
Modeling Conversation Policies using Permissions

and Obligations

Lalana Kagal
Massachusetts Institute of Technology,

Cambridge, MA 02139, USA,
lkagal@csail.mit.edu

Tim Finin
University of Maryland Baltimore County

Baltimore, MD 21250, USA
finin@cs.umbc.edu

Abstract

Both conversation specifications and policies are required to facilitate
effective agent communication. Specifications provide the order in which
speech acts can occur in a meaningful conversation, whereas policies re-
strict the specifications that can be used in a certain conversation based
on the sender, receiver, messages exchanged thus far, content, and other
context. We propose that positive/negative permissions and obligations
be used to model conversation specifications and policies. We also propose
the use of ontologies to categorize speech acts such that high level policies
can be defined without going into specifics of the speech acts. This ap-
proach is independent of the syntax and semantics of the communication
language and can be used for different agent communication languages.
Our policy based framework can help in agent communication in three
ways (i) to filter inappropriate messages, (ii) to help an agent to decide
which speech act to use next, and (iii) to prevent an agent from sending
an inappropriate messages. Our work differs from most existing research
on communication policies because it is not tightly coupled to any domain
information such as the mental states of agents or specific communicative
acts. Contributions of this work include (i) an extensible framework that
is applicable to varied domain knowledge and different agent communi-
cation languages, and (ii) the declarative representation of conversation
specifications and policies in terms of permitted and obligated speech acts.

1 Introduction

Multi-agent systems require that agents interact and collaborate to satisfy their
goals. Agent communication plays a very important part in these systems. A

1

* Manuscript

Kagal and Finin Journal of Autonomous Agents and Multi-Agent Systems pre-preprint draft 3/30/06, to appear 2006

conversation can be defined as a sequence of communicative acts exchanged
between interacting agents towards satisfying a particular goal [10, 12, 23].
Most rich agent communication languages have protocol specifications requir-
ing meaningful conversations to adhere to various structural constraints. For
example, if one agent sends a propose message to another, meaningful response
are are restricted to accept-proposal or reject-proposal messages. However, these
conversation specifications or interaction protocols solely define the order in
which communicative acts can be performed and do not take into consideration
the content of the message, the attributes of the sender or the recipient or any
other context. Similar to Phillips [23], we propose that along with conversation
specifications, agents should use policies that define constraints over different
aspects of the conversation in order to provide more flexible control over agent
communication. This also allows the communication modules of agents to be
less dependent on the communication protocols permitting the modification of
conversation specifications and policies without requiring the modules to be
changed.

We differentiate between conversation specifications that define the order
of communicative/speech acts and policies that affect how conversation speci-
fications are used and how conversations are carried out. Conversation speci-
fications, or interaction protocols as they are known within FIPA (Foundation
for Intelligent Physical Agents) [9], define the order in which communicative
acts can occur within a conversation. For example, on receiving a REQUEST
communicative act, an agent can reply with REFUSE or AGREE [9]. On the
other hand, we define conversation policies as restrictions on the conversation
based on the content of the communicative act, the attributes of the sender and
recipient including their beliefs, desires and intentions and other context like the
current team they belong to, the time of day, and their location. For example,
a conversation policy would oblige an agent to provide an evasive answer to a
QUERY about a political issue in an office setting but permit it to provide a
more truthful answer in a social setting. However, we also consider other poli-
cies such as privacy, work, and social that may establish additional restrictions
and limitations on the communicative capabilities of the agent. Consider an
agent that has a privacy policy prohibiting it from disclosing the social security
number (SSN) of the user. Though the conversation specification provides the
set of communicative acts the agent can use to reply to a QUERY, its privacy
policy prohibits it from responding to any query that asks about the user’s SSN.

In this paper, we describe our preliminary work in modeling conversation
specifications and policies as positive/negative permissions and obligations. We
also discuss how ontologies can help in developing high level policies that are
independent of the specific agent communication language being used. We de-
scribe mechanisms for resolving conflicts between specifications and policies that
enable an agent to decide what communicative act to perform next within a
conversation. Our work differs from most previous research in communication
policies in that it is not tied to a specific model of agent mental states, a spe-
cific agent communication languages, nor to a specific set of communicative acts
[8, 12, 27, 28]. Rather, we provide an extensible framework that can be used

2

Kagal and Finin Journal of Autonomous Agents and Multi-Agent Systems pre-preprint draft 3/30/06, to appear 2006

to develop conversation protocols and policies over different kinds of domain-
specific knowledge and different agent communication languages.

As an example, we describe the issue with the Medicare prescription drug bill
in the United States [2] in terms of agent communication. According to the CNN
article, Rick Foster, chief actuary for the Centers for Medicare and Medicaid
Services, stated that he was asked not to answer questions from Democratic
members of the United States Congress regarding the cost of the bill before
a series of key votes last summer. We describe how this would have worked
within a multi-agent system driven by our conversation specifications and poli-
cies. Agents, including Foster, have a conversation specification that states that
in response to a QUERY, the agent is permitted to use either AGREE followed
by an INFORM/FAILURE or REFUSE or ignore the message. Their work pol-
icy states that all state employees are obliged to answer queries from members
of Congress. However, agency chief Thomas Scully, has enforced a temporary
policy of the highest priority on Foster stating that he is obliged not to answer
queries from congressional Democrats regarding the estimated cost of the Medi-
care prescription drug bill until the end of summer. A sanction is associated
with the failure to fulfill this obligation that states that Foster could lose his
job.

Whenever Foster receives a message, he reasons over his conversation spec-
ifications and policies to figure out how he should respond. When he receives
a QUERY from a congressional Democrat asking about the estimated cost of
the bill he knows from the conversation specifications that the correct response
is AGREE or REFUSE. As his work policy obliges him to answer all queries
from congressional members, under normal circumstances Foster would agree.
However, as Scully’s temporary policy overrides the work policy and because of
the associated sanction, Foster follows Scully’s policy and REFUSEs the query.
Scully’s policy could also include rules obliging Foster to send an evasive reply
to the congressional Democrats instead of refusing to answer.

