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It is always essential but difficult to capture incomplete, partial or uncertain
knowledge when using ontologies to conceptualize an application domain or to
achieve semantic interoperability among heterogeneous systems. This chapter
presents an on-going research on developing a framework which augments and
supplements the semantic web ontology language OWL 5 for representing and
reasoning with uncertainty based on Bayesian networks (BN) [26], and its
application in ontology mapping. This framework, named BayesOWL, has
gone through several iterations since its conception in 2003 [8, 9]. BayesOWL
provides a set of rules and procedures for direct translation of an OWL ontol-
ogy into a BN directed acyclic graph (DAG), it also provides a method based
on iterative proportional fitting procedure (IPFP) [19, 7, 6, 34, 2, 4] that in-
corporates available probability constraints when constructing the conditional
probability tables (CPTs) of the BN. The translated BN, which preserves the
semantics of the original ontology and is consistent with all the given prob-
ability constraints, can support ontology reasoning, both within and across
ontologies as Bayesian inferences. At the present time, BayesOWL is restricted
to translating only OWL-DL concept taxonomies into BNs, we are actively
working on extending the framework to OWL ontologies with property re-
strictions.

If ontologies are translated to BNs, then concept mapping between ontolo-
gies can be accomplished by evidential reasoning across the translated BNs.
This approach to ontology mapping is seen to be advantageous to many exist-
ing methods in handling uncertainty in the mapping. Our preliminary work
on this issue is presented at the end of this chapter.

This chapter is organized as follows: Sect. 1 provides a brief introduction to
semantic web 6 and discusses uncertainty in semantic web ontologies; Sect. 2

5 http://www.w3.org/2001/sw/WebOnt/
6 http://www.w3.org/DesignIssues/Semantic.html
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describes BayesOWL in detail; Sect. 3 proposes a representation in OWL of
probability information concerning the entities and relations in ontologies; and
Sect. 4 outlines how BayesOWL can be applied to automatic ontology map-
ping. The chapter ends with a discussion and suggestions for future research
in Sect. 5.

1 Semantic Web, Ontology, and Uncertainty

People can read and understand a web page easily, but machines can not. To
make web pages understandable by machines, additional semantic informa-
tion needs to be attached or embedded to the existing web data. Built upon
Resource Description Framework (RDF) 7, the semantic web is aimed at ex-
tending the current web so that information can be given well-defined meaning
using the description logic based ontology definition language OWL, and thus
enabling better cooperation between computers and people 8. Semantic web
can be viewed as a web of data that is similar to a globally accessible database.

The core of the semantic web is “ontology”. In philosophy, “Ontology” is
the study of the existence of entities in the universe. The term “ontology” is
derived from the Greek word “onto” (means being) and “logia” (means written
or spoken discourse). In the context of semantic web, this term takes a different
meaning: “ontology” refers to a set of vocabulary to describe the conceptual-
ization of a particular domain [14]. It is used to capture the concepts and their
relations in a domain for the purpose of information exchange and knowledge
sharing. Over the past few years, several ontology definition languages have
emerged, including RDF(S), SHOE 9, OIL 10, DAML 11, DAML+OIL 12, and
OWL. Among them, OWL is the newly released standard recommended by
W3C 13. A brief introduction about OWL is presented next.

1.1 OWL: Web Ontology Language

OWL, the standard web ontology language recently recommended by W3C,
is intended to be used by applications to represent terms and their interre-
lationships. It is an extension of RDF and goes beyond its semantics. RDF
is a general assertional model to represent the resources available on the web
through RDF triples of “subject”, “predicate” and “object”. Each triple in
RDF makes a distinct assertion, adding any other triples will not change the
meaning of the existing triples. A simple datatyping model of RDF called RDF
7 http://www.w3.org/RDF/
8 http://www.w3.org/2001/sw/
9 http://www.cs.umd.edu/projects/plus/SHOE/

10 http://www.ontoknowledge.org/oil/
11 http://www.daml.org/
12 http://www.daml.org/2001/03/daml+oil-index
13 http://www.w3.org
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Schema (RDFS) 14 is used to control the set of terms, properties, domains and
ranges of properties, and the “rdfs:subClassOf” and “rdfs:subPropertyOf” re-
lationships used to define resources. However, RDFS is not expressive enough
to catch all the relationships between classes and properties. OWL provides
a richer set of vocabulary by further restricting on the set of triples that can
be represented. OWL includes three increasingly complex variations 15: OWL
Lite, OWL DL and OWL Full.

