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The growing complexity of mass storage systems at major data centers is causing 

stress on system administrators to keep performance at optimal levels. As storage 

requirements grow, so does the number of routine tasks that the administrator must 

perform, as well as the time it takes for these to be executed. The solution being proposed 

to ease this burden is the Mass Storage System Administrator Autonomic Assistant 

(MSSAAA). The MSSAAA is a collection of agents that perform some of the more 

common tasks while the administrators handle higher-level issues. Using the principles of 

autonomic computing, the MSSAAA is governed by a centralized set of policies that the 

administrator will review on a regular basis and can adjust as necessary.  

 

The goal is to develop an autonomic assistant to substantially reduce the amount of 

time it takes to address specific problems in the system. Using tools such as IBM’s 

Generic Log Adapter, Resource Model Builder, and Autonomic Management Engine, the 

MSSAAA has been able to (i) quickly determine when tape errors occur and correct them, 

(ii) monitor the network file system mounts for poor performance and report those, and 



(iii) correct network file system handle problems through continuous monitoring. The 

preliminary savings analyses show that the assistant saves the system administrator at 

least 185 hours per year, and over six thousand dollars in related costs. The results show 

how efficiently and effectively the MSSAAA handled its assigned tasks, and how it has 

eased the daily burden of storage system administrators. 
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Chapter 1 

INTRODUCTION 

 

As computer systems grow in size and complexity, there exists a growing need for 

companies to hire more and more system administrators to keep these systems 

operational. Mass storage systems are one of the most essential components of a data 

center and their downtime affects all connected systems. System administrators are the 

keys to keeping these systems functioning properly and minimizing unplanned downtime. 

As storage systems grow more complex though, the cost of managing the system has 

grown to more than double the cost of purchasing the system initially [10,17]. This will 

only increase as more and more data is being archived for extended periods of time.  

 

As the stress on storage systems grows, so does the stress on the system 

administrators to maintain optimal performance from the system. Storage system 

administrators can only manage so much data before yet another administrator must be 

hired to handle the growing workload before users become impacted by the additional 

load. The users do not want to hear about architectural complexities or patch side effects 

that often cause these systems to crash. Nor do they want to hear about a routine check 

that was overlooked causing a delay in retrieval of their data. The system administrator is 

responsible for any problem that theoretically could have been prevented. A solution to 

this growing nightmare of administration is the use of autonomic computing to offload 

work from the administrators onto the system itself.  
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A Mass Storage System Administrator Autonomic Assistant (MSSAAA) has been 

developed, which uses the principles defined in autonomic computing to have the system 

monitor and repair itself whenever possible. The MSSAAA will not replace human 

administrators, but instead complement them in their daily routine. The system 

administrator is still the most qualified agent to handle hardware failures and to 

troubleshoot unusual system problems.  Only the routine tasks that administrators deal 

with are selected as candidates for the MSSAAA. It is these tasks that, when taken from 

an administrator’s workload, will improve the efficiency of these actions as well as give 

the administrator more time to handle single-user complaints or architectural issues. 

These are also the tasks most likely to be overlooked during stressful periods of time 

when higher-level issues require their attention.  

 

There are many benefits in using an autonomic assistant to reduce a system 

administrator’s workload. One major benefit is using policies to control the execution of 

the MSSAAA. Rather than changing multiple scripts and diving through code to find the 

variables to be modified, administrators can simply edit the policy controlling the 

appropriate module of the MSSAAA and have the change implemented instantaneously. 

Policies also have the benefit of being a central point of reference when multiple 

administrators work on a system so each understands what the other has configured the 

system to do [2]. In general, centralized policies provide a succinct and effective form of 

communication between system administrators, reducing preventable errors, which in 

turn lowers stress.  
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1.1   Problem Background 

It is common for administrators to put in long hours troubleshooting problems, to 

come in on weekends and apply fixes, or to check on a system from home to verify it is 

still working as it should. In addition to just administrating the complex system updates, 

much of the demand on their time occurs because they serve both as the expert help desk 

when all else fails as well as the on call emergency repair person. When a crisis occurs, 

they become fully focused on resolving that issue, but otherwise their time is pulled in 

many different directions. Results from a field study of system administrators in [1] show 

that on average only about 38% of an administrator’s time is spent actually performing 

system updates, maintenance and tests of production systems. The rest of their time is 

spent in meetings, planning for upgrades and testing on other systems ahead of time. 

With tight schedules and little room for error, it is not surprising that these system 

administrators find themselves under such pressure. 

 

System administrators of mass storage systems have extra complexities to deal with 

on top of the normal administrative tasks. Storage architectures are generally more 

complex than that of a normal high performance computing (HPC) system. An example 

of this architecture is shown in Figure 1. The interactions with tape silos, networks of 

large attached arrays of low cost disks, management of multiple copies of the data, 

preservation of the integrity of the data, and planning for disaster recovery are all extra 

tasks that the administrators must deal with on top of their normal daily troubleshooting 

workload. The amount of data to manage throughout this process continues to grow at an 

accelerating rate. Current simulations can create data sets ranging from a few hundred 
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gigabytes up to tens of terabytes per day. Within the next five years, it is expected that 

high-end simulations could reach into petabytes or possibly exabytes of data to be stored 

[7]. 

 

 

Figure 1: Test Environment Architecture 

 

With the amount of data being generated expected to grow at such a large rate, the 

current storage architectures must be able to scale gracefully. To support such an influx, 

higher-speed networks may need to be installed, extra disk arrays added, and higher 

density disks and tapes rotated into production. The challenge in scaling is to do so in 

such a way as to continue to maintain a high level of system availability while effectively 

utilizing the few scheduled maintenance periods that arise. New technology that lowers 

the cost of managing a system, while making it easier to use and more dependable is the 

most important aspect of storage at this moment [10]. 

 

As these scenarios play out over the coming years, the system administrators will 

need to ensure that the solutions chosen are implemented correctly and in a timely 

manner. To aid them in their administration duties, management tools such as this 
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assistant will be necessary to keep pace with technological advances. As previously 

mentioned, the complexity of these systems continues to grow in support of larger-scale 

clusters coming online at data centers around the world. If nothing is done to help the 

administrators with the management of large-scale mass storage systems, then trivial 

problems will begin to impact availability and reliability because not enough has been 

done to automate the monitoring of low-level tasks. 

 

1.2   Motivation 

The motivation for developing such an assistant is derived from experiences as a 

contractor at a major high performance computing (HPC) center, the U.S. Army Research 

Laboratory Major Shared Resource Center (ARL MSRC). This experience has involved 

working closely with the system administrators and getting a feel for the tasks that are 

repetitive, tedious, or currently require manual supervision. The system administration 

staff would much rather be solving larger-scale problems, or preparing for the next 

upgrade or technology insertion.  

 

It was this repetitiveness of certain tasks that led to the concept of having an 

intelligent automated system to assist the system administrator with their daily chores. 

