
Rule-based and Ontology-based Policies: Toward a 
Hybrid Approach to Control Agents in Pervasive 

Environments 

Alessandra Toninelli1, Jeffrey M. Bradshaw2, Lalana Kagal3, Rebecca Montanari1 

1Dipartimento di Elettronica, Informatica e Sistemistica 
Università di Bologna 

Viale Risorgimento, 2 - 40136 Bologna - Italy 
{atoninelli, rmontanari}@deis.unibo.it 

 
2 Florida Institute for Human and Machine Cognition (IHMC) 

40 S. Alcaniz Street, Pensacola, FL 32502, USA 
jbradshaw@ihmc.us 

 
3MIT CSAIL 

32 Vassar Street, Boston, MA, USA 
lkagal@csail.mit.edu 

Abstract. Policies are being increasingly used for controlling the behavior of 
complex multi-agent systems. The use of policies allows administrators to regulate 
agent behavior without changing source code or requiring the consent or 
cooperation of the agents being governed. However, policy-based control can 
sometimes encounter difficulties when applied to agents that act in pervasive 
environments characterized by frequent and unpredictable changes. In such cases, 
we cannot always specify policies a priori to handle any operative run time 
situation, but instead require continuous adjustments to allow agents to behave in a 
contextually appropriate manner. To address these issues, some policy approaches 
for governing agents in pervasive environments specify policies in a way that is both 
context-based and semantically-rich. Two approaches have been used in recent 
research: an ontology-based approach that relies heavily on the expressive features 
of Description Logic (DL) languages, and a rule-based approach that encodes 
policies as Logic Programming (LP) rules. The aim of this paper is to analyze the 
emerging directions for the specification of semantically-rich context-based policies, 
highlighting their advantages and drawbacks. Based on our analysis we describe a 
hybrid approach that exploits the expressive capabilities of both DL and LP 
approaches. 



1. Introduction 

The multi-agent paradigm offers a promising software engineering approach for the 
development of applications in complex environments [1]. By their ability to operate 
autonomously without constant human supervision, agents can perform tasks that would 
be impractical or impossible using traditional software techniques [2]. However, this 
autonomy, if unchecked, has also the potential of causing severe damage if agents are 
poorly designed, buggy, or malicious. 

Explicit policies can help in dynamically regulating the behavior of agents and in 
maintaining an adequate level of security, predictability, and responsiveness to human 
control. Policies provide the dynamic bounds within which an agent is permitted to 
function autonomously and limit the possibility of unwanted events occurring during 
operations. By changing policies, agent behavior can be continuously adjusted to 
accommodate variations in externally imposed constraints and environmental conditions 
without modifying the agent code or requiring the cooperation of the agents being 
governed [3]. 

Until recently, policies have been primarily exploited to govern complex distributed 
systems within traditional computing environments that rely on a relatively fixed set of 
resources, users, and services. However, with the Internet becoming ubiquitous, 
researchers started to investigate how to develop adequate policy-based techniques for 
controlling agent behavior within pervasive environments [4]. The dynamicity, 
unpredictability and heterogeneity of pervasive environments complicate the design of 
policy languages and techniques for agent control. Resources are not pre-determined, 
interacting agents are not always known a priori and, if agents roam across different 
network localities, they have different resource visibility and availability, depending on 
their location and on other context-dependent information, such as local security policies 
and resource state. In this setting, agents need to be provided with a semantically clear and 
interoperable description of the context where they execute and need to acquire, reason 
about and negotiate the policies that rule their behavior in each new context, so that they 
can decide whether to adhere or not. In addition, policies for controlling agent behavior 
cannot always be specified beforehand to handle any operative run-time situation, but may 
require a high rate of dynamic and continuous adjustments to allow agents to act in any 
execution context in the most suitable way and to accommodate context changes. 

To address these issues, some policy approaches for pervasive environments are 
starting to emerge that share common design principles [5, 6, 7]. A significant design 
concept that guides these approaches is the use of contextual information for driving 
policy specifications. Since context is a prime quality of pervasive environments, it should 
explicitly appear in policy specifications. In fact, in pervasive scenarios it is almost 
impossible to know the identities or roles of all agents that are likely to interact and 
request services in advance. Instead of defining identity- or role-based policies, 
administrators may more easily define the conditions for making resources available and 



for allowing or denying agents resource visibility and access, according to the context of 
their operating conditions. 