An OWL document can include an optional ontology header and any
number of class, property, axiom, and individual descriptions. In an on-
tology defined by OWL, a named class is described by a class identifier
via “rdf:ID”. An anonymous class can be described by value (owl:hasValue,
owl:allValuesFrom, owl:someValuesFrom) or cardinality (owl:maxCardinality,
owl:minCardinality, owl:cardinality) restriction on property (owl:Restriction);
by exhaustive enumeration of all the individuals that form the instances
of this class (owl:oneOf); or by logical operations on two or more other
classes (owl:intersectionOf, owl:unionOf, owl:complementOf). The three logi-
cal operators correspond to AND (conjunction), OR (disjunction) and NOT
(negation) in logic, they define classes of all individuals by standard set-
operations of intersection, union, and complement, respectively. Three class
axioms (rdfs:subClassOf, owl:equivalentClass, owl:disjointWith) can be used
for defining necessary and sufficient conditions of a class.

Two kinds of properties can be defined in an OWL ontology: object prop-
erty (owl:ObjectProperty) which links individuals to individuals, and datatype
property (owl:DatatypeProperty) which links individuals to data values. Sim-
ilar to classes, “rdfs:subPropertyOf” is used to define that one property is a
subproperty of another property. There are constructors to relate two proper-
ties (owl:equivalentProperty and owl:inverseOf), to impose cardinality restric-
tions on properties (owl:FunctionalProperty and owl:InverseFunctionalProper-
ty), and to specify logical characteristics of properties (owl:TransitiveProperty
and owl:SymmetricProperty). There are also constructors to relate individuals
(owl:sameAs, owl:sameIndividualAs, owl:differentFrom and owl:AllDifferent).

The semantics of OWL is defined based on model theory in the way analo-
gous to the semantics of description logic (DL) 16. With the set of vocabulary
(mostly as described above), one can define an ontology as a set of (restricted)
RDF triples which can be represented as an RDF graph.

1.2 Why Uncertainty?

Ontology languages in the semantic web, such as OWL and RDF(S), are based
on crisp logic and thus can not handle incomplete or partial knowledge about
an application domain. However, uncertainty exists in almost every aspect of

14 http://www.w3.org/TR/rdf-schema/
15 http://www.w3.org/TR/owl-guide/
16 http://www.w3.org/TR/owl-semantics/
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ontology engineering. For example, in domain modeling, besides knowing that
“A is a subclass of B”, one may also know and wishes to express that “A is a
small 17 subclass of B”; or, in the case that A and B are not logically related,
one may still wishes to express that “A and B are largely 18 overlapped with
each other”. In ontology reasoning, one may want to know not only if A is a
subsumer of B, but also “how close of A is to B”; or, one may want to know
the degree of similarity even if A and B are not subsumed by each other.
Moreover, a description (of a class or an individual) one wishes to input to
an ontology reasoner may be noisy and uncertain, which often leads to over-
generalized conclusions in logic based reasoning. Uncertainty becomes more
prevalent in concept mapping between two ontologies where it is often the case
that a concept defined in one ontology can only find partial matches to one
or more concepts in another ontology.

BayesOWL is a probabilistic framework that augments and supplements
OWL for representing and reasoning with uncertainty based on Bayesian net-
works (BN) [26]. The basic BayesOWL model includes a set of structural
translation rules to convert an OWL ontology into a directed acyclic graph
(DAG) of a BN, and a mechanism that utilizes available probabilistic infor-
mation in constructing conditional probability table (CPT) for each node in
the DAG. To help understand the approach, in the remaining of this section,
a brief description of BN [26] is provided.