Another related autonomic computing project, the Automated Job Monitor, was 

attempting something similar with queuing systems at HPC centers [4]. After 

understanding the principles to the Automated Job Monitor project, and becoming 

familiar with the field of Autonomic Computing, I began to research to determine if this 

was feasible and how it could be accomplished.  
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In addition to the interest from the storage system administrators, there was also an 

interest in reducing the Total Cost of Ownership for mass storage systems. One estimate 

puts storage costs rising at approximately five to ten percent each year [9]. This includes 

investing in new tapes, disks, incremental hardware upgrades, and the occasional 

hardware overhaul. The bulk of the cost of operating mass storage systems is actually the 

management of these resources. According to some industry analysts, approximately two-

thirds of the cost of a storage implementation is in the management of these systems 

[10,17]. The CTO of Fujitsu Softek, Nick Tabellion, observes an even larger gap: “For 

every dollar to purchase storage, you spend $9 to manage it” [5]. 

 

The computer industry has grown tremendously in the last half-century, and with it 

has come a great deal of additional complexity. In its first thirty years as an industry, it 

grew approximately six orders of magnitude, a feat no other technology in history has 

ever experienced [3]. This extreme growth is what has led us to this point in time where a 

solution is needed before the industry outgrows manageability of the system it is 

providing.  

 

The tasks that are being solved in this thesis are those that were highly recommended 

by the mass storage system administrators at the ARL MSRC. These are problems they 

frequently have but are not always aware of when they occur. Nothing had been 

automated for these functions, and the administrators, as well as management, was 

interested in a solution that could help performance and improve reliability and 
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availability to our customer base. Solutions that improve performance and institute 

streamlined processes are always welcome. In the past, researchers have noted that high-

level development can increase productivity by at least a factor of five [3]. If anything 

close to this can be achieved through the use of autonomic computing, then it will be a 

success. 

 

1.3   Focus 

The focus of this thesis is on two of the primary tasks that consume a storage system 

administrator’s daily schedule. These tasks have been assigned to separate modules for 

analysis and implementation.  

 

The first module will perform an audit on a tape when it returns an error status. Many 

tapes are placed into an error status when no problem actually exists. Administrators 

spend a good deal of time auditing these tapes just to find there is no problem and then 

place them back into production. By auditing tapes when they report an error status and 

filtering out the tapes with no errors versus the tapes with actual physical problems, 

administrators only become involved when necessary. 

 

The second module will measure and analyze file transfer performance over a period 

of time. This can be used to determine if users are experiencing problems interacting with 

the storage system. This performance can be measured by retrieving a specific file from 

tape across the network from a client NFS system. The results can be analyzed to make 

the administrators immediately aware of performance issues. Since performance depends 
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on, among other things, the availability of the robotic arm in the silo to fetch the tape, 

part of the equation to determine if file performance is reasonable will measure the 

amount of time spent waiting for the silo to process its queue. 

 

These two areas of a mass storage implementation are the easiest to overlook during 

periodic system evaluations and can cause problems with users retrieving data, executing 

jobs, and logging into a system. By developing a solution for these two issues that 

removes the system administrator from the daily loop, a data center can provide better 

availability to their users, as well as monitor the system for troublesome trends in 

reliability.  

 

1.4 Solution Overview 

There are two types of possible solutions to this problem. One utilizes the commercial 

and homegrown approaches to systems management, while the other utilizes a more 

methodical approach using the principles defined in autonomic computing. 

 

1.4.1   Vendor-Supplied and Homegrown Management Tools 

Vendor supplied management tools provide a consistent template across all of their 

systems, helping administrators of that particular vendor’s systems with upgrades and 

monitoring. An example of one of the vendor supplied management tools is the Storage 

and Archive Management (SAM) utility for use with the standard file system from Sun 

Microsystems [15]. For those administrators of Sun storage systems, this utility is an 

invaluable tool for interactively managing the system and repairing reported problems. 
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SAM also provides a seamless interface to tape archive systems from other vendors so 

that the administrator can manage a large portion of his storage architecture from a single 

console.  

 

Homegrown scripts provide a comfortable safety net for system administrators. 

Vendor supplied tools often mask what the process is actually doing in order to get a 

result, such as in graphical management interfaces, but homegrown scripts can be 

customized to specify exactly what metrics the administrator needs in his routine system 

checks [1]. The ability to modify and change the scripts dynamically allows the 

administrator to easily adapt to changing management directions.  

 

1.4.2   An Autonomic Management Tool 

An autonomic management tool for mass storage system management is an extension 

of the commercial and homegrown tools already available. An autonomic system 

leverages the existing management infrastructure and extends it to include a structured 

approach to providing a comprehensive solution. This solution is one that can grow with 

experience and be configured to handle a growing number of scenarios using a constantly 

updated symptom and solution database. The system administrators still control the 

policy of what processes to check and what logs to monitor, but they are no longer forced 

to actually write the nuts and bolts of how to do it [7]. By having the system 

administrator focus on higher-level policy development instead of writing, testing and 

debugging complex scripts, their productivity will increase. Policy management 

continuity is also easier to maintain, for example when new a new system administrator is 
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hired, policy management continuity allows the new hire to “get up-to-speed” quicker on 

these systems. 
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Chapter 2 

BACKGROUND 

 

In order to understand the development of the MSSAAA, one must first understand 

the background for the technologies involved. First and foremost is an understanding of 

the field of autonomic computing, its principles, and how it can be used. In addition to 

autonomic computing, there are other facets of computer science which have various 

levels of relevance.  

 

2.1 Autonomic Computing 

The academic problem of autonomic computing can be described as a continuation of 

research into the intelligent automation of system management. Prior to the formation of 

autonomic computing as a discipline related to artificial intelligence, there were already 

different groups performing research in this area, such as those developing expert 

systems. The initial push by IBM of a concept known as autonomic computing brought 

together these distributed areas of research [7]. The main interest in adding intelligent 

automation to systems both large and small is to reduce the external complexity of 

operating a computer system, and to improve its reliability, availability and serviceability 

(RAS).  

 

RAS is a growing problem in government and commercial enterprise computing 

systems. As systems become more complex and ubiquitous, each must also require less 

direct administration, otherwise the system administrators will be increasingly
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overwhelmed attempting to keep these systems operational. More automation must be 

introduced to the enterprise computing environment to address the RAS problem. If a 

system, regardless of its size or function, is not available when it is scheduled to be online 

and a user needs it, then the system can not be viewed as a complete success. System 

reliability must improve to the point where the system itself can perform updates, make 

configuration changes, and correct problems without waiting for a user or network 

monitor to alert the administrator.  

 

Intelligent system management, as described in the principles of autonomic 

computing, requires constant monitoring of system resources and state. If the computer 

can realize when its state has changed or when resources become deadlocked, then it can 

take action without interrupting the user. In order to provide this type of autonomic 

operation, the principles described earlier must begin to be adapted in future operating 

systems as well as the other installed applications and system software. 

