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Abstract 
The Intelligent Database Interface (IDI) is a cache-based 
interface that is designed to provide Artificial Intelligence 
systems with efficient access to one or more databases on one 
or more remote database management systems (DBMSs). 
It can be used to interface with a wide variety of different 
DBMSs with little or no modification since SQL is used to 
communicate with remote DBMSs and the implementation 
of the ID1 provides a high degree of portability. The query 
language of the ID1 is a restricted subset of function-free 
Horn clauses which is translated into SQL. Results from the 
ID1 are returned one tuple at a time and the ID1 manages 
a cache of result relations to improve efficiency. The ID1 is 
one of the key components of the Intelligent System Server 
(ISS) knowledge representation and reasoning system and is 
also being used to provide database services for the Unisys 
spoken language systems program. 

Introduction 
The Intelligent Database Interface (IDI) is a portable, 
cache-based interface designed to provide artificial intel- 
ligence systems in general and expert systems in par- 
ticular with efficient access to one or more databases 
on one or more remote database management systems 
(DBMS) which support SQL [Chamberlm, et. al., 
19761. The query language of the ID1 is the Intelligent 
Database Interface Language (IDIL) [O’Hare, 19891 and 
is based on a restricted subset of function-free Horn 
clauses where the head of a clause represents the tar- 
get list (i.e., the form of the result relation) and the 
body is a conjunction of literals which denote database 
relations or operations on the relations and/or their at- 
tributes (e.g., negation, aggregation, and arithmetic op- 
erations). 

The ID1 is one of the key components of the In- 
telligent System Server (ES) [Finin, et. al., 19891 
which is based on Protem [Fritzson and Finin, 19881 
and provides a combined logic-based and frame-based 
knowledge representation system and supports forward- 
chaining, backward-chaining, and truth maintenance. 
The ID1 was designed to be compatible with the logic- 
based knowledge representation scheme of the ISS and 
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its tuple-at-a-time inference mechanisms. The ID1 has 
also been used to implement a query server supporting 
a database used for an Air Trorvel Information System 
which is accessed by a spoken language system imple- 
mented in Prolog [Dahl, et. al., 19901. 

In addition to providing efficient access to remote 
DBMSs, the ID1 offers several other distinct advan- 
tages. It can be used to interface with a wide vari- 
ety of different DBMSs with little or no modification 
since SQL is used to communicate with the remote 
DBMS. Also, several connections to the same or differ- 
ent DBMSs can exist simultaneously and can be kept 
active across any number of queries because connec- 
tions to remote DBMSs are abstract objects that are 
managed as resources by the IDI. Finally, accessing 
schema information is handled automatically by the 
IDI, i.e., the application is not required to maintain 
up-to-date schema information for the IDI. This signif- 
icantly reduces the potential for errors introduced by 
stale schema information or by hand entered data. 

The ID1 can be viewed as a stand-alone DBMS inter- 
face which accepts queries in the form of IDIL clauses 
and returns the result relation as a set of tuples (i.e., 
a list of Lisp atoms and/or strings). IDIL queries are 
translated into SQL and sent to the appropriate DBMS 
for execution. The results from the DBMS are then 
transformed by the ID1 into tuples of Lisp objects. Al- 
though the IDI was not designed to be used directly 
by a user, the following descriptions will be couched 
in terms of using the ID1 as a stand-alone system so 
that we may avoid complicating our discussions with 
the details of an AI system such as the ISS. 

The design of the ID1 was heavily influenced by pre- 
vious research in the area of AI/DB integration [Kellog, 
et. al., 1986, O’Hare, 1987, O’Hare and Travis, 1989, 
O’Hare and Sheth, 19891. One of the more significant 
design criteria that this lead to is the support of non- 
trivial queries in IDIL. That is, to allow for queries in- 
volving more than just a single database relation. This 
capability allows the AI system to off-load computa- 
tions that are more efficiently processed by the DBMS 
instead of the AI system (e.g., join operations). In many 
cases, this also has the effect of reducing the size of data 
set that is returned by the DBMS. 
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Figure 1: Of the four alternative approaches to AI/D5 inte- 
gration, the Intelligent Database Interface is an example of 
an enhanced AI/DB interface. 