2 Framework

A communicative or speech act is defined in terms of the set of actions that
are implied when an agent makes an utterance. Generally, there are three
actions that can be identified; (i) locution, which is the action of uttering the
speech act, (ii) illocution, which deals with the conveying of the intentions of the
sender, and (iii) perlocution, which are actions that occur due to the illocution.
Conversation specifications define the sequence in which communicative acts can
be performed in order for agents to have a meaningful dialog. We model them as
a set of permissions and obligations on speech acts based on the communicative
acts exchanged thus far. We believe that conversation specifications should be
very simple and only provide a list of possible speech acts that can be performed
at a given time. This list of possible acts is then restricted by the policies acting
on the agent. However, within our framework it is also possible to develop
complex specifications that resemble policies.

3

Kagal and Finin Journal of Autonomous Agents and Multi-Agent Systems pre-preprint draft 3/30/06, to appear 2006

Though our policy language [13, 14] is defined in OWL (Web Ontology Lan-
guage) [31], an ontology language used to describe metadata about entities, for
conciseness and ease of explanation, we use expressions in predicate logic to
describe speech acts, positive and negative deontic objects, and policies. Vari-
ables begin with upper case alphabets, instances and property names begin with
lower case alphabets.

• A communicative or speech act is performed by an agent to achieve a
certain intention. A speech act is usually assumed to have two main
components; the performative and the proposition.

We describe a communicative act as a tuple

performative(Sender, Receiver, Proposition)

For example, a QUERY-REF speech act of FIPA sent from agentX to
agentY asking agentY what he believes the values of the included propo-
sition to be

query-ref(agentX, agentY, estimatedCostOfBill(Cost))

• Domain actions are actions that an agent can perform and are described
by the following tuple

action(Actor, Target, PreCondition, Effect)

The printAPage domain action can be described as

printAPage(X, hpLaitPrinter,
(numPages(hpLaitPrinter, N), N>0), (numPages(hpLaitPrinter, N-1)))

• Deontic concepts of permissions, prohibitions (negative permissions), obli-
gations and dispensations (waiver from an obligation) are used to describe
the behavior of the agent. These concepts are represented by the following
tuple

deontic(Actor, Action, [Constraint], [StartingConstraint],
EndingConstraint], [ObligedTo], [Sanction])

Consider the permission of an agent to perform an AGREE speech act
to any agent regarding the estimated cost of the Medicare prescription
bill. This is considered a policy as it includes domain knowledge of the
proposition used to model the cost of the bill.

4

Kagal and Finin Journal of Autonomous Agents and Multi-Agent Systems pre-preprint draft 3/30/06, to appear 2006

permission(X, agree(X, Y, estimatedCostOfBill(Cost)), _)

Permissions and prohibitions are used to describe positive/negative au-
thorizations whereas obligations and dispensations describe positive/negative
responsibilities. All these objects could be represented in terms of a single
concept, either permission or obligation, but we use different terms for
simplicity.

Associated with each deontic object is either a constraint field, which
defines the conditions under which the deontic object is applicable, or
startingConstraint and endingConstraint that together define the window
within which the deontic object is applicable. These constraints could also
include conditions on time providing time validity to the deontic object.
Obligations and dispensations have an additional field, obligedTo, which
describes whom the agent is obliged. Another property called sanctions is
associated with both obligations and prohibitions and is used to describe
the penalties imposed on the agent if it fails to fulfill the obligation or
violates the prohibition. Consider a policy of a graduate assistant that
obliges him to turn in a weekly status report to his advisor or risk missing
a pay check.

obligation(X, inform(X, Y, weeklyStatus(X, W, Status)),
(advisor(Y, X), endOfWeek(W)), Y, missPayCheck(X, W))

A permission allows an agent to perform the associated action as
long as the constraint is true or while the startingConstraint is true and
until the endingConstraint is true 1. A prohibition prevents an agent from
performing the associated action as long as the constraint is true or while
the startingConstraint is true and until the endingConstraint is true. An
agent must perform an obligation before the endingConstraint is true and
while the startingConstraint is true. An agent is no longer obliged to fulfill
an obligation if there is an associated dispensation freeing the agent from
the obligation.

In order to impose a sanction it is important to reason about viola-
tions. An agent is in violation of a prohibition if it performs the prohibited
action while the constraint on the prohibition is true or within the win-
dow defined by the startingConstraint and endingConstraint. Similarly an
agent is in violation of its obligation if it fails to complete it before the
endingConstraint is true. In order to simplify reasoning over violations
we make the following assumptions, (i) the constraints are conditions that
are true at some point of time, (ii) the endingConstraint will be true after
the startingConstraint is true, and (iii) obligations do not exist after the
endingConstraint is true [6].

1Though startingConstraint and endingConstraint can be combined into a single constraint,
we’ve separated them for pragmatic reasons.

5

Kagal and Finin Journal of Autonomous Agents and Multi-Agent Systems pre-preprint draft 3/30/06, to appear 2006

• Boolean combinations of actions including AND (logical conjunction), OR
(logical disjunction), and XOR (exclusive disjunction or exclusive OR) are
possible within deontic concepts.

An agent is permitted to perform a both an AGREE speech act as well
as a REFUSE speech act to any agent regarding the estimated cost of the
Medicare prescription bill.

permission(X, AND(agree(X, Y, estimatedCostOfBill(Cost)),
refuse(X, Y, estimatedCostOfBill(Cost))), _)

• In our framework conflicts can occur between permissions and prohibi-
tions, obligations and prohibitions, and obligations and dispensations. In
order to resolve conflicts, our framework includes meta-policies that are
used to correctly interpret policies. There are two kinds of meta-policies
namely setting the modality precedence (negative over positive or vice
versa) or stating the priority between rules within a policy or between
policies [22].