1.3 Bayesian Networks

In the most general form, a BN of n variables consists of a directed acyclic
graph (DAG) of n nodes and a number of arcs. Nodes Xi in a DAG correspond
to variables, and directed arcs between two nodes represent direct causal or
influential relation from one node to the other. The uncertainty of the causal
relationship is represented locally by the conditional probability table (CPT)
P (Xi|πi) associated with each node Xi, where πi is the parent node set of Xi.
Under a conditional independence assumption, the graphic structure of BN
allows an unambiguous representation of interdependency between variables,
which leads to one of the most important feature of BN: the joint probability
distribution of X = (X1, . . . , Xn) can be factored out as a product of the
CPTs in the network (named “the chain rule of BN”):

P (X = x) =
n∏

i=1

P (Xi|πi)

With the joint probability distribution, BN supports, at least in theory, any
inference in the joint space. Although it has been proven that the probabilistic
17 e.g., a probability value of 0.1 is used to quantify the degree of inclusion between

A and B.
18 e.g., a probability value of 0.9 is used to quantify the degree of overlap between

A and B.
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inference with general DAG structure is NP -hard [3], BN inference algorithms
such as belief propagation [25] and junction tree [20] have been developed to
explore the causal structure in BN for efficient computation.

Besides the expressive power and the rigorous and efficient probabilistic
reasoning capability, the structural similarity between the DAG of a BN and
the RDF graph of an OWL ontology is also one of the reasons to choose BN as
the underlying inference mechanism for BayesOWL: both of them are directed
graphs, and direct correspondence exists between many nodes and arcs in the
two graphs.

2 The BayesOWL Framework

In the semantic web, an important component of an ontology defined in OWL
or RDF(S) is the taxonomical concept subsumption hierarchy based on class
axioms and logical relations among the concept classes. At the present time,

Constructor DL Syntax Class Axiom Logical Operator

rdfs:subClassOf C1 v C2 *

owl:equivalentClass C1 ≡ C2 *

owl:disjointWith C1 v ¬C2 *

owl:unionOf C1 t ... t Cn *

owl:intersectionOf C1 u ... u Cn *

owl:complementOf ¬C *

Table 1. Supported Constructors

we focus our attention to OWL ontologies defined using only constructors
in these two categories (as in Table. 1). Constructors related to properties,
individuals, and datatypes will be considered in the future.

2.1 Structural Translation

This subsection focuses on the translation of an OWL ontology file (about con-
cept taxonomy only) into the network structure, i.e., the DAG of a BN. The
task of constructing CPTs will be given in the next subsection. For simplicity,
constructors for header components in the ontology, such as “owl:imports”
(for convenience, assume an ontology involves only one single OWL file),
“owl:versionInfo”, “owl:priorVersion”, “owl:backwardCompatibleWith”, and
“owl:incompatibleWith” are ignored since they are irrelevant to the concept
definition. If the domain of discourse is treated as a non-empty collection of in-
dividuals (“owl:Thing”), then every concept class (either primitive or defined)
can be thought as a countable subset (or subclass) of “owl:Thing”.

Conversion of an OWL concept taxonomy into a BN DAG is done by a set
of structural translation rules. The general principle underlying these rules is
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that all classes (specified as “subjects” and “objects” in RDF triples of the
OWL file) are translated into nodes (named concept nodes) in BN, and an
arc is drawn between two concept nodes in BN only if the corresponding two
classes are related by a “predicate” in the OWL file, with the direction from
the superclass to the subclass. A special kind of nodes (named L-Nodes) are
created during the translation to facilitate modeling relations among concept
nodes that are specified by OWL logical operator. These structural translation
rules are summarized as follows:

(a) Every primitive or defined concept class C, is mapped into a binary
variable node in the translated BN. Node C in the BN can be either “True” or
“False”, represented as c or c̄, indicating whether a given instance o belongs
to concept C or not.

(b) Constructor “rdfs:subClassOf” is modeled by a directed arc from
the parent superclass node to the child subclass node. For example, a concept
class C defined with superconcept classes Ci(i = 1, ..., n) by “rdfs:subClassOf”
is mapped into a subnet in the translated BN with one converging connection
from each Ci to C, as illustrated in (Fig. 1).
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Fig. 1. “rdfs:subClassOf”

(c) A concept class C defined as the intersection of concept classes Ci(i =
1, ..., n), using constructor “owl:intersectionOf” is mapped into a subnet
(Fig. 2) in the translated BN with one converging connection from each Ci to
C, and one converging connection from C and each Ci to an L-Node called
“LNodeIntersection”.
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Fig. 2. “owl:intersectionOf”
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(d) A concept class C defined as the union of concept classes Ci(i =
1, ..., n), using constructor “owl:unionOf” is mapped into a subnet (Fig. 3)
in the translated BN with one converging connection from C to each Ci , and
one converging connection from C and each Ci to an L-Node called “LNode-
Union”.