While the ID1 is to some small degree system depen- 
dent, it does offer a high degree of portability because 
it is implemented in Common Lisp, communicates with 
remote DBMSs using SQL and standard UNIX pipes, 
and represents IDIL queries and their results as Com- 
mon Lisp objects. 

In the following sections we present a brief overview 
of the area of AI/DB integration which represents a 
large part of the motivation for the IDI, a discussion 
of some of the more significant features of the IDI, the 
organization and major components of the IDI, and fi- 
nally an example of how the ID1 is being used in two 
applications. - 

AI/DB Integration 
The integration of AI and DBMS technologies promises 
to play a significant role in shaping the future of com- 
puting. As noted in [Brodie, 19881, AI/DB integration 
is crucial not only for next generation computing but 
also for the continued development of DBMS technology 
and for the effective application of much of AI technol- 
ogy* 

While both DBMS and AI systems, particularly ex- 
pert systems, represent well established technologies, 
research and development in the area of AI/DB inte- 
gration is comparatively new. The motivations driv- 
ing the integration of these two technologies include 
the need for (a) access to large amounts of shared 
data for knowledge processing, (b) efficient manage- 
ment of data as well as knowledge, and (c) intelli- 
gent processing of data. In addition to these moti- 
vations, the design of ID1 was also motivated by the 
desire to preserve the substantial investment repre- 
sented by most existing databases. To that end, a 
key design criterion for ID1 was that it support the 
use of existing DBMSs as independent system compo- 
nents. As illustrated in Figure 1 and described below, 
several general approaches to AI/DB integration have 
been investigated and reported in the literature (e.g., 
[Bocca, 1986, Chakravarthy, et. al., 1982, Chang, 1978, 
Chang and Walker, 1984, Jarke, et. al., 1984, Li, 1984, 
Minker, 1978, Morris, 1988, Naish and Thorn, 1983, 
Reiter, 1978, Van Buer, et. al., 19851). 

Extending the AI System: In this approach, 

the AI system is extended with DBMS capabilities to 
provide efficient access to, and management of, large 
amounts of stored data. In general, such systems do 
not incorporate full DBMS technology. Rather, the 
emphasis is on the AI system and the DBMS capabil- 
ities are added in an ad hoc and limited manner, e.g., 
[Ceri, et. al., 19861 implements only the data access 
layer. Alternatively, a new generation knowledge-based 
system such as LDL [Chimenti, et. al., 19871 may be 
constructed. In either ease, this approach effectively 
involves “re-inventing” some or all of DBMS technol- 
ogy. While such systems typically provide sophisticated 
tools and environments for the development of applica- 
tions such as expert systems, they can not readily make 
use of existing databases. Thus, the development of AI 
applications which must access existing databases will 
be exceedingly difficult if not impossible (e.g., when the 
database is routinely accessed and updated via more 
traditional kinds of applications). 

Extending the DBMS System: This approach 
extends a DBMS to provide knowledge representation 
and reasoning capabilities, e.g., POSTGRES [Stone- 
breaker, et. al., 19871. Here, the DBMS capabilities are 
the central concern and the AI capabilities are added in 
an ad hoc manner. The knowledge representation and 
reasoning capabilities are generally quite limited and 
they lack the sophisticated tools and environments of 
most AI systems. Such systems do not directly sup- 
port the use of existing DBMSs nor can they directly 
support existing AI applications (e.g., expert systems) 
without substantial effort on the part of the applica- 
tion developer. In some sense, this is the opposite of 
the previous approach. 

Loose Coupling: The loose coupling approach to 
AI/DB integration uses a simple interface between the 
two types of systems to provide the AI system with ac- 
cess to existing databases, e.g., KEE-connection [Abar- 
bane1 and Williams, 19861. While this approach has 
the distinct advantage of integrating existing AI sys- 
tems and existing DBMSs, the relatively low level of 
integration results in poor performance and limited use 
of the DBMS by the AI system. In addition, access 
to data from the database, as well as the data itself, 
is poorly integrated into the representational scheme of 
the AI system. The highly divergent methods repre- 
senting data (e.g., relational data models vs. frames) is 
generally left to the application developer or knowledge 
engineer with only minimal support from the AI/DB 
interface. 