In a multi-policy environment, it is possible to state that one policy
overrides another. For example, it is possible to say that in case of conflict
the CS department policy always overrides the Lait lab policy. As another
example, consider the CS department policy. Students are prohibited from
using the faculty printer but research assistants are permitted to. There
is a potential conflict if a student is a research assistant and needs to use
the faculty printer. This can be solved by setting the priority between the
rules and stating that the permission overrides the prohibition.

rule1 : prohibition(X, print(X, facultyPrinter), student(X), _)
rule2 : permission(X, print(X, facultyPrinter), researchAssistant(X))
overrides(rule2, rule1)

Our approach is based on statements that one policy has priority over
or dominates another and within a policy that one rule dominates another.
The assertions produce a priority graph over policies and, for each policy,
a priority graph for policy rules. In such a scheme we have to worry about
two issues: the presence of cycles in the priority graph and the having
only a partial ordering when a total ordering is desired. The first problem
is a serious one can be avoided by analyzing the priority graphs to detect
cycles and reporting any found as “bugs” to be corrected by the policy
authors. Whether the second issue is a problem or not is a design issue.
We propose to to induce a possible total ordering, if necessary, in the
priority graph for policies and for rules within a policy.

If instead of priorities modality precedence is used, then when a con-
flict occurs the rule with the preferred modality overrides the other. For

6

Kagal and Finin Journal of Autonomous Agents and Multi-Agent Systems pre-preprint draft 3/30/06, to appear 2006

example, if positive modality is preferred then in case of conflict, permis-
sions and obligations will override prohibitions and obligations will over-
ride dispensations. The conflict in the CS department policy in the earlier
example can also be resolved if positive modality is given precedence.

precedence(positive-modality)

• Our framework allows the default behavior of a policy to be set such that
all actions being controlled by the policy are permitted if not explicitly
prohibited by the policy, prohibited if not explicitly permitted by the
policy, or do not have a default behaviour and require explicit permissions
and prohibitions to be set.

default-behavior(implicitpermexplicitproh)

• We also use some additional expressions to describe the sequence of mes-
sage that have been exchanged so far in an actual dialog.

– received(M) : states that a message, M, was received.

– rec-notrespondedto(M) : states that a message, M, was received but
no response has been sent as yet.

– rec-respondedto(M) : states that a message, M, was received and a
response has been sent.

– sent(M) : states that a message, M, was sent.

– incomplete-sent(M) : states that a message, M, was sent, but an-
other message(s) is required to complete the conversation. E.g. if an
agent sends an AGREE as a response to a QUERY-REF, the agent
is required to follow up with either an INFORM or a FAILURE.

3 Conversation Specifications

Using the semantics of the deontic objects and domain actions and the syntax of
speech acts, we can model conversation specifications in agent communication
languages like Knowledge Query and Manipulation Language (KQML) [8, 18]
or Foundation for Intelligent Physical Agents (FIPA) [9] as a set of permissions
and obligations on the sender or the receiver depending on the performatives
used thus far in the conversation.

As an example, we describe one possible interpretation of the QUERY-REF
specification in FIPA.

• Speech acts used : QUERY-REF, REFUSE, AGREE, FAILURE, IN-
FORM

7

Kagal and Finin Journal of Autonomous Agents and Multi-Agent Systems pre-preprint draft 3/30/06, to appear 2006

• Sequence of messages : An agent sends a QUERY-REF message to another
agent. The latter can reply either with a REFUSE or an AGREE stating
its intent to either provide an answer or refuse to answer. Once an agent
has sent an AGREE, it is obliged to send an INFORM providing the
information required.

– Every agent has the permission to perform a QUERY-REF perfor-
mative

permission(X, query-ref(X, Y, Proposition),_)

In the above expression, the constraint field is left empty to
specify that there are no constraints on the performing of a QUERY-
REF performative.

– On receiving a QUERY-REF, the recipient has the permission to
REFUSE the query or AGREE to provide the answer if the query
has not already been answered.

permission(Y, XOR(agree(Y, X, Proposition),
refuse(Y, X, Proposition)), T))

permission(Y, refuse(Y, X, Proposition),
rec-notrespondedto(query-ref(X,Y, Proposition)))

permission(Y, agree(Y, X, Proposition),
rec-notrespondedto(query-ref(X,Y, Proposition)))

Though the recipient has both permissions to start with, as soon
as one permission is used the other one becomes invalid because of the
status of the rec-notrespondedto predicate. The constraint ensures
that the agent has received a QUERY-REF speech act but has not
sent a response to it as yet. This allows the agent to either send a
REFUSE or AGREE in reply to a QUERY-REF but not both.

– Once an agent has accepted a QUERY-REF, it is obliged to answer
to it either with a FAILURE or with an INFORM and the agent is
obligated to the recipient of the agree message.

obligation(Y, XOR(failure(Y, X, Proposition),
inform(Y, X, Proposition)), T).

Unlike the earlier permissions, the agent has only one obligation
- the obligation to either send a failure or an inform.

Other specifications are simpler like the FIPA PROPOSE interaction proto-
col.

• Speech acts used : PROPOSE, REJECT-PROPOSAL, ACCEPT-PROPOSAL

8

Kagal and Finin Journal of Autonomous Agents and Multi-Agent Systems pre-preprint draft 3/30/06, to appear 2006

• Sequence of messages : An agent sends a PROPOSAL message to another
agent. The recipient can either use the REJECT-PROPOSAL or the
ACCEPT-PROPOSAL.

– Every agent has the permission to perform a PROPOSAL performa-
tive

permission(X, proposal(X, Y, Proposition), _)

– On receiving a PROPOSAL, the recipient has the permission to either
reject the proposal or accept it.

permission(Y, accept-proposal(Y, X, Proposition),
rec-notrespondedto(proposal(X,Y, Proposition)))

permission(Y, reject-proposal(Y, X, Proposition),
rec-notrespondedto(proposal(X,Y, Proposition)))

4 Policies

Policies such as conversation, social, and privacy add restrictions on the perfor-
matives that can be used, the content of the speech act, the receiver, time of
the message, etc. based on current attributes of the sender, receiver, content
and all other context of the conversation. Policies can be defined at two levels;
one that is independent of the syntax and semantics of the communication lan-
guage and the second that is tightly integrated with them. In the latter case,
the policies use the semantics of the performative and define constraints on how
performatives can be used and under what conditions. Though this may be true
in the case of conversation policies, we generally assume that policies such as
privacy, and social norms define restrictions at the higher level of abstraction
and provide restrictions on the general behavior of the agent. Whenever these
policies deal with information flow between agents, they need to be translated
into lower level policies using the semantics of the communication language.
For example, an agent’s privacy policy might state that the SSN must not be
disclosed. This is irrespective of the agent communication language being used
or the specific performative. If FIPA is being used, the privacy policy could be
translated in our framework as ’The agent is prohibited from sending an IN-
FORM communicative act to any agent when the content involves the SSN of
the agent’. However, if KQML is the language being used for communication,
the semantics specify that only the TELL is the only assertive performative that
causes the agent to reveal its belief about a proposition. In this case, the policy
could translate to ’The agent is prohibited from sending a TELL communicative
act to any agent when the content involves the SSN of the agent’. Similarly,
a social policy can specify that an agent should not be rude. However, what
it means to be rude and how it translates into speech acts and their content
depends on the application domain. The agent would have to ensure that the
effect of any speech act does not violate this social policy.