Another important design principle is the adoption of a semantically-rich 
representations for policy definition. Semantically-rich representations permit both 
structure and properties of the elements of a pervasive system and the management 
operations themselves (e.g., policies) to be described at a high level of abstraction, thus 
enabling policy conflict detection and harmonization. 

Recent research efforts in the area of semantically-rich context-based approaches to 
policy representation follow one of two possible directions. Ontology-based approaches 
rely largely on the expressive features of Description Logic languages, such as OWL [7], 
to classify contexts and policies, thus enabling deductive inferences and static policy 
conflict resolution to be performed. In contrast, rule-based approaches take the 
perspective of Logic Programming to encode rules in a clear, logic-like way. Moreover, a 
rule-based approach facilitates the straightforward mapping of policies to lower level 
enforcement mechanisms thanks to its concise and understandable syntax. 

The scope of this paper is to analyze the emerging directions for the specification of 
semantically-rich context-based policies, highlighting their advantages and drawbacks. 
Based on our analysis we describe a hybrid approach that exploits the expressive 
capabilities of both approaches. On the one hand, it should rely on an ontology-based 
approach to enable policy classification, comparison and static conflict resolution. On the 
other hand, it should be able to reap the benefits of a rule-based approach, thus enabling 
the efficient enforcement of policies defined over dynamically determined values. 

The structure of the paper follows. Section 2 outlines some fundamental requirements 
for policy languages to enable the specification of semantic context-based policies. 
Section 3 analyzes how some relevant well-known approaches to semantic policy 
representation, i.e., KAoS and Rei, deal with the aforementioned requirements. The 
comparison allows us to discuss, in Section 4, a possible direction toward the integration 
of ontology-based and rule-based policy approaches in order to exploit their full 
advantages. Conclusions and future work are presented in Section 5. 

2. Novel Requirements for Semantic Context-based Policies 

The control of agent behavior in pervasive scenarios raises novel requirements for the 
design of policy languages and policy run-time environments. In pervasive scenarios, 
users, on behalf of whom agents act, typically move from one environment to another, 
thus determining continuous variations in their physical position and in their execution 
context, including the set of entities and resources they may be able to interact with. 
Moreover, users can access the network using various devices, e.g., laptops, PDAs or 
mobile phones, which exhibit different capabilities in terms of resources and 
computational abilities. As it is not possible to exactly predict all the interactions an entity 
may be involved in and the kind of resources it may wish to have access to, policy-based 



control cannot rely on any precise knowledge about the subjects/events/actions that need 
to be governed. 

To deal with such environmental characteristics, recent research efforts propose to 
adopt semantically-rich representations to express policy and domain knowledge. The 
adoption of Semantic Web languages to specify and manage policies in pervasive 
computing scenarios brings several advantages. In fact, semantically-rich representations 
ensure that there is a common understanding between previously unknown entities about 
their capabilities, the current execution context and the actions they are permitted or 
obliged to perform. Moreover, modeling policies at a high level of abstraction simplifies 
their description and improves the analyzability of the system. Semantic Web languages 
also enable expressive querying and automated reasoning about policy representation. 

Another emerging direction suggests that, in order to deal with the dynamic context 
changes that are typical of pervasive applications, it may be advantageous to build 
policies directly over context conditions, i.e., to consider context as a primary element in 
the specification of policies [8]. Context is a complex notion that has many definitions. 
Here we consider context as any information that is useful to characterize the state or the 
activity of an entity, e.g., its location or its characteristics, and any useful information 
about the world in which this entity operates, e.g., date and time. In pervasive 
environments, where client users are typically unknown and where context operating 
conditions frequently change even unpredictably, the specification of context-based 
policies, instead of traditional subject-or role-based ones, allows to control the behavior of 
entities without having to foresee all the possible interactions that an entity may have with 
other entities and resources. 