Enhanced AI/DB Interface: The last approach 
to AI/DB integration represents a substantial enhance- 
ment of the loosely coupled approach and provides a 
more powerful and efficient interface between the two 
types of systems. As with the previous approach, this 
method of AI/DB integration allows immediate advan- 
tage to be taken of existing AI and DB technologies 
as well as future advances in them. The problems of 
performance and under-utilization of the DBMS by the 
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AI system are handled with differing degrees of suc- 
cess first by increasing the functionality of the interface 
itself, and then if necessary, enhancing either the AI 
system or the DBMS. For example, the BERMUDA 
system [Ioannidis, et. al., 19881 uses a form of result 
caching to improve efficiency and performs some sim- 
ple pre-analysis of the AI application to identify join 
operations that can be performed by the DBMS rather 
than the AI system. The BrAID system [O’Hare and 
Sheth, 19891 is similar except that it supports more gen- 
eral caching and pre-analysis capabilities and allows for 
experimentation with different inference strategies. 

The ID1 is an interface that can be used to facili- 
tate the development of AI/DB systems using this last 
approach. That is, the ID1 is cache-based interface to 
DBMSs and is designed to be easily integrated into var- 
ious types of AI systems. The design of the ID1 also al- 
lows it to be used as an interface between DBMSs and 
other types of applications such as database browsers 
and general query processors. 

Design Features _ , 
The ID1 supports several features which simplify its use 
in an AI system. These include 

Connections to a DBMS are managed transparently so 
that there can be multiple active queries to the same 
database using a single open connection. 
Connections to a given database are opened upon de- 
mand, i.e. at first use instead of requiriig an explicit 
database open request. 
Database schema information is loaded kom the database 
either when the database is opened or when queries re- 
quire schema information based upon user declarations. 
The query interface is a logic-based language but uses 
user supplied functions to declare and recognise logic vari- 
ables. 
Results of queries to a DBMS are cached, improving 
the overall performance system and the cache is accessed 
transparently by a query manager. 

All but the last of the features are described in this sec- 
tion. The cache system and initial performance results 
are described in subsequent sections. 

Making Connect ions 
As suggested above, there are numerous approaches to 
interfacing an AI system with existing DBMSs. How- 
ever, the basic alternatives involve balancing the costs 
of creating the connection to the DBMS and of process- 
ing the result relations from a DBMS query. Deciding 
which alternative is the best requires knowledge about 
the typical behavior of the AI system as well as other, 
more obvious factors, such as communication overhead 
(cf. [O’Hare and Sheth, 19891). Consider the following 
two modes of interaction between an AI system and a 
DBMS: 

e The AI system generates a few DBMS queries that tend 
to yield very large results and the AI system uses only a 
fraction of the result. 

e The AI system generates many DBMS queries that tend 
to yield, on average, small results and the AI system uses 
most or all of the result. 

In the first case, it would be best to avoid the cost 
of processing the entire result by using demand-driven 
techniques to produce only one tuple at a time from 
the result stream of the DBMS. However, this requires 
that separate connections be created for each DBMS 
query. Thus the overhead of creating such connections 
must be less than the cost of processing the entire result 
relation. 

In the second case, it would be best to avoid the cost 
of creating numerous connections to the DBMS by using 
a single connection for multiple queries. However, this 
requires that the entire result ofeach query be processed 
so that successive queries can be run using the same 
connection. The cost of processing DBMS results (i.e., 
reading the entire result stream and storing it locally) 
must be less than the cost of creating a new connection 
for each DBMS query. 

For most systems, it seems reasonable to assume that 
the total cost for creating a new DBMS connection will 
be relatively high. Thus, using the same connection for 
different DBMS queries would result in a net savings. 
While specific break-even points could be estimated, it 
is not clear one need go that far since there are other 
reasons for minimizing the number of DBMS connec- 
tions that are open at the same time. Foremost among 
these is the limit that most operating systems have on 
the number of streams that can be open simultaneously. 
This can severely limit the number of DBMS connec- 
tions that we can have at one time. If one is also inter- 
ested in allowing connections to different databases, on 
either the same or a different DBMS, then it is impor- 
tant to minimize the number of open connections for a 
single database. 