...
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Fig. 3. “owl:unionOf”

(e) If two concept classes C1 and C2 are related by constructors “owl:com-
plementOf”, “owl:equivalentClass”, or “owl:disjointWith”, then an L-
Node (named “LNodeComplement”, “LNodeEquivalent”, “LNodeDisjoint”
respectively, as in Fig. 4) is added to the translated BN, and there are di-
rected links from C1 and C2 to the corresponding L-Node.

Fig. 4. “owl:complementOf, owl:equivalentClass, owl:disjointWith”

Based on rules (a) to (e), the translated BN contains two kinds of nodes:
concept nodes for regular concept classes and L-Nodes which bridge concept
nodes that are associated by logical relations. L-nodes are leaf nodes, with
only in-arcs. With all logical relations, except “rdfs:subClassOf”, handled by
L-nodes, the in-arcs to a concept node can only come from its parent superclass
nodes. This makes C’s CPT smaller and easier to construct. L-nodes also help
to avoid forming cycles in translated BN. Since L-nodes are leaves, no cycles
can be formed with L-nodes. The only place where cycles can be defined for
OWL taxonomies is by ”rdf:subClassOf” (e.g., A is a subclass of B and B is a
subclass of A). However, according to OWL semantics, all concepts involved
in such a ‘subclass’ cycle are equivalent to each other. We can always detect
this type of cycles in the pre-processing step and use rule (e), instead of rule
(b), to handle the translation.
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In the translated BN, all arcs are directed based on OWL statements,
two concept nodes without any defined or derived relations are d-separated
with each other, and two implicitly dependent concept nodes are d-connected
with each other but there is no arc between them. Note that, this translation
process may impose additional conditional independence to the nodes by the
d-separation in the BN structure [26]. For example, consider nodes B and
C, which are otherwise not related except that they both are subclasses of
A. Then in the translated BN, B is conditionally independent of C, given
A. Such independence can be viewed as a default relationship, which holds
unless information to the contrary is provided. If dependency exists, it can be
modeled by using additional nodes similar to the L-Nodes.

2.2 CPT Construction

To complete the translation the remaining issue is to assign a conditional
probability table (CPT) P (C|πC) to each variable node C in the DAG, where
πC is the set of all parent nodes of C. As described earlier, the set of all nodes
X in the translated BN can be partitioned into two disjoint subsets: concept
nodes XC which denote concept classes, and L-Nodes XL for bridging concept
nodes that are associated by logical relations.

In theory, the uncertainty information about concept nodes and their re-
lations may be available in probability distributions of any arbitrary forms,
our observation, however, is that it is most likely to be available from the
domain experts or statistics in the forms of prior probabilities of concepts
and pair-wise conditional probabilities of concepts, given a defined superclass.
Therefore, the method developed in this chapter accommodates two types of
probabilities with respect to a concept node C ∈ XC : prior probability with
the form P (C), and conditional probability with the form P (C|OC ⊆ πC)
where OC 6= ∅. Methods for utilizing probabilities in arbitrary forms and
dimensions is reported elsewhere [28].

Before going into the details of constructing CPTs for concept nodes in
XC based on available probabilistic information (Subsect.2.2.3), CPTs for the
L-Nodes in XL are discussed first.

2.2.1 CPTs for L-Nodes

CPT for an L-Node can be determined by the logical relation it represents so
that when its state is “True”, the corresponding logical relation holds among
its parents. Based on the structural translation rules, there are five types
of L-Nodes corresponding to the five logic operators in OWL: “LNodeCom-
plement”, “LNodeDisjoint”, “LNodeEquivalent”, “LNodeIntersection”, and
“LNodeUnion”, their CPTs can be specified as follows:

(a) LNodeComplement: The complement relation between C1 and C2

can be realized by “LNodeComplement = True iff c1c̄2∨ c̄1c2”, which leads to
the CPT in Table 2;
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C1 C2 True False