The adoption of a semantic context-based policy approach to control pervasive systems 
requires the definition of a policy model that can precisely identify the basic types of 
policies required to control agents, can specify how to express and represent context and 
related policies in a semantically expressive form, and how to enforce them. In this paper 
we focus particularly on specification rather than on enforcement issues. To this extent, 
we consider the following as basic requirements for a semantic-based policy language: 
• the ability to model and represent the contexts in which agents operate and to which 

policies are associated, at a high level of abstraction. 
• the ability to define what actions are permitted or forbidden to do on resources in 

specific contexts (authorizations or permission/prohibition policies); 
• the ability to define the actions that must be performed on resources in specific 

contexts (obligations). 
The aim of this paper is not to provide a general survey of the state-of-the-art in 

context-based policy representation, but to carefully analyze how some relevant semantic 
policy approaches deal with the specification of semantic context-based policies. We first 
present KAoS, followed by Rei, both of which were originally designed for governing 
agent behavior and that represent, respectively, significant examples of ontology-based 
and rule-based policy languages. Then, from this analysis, we derive some suggestions 
toward the design of a hybrid policy approach. 



3. Semantic Approaches to Context-based Policy Specification 

To illustrate the expressive capabilities of the two considered policy frameworks, i.e., 
KAoS and Rei, let us consider a usage scenario that is likely to become more and more 
usual in the next future. Let us consider the case of a traveler, Alice, who is waiting at the 
airport for her flight to leave. The airport is equipped with several 802.11b hot spots 
providing travelers with wireless connectivity for their portable devices, e.g., laptops, 
PDA and mobile phones. Airline companies may also provide additional services and 
resources to travelers, such as the possibility to print documents stored on their devices 
using public printers that are placed in various areas of the airport. Moreover, while 
waiting to board, users may wish to share files with other users, by exploiting the wireless 
connectivity available at the airport. Since she has to wait a couple of hours for her plane 
to leave, Alice starts to work on some documents she has on her laptop. Therefore, she 
may wish to access the printer that is available in the waiting area around her boarding 
gate to print the documents she needs. In addition, as she likes jazz music very much, she 
would like to exchange music files with other travelers waiting in the airport hall. These 
activities need to be regulated by appropriate policies. In particular, the following policies 
governing adequate access to services and resource sharing may apply. We will use these 
policies as a running policy example throughout the rest of the paper. 

LocationSharing Policy 
Users that are currently co-located with the owner of the policy, i.e., with her device, are 
authorized to access the shared files stored on the owner device. 

This policy may be instantiated and enforced by Alice to share her music files with co-
located travelers in a secure way, depending on current context conditions. 

PrinterAccess Policy 
Travelers that are flying with a company of the Sky Team group, and are currently 
located in the airport area including gate from 31 to 57 are authorized to access the 
printer. 

This policy may be enforced by the provider of a printing service that is offered to 
travelers flying with the Sky Team alliance in some areas of the airport. The enforcement 
of this authorization should ensure that travelers having proper rights are enabled to 
access the service. Furthermore, if the default behavior of the system states that 
everything that is not explicitly permitted is prohibited, this policy also prevents 
unauthorized travelers from accessing the service. 

 
In the following sections we first analyze KAoS, and subsequently Rei, showing how 

they deal with the specification of the previously described policies. 



KAoS 

KAoS is a framework that provides policy and domain management services for agent and 
other distributed computing platforms [9, 10, 17]. It has been deployed in a wide variety 
of multi-agent and distributed computing applications. KAoS policy services allow for the 
specification, management, conflict resolution and enforcement of policies within agent 
domains. KPAT, a powerful graphical user interface, allows non-specialists to specify and 
analyze complex policies without having to master the complexity of OWL. 
KAoS adopts an ontology-based approach to semantic policy specification. In fact, 
policies are mainly represented in OWL [7] as ontologies. The KAoS policy ontologies 
distinguish between authorizations and obligations. In KAoS, a policy constrains the 
actions that an agent is allowed or obliged to perform in a given context. In particular, 
each policy controls a well-defined action, whose subject, target and other context 
conditions are defined as property restrictions on the action type. Figure 1a shows an 
example of KAoS authorization, which represents the PrinterAccess policy previously 
described. The property performedBy is used to define the class to which the actor must 
belong for the policy to be satisfied. 