Yet another consideration is the use of caching for 
DBMS results. That is, if DBMS results can be cached 
locally by the AI system or an agent serving it then all 
of the DBMS results will probably be processed by the 
caching mechanism. Thus, the first alternative (where 
it is assumed that the DBMS results will not, in general, 
be totally consumed) is no longer applicable. 

In light of these constraints and requirements, it 
seems best to minimize the number of DBMS connec- 
tions that can be open simultaneously. Briefly, the 
approach taken in the ID1 is to open a connection 
when a DBMS query is encountered against a database 
for which no connection exists and process the result 
stream one tuple at a time until and unless another 
DBMS query on the same database is encountered. At 
that point, the new query is sent to the DBMS, the re- 
mainder of the result stream for the previous query is 
consumed and stored locally, and then the new result 
stream is processed one tuple at a time as before. 
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Automating Access to Schema Information 

One of the key features of the ID1 is the automatic 
management of database schema information. The user 
or application program is not required to provide any 
schema information for those database relations that 
are accessed va’u IDIL queries. The ID1 assumes the 
responsibility for obtaining the relevant schema infor- 
mation from the appropriate DBMS. This provides sev- 
eral significant advantages over interfaces which rely on 
the user to provide schema information. Most impor- 
tantly, the schema information will necessarily be con- 
sistent with that stored in the DBMS and thus any 
errors introduced by hand-coding the schema informs 
tion are eliminated. The only exception to this occurs 
when the schema on the DBMS is modifled after the 
ID1 has accessed it since the ID1 caches the schema 
information and thus maintains a private copy of it. 
While this stale data problem exists for any system 
which maintains a separate copy of the schema informa- 
tion, the ID1 provides a simple mechanism for forcing 
the schema information to be updated. In addition, 
this approach greatly facilitates the implementation of 
database browsers since users need not know the names 
or structure of relations stored in a particular database. 

Logical Glue 

Another significant feature of the ID1 is the relative 
ease with which it can be integrated with different AI 
systems. Aside from the use of Common Lisp as the 
implementation language for the IDI, this is achieved 
by employing a logic-based language as the query lan- 
guage for the IDI. The language, IDIL, may be used 
as a totally independent query language or, more im- 
portantly, it may be more closely integrated with the 
knowledge representation language of a logic-based AI 
system. In the later case, the key is to allow the ID1 to 
share the same definition of a logic variable as the host 
AI system. This is accomplished be simply redefining a 
small set of functions within the ID1 which are used to 
recognize and create instances of logic variables. 

The IDIL 1 query language is a restricted subset of 
function-free Horn clauses where the head of a clause 
represents the target list (i.e., the form of the result 
relation) and the body is a conjunction of literals which 
denote database relations or operations on the relations 
and/or their attributes (e.g., negation, aggregation, and 
arithmetic operations). Figure 2 shows some example 
queries. 

ID1 Organization 
As Figure 3 illustrates, there are four main components 
which comprise the ID1 - the Schema Manager, the 
DBMS Connection Manager, the Query Manager, and 
the Cache Manager. There are three principal types 

’ “IDIL” is pronounced as “idle” and should not be con- 
fused with “idyll”. 

Get supplier names for suppliers who do not SUpp1y part p%. 

( (an8 ,Sname) 
<- 
(supplier -Sno ,Sname -Status -City) 
(not (supplier,part ,Sno "p2" ,Qty))) 

Get supplier namea and quantity supplied for supplier8 that 
supply more than ,900 units of part p.% 

((am ,Snme ,Wy) 
<- 
(supplier -Sno ~Snanw -Status -City) 
(supplier-part ,Sno "p2" -t&y) 
0 ,qty 300)) 

Figure 2: Two example lDlL queries using the “suppliers” 
database. Symbols beginning with a “/’ character have been 
declared to be logic variables. 

of inputs or requests to the IDI: (a) a database dec- 
laration; (b) an IDIL query and subsequent retrieval 
requests against the result of an IDIL query; and (c) 
advice to the Cache Manager.. Database declarations 
convey simple information about a given database, e.g., 
the type of the DBMS on which the database resides 
and the host machine for the DBMS. For each IDIL 
query, the ID1 returns a generator which can be used to 
retrieve the result relation of an IDIL query one tuple at 
a time. The ID1 also supports other types of requests, 
e.g., access to schema information, which are described 
elsewhere [O’Hare, 19891. 