9

Kagal and Finin Journal of Autonomous Agents and Multi-Agent Systems pre-preprint draft 3/30/06, to appear 2006

Following from the first example dealing with the Medicare bill, it is evident
that there could be several policies acting on an agent. This could lead to
conflicts between policies. Foster’s conversation specifications gave him the
permission to reply to requests, however, the agency head prohibited him from
replying to queries about the estimated cost of the Medicare bill. In Foster’s
case, Scully’s policy would be enforced if it was of higher priority than Foster’s
other policies.

5 Speech Act Ontology

As a first step towards automatic translation of high level policies to speech
act specific policies, we suggest that a general ontology be defined for different
kinds of the speech acts. An ontology is a representation of the knowledge
domain - in this case of the speech acts and their properties and relationships.
Having an ontological description of speech acts allows policies to be defined
in terms of the high level ontological concepts and properties and not in terms
of the actual speech acts. This helps in further decoupling policies from the
agent communication language and allows for greater interoperability. Figure 1
illustrates a simple and partial ontology for speech acts.

Speech Act

AnswerDisclose Question

Positive Negative

LEGEND

SubClass

Class

Figure 1: A simple and partial ontology of generalized speech acts provides a
framework to accommodate numerous specific agent communication languages.

The simple ontology shown above can be extended to express speech acts in
different agent communication languages. Figure 2 shows how the speech act
ontology can be extended to describe FIPA speech acts.

10

Kagal and Finin Journal of Autonomous Agents and Multi-Agent Systems pre-preprint draft 3/30/06, to appear 2006

Speech Act

Answer

Positive Negative

Disclose Question

LEGEND

SubClass

Class

Inform

Query

Query-if Query-ref

CFP Request

Request-when Request-
whenever

Not
Understood

Agree Confirm

Accept-
Proposal

Cancel Refuse

FailureReject-
Proposal

Figure 2: Our simple “upper model” ontology for speech acts can be extended
to include the major communicative acts specified by the FIPA ACL.

High level policies can be defined in terms of speech acts classes instead of
specific speech acts. Policies defined in such a way will automatically apply to
all instances of those speech acts classes as well. This is currently supported in
our OWL-based policy language [13].

As example, consider a previously described privacy policy that states that
the SSN number should not be disclosed. If the use of disclose speech acts is
prohibited, the agent is not able to let any one know what the SSN number is.
On the other hand, answer speech acts allow the agent to respond positively or
negatively to questions about the SSN numbers. These responses could lead to
someone figuring out what the SSN number is by asking enough questions. So
this privacy policy can be defined by adding a prohibition to all disclose and
answer type of speech acts in the ontology.

prohibition(X, disclose(X, Y, ssn(X)), _, _)
prohibition(X, answer(X, Y, ssn(X)), _, _)

The above policy works for both FIPA (INFORM is a disclose type of speech
act) and KQML (TELL is a disclose type of speech act) agent communication
languages.

As another example, consider a permission described earlier. An agent is
permitted to perform an AGREE speech act to any agent regarding the esti-
mated cost of the Medicare prescription bill. This can be restated in terms of

11

Kagal and Finin Journal of Autonomous Agents and Multi-Agent Systems pre-preprint draft 3/30/06, to appear 2006

the ontology as an agent is permitted to use a positive answer type of speech act
when asked by any agent about the estimated cost of the Medicare prescription
bill.

permission(X, positive-answer(X, Y, estimatedCostOfBill(Cost)), _)

This policy will apply to any agent communication language that can be
described in the above speech act ontology and not just FIPA.

6 Example

We now discuss the Medicare bill example in terms of our approach. We assume
that the agent communication language used is FIPA and both Foster and Scully
share the same conversation specifications. These specifications include the
QUERY-REF specification described in Section 3. We also assume that the
FIPA speech act ontology is being used to define policies.

• Foster has a work conversation policy that specifies that he should respond
to all queries from members of Congress. This is defined as two obliga-
tions: (i) an obligation to reply positively to all query type of speech acts
from members of Congress, and (ii) and an obligation to disclose required
information if they’ve answered positively to a request.

ConvPolicy :
obligation(X, positive-answer(X, Y, Proposition),

(rec-notrespondedto(query(Y, X, Proposition)),
congressionalMember(Y)),
X, _)

obligation(X, disclose(X, Y, Proposition),
(sent-incomplete(positive-answer(X, Y, Proposition)),
congressionalMember(Y)),
X, _)

• Scully decides that Foster should not answer any queries from congres-
sional Democrats that ask about the estimated cost of the Medicare pre-
scription bill. This is a high level policy and could be translated based on
the syntax and semantics the FIPA ACL in two ways:

1. As an obligation to provide a negative answer to all queries about
the estimated cost of the bill from congressional Democrats.

TempPolicy :
obligation(X, negative-answer(X, Y, estimatedCostOfBill(Cost)),

(rec-notrespondedto(query(Y, X, estimatedCostOfBill(Cost))),
congressionalDemocrat(Y)),

scully, loseJob(foster))

12

Kagal and Finin Journal of Autonomous Agents and Multi-Agent Systems pre-preprint draft 3/30/06, to appear 2006

2. As a prohibition from disclosing information about the estimated cost
of the bill to any congressional Democrat.

TempPolicy :
prohibition(X, disclose(X, Y, estimatedCostOfBill(Cost)),

(congressionalDemocrat(Y)), _)

We discuss the rest of the example using both choices.