 

<owl:Class rdf:ID=”SkyTeamGate31-57PrinterAccessAction”> 
<owl:intersectionOf rdf:parseType="Collection"> 
 <owl:intersectionOf rdf:parseType="Collection"> 
 <rdfsowl:Class rdf:about=”&action;AccessAction”/> 
   <owl:Restriction> 
        <owl:onProperty rdf:resource=”&action;performedBy”/> 
        <owl:allValuesFrom rdf:resource=”#SkyTeamCustomer”/> 
  </owl:Restriction> 
   <owl:Restriction> 
        <owl:onProperty rdf:resource=”&action;accessedEntity”/> 
        <owl:allValuesFrom rdf:resource=”#Printer31-57”/> 
   </owl:Restriction> 
</owl:intersectionOf> 
 </owl:Class> 
 

< policy:PosAuthorizationPolicy rdf:ID=” SkyTeamGate31-57PrinterAccess”> 
  < policy:controls rdf:resource=”# SkyTeamGate31-57PrinterAccessAction”/> 
  <policy:hasSiteOfEnforcement rdf:resource=”&some-ontology;TargetSite”/> 
  <policy:hasPriority>10</policy:hasPriority> 
</policy:PosAutihorizationPolicy> 

a) 

<owl:Class rdf:ID=”SkyTeamCustomer”> 
<rdfs:subClassOf rdf:resource=”&some-ontology;Customer”/> 
 <rdfs:subClassOf> 
   <owl:Restriction> 
 <owl:onProperty rdf:resource=”&some-ontology;firm”/> 
 <owl:allValuesFrom rdf:resource=”&some-ontology;SkyTeamAlliance”/> 
  </owl:Restriction> 



 </rdfs:subClassOf> 

b) 

Fig. 1. KAoS policy examples. 

In KAoS, context conditions that constrain a policy may be specified through the 
definition of appropriate classes defined via property restrictions. In particular, two main 
properties, i.e., the hasDataContext and the hasObjectContext properties, and their sub-
properties are used to characterize the action context. Some sub-properties are defined in 
the KAoS ontology, like for instance the ones defining the actor (performedBy), the time 
and the target resource (accessedEntity) of an action, while others may be created within 
domain-specific ontologies. Figure 1b shows the definition of a class, namely 
SkyTeamCustomer, which represents all the individuals that are flying with a company 
belonging to the Sky Team alliance. This class is defined as a subclass of the Customer 
class, having the affiliation property restricted to the Sky Team. 

As these examples show, KAoS is based on an ontological approach to policy 
specification, which exploits OWL, i.e., description logic, features to describe and specify 
policies and context conditions. In fact, contexts and related policies are expressed as 
ontologies. Therefore, KAoS is able to classify and reason about both domain and policy 
specification basing on ontological subsumption, and to detect policy conflicts statically, 
i.e., at policy definition time. 

However, a pure OWL approach encounters some difficulties with regard to the 
definition of some kinds of policies—specifically those requiring the definition of 
variables. For instance, by relying purely on OWL, we could not define policies such as 
the FileSharing policy, which defines constraints over property values that refer to 
statically unknown values, e.g., the policy owner location. Other examples include 
policies that contain parametric constraints, which are assigned a value only at 
deployment or run time. For this reason, KAoS developers have introduced role-value 
maps as OWL extensions and implementing them within the Java Theorem Prover, used 
by KAoS [11, 17]. The adoption of role value maps, description logic-based concept 
constructors that were originally introduced in the KL-ONE system [12], allows KAoS to 
specify constraints between property values expressed in OWL terms, and to define policy 
sets, i.e., groups of policies that share a common definition but can be singularly 
instantiated with different parameters. The proposed extensions effectively add sufficient 
expressive flexibility to KAoS to represent the policies discussed in this paper. However, 
non-experienced users may have difficulties in writing and understanding these policies 
without the help of the KPAT graphical user interface. 

Rei 

Rei is a policy framework that permits to specify, analyze and reason about declarative 
policies defined as norms of behavior [4, 6]. Rei adopts a rule-based approach to specify 



semantic policies. Rei policies restrict domain actions that an entity can/must perform on 
resources in the environment, allowing policies to be developed as contextually 
constrained deontic concepts, i.e., right, prohibition, obligation and dispensation. The first 
version of Rei (Rei 1.0) is defined entirely in first order logic with logical specifications 
for introducing domain knowledge [13]. The current version of Rei (Rei 2.0), that we 
analyze in this paper, adopts OWL-Lite to specify policies and can reason over any 
domain knowledge expressed in either RDF or OWL [4]. 