 

As a method of ensuring that this assistant can provide a complete and productive 

self-management solution to the tasks it is envisioned performing, it follows the MAPE 

model of execution [7]. The MAPE model (as shown in Figure 2) is used to ensure the 

solution continually manages the resources it is responsible for, and uses a predictable 

execution process whenever an anomaly is found during an event. In this model, the 

resources are continually monitored for events, generally occurring in log files. Once an 

event occurs, it is analyzed to see if it is an event that warrants further investigation. 

Those events that warrant further investigation are then correlated with other events, 
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policies and the global knowledge base to plan the corrective action. Once an action is 

chosen, it is executed to correct the discovered anomaly. This model continually executes 

during the time that the autonomic solution is active, and generally logs its actions for 

review by the human system administrator. 

 

 

Figure 2: Sample MAPE Model of Execution 

 

A complete self-management solution is not easily achieved. There are five levels of 

progression before a solution can truly be considered autonomic, as seen in Table 1 [6]. 

Many currently deployed system management solutions fall into either the Basic or 

Managed categories. To be truly autonomic, a solution must complete the MAPE loop 

described earlier, and systematically progress through the five levels of autonomicity. 

This will ensure that all the principles associated with autonomic computing have been 

followed, and a system has been thoroughly tested before being placed into production. 
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Only at this time can a system administrator relax and remove himself from the daily 

low-level tasks he performs, and concentrate on the high-level tasks at hand. 

 

Level Definitions 

Basic Manual analysis and problem solving performed. 

Managed Centralized set of tools, still manual actions. 

Predictive Cross-reference correlations and guidance. 

Adaptive System monitors self, correlates issues and takes action. 

Autonomic A dynamic business policy-based management solution. 

Table 1: Levels of Autonomicity 

  

2.2 Necessary Knowledge 

Autonomic computing brings together several different disciplines to achieve its goal 

of system self-management. These disciplines include: system administration, computer 

architecture, artificial intelligence, software engineering, and eventually data mining. 

Each of these plays a significant role in developing an autonomic solution to any system 

management problem.  

 

2.2.1 System Administration 

The system administration requirement is obvious. In order to develop a solution 

which gracefully allows the system to manage itself, one must first understand from a 

basic level how all the aspects of a system operate, both hardware and software. Even 

with a basic familiarity of how to administer a computer system, there should always be 

involvement of those individuals who deal with system problems on a daily basis. They 
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are the most knowledgeable and can provide the basis for the most innovative ideas in the 

discipline. A solid knowledge of system administration will allow those researching and 

implementing autonomic solutions the ability to solve meaningful problems that can save 

administrators time on a regular basis. 

 

2.2.2 Computer Architecture 

A background in computer architecture is important to developing an autonomic 

solution because it gives a better understanding of how the resources in a system are 

allocated. This background, along with knowledge of system administration skills, allows 

the researcher the ability to understand how much overhead the autonomic solution can 

actually use. An autonomic solution that constantly requires a large footprint of memory 

or processing power will make the system unusable by anyone other than the 

management tool. The delicate balance between usability and management control is one 

that has been a hot topic recently due to the increasing number of services being run on 

two-processor nodes in clusters.  

 

2.2.3 Artificial Intelligence 

Artificial intelligence (AI) is one of the most important disciplines involved in 

autonomic computing. Without the advancements in planning and agents in AI, the goals 

of autonomic computing would not be achievable. Previous research in expert systems 

has led us to believe that the visions of autonomic computing are possible. As it stands 

now, it will still be some time before truly complete autonomic systems are deployed. 

Autonomic computing is based on adding enough intelligence to a computer system to 
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allow it to manage itself. The system must be able to use planning routines to predict 

which solution in its database will work best under the current situation, given the state of 

the machine and resources available to it. The system must also be able to use machine 

learning principles to record what happens when it uses a specific resolution to a specific 

situation. This will allow systems in future situations to use knowledge from what they 

have tried in the past to achieve the best possible outcome now. 

 

2.2.4 Software Engineering 

While knowledge of software engineering principles is not as important as the 

previously mentioned disciplines, it is important for those implementing autonomic 

solutions to understand concepts such as life-cycles so that the best possible product is 

being obtained. Following strict software engineering principles will give researchers and 

implementers the best chance of producing a solution which not only addresses all 

possible scenarios and states, but also has been thoroughly tested under comparable 

situations as a method of predicting performance. Deploying a major autonomic solution 

can not be taken lightly. A solution that has not been developed properly runs the risk of 

damaging the system even more so than the original problem. This would end up making 

the administrator’s job twice as hard to restore the system. Thus, everyone involved must 

understand these principles in order to deploy a system that is not only capable of solving 

the problems at hand, but also predictable in its handling of situations. 
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2.2.5   Data Mining 

Data mining may not be applicable to all scenarios, but in specific instances, such as 

in the heterogeneous environment of a HPC center, it could be very beneficial. 

Introducing data mining to an autonomic solution would allow autonomic systems that 

are running independently on different systems the ability to compare their knowledge 

bases and lessons learned data which exists on other systems. By mining this data on a 

regular basis, independent solutions can learn from other system’s mistakes. My opinion 

is that this capability should not be introduced until each system has already proven it can 

work well independently because of the extra complexity this could introduce. Even so, 

data mining will eventually become involved in adding capabilities to autonomic 

solutions once self-management begins to become a reality. 
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Chapter 3 

TOOLKITS 

 

The toolkits used for development of the MSSAAA were part of the IBM Autonomic 

Computing Toolkit, specifically the Generic Log Adapter, the Resource Model Builder 

and the Autonomic Management Engine. The learning and use of each toolkit presented 

its own unique set of challenges, and was implemented through a process of trial and 

error. An example integration of the three components is shown in Figure 3. 

 

 

 

Figure 3: An example integration of the Autonomic Computing Toolkit Components 
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3.1   Generic Log Adapter 

The purpose of the Generic Log Adapter (GLA) is to transform the vendor-specific 

log file from the application into a standards-based Common Base Event (CBE) format 

log file. Once a log file is in the CBE format, it can be processed by different autonomic 

managers.  

 

The GLA contains a basic context implementation for each log file it processes.  Each 

of these components is responsible for describing the different configuration components 

in the context instance section of the log file conversion process. This context contains 

five different components: 

- OS File Sensor 

- Regular Expression Extractor 

- Generic Parser 

- CBE Formatter 

- Hyades Logging Agent Outputter 

 

In the configuration section of the GLA, there is an instance for each context defined 

in the previous section. For the purposes of the MSSAAA, only one context is currently 

being used. Once this context is operational, a context could easily be created and 

configured for each of the other tape drives in the silo. In this section there are again five 

different components to configure (mapping to the five components above): 

- Sensor 

- Extractor 
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- Parser 

- Formatter 

- Outputter 

 

The sensor component describes the log file that will be processed. This includes the 

block size, buffer size and physical location of the log file to be processed. There are 

three different types of sensors: SingleOSFileSensor, StaticParserSensor, and 

AdaptorSensor. Since at this time we are only processing one tape device log file, this is 

configured as the SingleOSFileSensor. 