• Scully gives his policy higher priority than the existing conversation policy.

overrides(TempPolicy, ConvPolicy)

• At some point of time, a congressional Democrat, Walter, sends a query
to Foster asking about the estimated cost of Medicare bill.

query-ref(walter, foster, estimatedCostOfBill(Cost))

• On receiving this speech act, Foster looks up the conversation specifi-
cations for QUERY-REF, and finds that he can respond either with an
AGREE or REFUSE.

• Foster checks his work conversation policy, which states that he is obliged
to answer all query kind of speech acts (both QUERY-IF and QUERY-
REF speech acts) from congressional Democrats with a positive answer
(AGREE) and then send the required information.

• Foster then reasons over Scully’s policy that is of higher priority than his
work conversation policy. If Scully’s policy states that Foster is obliged
to answer negatively to all queries from congressional Democrats about
the estimated cost of the bill, then Scully is forced to send a REFUSE to
Walter as by violating the policy he could lose his job.

refuse(foster, walter, estimatedCostOfBill(Cost))

On the other hand, if Scully’s policy states that Foster is not permitted
to disclose any information to congressional Democrats about the esti-
mated cost of the bill, then Foster can act in two ways and still comply
with Scully’s policy. He can either send a REFUSE to Walter or he can
send an AGREE to Walter but then not follow up with an INFORM. The
second option is a common social phenomenon where people commit to

13

Kagal and Finin Journal of Autonomous Agents and Multi-Agent Systems pre-preprint draft 3/30/06, to appear 2006

performing certain tasks, which they would prefer to turn down, just be-
cause they don’t want to say no. However, they don’t actually fulfill their
commitments and either make an excuse when asked or hope the requester
has forgotten. Using this option allows Foster to maintain good relations
with Walter and still conform to Scully’s policy. However, he violates his
work policy which states that after sending a positive answer he is obliged
to send the required information.

agree(foster, walter, estimatedCostOfBill(Cost))

Foster does not send :
inform(foster, walter, estimatedCostOfBill(Cost))

7 Specification Language

Though we use an abstract syntax to describe the examples in this paper for
ease of explanation and for conciseness, our framework has actually been tested
in Rei [13, 14], a policy language described in OWL [31]. OWL is a vocabulary
of RDF (Resource Description Framework) [30] and is a language for marking
up and sharing information on the World Wide Web. Rei extends OWL in order
to support rule-based policies. Rei policies have grounded constraints and use
data expressible in RDF. This allows them to take advantage of the growing use
of RDF and OWL as an interlingua in which to publish ontologies and data on
the web. The policies themselves are expressed in OWL that allows the policies
to be mapped into any of several reasoning engines that can then be used to
reason over the policies and the ontologies and data they reference.

Figure 3 shows part of the Rei ontology.
Our policy language is modeled on deontic concepts of permissions, prohi-

bitions, obligations and dispensations [14, 15]. We believe that most policies
can be expressed as what an entity can/cannot do and what it should/should
not do in terms of actions, services, and conversations, making our language
capable of describing a large variety of policies ranging from security policies
to conversation and behavior policies. The policy language has some domain
independent ontologies but will also require specific domain ontologies. The
former includes concepts for permissions, obligations, actions, speech acts, etc.
The latter is a set of ontologies, used by the entities in the system, which defines
domain classes and properties associated with the classes.

As an example, consider a policy that allows all members of congress to per-
form printing actions on a certain resource. The Rei namespaces include ’entity’,
’action’, ’constraint’, ’metapolicy’, and ’deontic’. The members of congress is
defined in the ’gov’ namespace whereas the printing action ontology is in the
’abc’ namespace.

<?xml version=’1.0’ encoding=’ISO-8859-1’?>

14

Kagal and Finin Journal of Autonomous Agents and Multi-Agent Systems pre-preprint draft 3/30/06, to appear 2006

LEGEND

Agent

Constraint

Policy

Granting

Simple Boolean

subj, pred, obj

Resource

context

grants

to
DeonticObject

deontic

requirement

constraint Action

Domain Action

Speech Act

precond, effect

actor

actor

action

SubClass

Class property

Figure 3: Rei’s ontology defines concepts and relations that can be used to
express policies over actions.

<!DOCTYPE rdf:RDF [
<!ENTITY constraint ’http://rei.umbc.edu/ReiConstraint.owl#’>
<!ENTITY deontic ’http://rei.umbc.edu/ReiDeontic.owl#’>
<!ENTITY metapolicy ’http://rei.umbc.edu/ReiMetaPolicy.owl#’>
<!ENTITY entity ’http://rei.umbc.edu/ReiEntity.owl#’>
<!ENTITY action ’http://rei.umbc.edu/ReiAction.owl#’>
<!ENTITY gov ’http://example.org/gov.rdf#’>
<!ENTITY abc ’http://example.org/abc.owl#’>

]>

<entity:Variable rdf:ID="Actor"/>
<entity:Variable rdf:ID="Action"/>

<constraint:SimpleConstraint rdf:ID="IsMemberOfCongress"
constraint:subject="#Actor"
constraint:predicate="&rdf;type"
constraint:object="&gov;CongressMember"/>

<constraint:SimpleConstraint rdf:ID="IsPrintingAction"
constraint:subject="#Action"

15

Kagal and Finin Journal of Autonomous Agents and Multi-Agent Systems pre-preprint draft 3/30/06, to appear 2006

constraint:predicate="&rdf;type"
constraint:object="&abc;Printing"/>

<constraint:SimpleConstraint rdf:ID="OnHPPrinter"
constraint:subject="#Action"
constraint:predicate="&action;target"
constraint:object="&abc;AHPPrinter"/>

<constraint:And rdf:ID="ActionConstraint">
<constraint:first rdf:resource="#IsPrintingAction"/>
<constraint:second rdf:resource="#OnHPPrinter"/>

</constraint:And>

<constraint:And rdf:ID="MainConstraint">
<constraint:first rdf:resource="#IsMemberOfCongress"/>
<constraint:second rdf:resource="#ActionConstraint"/>

</constraint:And>

<deontic:Permission rdf:ID="Perm_MemberCongPrinting">
<deontic:actor rdf:resource="#Actor"/>
<deontic:action rdf:resource="#Action"/>
<deontic:constraint rdf:resource="MainConstraint"/>

</deontic:Permission>

The policy language includes two constructs for specifying meta-policies that
are invoked to resolve conflicts; setting the modality precedence (negative over
positive or vice versa) or stating the priority between policies [19, 20]. When
modality precedences are used to resolve a conflict, the rule of the preferred
modality overrides the other. As an example of using priority consider a meta
policy that states that in case of conflict the Federal policy always overrides the
State policy.

