1</hasClass>
<hasState>True</hasState>

</Variable>

<Variable rdf:ID="p2">
<hasClass>P2</hasClass>
<hasState>True</hasState>

</Variable>
<Variable rdf:ID="p3">

<hasClass>P3</hasClass>
<hasState>True</hasState>

</Variable>
<CondProb rdf:ID="P(c|p1, p2, p3)">

<hasCondition>p1</hasCondition>
<hasCondition>p2</hasCondition>
<hasCondition>p3</hasCondition>
<hasVariable>c</hasVariable>
<hasProbValue>0.8</hasProbValue>

</CondProb>
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Structural Translation – 1
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Structural Translation – 2
General Principle
• Set-theoretic approach: each concept class treated as a set of 

objects/instances
• Every primitive or defined concept class C, is mapped into a two-

state (either “True” or “False”) variable node in the translated BN, 
called it concept node

• An directed arc is drawn from a superclass node to a subclass 
node
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Structural Translation – 3
Pure concept subsumption hierarchy can be easily  translated into BN 
based on subclass relations in OWL.
An example
• “Animal” is a primitive concept class
• “Male”, “Female”, and “Human” are three 

subclasses of “Animal”
• “Man” and “Woman” are two subclasses of 

“Human”

What about other logical relations?
• “Male” and Female” are disjoint with each 

other
• “Man” is an intersection of “Human” and 

“Male”
• “Woman” is an intersection of “Human”

and “Female”
• “Human” is the union of “Man” and 

“Woman”
Difficult to model these relations by 
probabilistic interdependencies 
among the related variables
• intersection 
• union
• complement
• equivalent
• disjoint

Animal

Male Human Female

Man Woman? ?

?

? ?
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Structural Translation – 4
Create L-Nodes, one for each defined logical relation
• Each concept node in the relation has an arc pointing to the L-

Node
• Logical relations are realized by the CPTs of the L-Nodes
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Structural Translation – 5
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CPT Construction – 1
Two kinds of nodes: 
• XC : concept nodes for regular concept classes

• P(C) or P(C|OC), where OC ⊆πC, πC≠∅, OC≠∅
• may impose additional conditional independence to the 

concept nodes by the d-separation in the BN structure, which 
can be viewed as default relationships, unless information to 
the contrary is provided

• XL: L-Nodes for bridging concept nodes that are associated 
by logical relations
• L-Nodes are leaf nodes, with only in-arcs, which help avoid 

forming cycles in the translated DAG
• logical relations are separated from the “rdfs:subClassOf”

relation, which makes CPTs smaller and easier to construct
• when the states of all L-Nodes are “True” (named it τ), the 

logical relations in the ontology will be held
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CPT Construction – 2
CPT for L-Nodes – 1
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CPT Construction – 3
CPT for L-Nodes – 2
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CPT Construction – 4
CPT for Concept Nodes – 1

The remaining issue is to construct CPTs for the 
concept nodes in XC so that 
• P(XC | τ), the joint probability distribution of all concept nodes 

in the subspace of τ, is consistent with all the given prior and 
conditional probabilities attached to the nodes in XC• P(C) or P(C|OC), where OC ⊆πC, πC≠∅, OC≠∅

Difficulties
• CPTs are for the general space, but the given probabilities 

are for the subspace τ
• Given probabilities may not be in the form of CPTs
• Direct application of IPFP on joint probability P(XC | τ) is 

expensive
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CPT Construction – 5
CPT for Concept Nodes – 2

Initial Distribution:
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SD-IPFP for One Constraint:

Normalization Factor:
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CPT Construction – 6
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CPT Construction – 7

DAG

CPT
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Semantics of BayesOWL – 1

The translated BN 
will be associated 
with a JPD

on top of the 
standard DL 
semantics.
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Semantics of BayesOWL – 2
In the translated BN, when all the L-Nodes are set to “True", all the logical 
relations specified in the original OWL ontology will be held, which means: 

Note it would be trivial to extend 5 and 6 to general case.
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Semantics of BayesOWL – 3
Due to d-separation in the BN structure, additional conditional independencies
may be imposed on the concept nodes in XC in the translated BN.
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Reasoning – 1

Concept Satisfiability: ?

Concept Overlapping: =?

Concept Subsumption: Instead of find the most specific subsumer C of e, 
find the one that is most similar to e based on “Jaccard Coefficient”, i.e.

1. When only considering subsumers of e (i.e., P(c|e,τ)=1), 
MSC is reduced to P(e|C,τ), and the C with the greatest 
MSC value is a most specific subsumer of e.

2. The input description e can be uncertain, i.e., it is not 
restricted to hard evidences.

52/65

Reasoning – 2
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Reasoning – 3
:

Likelihood Ratio:

handle the soft evidence by Pearl’s 
virtual evidence method
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The OWL2BN API
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Comparison to Existing Works – 1
The works closest to BayesOWL are P-CLASSIC and PTDL
• Neither P-CLASSIC nor PTDL provides a method to construct CPTs. In contrast, 

one of BayesOWL's major contributions is its SD-IPFP mechanism to construct 
CPTs from given piece-wise probabilistic constraints.

• Moreover, in BayesOWL, by using L-Nodes, the “rdfs:subClassOf” relations (or 
the subsumption hierarchy) are separated from other logical relations, so the in-
arcs to a concept node C will only come from its parent superclass nodes, which 
makes C's CPT smaller and easier to construct than P-CLASSIC or PTDL, 
especially in a domain with rich logical relations (it might be impossible for a 
domain expert to assign CPTs for some nodes, using P-CLASSIC or PTDL).