 

The extractor component is used to separate records in the log file for inclusion into 

CBE format. The component is given a start and end regular expression to use as a 

determination mechanism when extracting the data from the original log file format. For 

example, the following pattern: 

2005/08/08 20:41:17 4008 ../common/drive.c:430  

is discovered using this regular expression: 

 (^\d+\/\d+\/\d+\s\d+:\d+:\d+\s\d+\s..\/common\/drive.c:430) 

 

The parser component is the most complex part of the GLA. Within this component, 

all the CBE formats and notable events must be expressed and valid substitution rule 

applied. The most difficult part of configuring this component was learning the CBE 

format and determining how to apply it in this situation. In this configuration, the GLA 

required three CBE attributes specified (application, globalInstanceID and creationTime), 
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Figure 4: Generic Log Adapter Development Interface 

 

and two descriptors (sourceComponentId and reporterComponentId). 

 

The sourceComponentId refers to the component affected by the situation and 

contains seven different attributes: component, componentIdType, componentType, 

subComponent, location, locationType, and application. The reporterComponentId refers 

to the component reporting the situation and contains the same seven attributes as the 

sourceComponentId. Each of these contains a substitution rule to be generated during the 

parsing process, and passed to the formatter component. 

 

The formatter component takes as input the attributes and descriptions specified in the 

parser component, and then formats the log file into CBE using that information. There is 

no configuration that can be done here; everything has been embedded into the GLA. 
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Finally, the outputter component uses the CBE format generated in the previous 

component and exports a XML file containing the same information that was in the 

original log file, but in a common format readable by different autonomic managers for 

further processing. Instead of using the toolkit, a custom outputter was developed which 

sends the CBE output directly to an Autonomic Management Engine through a Remote 

Management Interface. 

 

3.2   Resource Model Builder 

The Resource Model Builder (RMB) is a component of the Autonomic Computing 

Toolkit which assists with building a resource model package for the Autonomic 

Management Engine (AME). The RMB is responsible for configuring different 

parameters used by the AME during execution, and packaging the necessary files in a 

format the AME will recognize. Once a resource model is developed and packaged, it is 

inserted into an AME implementation for testing and execution. 

 

The RMB configures various parameters in preparation for different scenarios the 

AME will encounter. These configuration entries are used as the main decision model in 

determining which symptom is being experienced and what object is available to solve 

the problem. Besides a general overview section which allows you to set the time interval  
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 Figure 5: Resource Model Builder Interface 

 

of execution, there are six main components of the RMB that can be configured: 

- Common Information Model Classes 

- Parameters 

- Thresholds 

- Events 

- Logging 

- Dependencies 

 

The Common Information Model (CIM) Classes provide the data source definition to 

the resource model for parsing and analysis. Within this component, the various class 

properties are listed for each model, and allow the modeler to select which are the 

relevant properties for further analysis to determine if a problem has occurred. There is 

also a configuration mechanism to determine how often the data source should be 
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checked and processed. In the cases being studies here, we have determined that every 

entry should be processed, although there are valid cases which would only require every 

tenth or hundredth to be checked. 

 

The parameters component provides a mechanism to determine which data entries are 

normal, and which require further processing to determine if a problem has occurred and 

how it should be resolved. Multiple parameters can be configured for a single data source 

to allow different events to be handled in a specific manner. Parameters are used by the 

event components to determine which symptom was detected in the monitored system.  

 

The threshold component is not used in the data models being developed for the 

MSSAAA, but is useful when monitoring system-level properties such as CPU load or 

free disk space. This component periodically checks the specified system performance 

properties to ensure it is meeting the specified threshold metrics. If not, then an event is 

triggered to help correct the problem. 

 

The events component defines the resource model events that are “interesting” and 

subject to further processing. Each event definition is driven by a specific parameter 

setting which executes some function. The functions are most likely external applications 

written to solve these types of problems in a structured, logical manner. Configuration of 

the event component also includes determining which properties need to be passed to the 

external application to provide it with the appropriate information to determine a 

solution.  
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The logging component is useful if one wishes to continually log all executions of the 

resource model. This could be useful for debugging purposes, but under many production 

scenarios would be generating nearly as much data as it is receiving. This should only be 

enabled if a problem is suspected with the resource model, or initial debug tests are being 

undertaken to determine if a resource model is functioning properly. 

 

The dependencies component is the final component to be configured when preparing 

to build a resource model package in the RMB. This component lists all of the dependent 

files that the resource model needs, or its event functions. A prime example would be 

Java classes that are directly imported by the custom event handler function. 

 

While the resource model policies are currently set using the RMB, in the future an 

easier mechanism for the system administrators to use from their Unix and Linux systems 

would be ideal. This is possible if the administrators have Eclipse installed with the 

appropriate frameworks, but it should be simpler. An ideal mechanism would be a 

declarative policy editor which could would improve the human-computer interaction 

(HCI) aspect, but still output the policies in a way understandable by the AME. 

 

3.3   Autonomic Management Engine 

 The Autonomic Management Engine (AME) is the final component utilized from 

the Autonomic Computing Toolkit. The purpose of the AME is to provide a means for a 

specified resource model to execute during its analysis of the incoming Common Base 

Event (CBE) log files. The AME listens to the Remote Management Interface on the 
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same port that the Generic Log Adapter (GLA)’s custom outputter is sending its log file 

output to. The construction of this interface allows a single AME to listen to multiple 

GLA outputs at once and handle them sequentially as they occur.  

 

The AME process has several major components and traverses the entire life-cycle of 

the resource model. There are nine major sections to the AME during its execution, as 

shown in Figure 4. The sections can be grouped into three phases of execution: startup, 

processing and analysis, and shutdown. 

 

The first phase of the life cycle is the resource model startup components. This 

includes the creation of a resource model type, the definition and creation of context 

properties, the creation of a resource model instance in the AME registry, and the start of 

that instance’s execution. During this phase the resource model is configured into the 

local environment and registered as an active resource model. As the instance is started, it 

begins to listen for events coming from the GLA. 

 

The second phase of the life cycle is the event processing and analysis phase. During 

this phase, events are received from the GLA and analyzed against the resource model’s 

parameters to determine if a symptom has been detected. Once a symptom is detected, an 

event is triggered to find a solution for this problem and return the system to its current 

configuration. 
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Figure 6: Autonomic Management Engine Resource Model Life Cycle 

 

The final phase of the life cycle is the resource model shutdown components. This 

includes stopping the current resource model instances, deleting them from the AME 

registry, deleting the resource model context for this instance from the registry, and 

deleting the resource model type from then registry. This ensures that all proper clean up 

is done.  
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Chapter 4 

TAPE DEVICE LOG MONITORING MODULE 

 

The primary function that was considered is monitoring the logs of various tape 

devices for specific error messages. More specifically, system logs are monitored for 

tapes returning error messages. If the entire tape is marked as having an error, it is 

unusable until the administrator physically audits the tape and either replaces it or clears 

the error. A damaged file is not as serious, but still warrants a review. From the 

perspective of a user requesting his or her data, either means an extra wait to pull the data 

from a second copy or in a worse case scenario where that tape fails as well, the inability 

to retrieve the requested data at all.  