<metapolicy:PolicyPriority rdf:ID="PriorityFederalState">
<metapolicy:policyOfGreaterPriority

rdf:resource="&gov;Federal"/>
<metapolicy:policyOfLesserPriority

rdf:resource="&gov;MAState"/>
</metapolicy:PolicyPriority>

Another important aspect of the framework is that it models speech acts
such as delegation, revocation, request and cancel for modifying existing policies
dynamically [13, 14]. Delegations and revocations cause the permissions of
agents to be modified, whereas requests and cancels affect the obligations. A
delegation speech act, if valid, causes a permission to be created. A revocation
speech act nullifies an existing permission (whether policy based or delegation

16

Kagal and Finin Journal of Autonomous Agents and Multi-Agent Systems pre-preprint draft 3/30/06, to appear 2006

based) of an agent. An agent can request another agent for a permission or to
perform an action on its behalf. The former if accepted causes a delegation and
the latter leads to an obligation. An agent can also cancel any previously made
request causing a dispensation.

Rei also provides two forms of analysis : use-cases (also known as test-case
analysis) and what-if analysis (also known as regression testing) [13, 14]. The
policy engine includes analysis tools in the form of a Java interface that can be
executed by policy engineers to check the consistency and validity of the policies
and ontologies. In use-case management, the policy maker can specify a set of
use cases that are verified against a set of policies. If the policies and ontologies
are consistent, the use case will be true. If the use case is false, the policy maker
is aware that there is an error in specifications of the policies. On the other hand,
what-if analysis is used to help the policy maker decide what changes to make
to the policy or ontology. For example, if Rule1 no longer applies, will Walter
still have the permission to print to the HPPrinter is modeled as follows

<analysis:WhatIfIRemoveRule rdf:ID="RemovingRule1">
<analysis:policy rdf:resource="&govpolicy;PrintPolicy"/>
<analysis:granting rdf:resource="&govpolicy;Rule1"/>

</analysis:WhatIfIRemoveRule>

<analysis:PermissionUseCase rdf:ID="CanWalterPrint">
<analysis:actor rdf:resource="&gov;Walter"/>
<analysis:action rdf:resource="&abc;Printing"/>
<analysis:target rdf:resource="&abc;HPPrinter"/>

</analysis:PermissionUseCase>

8 Policy Reasoning

Rei has a reasoning engine in Flora [32], an extension of XSB2 based on F-
logic [16]. The engine is built over F-OWL [34], a reasoner for OWL and RDF,
enabling it to understand and reason over policies and specifications defined in
both OWL and RDF. Though the framework includes boolean combinations of
actions within deontic concepts, the policy engine does not currently support
this. The engine reasons over policies, meta policies, history of speech acts, and
domain information to answer the following types of questions :

• What are the current permissions of X ?

The engine looks for all those permissions whose actor property unifies
with X and whose constraints are satisfied. If there is a conflicting prohi-
bition or revocation, the engine uses the meta policies to decide whether
the permission overrides the prohibition/revocation or vice versa. If the

2XSB : http://xsb.sourceforge.net/

17

Kagal and Finin Journal of Autonomous Agents and Multi-Agent Systems pre-preprint draft 3/30/06, to appear 2006

latter case is true, the permission is not valid. If the permission is valid,
the policy engine checks the preconditions associated with the action over
which the permission is specified. The permission is returned only if the
precondition is satisfied.

The engine also looks for valid delegations from any agent to X. The
delegation is valid if the delegatee has the permission to make the dele-
gation or has been delegated the permission to make the delegation. The
entire delegation chain is checked by policy engine. At every level, the
engine also checks that there is no conflicting prohibition or revocation.

• What are the current obligations of Y ?

The engine locates all obligations whose actor property unifies with
Y and whose startingConstraint is satisfied but whose endingConstraint
is false. The engine ensures that there is no conflicting dispensation.

• Does X have the permission to perform action A or speech act S ?

This is similar to the first case, but in this case, the policy engine also
checks the action property of the permission and verifies that it unifies
with A or S.

• Does X have any permissions on a resource R ?

This is similar to the first case, but the policy engine also tries to unify
the target property of the action associated with the permission with R.

• If policy P no longer applies, does agent X still retain the permission to
use the QUERY speech act for Proposition P ?

This is part of the policy analysis provided by Rei. The policy engine
deletes P but stores it in a temporary list. It then tries to verify that X
has the permission to use QUERY speech act over P. It returns the answer
and then restores P.

We envision that the reasoning engine will be used together with domain
knowledge like the mental state of the agents, the history of the speech acts
performed and other context by either a planning component or a workflow
component to enable enforcement of policies over agent communication.

Using the policy engine, our earlier example of the Medicare bill would be
inferred by Foster as

1. Received QUERY-REF from congressional Democrat enquiring about the
cost of the Medicare bill

2. What are my current obligations ? I am obliged to AGREE to answer
by my conversation work policy. I am also obliged to REFUSE the query
that deal with the cost of the bill by Scully’s policy.

18

Kagal and Finin Journal of Autonomous Agents and Multi-Agent Systems pre-preprint draft 3/30/06, to appear 2006

3. As the meta policy states that Scully’s policy has the highest priority, I
execute it first.

4. So, I REFUSE the query.

5. However, do I have the permission to REFUSE a query ? Yes, from the
conversation specifications.

9 Related Work

Cohen and Levesque model the cognitive state of agents and base allowable
speech acts on the cognitive states of collaborating agents [3]. In his earlier
work, Singh provides semantics for speech acts in terms of beliefs and intentions
of the agents [25, 26] and later work [29, 33] has focused on constraints imposed
by the underlying commitments that agents acquire. Fornara and Colombetti
[11] describe an approach based on the notion of social commitment. Labrou
and Finin also describe the semantics of KQML based on the beliefs and desires
of agents [8, 18]. These models are very tightly coupled to the mental states
of agents and the semantics of the language that makes it difficult to extend
them to work in different environments and with different agent communica-
tion languages. Pitt and Mamdani [24] have advocated an approach in which
the ACL semantics itself is defined by protocols which, in their model, can in-
volve domain actions and constraints. Cost et al. [4] develop a model using
colored petri nets that can take into account various contextual properties and
attributes. Greaves et al. define conversation policies as restrictions on how the
agent communication language is used [12]. Though the last approach is similar
to ours, we believe that conversation policies should be at a higher level of ab-
straction and should not involve specifics of the communication language. We
also propose that all policies related to communication be translated into per-
missions and obligations that the agent has on speech acts, which are supported
by the communication language being used.