• BayesOWL is specifically designed for OWL-DL taxonomy constructs.
• BayesOWL is also engineering-oriented.

Holi and Hyvönen’s work for modeling an RDF(S) concept 
subsumption hierarchy 
• the arcs in the translated BN by are pointed from from child subconcept nodes 

to parent superconcept nodes
• only deals with the “rdfs:subClassOf” relation
• creates one node for each concept overlap, which generates a large DAG as 

well as hard to specify CPTs
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Comparison to Existing Works – 2
Example 1

Example 2
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Comparison to Existing Works – 3
Compared to PR-OWL and OWL_QM
• BayesOWL concerns explicitly more about the set or class memberships and 

logical relations rather than relationship among attributes.
• BayesOWL is based on the model-theoretic semantics of OWL, so the 

modeling of uncertainty is in the granularity of concept classes.
• Same as P-CLASSIC and PTDL, BayesOWL uses the standard BN model, 

while PR-OWL and OWL_QM do not. 
• BayesOWL trades the expressiveness with the simplicity.

Some advantages of BayesOWL
• It translates a given ontology to a BN in a systematic and practical way and then 

treats ontological reasoning as probabilistic inferences in the translated BNs. 
• It is non-intrusive in the sense that neither OWL nor ontologies defined in OWL 

need to be modified.
• It is flexible that one can translate either the entire ontology or part of it into BN 

depending on the needs.
• It does not require availability of complete conditional probability distributions for 

CPTs, pieces of probabilistic information can be incorporated into the translated 
BN in a consistent fashion using SD-IPFP.

• The cost of the approach is low and the burden to the user is minimal.
• It can be easily extended to handle other ontology representation formalisms 

(syntax is not important, semantic matters), if not using OWL.
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Summary
What have already been done
• proposed a method to encode probabilistic constraints for ontology classes and 

relations in OWL
• defined a set of rules for translating an OWL taxonomy ontology into a BN DAG
• provided a new algorithm SD-IPFP for efficient construction of CPTs

• the translated BN is semantically consistent with the original ontology and satisfies all 
given probabilistic constraints

• reasoning can be conducted as probabilistic inferences with potentially better, more 
accurate results

• implemented the OWL2BN API based on the current settings
What else could be done

• extending the translation to include properties, instances and datatypes
• supporting ontology mapping based on BayesOWL (Rong Pan’s Ph.D. 

dissertation)
• learning probabilities from existing web data (Yang Yu’s M.S. thesis)
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Conclusion and Future Research – 1
Major Contributions

provides a non-intrusive and flexible method to translate an OWL 
taxonomy ontology into a BN
provides a systematic and disciplined approach for CPT construction 
of the translated BN, and its extensions to solve more general BN 
modification problems
proposes a method to markup probabilistic information using OWL 
statements
implemented APIs to be used by other researchers and practitioners in 
ontology engineering

this research is the first to model uncertainty in OWL with a principled 
yet practical manner in the semantic web community

besides the theoretical foundation, its value is also reflected by its 
careful considerations in engineering which make BayesOWL easy to 
use by ontology designers and users.
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Conclusion and Future Research – 2
Future – 1: Dealing with Properties and Instances

Can we just adopt methods from P-CLASSIC directly?
• needs a complicated probability computation mechanism 

across the set of p-classes
Can we translate the whole ontology into one single 
standard Bayesian network?
• the difficulty comes from the fact that a single concept C

may be associated with more than one probability spaces 
when C acts in different roles

• how to connect these two spaces is the hinge to completely 
resolve this issue

Can we borrow methods from PRM or DAPER to build a 
BN based on instances?
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Conclusion and Future Research – 3
Future – 2: Dealing with Inconsistent Probabilistic Constraints

the impact of the input constraint set's quality on the quality 
of solution
• Existence: Under what condition will the input constraint set 

specify a multivariate joint distribution?
• Uniqueness: Assume such joint distribution exists, when will it 

be unique?
• Inconsistency: How to deal with inconsistent input constraint 

set which either oscillates in cycles or fails to converge
• method 1: define some “distance measure” from the marginals of a 

distribution in the oscillating sequence to the given constraints, 
and choose the one that minimizes the distance measure as the 
best solution

• method 2: “missing data methods”, which aims to modify the given 
inconsistent probabilistic constraints to make it workable by 
analyzing and processing the inconsistent data (assume data 
exists) using methods from Statistics
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Conclusion and Future Research – 4
Future – 3: Learning Probabilities from Web Data

Cross-Classification using Rainbow

Initial solution: using text classification 
technique by explicitly associating a 
concept with exemplars retrieved and 
selected automatically from WWW.

How to obtain high quality exemplars (both 
positive and negative) automatically?
(1) how relevant to the concept?
(2) how comprehensive in capturing all important 
aspects of the concept?

(1) how to form the query strings based on given 
ontologies?
(2) how to pre-process the documents crawled 
back?

issue: the semantics of a concept in a document represents more close to its meaning in 
natural language, while the semantics of a concept in OWL is based on model-theoretics.
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Conclusion and Future Research – 5
Future – 4: Supporting Ontology Mapping

Proposed Ontology Mapping Framework

Mapping Concept A in Ontology1 to B in Ontology2

Remaining Issues: 
(1) from 1:1 to 1:n, n:1, n:m
(2) mapping reduction
(3) composite concepts 
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Conclusion and Future Research – 6
Future – 5: Other Comments

design and develop GUI interfaces for the current prototype 
implementation
develop an ontology for standard Bayesian networks
develop an ontology of probability theory

?
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