The Schemu Munuger (SM) is responsible for manag- 
ing the schema information for all declared databases 
and it supplies the Query Manager with schema infor- 
mation for individual database relations. This entails 
processing database declarations, accessing and storing 
schema information for declared databases, and man- 
aging relation name aliases which are used when two or 
more databases contain relations with identical names. 
Whenever a connection to a database is created, the SM 
automatically accesses the list of relation names that 
are contained within the database. This list is then 
cached for later access in the event that the connection 
is closed and re-opened at some later time. In this event 
the SM will only access the DBMS schema information 
if it is explicitly directed to do so, otherwise the cached 
list of relation names will be used. 

The DBMS Connection Manager (DCM) manages all 
database connections to remote DBMSs. This includes 
processing requests to open and close database connec- 
tions as well as performing all the low-level I/O opera- 
tions associated with the connections. Within the IDI, 
each database has at most one active connection associ- 
ated with it and each connection has zero or more query 
result streams or generators associated with it but only 
one generator may be active. 

The Query Manager (QM) is responsible for process- 
ing IDIL queries and managing their results. IDIL 
queries are processed by translating them into SQL 
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Figure 3: The IDI includes four main components: the 
Schema Manager manages the schema information for all de- 
clared databases; the Connection Manager handles connections 
to remote DBMSs; the Query Manager is responsible for pro- 
cessing IDIL queries and their results; and the Cache Manager 
controls the cache of query results in accordance with the ad- 
vice supplied by the application. 

which is then sent to the appropriate DBMS by the 
DCM. If the query is successfully executed by the 
DBMS then the QM returns a generator for the result 
relation. A generator is simply an abstract data type 
used to represent the result of an IDIL query. There are 
two basic type of operations which may be performed 
on a generator: (a) get the next tuple from the result 
relation and (b) terminate the generator (i.e., discard 
any remaining tuples). Generators are actually created 
and managed by the DCM since there is more than one 
possible representation for a result relation, e.g., it may 
be a result stream from a DBMS or a cache element. 
The QM merely passes generators to the DCM along 
with requests for the next tuple or termination. 

The Cuche Munager is responsible for managing the 
cache of query results. This includes identifying IDIL 
queries for which the results exist in the cache, caching 
query results, and replacing cache elements. In addi- 
tion, our design allows the AI system to provide the 
cache manager with u&ice to help it decide how to 
manage its cache and make the following kinds of crit- 
ical decisions: 

(D pre-fetching - which relations (and when) should be 
fetched in anticipation of needing them? This can 
yield a significant increase in speed since the database 
server is running as a separate process. This can 
also be used to advantage in an environment in which 
databases are accessed over a network in which links 

are unreliable - critical database relations can be ac- 
cessed in advance to ensure their availability when 
needed. 

e resuZtts caching - which query results should be saved 
in the cache? Both base and derived relations vary 
in their general utility. Some will definitely be worth 
caching since they are likely to be accessed soon and 
others not. 

Q pery generalization - which queries can be usefully 
generalized before submitting them to the DBMS? 
Query generalization is a useful technique to reduce 
the number of queries which must be made against 
the database in many constraint satisfaction expert 
systems. It is also a general technique to handle 
expected subsequent queries after a “null answer” 
[Motro, 19861. 

0 replacement - which relations should be removed 
when the cache becomes full? 

Additional kinds of advice and examples can be found 
in [O’Hare and Travis, 1989, O’Hare and Sheth, 19891. 

As with any type of cache-based system, one of the 
more difficult design issues involves the problem of 
cache validation. That is, determining when to inval- 
idate cache entries because of updates to the relevant 
data in the DBMS. Our current implementation does 
not attempt cache validation, which will be a focus of 
future research. This still leaves a large class of applica- 
tions for which cache validation is not a problem. These 
includes access to databases that are write-protected 
and updated infrequently, such as the Ojg;&l Airline 
Guide database, and databases that are static relative 
to the time scale of the AI application accessing them. 