A policy basically consists of a list of rules and a context that is used to define the 
policy domain. Rules are expressed as OWL properties of the policy. In particular, the 
policy:grants property is used to associate a deontic object with a policy either directly or 
via a policy:Granting. Figure 2 shows the Rei 2.0 policy specification of the 
LocationSharing policy. In order to specify context conditions, one or more constraints 
must be defined. A constraint, which may be simple or boolean, i.e., the boolean 
combination of a pair of simple constraints, defines a set of actors or a set of actions that 
fulfill a certain property. A simple constraint, as shown in Figure 2b, is modeled as a triple 
consisting of a subject, a predicate and an object, which defines the value of the property 
for the entity, following a pattern that is typical of logical languages like Prolog. 

A constraint can be associated to a policy at three different levels. The first possibility 
is to impose a constraint within the definition of a deontic object, by means of the 
deontic:constraint property, as shown in Figure 2c. In this case, the constraint can be 
expressed over the actor, the action to be controlled or over generic environmental states, 
e.g., the time of the day. Additional constraints can be imposed within the Granting 
specification over the entity the granting is made to, the deontic object the granting is 
made over and, again, over generic environmental states. Finally, it is possible to express 
a set of constraints directly within the policy definition through the policy:context 
property. These constraints are generically defined as conditions over attributes of entities 
in the policy domain. 

  
<policy:Policy rdf:ID="FileAccessPolicy"> 
    <policy:actor rdf:resource="#requester"/> 
    <policy:grants rdf:resource="#Perm_FileAccess"/> 
</policy:Policy> 
<policy:Policy rdf:ID=”FileSharingPolicy”> 

... 
</policy:Policy> 

a) 

<constraint:SimpleConstraint rdf:ID="LocationOfUser"> 
     <constraint:subject rdf:resource="&some-ontology;user"/> 
     <constraint:predicate rdf:resource="&some-ontology;location"/> 
     <constraint:object rdf:resource="#user-location"/> 
</constraint:SimpleConstraint> 
 
<constraint:SimpleConstraint rdf:ID="CoLocatedWithUser"> 
     <constraint:subject rdf:resource="#requester"/> 
     <constraint:predicate rdf:resource="&some-ontology;location"/> 



     <constraint:object rdf:resource="#user-location"/> 
</constraint:SimpleConstraint> 
 
<constraint:And rdf:ID="Constraint_CoLocated"> 
     <constraint:first rdf:resource="#LocationOfUser"/> 
     <constraint:second rdf:resource="#CoLocatedWithUser"/> 
</constraint:And> 

b) 

<deontic:Permission rdf:ID="Perm_FileAccess"> 
    <deontic:actor rdf:resource="#requester"/> 
    <deontic:action rdf:resource="&some-ontology;AccessToSharedFiles"/> 
    <deontic:constraint rdf:resource="#Constraint_CoLocated"/> 
</deontic:Permission> 

c) 
Fig. 2. Rei policy examples. 
 

Rei 2.0 uses OWL-Lite for the specification of policies and of domain-specific 
knowledge. Though represented in OWL-Lite, Rei still allows the definition of variables 
that are used as placeholders as in Prolog. In fact, as shown in Figure 2b, the definition of 
constraints follows the typical pattern of rule-based programming languages, like Prolog, 
i.e., defining a variable and the required value of that variable for the constraint to be 
satisfied. In this way, Rei overcomes one of the major limitations of the OWL language, 
and more generally of description logics. i.e., the inability to define variables. For 
example, as shown in Figure 2, Rei allows developers to express a policy stating that a 
user is allowed to access the shared files of another user if they are located in the same 
area, whereas pure OWL would not allow for the definition of the “same as” concept. 
Therefore, Rei’s rule-based approach enables the definition of policies that refer to a 
dynamically determined value, thus providing greater expressiveness and flexibility to 
policy specification. 