 

4.1   Approach 

The complexity of this task required us to look externally for development assistance. 

We decided to use the Generic Log Adapter (GLA), Resource Model Builder (RMB) and 

Autonomic Management Engine (AME) components from IBM’s Autonomic Computing 

Toolkit. By utilizing these components from the toolkit, we were able to spend more time 

addressing the specific mass storage configuration needs rather than general software 

development. The GLA was configured to watch the various logs for each device 

configured in the tape silos. As the logs are being generated, the GLA converts them into 

a Common Base Event (CBE) format and passes them to the AME. The AME accepts 

incoming logs and processes the entries using rules defined in its current resource model. 
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The resource model defines the parameters to look for in the log files and what action 

to take when an “interesting” event occurs that requires further review.  

 

If marked with an error status, the tape is first audited. If the audit shows that there is 

nothing wrong with the tape, it is placed back into service with the error status removed. 

If there is a problem, the tape is exported from the system, re-imported and audited again. 

If this still does not resolve the problem, all data on the tape is re-archived, the tape is re-

labeled, and then it is audited once again. If after all attempts, the audit continues to 

report errors, the tape is removed from service and the system administrator notified. For 

this particular situation, the system has done as much as possible before notifying an 

administrator.  

 

In addition to checking for errors, the audit also forces a data usage check to ensure 

the amount of space it is reporting as full is accurate. Depending on the cause of the error 

on the tape, this can also cause the tape to inaccurately report that it is full, even after the 

error is cleared. By forcing a data usage check, we ensure that an abnormality such as this 

does not take away valuable disk space from the users who need it most.  

 

4.2   Benefits of Analysis 

As we collect data from the Tape Device Log Monitoring Module, we will be using it 

to assist in the collection of several metrics: determining the average life of tapes, and an 

accurate mean time between tape failures. This data is important in determining if there 

are patterns that correlate non-fatal tape errors with fatal tape errors. For instance, after a 
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tape has a certain number of non-fatal errors, what is the probability that the next error 

will be fatal? This would require a long-term study over months or a year to retrieve any 

meaningful data to make such a correlation. This will also help give the staff a better 

assumption of when to order replacement tapes so that the silo does not suffer any major 

impact while servicing users. 

 

4.3   Autonomic State 

In working toward the goal of system self-management, the autonomic classification 

for this module is fully Autonomic. The Tape Device Log Monitor module performs an 

array of tasks to determine if this is actually a physical error on the tape before notifying 

the system administrator. In a production environment, the system administrator could 

rely on this module to recognize and repair all correctable tape errors, thereby removing 

himself from this tedious and manual task. 
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Chapter 5 

NETWORK BANDWIDTH MODULE 

 

The second task that was considered is monitoring bandwidth from NFS clients to the 

mass storage system. With the size of today’s clusters continuing to grow, the ability of a 

system administrator to validate that all the NFS handles are active, and all are operating 

well is seriously diminished. System administrators do not have the time to monitor 

thousands of nodes for these types of problems. Generally they go unnoticed until a user 

computing on that node receives an error. Even then, the system administrator of the 

client host generally takes care of the problem and may or may not inform the storage 

administrator. 

 

5.1   Approach 

Our approach to monitoring this is to periodically request a set of files from tape on 

the mass storage silo. To get the best average, each request consists of files of the 

following sizes: 512 bytes, 1 megabyte, 5 megabytes, 10 megabytes and 1 gigabyte. This 

provides us with a wide range of files to pull from tapes and get a baseline measurement. 

The key here is to always pull the file from tape and never from a staging area to ensure 

that the times are accurate. We also need to ensure that there are available drive slots on 

the silo to load a requested tape before the request is actually made. Otherwise we run the 

risk of waiting an exorbitant amount of time just because the silo happens to be busy at 

the moment. Each client has the ability to retrieve this information about the tape device 

status and the policy information established by the administrator. 
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Once a test begins and the thresholds are met, multiple files are requested from the 

silo in sequence. The files are requested in such a way as to not stage them, ensuring they 

are always retrieved from tape. Each retrieval time is recorded and an overall total is 

written to the log. This total is then compared to the high and low thresholds set in the 

policy. If the total exceeds the threshold, the monitor proceeds to see if there is any rule 

in its database to correct this problem based on the current system state. If there is, then it 

is attempted and another fetch executed to see if it solved the problem. If there is no rule, 

then the system administrators of both the mass storage and client systems are notified for 

investigation. The solution they use to correct this instance is then added to the 

knowledge base for use in future iterations.  

 

These tests are not run continuously so as to avoid additional stress on the system. 

The frequency of execution is up to the system administrator. The policy has a specific 

section listing which systems are to run the bandwidth test and at approximately which 

times. If system X is scheduled to run at 3:00pm, but the tape devices are busy at the 

moment, it rests for a period of time and continually tries again until it is successful. The 

rest period, just like all other parameters, are configurable in the policy. The policy also 

lists the necessary contact information for each system so that when an unsolvable 

problem occurs, the appropriate administrators are notified as quickly as possible.  

 

5.2   Benefits of Analysis 

As we collect data from the Network Bandwidth Module, we will be using it to 

determine if one type of system experiences more Network File System (NFS) failures 
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than others, and if different types of systems experience different average response times 

in retrieving files. The analyzed differences could be due to architectural variations on the 

systems or differences in how each operating system implements the NFS protocol. The 

benefit of having this data will show if different types of architectures are better or worse 

suited for use in this type of environment. We already know that after a file server reboot, 

some systems are more likely to need a remount than others. This type of analysis would 

help to correlate the data. 

 

While most of the discussion focused on the client systems, the file server itself 

should be analyzed using this data as well. With the growing number of clusters being 

deployed, it is important to know at what point the file server becomes oversaturated 

serving file mounts. Serving ten mounts per system to five separate systems is vastly 

different from serving those same ten mounts to five clusters of several hundred or 

thousands of nodes. Over time, an analysis could be done to determine if the file server 

ever drops mounts, or response time slows, because of over-saturation. This would 

require the response time data being collected to be compared to the system utilization 

metrics on the file server. 

 

5.3   Autonomic State 

This module is also at an Autonomic level of autonomicity. The Network Bandwidth 

Monitor module first attempts to remount the stale handles as a preliminary fix to the 

problem. During the remount, the module first determines if the remote file server is 

available. If that server is offline or unresponsive, then the stale handle issue becomes 
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larger than what a single independent module can handle. Assumedly if the server is 

unavailable, the system administrators are already aware and working to resolve the 

problem, but as a precaution the module notifies them in order to make them aware that 

there is a problem with serving mounts from the mass storage system.  