Moreover, this problem is common to any AI system 
which gets some of its data from an external source and 
stores in its knowledge base. Most current interfaces 
between AI systems and databases (e.g. KEE Connec- 
tion [Intellicorp, 19871) simply do not worry about this 
problem at all. Our approach attempts to minimize 
the AI system’s copying of database data in two ways. 
First, by providing convenient and efficient access to 
the information in the database, the AI system devel- 
opers will have less need to make a local copy of the 
data. Second, all of the database information that is 
copied (i.e., in the cache) is isolated in one place and 
can therefor be more easily “managed” - reducing the 
problem to “cache validation”. 

There are a number of approaches to the validation 
problem which vary in completeness and ease of im- 
plementation. Examples of possible components of a 
cache validation system include: only caching relations 
declared to be non-volatile, only caching data between 
scheduled DB updates, using heuristics (e.g., a decay 
curve) to estimate data validity, and implementing a 
“snoopy cache” which monitors the database transac- 
tions for updates which might invalidate the cached 
data. 
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Figure 4: The aggregate processing time is broken down in 
terms of the three main stages of processing: translution, ex- 
ecution, and coZ2ection. For each processing stage, the mini- 
mum, mean, and maximum processing times are shown. 

Current Status 

Performance 

The IDI, as described here, has been implemented in 
Common Lisp and tested as a stand-alone query pro- 
cessor against two different databases running on RTI 
INGRES and is also being used as a query server for 
the Unisys spoken language project. The performance 
results obtained thus far are, at best, preliminary since 
the size of the test suite was comparatively small and 
the ID1 is just now being integrated with an AI system. 
However, the results are encouraging and indicate the 
potential for efficient database access afforded by the 
IDI. The following summarize some of the more inter- 
esting of these performance results. 

One test set of IDIL queries used consisted of 48 
queries where there were 22 unique queries, i.e., each 
query was repeated at least once in the test set. The 
queries ranged from simple (i.e., only project and select 
operations were required) to complex (i.e., a four-way 
join with two aggregation operations as well as projects 
and selects). The size of the result relations varied from 
zero to 17 tuples. The statistics presented here are 
based on the mean processing times for 20 repetitions 
of the test set of queries. 

Figure 4 shows a breakdown of the aggregate process- 
ing time in terms of the three main stages of processing: 
translation (i.e., the time to translate and IDIL query 
into SQL), ezecvtion (i.e., the elapsed time between 
sending the SQL query to the DBMS and obtaining the 
first tuple of the result relation), and collection (i.e., 
the time required to collect all the tuples in the result 
relation and convert them into internal form). For each 
processing stage, the minimum, mean, and maximum 
processing times are shown. The cache was disabled 
for these measurements so that a more accurate picture 
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Figure 5: Cache performance is measured for three cases: 
(a) the without caching or base-line case where caching was 
disabled, (b) the empty cache case where caching was enabled 
but the cache was cleared before each repetition of the test set, 
and (c) the non-empty cache case where the cache contained 
the results for all queries in the test set. 

of the relative processing times for each stage could be 
established. 

The differences in translation time reflect a depen- 
dence on the number of relations in the IDIL query. 
Similarly, the collection time is a function of the num- 
ber of tuples in the result relation. In both cases, the 
processing times are significantly less than the execu- 
tion time which is effected by the complexity of the 
SQL query, the communication overhead, and the load 
on the remote DBMS host (since only elapsed time was 
recorded). 

Figure 5 indicates the effects of result caching on 
performance. The results represent the mean process- 
ing times (in seconds) for all queries. Three different 
cases are represented: (a) the without caching or base- 
line case where caching was disabled, (b) the empty 
cache case where caching was enabled but the cache 
was cleared before each repetition of the test set, and 
(c) the non-empty cache c8se where the cache was con- 
tained the results for all queries in the test set. The 
difference between the base-line and empty cache cases 
is due to the number of repeated queries (i.e., 26 out 
of 48 were repeated). The fact that the base-line case 
is more than twice the empty cache indicated that the 
overhead required for result caching is not significant. 
The non-empty cache case indicates the maximum p<r 
tential benefit of result caching, i.e., nearly two orders 
of magnitude improvement in performance. Clearly this 
could only occur when the cache is “stacked” as in the 
test. However, it does help to establish an upper limit 
on the possible performance improvement afforded by 
result caching. Obviously, as the number of repeated 
queries increases so will the gain in performance. 