On the other hand, the choice of expressing Rei rules similarly to declarative logic 
programs prevents it from exploiting the full potential of the OWL language. In fact, Rei 
rules knowledge is treated separately from OWL ontology knowledge due to its different 
syntactical form. OWL inference is essentially considered as an oracle, i.e., the Rei policy 
engine treats inferences from OWL axioms as a virtual fact base. Hence, Rei rules cannot 
be exploited in the reasoning process that infers new conclusions from the OWL existing 
ontologies, which means that the Rei engine is able to reason about domain-specific 
knowledge, but not about policy specification. As a main consequence of this limitation, 
Rei policy statements cannot be classified by means of ontological reasoning. Therefore, 
in order to classify policies, the variables in the rules need to be instantiated, which 
reduces to a constraint satisfiability problem. Let us consider, for example the previously 
described PrinterAccess policy. Unlike KAoS, Rei does not allow for a policy disclosure 
process that retrieves policies controlling a specific type of action. Hence, the user willing 
to use the printer could only try to access it and see what the Rei engine has answered, 
with regard to this particular access. For the same reason, Rei cannot statically detect 



conflicts, like KAoS does, but it can only discover them with respect to a particular 
situation. 

4. Toward a Hybrid Approach to Semantic Policy Specification? 

The management of context and related policies is a demanding task and requires the 
appropriate description of context and subsequent policies. Our analysis of current 
approaches to semantic context-based policy specification has outlined two main research 
directions, which move from two opposite sides. 

On one side, a purely ontology-based approach exploits description logic, e.g., OWL, 
to describe contexts and associated policies at a high level of abstraction, in a form that 
allows their classification and comparison. This feature is essential, for instance, in order 
to detect conflicts between policies before they are actually enforced, thus granting 
interoperability among entities belonging to different domains that adopt different 
policies. In fact, by means of a preliminary analysis of policy typologies holding in 
different domains, the required behaviors of each domain can be compared and 
harmonized, if needed, avoiding the cost of failures due to conflicts arising in the 
enforcement phase. Another interesting application of an ontology-based approach lies in 
the possibility of exploiting policy description to facilitate negotiation in policy 
disclosure. As an entity may wish to interact with potentially untrusted entities, 
negotiating policy disclosure may help interacting parties in the effort of reaching an 
agreement about their mutual behavior without imposing too heavy limitations to their 
privacy. 

On the other side, a rule-based approach relies on the features of logic programming 
languages, e.g., Prolog, to enable evaluation and reasoning about concrete context and 
policy instances. In fact, from the enforcement point of view, policy rules can be 
considered as “instructions” to be executed provided that their activating conditions, i.e., 
contexts, are evaluated to be true. This perspective suggests that contexts and related 
policies should be expressed in a clear, concise and expressive way to facilitate their 
evaluation and enactment, similarly to the code of a programming language that needs to 
be compiled or interpreted. For example, the language should allow for the definition of 
policies over dynamically determined constraints, including run time variables, as this is a 
crucial expressive feature that most programming languages offer. 

KAoS and Rei represent intermediate approaches between the two opposite approaches 
previously described. KAoS was originally based only on description logic, provided by 
the OWL language features, but current features aim at overcoming the intrinsic 
limitations of OWL as a description logic-based language, i.e., the inability to allow 
variable-based reasoning [11, 17]. Rei, the first version of which was strongly oriented to 
a declarative logic programming approach, has recently moved from a Prolog-like syntax 
to an OWL encoding that permits ontological reasoning over domain knowledge (but not 
over policy rules), mainly to solve the extensibility problem of Rei 1.0. 



We claim that a policy framework for pervasive computing systems should be able to 
provide support to context modeling and evaluating with different levels of granularity 
and flexibility. In particular, we suggest the possibility of an integrated approach that 
exploits both description logic (DL) and logic programming (LP). At a higher level of 
granularity and abstraction, DL should be exploited to classify contexts and related 
policies, thus allowing static conflict resolution and favoring gradual policy disclosure 
between interacting parties. At a more operational level, LP should be used to encode 
rules in a clear and expressive fashion that may also facilitate their enforcement. 

Let us consider, for instance, the LocationSharing policy. This policy can be described 
using description logic through the definition of the ontological concepts of location 
context and co-location, thus enabling classification, comparison and static conflict 
detection with other policies that are related with the same concepts. On the other side, 
logic programming can be used to encode the rule that effectively enforces the policy, 
namely: if user Y is located in the same place as user X, then user Y is allowed to access 
user X’s shared files. 