Dignum formally describes agent communication in terms of the effects of
this communication [5, 7]. He defines four speech acts for requesting, com-
mitting, asserting, and declaring and describes their effects in terms of added
permissions and obligations, and changes in beliefs and intentions of agents.
Dignum uses these speech acts and their effects to model communication proto-
cols. This approach, though interesting, is based on the beliefs and intentions of
agents and has a different focus from ours. It focusses on how commitments and
permissions caused by communication allow dynamic protocols to occur based
on certain situations and goals of agents. On the other hand our main goal is
to develop a domain and communication language independent framework that
can be used to represent pre-defined protocols using permissions and obligations
and that uses policies to restrict how these protocols are used.

Kollingbaum et al. discuss how normative agents estimate the effect of
adopting a new norm [17]. The current beliefs, norms and the selected plan
are taken into consideration while estimating the level of consistency that will

19

Kagal and Finin Journal of Autonomous Agents and Multi-Agent Systems pre-preprint draft 3/30/06, to appear 2006

be brought about by the adopted norm. This work approaches the adoption
of norms (or what we call policies) under the assumption that the agent can
decide whether or not to accept a norm. Though this is advisable for contracting
agents, we believe that certain policies are enforced by the environment and
must be accepted by the agent irrespective of whether they cause conflicts or
inconsistencies in the agent’s current state. Also, Kollingbaum’s approach does
not try to resolve conflicts, it only categorizes the type of conflict in terms of
consistency and uses this information to decide whether or not to accept a new
norm.

Broersen et al. use agent types to resolve conflicts between beliefs, obli-
gations, intentions and desires [1]. The agent types are determined by their
characteristics namely social (obligations overrule desires), selfish (desires over-
rule obligations), realistic (beliefs overrule everything else) and simple-minded
(intentions overrule obligations and desires). In our framework, conflicts basi-
cally occur between permissions and prohibitions, obligations and prohibitions,
and obligations and dispensations. In order to resolve conflicts, our framework
includes meta-policies namely setting the modality precedence (negative over
positive or vice versa) or stating the priority between rules within a policy or
between policies. Broersen et al. approach conflict resolution from the agent’s
point of view whereas we try to resolve conflicts in policies within the environ-
ment and not within agents themselves. We believe that Broersen’s approach or
something similar could be used by agents after conflict resolution is provided
by our framework as the enforced policies may conflict with the agent’s internal
beliefs, desires, intentions, and policies.

10 Summary

In this paper, we do not try to define the semantics of a particular agent commu-
nication language or a set of performatives but provide a flexible model that can
be used to describe conversation specifications and policies over different agent
communication languages such as KQML and FIPA using different domain-
specific information. The framework allows specifications to be described as a
sequence of permitted and obligated speech acts. Policies are described at a
high level of abstraction and are translated into positive/negative permissions
and obligations over speech acts using the semantics of the agent communica-
tion language. A speech act ontology is used to aid in this translation. The
permissions and obligations in a policy establish restrictions over attributes of
the sender, receiver, content, and other context of the conversation such as time,
and location. As part of our future work, we are looking into automating the
translation process from high level policies to performative specific permissions
and obligations.

Though we described all our examples in an abstract syntax, our actual
specification language is in OWL. We have developed a reasoning engine for our
language that reasons over domain knowledge, speech act semantics, protocols,
policies, and meta policies to answer questions about the permissions and obli-

20

Kagal and Finin Journal of Autonomous Agents and Multi-Agent Systems pre-preprint draft 3/30/06, to appear 2006

gations of an agent with respect to the actions and speech acts it can/should
perform. We envision that this reasoning engine will be coupled with the plan-
ning/workflow component of an agent to provide policy enforcement over agent
communication. We are also interested in integrating into our framework work
on commitments like that by Mallya et al. [21], which involves reasoning over
the status of obligations of agents.

References

[1] Jan Broersen, Mehdi Dastani, Joris Hulstijn, Zisheng Huang, and Leen-
dert van der Torre. The BOID Architecture Conflicts Between Beliefs,
Obligations, Intentions and Desire. In Fifth International Conference on
Autonomous Agents, 2001.

[2] Cable News Network (CNN). Probe under way on medicare
cost. http://www.cnn.com/2004/ALLPOLITICS/ 03/17/medi-
care.investigation/, 2004.

[3] Philip R. Cohen and Hector J. Levesque. Intention is choice with commit-
ment. In Artificial Intelligence, 1990.

[4] R. Scott Cost, Ye Chen, Tim Finin, Yannis Labrou, and Yun Peng. Using
colored petri nets for conversation modeling. In Agent Communication
Languages, Frank Dignum and Mark Greaves (editors), Springer-Verlag,
Lecture Notes in AI, 2000, 2000.

[5] Frank Dignum. Social interactions of autonomous agents: Private and
global views on communication. In ModelAge Workshop, pages 103–122,
1997.

[6] Frank Dignum, Jan Broersen, Virginia Dignum, and John-Jules Meyer.
Meeting the deadline: Why, When, and How. In 3rd Conference on Formal
Aspects of Agent-Based Systems (FAABS III), Greenbelt, Maryland, USA,
April 26-27, 2004.

[7] Frank Dignum and Hans Weigand. Communication and Deontic Logic.
In Information Systems, Correctness and Reusability, R. Wieringa and R.
Feenstra, editor, 242–260, Singapore. World Scientific., 1995.

[8] Tim Finin, Richard Fritzson, Don McKay, and Robin McEntire. A seman-
tics approach for kqml – a general purpose communication language for
software agents. In Third International Conference on Information and
Knowledge Management (CIKM’94), November 1994.