Application of the ID1 

Clearly, more detailed performance results need to be 
obtained using more exhaustive test sets. It will be 
particularly important to integrate the ID1 with an AI 
system and measure its performance with a variety of 
different applications. We are currently using the ID1 
to provide a database server for the Unisys spoken lan- 
guage understanding system and are investigating the 
integration of the ID1 with the Intelligent System Server 
and its Protem representation and reasoning engine, 

The ID1 and the ISS. Protem is a hybrid system 
containing both a frame-based representation system 
and a logic-based reasoning component. The integrrt 
tion of a frame-based representation system with a rela- 
tional database management system is not straightfor- 
ward. Our current approach labels some of the classes 
in the frame system as “database classes”. Any knowl- 
edge base activity which searches for the instances of 
this class will be handed a stream of “database in- 
stances” which will be the result of a query sent to the 
database via the IDI. In order to avoid filling the knowl- 
edge base memory with database information, these in- 
stances are not installed as persistent knowledge base 
objects but exist as “light weight objects” which are 
garbage collected as soon as active processes stop ex- 
amining them. They are also not “fully instantiated”. 
That is, the values for the frame’s roles are not neces- 
sarily installed. Instead, ifan attempt is made to access 
their roles, additional database queries to retrieve the 
information will generated automatically. Once again, 
this information is not added as permanent knowledge 
base data, but only last as long as the currently active 
process is using it. 

This approach has three advantages: it is relatively 
simple to implement, transparent to the user and is 
the key to isolating the data copy problem to cache 
validation as stated earlier. Once the relationship be- 
tween a database class and its database tables is de- 
clared, the class and its instances can be treated as 
any other knowledge base objects. However, without 
the ID1 cache implementation, it would be prohibitively 
slow. 

The ID1 ATIS Server. The second AI system that 
the ID1 is being used to support is a spoken language in- 
terface to an Air level Information System database. 
In this project, spoken queries are processed by a speech 
recognition system and interpreted by the Unisys Pun- 
dit natural language system [Hirschman, et. al., 19891. 
The resulting interpretation is translated into a IDIL 
query which is then sent to the ATIS Server for evalua- 
tion. This server is a separate process running the ID1 
which, in turn, submits SQL queries to an INGRES 
database server. 

The utravel agent” domain is one in which there is a 
rich source of pragmatic information that can be used 
to infer the user’s intentions underlying their queries. 
These intentions can be used to generate advice to the 

I manager to allow it to make intelligent choices cache 
about 
ment. 

query generalizations, pre-fetching and replace- 
We currently have an initial ATIS server running 

and will be collecting statistics on its transactions which 
can then be used to define a effective advice strategy. 

Conclusion 

Although the implementation of the ID1 is not com- 
plete, it does provide a solid foundation for easily cre- 
ating a sophisticated interface to existing DBMSs. The 
key characteristics of ID1 are efficiency, simplicity of 
use, and a high degree of portability which make it an 
ideal choice for supporting a variety of AI and related 
applications which require access to remote DBMSs. 

Among the various extensions to the IDI that have 
been planned for the future, most involve the Cache 
Manager. At present, the implementation of the CM 
has been focused on efficient result caching and most 
other cache management functions have not been im- 
plemented. One of the first steps will be to impose 
a parameterized limit on the size of the cache and to 
implement a cache replacement strategy. Other exten- 
sions to the CM include cache validation, and the abil- 
ity to perform DBMS-like operations on cache elements 
[O’Hare and Sheth, 19891. 

If the ID1 is extended so that it is capable of perform- 
ing DBMS-like operations on the contents of its cache 
then, given an IDIL query, it will have three general 
courses of action which it may take to produce the re- 
sults: (a) the entire IDIL query can be translated into 
SQL and sent to the remote DBMS for execution; (b) 
the entire IDIL query can be executed locally by the 
ID1 (including simple retrieval from the cache); and (c) 
the IDIL query can be decomposed so that part of it 
is executed on the remote DBMS and part of it is exe- 
cuted locally by the IDI. The decision of which action 
to take would depend on a number of factors includ- 
ing the current contents of the cache and the estimated 
costs for each alternative. 
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