Let us illustrate with an example how a policy framework could benefit from such a 
hybrid approach to policy specification. Let us suppose that Bob is waiting to check-in at 
the airport and wishes to share some music files with other travelers at the airport. In order 
not to waste battery, he would like to avoid a random approach where he just tries to 
access other users devices to share files with them, without knowing in advance if the 
access will be permitted or denied. To this extent, before attempting to send or receive 
files from his portable device, he asks other users to disclose their public access control 
policies. Let us suppose that the LocationSharing policy is in force and active on Alice 
laptop. Upon receiving Bob request for policy disclosure, she retrieves and sends the 
policies that controls the “file sharing” action type, i.e., the LocationSharing policy. At 
this point, Bob can statically check for conflicts between Alice’s policy and his own 
policies controlling the same type of action, i.e., file sharing. If, for instance, Bob has 
enforced a policy to control file sharing that does not include any location context, then he 
can deduce that there is no conflict between his own policy and Alice’s. It is worth noting 
that policy disclosure and conflict detection is enabled by the ontology-based definition of 
policies. On the other hand, when Bob actually tries to access Alice shared files, the 
access control policy is enforced on the basis of its rule-based definition, by evaluating the 
current value of variables, i.e., Alice and Bob current location. Let us note that, due to the 
dynamic nature of the policy whose evaluation can be made only at access time, it may 
still be possible that Bob is not allowed to access Alice files because of his current 
location. However, thank to the preliminary policy disclosure phase, Bob is able to decide 
whether he agrees to adhere to a policy that imposes some conditions on user location. If, 
for instance, Bob is waiting at the check-in desk and he already knows that his location 
will not change in the next hour because there is a very long queue, then he may decide to 
choose another user that does not impose any condition on location. 

It is worth stating that an integrated approach like the one we have described would 
require the establishment of a semantic and inferential correspondence between DL and 
LP. This is a complex issue, which nonetheless may be addressed, as demonstrated, for 



instance, by recent work. For example, the approach described in [15] could represent a 
valid guideline toward a viable integration process. According to the authors, the idea was 
on the one hand to enable to “build rules on top of ontologies”, i.e., enable the rule 
knowledge base to have access to DL ontological definitions for vocabulary primitives, 
and on the other hand to enable to “build ontologies over rules”, i.e., enable ontological 
definitions to be supplemented by rules, or imported into DL from rules. Let us note that 
Rei seems to have taken the first approach, as in its latest version it allows to specify 
policy rules using policy and domain ontologies. KAoS, by means of appropriate 
extensions of the OWL language, is aiming at supplementing its ontological specification 
of policies with rules. In particular, the authors of [15] propose a mapping between DL 
and LP, based on the consideration that, under appropriate restrictions, both logics can be 
considered as restricted sets of first order logic. As a final consideration, we believe that 
the way toward interoperation between rules and ontologies could be further explored to 
achieve more powerful and flexible expressive means for the specification of context-
based policies. 

5. Conclusions and Future Work 

The specification of semantically-rich context-based policies to regulate agent behavior 
in pervasive environments is a complex task that requires appropriate representations to 
describe both context information relevant for policy specification and the policies 
themselves. Our analysis of current approaches to semantically-rich context-based policy 
specification has described two main research directions that are moving toward the 
middle from two opposite sides, i.e., an ontology-oriented approach, based on description 
logic features, and a rule-oriented approach, based on logic programming. The paper 
proposes a hybrid approach to policy specification that allows better handling of the 
highly dynamic, uncertain and heterogeneous conditions that are typical of the pervasive 
environments where agents operate. This paper has analyzed the problem and the issues to 
be solved in developing such a hybrid policy approach. Further investigation is needed to 
conduct more formal and thorough analyses of existing and proposed systems in order to 
understand their strengths and weaknesses, and to propose the basis for new research and 
development. Along this direction, stimulating ideas and results can come from the 
investigation of existing proposals, such as SWSL [16], which describes the attempt to 
combine first-order logic with rule based languages to specify the Semantic Web Services 
ontologies as well as individual Web services. 

References 

1. Jennings, N., “An agent-based approach for building complex software systems”., 
Communications of the ACM, 44(4), pp. 35-41, 2001. 



2. Bradshaw, J. M. (Ed.). Software Agents. Cambridge, MA: The AAAI Press/The MIT Press, 
1997. 

3. Bradshaw, J. M., Jung, H., Kulkarni, S., & Taysom, W. “Dimensions of adjustable autonomy 
and mixed-initiative interaction”. In M. Klusch, G. Weiss, & M. Rovatsos (Ed.), Computational 
Autonomy, Springer-Verlag, Berlin, Germany, 2004. 