 

There are many problems that could cause file retrieval to be slow or non-responsive. 

As new issues arise that are documented and tested, they are also being added to the 

general policy listing and a solution placed into the module’s knowledge base. In a 

production environment, this module works to prevent users from noticing problems with 

network mounted file systems, and correcting those problems when they do occur, as 

quickly as possible. System administrators of both NFS client systems and the mass 

storage servers are no longer forced to check handles periodically, especially after a file 

server reboot. This module removes as much as possible from their daily routine when 

dealing with validation of mounted directories. 
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Chapter 6 

RESULTS 

 

The MSSAAA is a system that has achieved many of the autonomic goals that it was 

initially designed to accomplish. There were many factors that were introduced during 

the course of its research and development which were unexpected and caused either a 

change in design or implementation. This caused some delays, but did not prevent an 

autonomic solution from being developed for these problems, and an analysis on these 

solutions from occurring.  

 

6.1   Tape Device Log Monitoring Module 

Currently tapes that go into an error state may not be noticed for weeks, if at all. The 

logs for these devices are only kept for a few days, thus there is a high probability that it 

will not be noticed at all. When an error is discovered, audits can take anywhere from two 

minutes for a simple clean audit execution, to upwards of thirty minutes for a detailed 

audit checking tape usage in addition to tape integrity. The reason for the extended time 

on some audits is that a file may not have been written with a proper EOF. The audit then 

searches the entire tape for that file’s EOF, which can take a considerable amount of time 

to accomplish when run on two hundred gigabyte tapes.  

 

In an average month, anywhere from five to one hundred tapes could be audited 

because of an error status. We expect this number to rise in the future because the module 
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will be able to catch those tapes that human administrators may have missed in the past. 

In a worst case scenario, the auditing when performed by a system administrator would 

take at least fifty hours per month to complete, assuming thirty minutes per tape and one 

hundred tapes marked with an error. Of course, system administrators are not spending 

fifty hours of their month just auditing tapes. This is a chore which once started goes to 

the background, but requires constant monitoring to check the audit status. 

  

A mass storage system administrator would usually perform routine checks such as 

these in the morning, assuming there was not an overnight event which required his more 

immediate attention. The major problem in the past was that certain tape errors may go 

unnoticed until they become fatal, taking the tape out of service. By providing this 

assistant, there is a considerable cost and time savings that can be associated just at the 

system administration level. The time it could save end users in processing their data is 

almost priceless depending on the value and urgency of their need. 

 

In order to gauge the amount of time and money that can be saved using this tool, an 

educated assumption based on system administrator conversations is being used to 

formulate the analyzed values. For the purposes of this analysis, all values will be given 

in terms of monthly averages, and extrapolated into annual values. During the course of 

an average month, approximately twenty-five tapes are analyzed for having some type of 

error. Ten of these require a detailed audit, while the other fifteen only require a simple 

audit to be performed. For this analysis, a detailed audit will take approximately thirty 

minutes, only ten percent, or three, of which the system administrator is actively 
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involved; a simple audit takes two minutes of detailed involvement by the system 

administrator. The mass storage system is broken into two physical systems, each with 

eight tape devices, giving a total of sixteen device logs that need validation on a daily 

basis. This validation takes approximately five minutes per device to ensure any errors 

are caught. The analysis of these only take place on standard work days (Monday through 

Friday), of which there are 260 in a year, not counting holidays. An average system 

administrator’s annual salary is taken as $70,000, which is $33.65 per hour. Below is the 

analysis of a cost and time savings for a mass storage system administrator who has this 

function replaced by the MSSAAA: 

 

Detailed Audit: 10 * 3 minutes = 30 minutes/month * 12 months = 6 hours/year 
Simple Audit: 15 * 2 minutes = 30 minutes/month * 12 months = 6 hours/year 
Daily Tape Analysis: 16 drives * 5 minutes = 80 minutes/day 

80 minutes/day * 260 days = 346.67 hours/year 
Time Savings: 6 + 6 + 346.67 = 358.67 hours/year 
Cost Savings:  358.67 * $33.65 = $12,069.25 / year 

Table 2: An estimate on Time and Cost savings using the MSSAAA 

 

As shown above in Table 2, an estimate of using the MSSAAA is saving 17.25% of 

the system administrator’s salary, and almost 359 hours of his time on an annual basis. It 

is understood that at this point in time, the analysis being discussed do not occur on a 

daily basis. One would expect an organization to perform this function several times a 

week, even during periods of crisis though. A savings of roughly 9% and 185 hours by 

utilizing half the “Daily Tape Analysis” figure is still substantial using a more realistic 

model. This implementation would likely have a noticeable impact on the organization 



 

 

38

and achieve the MSSAAA’s goal of freeing up a system administrator’s time for more 

valuable tasks. 

 

 A cost and time savings for the system administrator is beneficial to the 

organization, but we must also ensure that the solution provided is not one which 

becomes too computationally expensive to operate. To verify that the solution does not 

leave a large footprint, an analysis has been performed to see how much extra stress the 

Generic Log Adapter and Autonomic Management Engine are placing on the mass 

storage systems. Based on the solution and the toolkits being based on Java technology, it 

can be assumed that the module will use an amount of resources which should be 

noticeable, although not exorbitant.  

  

 The analysis done on an operational solution parsing files and having a resource 

model available accepting the inputs to these files shows that indeed there is only a small 

increase in the amount of resources being utilized by the system during execution. On 

average, the module showed an increased CPU load average of 0.03 CPU cycles, and an 

increase in memory utilization of approximately 125 megabytes. On a system with eight 

CPUs and eight gigabytes of memory, these numbers are fairly negligible. Ideally, one 

would like to reduce the memory footprint, but that will occur over time as the code is 

refined and optimized. The only increase that this causes for its own storage needs is for 

the trace log being kept to inform the administrator which tapes have been  assessed and 

repaired by the assistant. 
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6.2   Network Bandwidth Module 

Stale Network File System (NFS) mounts in the past have only been addressed when 

a user notices and reports the problem. Occasionally, the staff will notice the problem and 

resolve it before a user experiences an issue, but not often enough. By the time a user 

notices, reports the problem, and the system administrator is notified, it could be at least 

thirty minutes where the mount is unusable by any user. During weekends and late night 

hours, the problem could remain for hours before anyone reports it. This causes major 

downtime not only for interactive users, but for batch user jobs running on various 

compute servers. It is scenarios such as this that make the MSSAAA perfect for handling 

this type of task.  

 

Based on initial test runs to determine the extent to which the MSSAAA should be 

involved, and how often it may be used, more efficient practices were discussed and 

implemented. Initially, the five files previously described were read in their entirety as 

part of the timing mechanism. After some analysis of the results, and investigation into 

system state when possible failures occurred, it was determined a different method was 

needed. Discussions with system administrators led to an alternative method which still 

read each line of the file, but did not redirect the entire file to /dev/null, only one line. A 

comparison between the initial and a revised implementation can be seen in Figures 7 and 

8. These charts depict each method of file retrieval testing over a sample twenty-four 

hour period.  
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Network Bandwidth Module: Old Collection Method
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Figure 7: Original data collection method 

Network Bandwidth Module: New Collection Method
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Figure 8: Improved data collection method 
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After this analysis was made, showing an improvement in data collection accuracy 

and response time, there was still a problem with the occasional high response time. 