[9] FIPA. Foundation for intelligent physical agents specifications.
http://www.fipa.org.

21

Kagal and Finin Journal of Autonomous Agents and Multi-Agent Systems pre-preprint draft 3/30/06, to appear 2006

[10] R.A. Flores and R.C Kremer. A model for flexible composition of conversa-
tions: How a simple conversation got so complicated. In 3rd Workshop on
Agent Communication Languages and Conversation Policies, M.P. Huget,
F. Dignum and J.L. Koning (Eds.), First International Joint Conference
on Autonomous Agents and Multiagent Systems (AAMAS 2002), Bologna,
Italy, July 15-19, 2002, July 2002.

[11] Nicoletta Fornara and Marco Colombetti. Defining interaction protocols
using a commitment-based agent communication language. In Second in-
ternational joint conference on Autonomous agents and multiagent systems,
Melbourne, Australia pp 520-527, 2003, ACM Press, 2003.

[12] Mark Greaves, Heather Holmback, and Jeffrey Bradshaw. What is a con-
versation policy? In Autonomous Agents ’99 Workshop on Specifying and
Implementing Conversation Policies, 1999.

[13] Lalana Kagal. A Policy-Based Approach to Governing Autonomous Be-
havior in Distributed Environments. Dissertation, September 2004.

[14] Lalana Kagal, Tim Finin, and Anupam Joshi. A policy based approach to
security for the semantic web. In 2nd International Semantic Web Confer-
ence (ISWC2003), September 2003, 2003.

[15] Lalana Kagal, Tim Finin, and Anupam Joshi. A policy language for per-
vasive systems. In Fourth IEEE International Workshop on Policies for
Distributed Systems and Networks, 2003.

[16] Michael Kifer, Georg Lausen, and James Wu. Logical Foundations of
Object-Oriented and Frame-Based Languages. In Journal of ACM, 1995.

[17] M. J. Kollingbaum and T.J. Norman. Norm consistency in practical rea-
soning agents. In International Workshop on Programming Multiagent Sys-
tems, M. Dastani and J. Dix (editors), 2003.

[18] Yannis Labrou and Tim Finin. A semantics approach for kqml – a general
purpose communication language for software agents. In Third Interna-
tional Conference on Information and Knowledge Management (CIKM’94),
November 1994.

[19] Emil C. Lupu and Morris Sloman. Towards a role based framework for
distributed systems management. Journal of Networks and Systemss Man-
agement, Plenum Press, 1996.

[20] Emil C. Lupu and Morris Sloman. Conflicts in policy-based distributed
systems management. IEEE Transactions on Software Engineering, 1999.

[21] Ashok U. Mallya, Pinar Yolum, and Munindar P. Singh. Resolving com-
mitments among autonomous agents. In International Workshop on Agent
Communication Languages and Conversation Policies (ACL), Melbourne,
July 2003, Springer, 2003.

22

Kagal and Finin Journal of Autonomous Agents and Multi-Agent Systems pre-preprint draft 3/30/06, to appear 2006

[22] Jonathan Moffett and Morris Sloman. Policy Conflict Analysis in Dis-
tributed Systems Management. Journal of Organizational Computing,
1993.

[23] Laurence R. Phillips and Hamilton E. Link. The role of conversation policy
in carrying out agent conversations. In Frank Dignum and Mark Greaves,
editors, Issues in Agent Communication, volume 1916 of Lecture Notes in
Computer Science. Springer, 2000.

[24] J. Pitt and A. Mamdani. A protocol-based semantics for an agent com-
munication language. In proceedings of the International Joint Conf. on
Artificial Intelligence, pages 486 – 491, 1999.

[25] M.P. Singh. Towards a formal theory of communication for multiagent
systems. In IJCAI’91, 1991.

[26] M.P. Singh. A semantics for speech acts. Annals of Mathematics and
Artificial Intelligence, 1992.

[27] Ira A. Smith and Philip R. Cohen. Toward a semantics for an agent com-
munication language based on speech acts. In Howard Shrobe and Ted
Senator, editors, Proceedings of the Thirteenth National Conference on Ar-
tificial Intelligence and the Eighth Innovative Applications of Artificial In-
telligence Conference, Vol. 2, pages 24–31, Menlo Park, California, 1996.
AAAI Press.

[28] Ira A. Smith, Phillip R. Cohen, Jeffery M. Bradshaw, Mark Greaves, and
Heather Holmback. Designing conversation policies using joint intention
theory. In Third International Conference on Multi-Agent Systems (IC-
MAS98), 1998.

[29] M. Venkatraman and M. P. Singh. Verifying compliance with commitment
protocols: Enabling open web-based multiagent systems. Autonomous
Agents and Multi-Agent Systems, 2(3):217–236, 1999.

[30] W3C. Resource Description Framework. Resource De-
scription Framework (RDF) Model and Syntax Specification,
http://www.w3.org/TR/1999/REC-rdf-syntax-19990222/, 1999.

[31] W3C. Owl web ontology language.
http://www.w3.org/2001/sw/WebOnt/, 2004.

[32] Guizhen Yang and Michael Kifer. FLORA: Implementing an efficient
DOOD system using a tabling logic engine. In Proceedings of Computational
Logic — CL-2000, number 1861 in Lecture Notes in Artificial Intelligence,
pages 1078–1093. Springer-verlag, 2000.

[33] Pinar Yolum and Munindar Singh. Reasoning About Commitments in
the Event Calculus: An Approach for Specifying and Executing Protocols.
Annals of Mathematics and AI, 42(1-3), 2004.

23

Kagal and Finin Journal of Autonomous Agents and Multi-Agent Systems pre-preprint draft 3/30/06, to appear 2006

[34] Youyong Zou, Tim Finin, and Harry Chen. F-OWL: an Inference Engine
for the Semantic Web , volume 3228 of Lecture Notes in Computer Science.
Springer-verlag, November 2004. Proceedings of the Third International
Workshop (FAABS), April 16-18, 2004, Greenbelt, MD, USA.

24

Kagal and Finin Journal of Autonomous Agents and Multi-Agent Systems pre-preprint draft 3/30/06, to appear 2006