4. Kagal, L.: “A Policy Based Approach to Governing Autonomous Behavior in Distributed 
Environments”. Dissertation submitted to the Faculty of the Graduate School of the University 
of Maryland for the degree of Doctor of Philosophy, Baltimore County, USA, 2004. 

5. Tonti, G., Bradshaw, J. M., Jeffers, R., Montanari, R., Suri, N., Uszok, A.: “Semantic Web 
languages for policy representation and reasoning: A comparison of KAoS, Rei, and Ponder”, 
Proc. of the Second International Semantic Web Conference (ISWC2003), LNCS, Vol. 2870. 
Springer-Verlag, Berlin, pp. 419-437, Sanibel Island, Florida, USA, October 2003. 

6. Kagal, L., Finin, T., Joshi, A.: “A Policy Language for Pervasive Computing Environment” In: 
Proc. of IEEE Fourth International Workshop on Policy (Policy 2003). Lake Como, Italy, pp. 
63-76, IEEE Computer Society Press 4-6 June 2003. 

7. Van Harmelen, F., et al.: “OWL Web Ontology Language Reference, W3C Recommendation 10 
February 2004”, http://www.w3.org/TR/owl-ref/. 

8. Montanari, R., Toninelli, A., Bradshaw, J.M.: “Context-Based Security Management for Multi-
Agent Systems”, To be published In: Proc. of the Second IEEE Symposium on Multi-Agent 
Security and Survivability, IEEE Press, Philadelphia, USA, 30-31 August 2005. 

9. Bradshaw, J. M., Uszok, A., Jeffers, R., Suri, N., Hayes, P., Burstein, M. H., Acquisti, A., 
Benyo, B., Breedy, M. R., Carvalho, M., Diller, D., Johnson, M., Kulkarni, S., Lott, J., Sierhuis, 
M., & Van Hoof, R. (2003). Representation and reasoning for DAML-based policy and domain 
services in KAoS and Nomads. Proceedings of the Autonomous Agents and Multi-Agent 
Systems Conference (AAMAS 2003). 14-18 July, Melbourne, Australia. New York, NY: ACM 
Press, pp. 835-842 

10. Uszok, A., et al.: “KAoS policy management for semantic web services”. IEEE Intelligent 
Systems, 19(4), p. 32-41, 2004. 

11. Moreau, L., Bradshaw, J., Breedy, M., Bunch, L., Johnson, M., Kulkarni S., Lott J., Suri N., 
Uszok A.: “Behavioural Specification of Grid Services with the KAoS Policy Language”, Proc. 
of the Cluster Computing and Grid 2005. Cardiff, UK, 9-12 May 2005. 

12. Schmidt-Schauss, M.: “Subsumption in KL-ONE is undecidable”, In: Proc. of the First Intl 
Conference on the Principles of Knowledge Representation and Reasoning (KR 1989), Morgan 
Kaufmann: Los Altos, 1989. 

13. Kagal, L.: Rei: “A Policy Language for the Me-Centric Project”, HP Labs Technical Report, 
HPL-2002-270, 2002. 

14. N. Damianou, et al., “The Ponder Policy Specification Language,” Proc. 2nd Int’l Workshop 
Policies for Distributed Systems and Networks, LNCS 1995, Springer-Verlag, pp. 18-38, 2001. 

15. Grosof, B.N., Horrocks I., Volz, R., and Decker, S.: “Description Logic Programs: Combining 
Logic Programs with Description Logic”, In: Proc. of WWW 2003, 20-24 May 2003, Budapest, 
Hungary, 2003. 

16. Battle S., et al., Semantic Web Service Language (SWSL), Version 1.0. 
http://www.daml.org/services/swsf/1.0/swsl/ (2005). 

17. Uszok, A., Bradshaw, J. M., Jeffers, R., Tate, A. & Dalton, J. (2004). Applying KAoS services 
to ensure policy compliance for semantic web services workflow composition and enactment. In 
S. A. McIlraith, D. Plexousakis, F. van Harmelen (Eds.), The Semantic Web—ISWC 2004, 
Proceedings of the Third International Semantic Web Conference, Hiroshima, Japan, November 
7-11, LNCS 3298, Berlin: Springer, pp. 425-440. 



 