Although the number of these being reported dropped noticably with the revision, it was 

determined that there should be an external mechanism to check the status of the 

executing module. If a mount is truly hung, the module will not finish execution and 

therefore not notify anyone in its current state. This check mechanism is the final portion 

of the module which allows it to verify if a mount is actually hung and take action to 

repair it. 

 

There has never been any recording of the average number of stale NFS handles 

occurring each month. In general, everyone agrees that this is a problem, but can not say 

for sure how often it occurs. With well over a thousand different compute systems 

accessing greater than a dozen mounts, there is a constant probability that one may fail. 

This module substantially reduces the worry that a system administrator may have when 

administering a large-scale cluster that mount-management will become a roadblock to 

user productivity. By eliminating the need for a system administrator to verify handles 

are active, and correct those that are not, another tedious task that required manual 

intervention has been successfully offloaded to an intelligent assistant. 
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Chapter 7 

CHALLENGES 

 

While investigating autonomic computing systems, specifically the MSSAAA, 

several issues have been raised dealing with the perceived challenges within the high 

performance computing (HPC) community. These issues are worth noting because of the 

historical importance of HPC in introducing new and maturing technology before it 

reaches the mainstream for businesses and consumers. Certain issues are more of a 

perception problem than an actual conceptual problem, but nonetheless these must be 

dealt with in the same manner.  

 

7.1   Atrophy of a System Administrator’s Skills 

Daily routines and the occasional emergency problem help to keep a system 

administrator’s skill set fine tuned and in touch with the current operating environment. 

Many worry that as the administrator becomes less involved in the day-to-day operations 

of the system, they become less knowledgeable about the current state of the system 

when a major catastrophe occurs and they must become involved. Russell et al remark 

about removing the system administrator or user so much from the loop they become 

disconnected: 

 

“[A]utomation reduces the chance for operators to obtain hands-on 

experience; having been taken out of the loop, they are no longer vigilant or 

completely aware of the current operating context. Thus, ironically, 
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automation can decrease system transparency, increase system complexity, 

and limit opportunities for human-system interactions, all of which can make 

a system harder for people to use and make it more likely that they will make 

mistakes. [14]” 

 

By attempting to make computing easier, autonomic computing could realistically 

reduce the skill sets that administrators and users of these computing systems have 

developed over time. There is a need to control the complexity of existing and future 

computing systems, but the loss of experience in managing these systems must be taken 

into account. There needs to be a way that those involved with these systems continue to 

understand their operations while also minimizing their low-level interactions. The 

solution to this problem is for the system administrator to periodically review changes the 

system is making on its own. 

 

By saving a log of the system changes, the administrator can review the changelog 

and keep up-to-date on what the system realizes the most common problems to be, and 

how it is recovering from resource or device failures. If the administrator determines that 

the system is not performing certain tasks within his perceived scope, then the policies 

can be tweaked to adjust how the system responds. In addition, the autonomic system can 

be configured to recognize potential disastrous trends and inform the administrator prior 

to a major event occurring. This would give the administrator a heads-up to a potential 

catastrophe and allow him time to implement a solution before the problem occurs. This 

method of reviewing a single log, analyzing trends, and tweaking a set of policies will 
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keep the administration of the system very high-level, and also keep the administrator 

informed of corrected and potential problems. 

 

7.2   Complexity of the Solution 

An autonomic solution, regardless of its size, can become a complex entity. The 

question then arises, since the complexity of the solution rivals the complexity of the 

system, as to the value of the solution. Based on an autonomic system’s use of policies, 

knowledge bases, communications, and resource interactions, they do become yet another 

complex entity that was designed and developed to reduce complexity in the first place. 

Introducing intelligence to a system which will monitor itself and correct issues as they 

occur will be difficult to design and implement, but easier to manage in the long term. If 

intelligence were an easy aspect to model, researchers would not have spent the past fifty 

years developing intelligent systems. Instead those systems would already be ubiquitous 

and autonomic computing would have already been achieved. 

 

The belief is that even though the solution is complex, it will be easy and worthwhile 

to operate. As mentioned previously, all tasks the autonomic solutions execute will be 

logged for review by a human to ensure the correct actions are being taken. In addition, 

the basis of management by a human will be interaction with the declarative policies 

through an easy-to-use interface. These policies are the most important part of the 

autonomic system, and provide it with the means to realize when problems are occurring 

and how to fix them. Of course the policies and autonomic system must interact with 
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knowledge bases that record past successes and failures to ensure that mistakes do not 

recur. This also ensures that past successes can be duplicated.  

 

While autonomic systems are complex because of their development methods, they 

will be generic enough to follow the policies and knowledge bases given to them. When 

problems occur, as they surely will, then complexity will become an issue, but until 

autonomic components are built into the operating system and related software, a 

complex third-party solution is the best way to effectively manage an even more complex 

computer system. 

 

7.3   Commercial Tools 

Another question that is commonly asked about building a large-scale custom 

solution such as this, regardless of how general it may be, is whether there are 

commercial tools to perform the same types of system management functions. The 

answer is that yes, there are tools available, but not to the level that is truly needed to 

remove low-level tasks from the daily routines of system administrators. Tools from 

system vendors are beginning to address the need of self-management, but it will likely 

be several generations before substantial autonomic properties are incorporated. 

 

Many vendors provide monitoring tools, but rarely can these monitoring tools 

actually perform a full situation assessment and implement a solution. Usually, they 

report potential problems to an administrator or network operations staff and let them 

correct the problem. Continuing research in autonomic computing will lead to possible 
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extensions of these tools to handle problems as they are detected, but it will be some time 

before they become available. 

 

Beginning to develop independent autonomic solutions for HPC-related problems is 

based on starting to discover what works and what does not, and then research ways to 

improve upon current solutions. In order to get to a complete vendor-supplied solution, 

we must know how these systems operate, and share with others the experiences of 

testing, implementing and adapting these solutions in a production environment. Only 

then will real progress be made toward deploying packaged solutions instead of custom 

ones. 

 

7.4   Attracting System Administrators 

One of the major points of developing an autonomic solution on this scale was 

whether it would replace system administrators or complement them. Our belief is that 

quality system administrators will not be available in the future to manage complex 

systems such as those at a HPC center. Over the past several years, the graduation rate of 

computer science and computer engineering degrees continue to fall [8,13]. With a future 

shortage of graduates to take these positions and a continuing growth of system 

complexity, we have to prepare for a time when there may be an insufficient number of 

system administrators.  

 

An argument has been made that there are three solutions to this problem. These are: 

pay more for those with the skills, outsource that portion of the department, or hire 
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foreign workers to take their place. By starting to escalate system administrator salaries 

just to keep a large staff on hand to run these systems, the total cost of ownership (TCO) 

of these systems continues to rise. System administrators already represent a large portion 

of the cost for keeping current systems operational. As we head towards Petaflop 

computing, there needs to be a way to curb the cost of administration. An escalation of 

salaries will not be enough to bring new interest into the field. Even after the dot-com 

bust, salaries for CS/CE graduates continue to rise, but interest in the field has waned. 

System administration is not as glamorous as other aspects of CS/CE and requires long 

hours and hard work to keep systems operational. Only a dedicated group can do this, and 

that group will most likely continue to shrink over time. 

 

As for outsourcing and hiring foreign workers, that is not always possible for every 

situation. For instance, a majority of the large HPC centers in the U.S. are run by 

government agencies. The systems in these environments are generally geared towards 

both basic and applied research, usually dealing with sensitive information. Those system 

administrators at these sites have most likely undergone a background check and are 

almost always required to be U.S. citizens to hold the position. Outsourcing to a server 

farm or offshore entity is not an option in these cases. It is also not an option to hire 

foreign workers since they lack the citizenship credentials to operate these systems. 

These solutions may work in certain instances, but it is not an overall solution to the 

problem. 
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Chapter 8 

FUTURE WORK 

 

As we continue toward our goal of overall system self-management, we plan to 

continue enhancing the current modules in the MSSAAA. In the Tape Device Log 

Monitoring task, we will integrate components to assess the damage to a tape or set of 

files in ways beyond using the basic error messages.  We propose to apply these actions 

based on an agreed set of rule based policies to correct this problem. The assistant will try 

to repair the file and restage it to see if the error was spurious. If the file continues to 

report errors after this basic restore is attempted, then other files on the tape should be 

staged as a sampling to ensure the error lies in the file itself and not the tape. If the error 

lies only in that file, then it and the staging report should be sent to the administrator for 

review. If the error lies in the tape, then the tape should be audited using the policies 

previously implemented. If the tape returns a normal status, the administrator should be 

notified of this as well as the staging reports. There is also the possibility of attempting to 

overwrite the damaged file by its second copy, assuming that file stages without any 

problems. The exact procedures would be policies written by the system administrator for 

these types of situations. If there is a physical problem with the tape, he or she still must 

get involved to repair or replace it. 

 

In the Network Bandwidth Monitor, we plan to continue to optimize the module by 

determining more efficient ways to analyze network mounts. While the method pulling 

files from tape is a good measure to determine what a user’s experience is like in these 
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situations, we would like to implement a method which can easily be run on a thousand 

servers simultaneously at regularly scheduled intervals and have no noticeable effect on 

the client system performance or the file server’s response time.  

 

As the current modules become more advanced and more modules are added to this 

assistant to control other aspects of the system, these independent modules will be 

working together using a single policy structure and a single knowledge base. This 

provides us a way to begin having each module use the state information from the other 

modules to show a behavior that understands the overall state of the system. Eventually 

the system would be able to manage not only the low level tasks we are striving to 

remove from the system administrator’s list of responsibilities, but also some of the more 

advanced tasks as well. 

 

Other applications outside the realm of mass storage under consideration for similar 

autonomic assistants are license servers and clusters. License servers have a history of 

failing daemons and expiring tokens. Generally license management falls as an “extra 

duty as assigned” to a member of the staff. This usually means that once a license is setup 

and operational, the only interaction is to update the tokens at prescribed intervals and 

troubleshoot reported problems from users. What we propose here is an autonomic 

assistant to do two initial tasks: monitor the token expiration dates and inform someone 

when they are about to expire, and monitor the daemons running and restart them when 

they occasionally die. I believe this will give license-managed software running on HPC 

systems a higher availability, benefiting the users of those packages.  
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Linux clusters are being analyzed for the possibility of autonomic solutions because 

of the scale of the management issues associated with them. Vendors and academia are 

doing a good job providing management tools that simplify these tasks, but there is 

always room for improvement [11,16]. Decentralizing the management of clusters to the 

individual nodes may provide a quicker resolution of problems during times when 

administrators are not immediately available. This also provides a means to investigate 

the ability of connecting individual autonomic solutions to form a multi-agent system that 

monitors the system as a whole. 
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Chapter 9 

CONCLUSION 

 

The MSSAAA has been developed as a solution to assist mass storage system 

administrators using the principles of autonomic computing, specifically focusing on self-

healing. All the system administrators involved have been pleased with the development 

of these modules and have shown an interest in seeing further development. Managing a 

mass storage system is such a complex task that this approach of automating low-level 

tasks first is the best way to introduce self-management to system administrators, some of 

whom may be skeptical of what these assistants can really accomplish. 

 

We are reaching a point where one system administrator for multiple systems may not 

be an ideal scenario due to the increasing complexity of each system. Creating systems 

that can monitor themselves for problems and heal themselves without human 

intervention are on the horizon. Over time, vendors will continue to provide better 

solutions in the areas of self-healing and self-management, but because of the 

individuality of each major center, and each system, there will always be a need for 

custom solutions as well. One prime example of current systems adopting these self-

management techniques is IBM’s Blue Gene supercomputer which is one of the first with 

autonomic computing at the center of its development [12]. 

 

The modules developed as part of the MSSAAA are complete autonomic solutions 

for low-level tasks. As previously mentioned, these tools implement the MAPE loop and  
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should be considered full Autonomic solutions. Each module follows the principles of 

autonomic computing and adds a central, organized intelligent agent to replace a low-

level task that had previously required the involvement of a system administrator on a 

daily basis.  

 

The software developed as part of this thesis was much more complex and difficult 

than I could have ever initially imagined. On the surface, the principles and 

implementation appeared straightforward and directly applicable to the problem at hand. 

Once inside the system though, each component had detailed intricacies that prevented 

easy adoption and implementation. Early on, one of the major roadblocks to productivity 

was the lack of documentation for the toolkits and how to use them. Throughout the 

process, more documentation has become available, but it is still not completely intuitive 

on how these systems interoperate.  

 

Now that one solution using this toolkit has been assembled, I believe it will be easier 

to develop others and implement them in a reasonable timeframe. The next foreseeable 

barrier will be learning how to link these individual modules so that they have an 

awareness of what other problems the system is handling at any given moment. This 

system state information will help to predict a correct solution for a given problem and 

reduce the number of times an inappropriate solution is chosen from the database.  

 

It is still unclear how well this will be accepted in a production environment in the 

long-term, although I hope to find the answer to that question over the next few months. I 
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anticipate the impact will be very positive and beneficial. By adding an assistant such as 

this in components, the staff will have ample time to become accustomed to the idea of 

intelligent system automation. The staff and management at the U.S. Army Research 

Laboratory Major Shared Resource Center has shown an great deal of interest in the 

development of this assistant to ensure it will be a valuable tool when placed into a 

production mass storage system environment.  
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