True True 0.000 1.000

True False 1.000 0.000

False True 1.000 0.000

False False 0.000 1.000

Table 2. CPT of LNodeComplement

C1 C2 True False

True True 0.000 1.000

True False 1.000 0.000

False True 1.000 0.000

False False 1.000 0.000

Table 3. CPT of LNodeDisjoint

C1 C2 True False

True True 1.000 0.000

True False 0.000 1.000

False True 0.000 1.000

False False 1.000 0.000

Table 4. CPT of LNodeEquivalent

C1 C2 C True False

True True True 1.000 0.000

True True False 0.000 1.000

True False True 0.000 1.000

True False False 1.000 0.000

False True True 0.000 1.000

False True False 1.000 0.000

False False True 0.000 1.000

False False False 1.000 0.000

Table 5. CPT of LNodeIntersection

(b) LNodeDisjoint: The disjoint relation between C1 and C2 can be
realized by “LNodeDisjoint = True iff c1c̄2 ∨ c̄1c2 ∨ c̄1c̄2”, which leads to the
CPT in Table 3;

(c) LNodeEquivalent: The equivalence relation between C1 and C2 can
be realized by “LNodeEquivalent = True iff c1c2 ∨ c̄1c̄2”, which leads to the
CPT in Table 4;

(d) LNodeIntersection: The relation that C is the intersection of C1 and
C2 can be realized by “LNodeIntersection = True iff cc1c2 ∨ c̄c̄1c2 ∨ c̄c1c̄2 ∨
c̄c̄1c̄2”, which leads to the CPT in Table 5. If C is the intersection of n > 2
classes, the 2n+1 entries in its CPT can be determined analogously.
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C1 C2 C True False

True True True 1.000 0.000

True True False 0.000 1.000

True False True 1.000 0.000

True False False 0.000 1.000

False True True 1.000 0.000

False True False 0.000 1.000

False False True 0.000 1.000

False False False 1.000 0.000

Table 6. CPT of LNodeUnion

(e) LNodeUnion: The relation that C is the union of C1 and C2 can be
realized by “LNodeUnion = True iff cc1c2∨ cc̄1c2∨ cc1c̄2∨ c̄c̄1c̄2”, which leads
to the CPT in Table 6. Similarly, if C is the union of n > 2 classes, then the
2n+1 entries in its CPT can be obtained analogously.

When the CPTs for L-Nodes are properly determined as above, and the
states of all the L-Nodes are set to “True”, the logical relations defined in the
original ontology will be held in the translated BN, making the BN consistent
with the OWL semantics. Denoting the situation in which all the L-Nodes in
the translated BN are in “True” state as τττ , the CPTs for the concept nodes in
XC should be constructed in such a way that P (XC |τττ), the joint probability
distribution of all concept nodes in the subspace of τττ , is consistent with all
the given prior and conditional probabilistic constraints. This issue is difficult
for two reasons. First, the constraints are usually not given in the form of
CPT. For example, CPT for a concept node C with two parents A and B is
in the form of P (C|A,B) but a constraint may be given as Q(C|A) or even
Q(C). Secondly, CPTs are given in the general space of X = XC ∪ XL but
constraints are for the subspace of τττ (the dependencies changes when going
from the general space to the subspace of τττ). For the example constraint
Q(C|A), P (C|A,B), the CPT for C, should be constructed in such a way
that P (C|A,τττ) = Q(C|A).

To overcome these difficulties, an algorithm is developed to approximate
these CPTs for XC based on the iterative proportional fitting procedure
(IPFP) [19, 7, 6, 34, 2, 4], a well-known mathematical procedure that modifies
a given distribution to meet a set of constraints while minimizing I-divergence
to the original distribution.

2.2.2 A Brief Introduction to IPFP

The iterative proportional fitting procedure (IPFP) was first published by
Kruithof in [19] in 1937, and in [7] it was proposed as a procedure to esti-
mate cell frequencies in contingency tables under some marginal constraints.
In 1975, Csiszar [6] provided an IPFP convergence proof based on I-divergence
geometry. Vomlel rewrote a discrete version of this proof in his PhD thesis [34]
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in 1999. IPFP was extended in [2, 4] as conditional iterative proportional fit-
ting procedure (C-IPFP) to also take conditional distributions as constraints,
and the convergence was established for the discrete case.

Definitions of I-divergence and I-projection are provided first before going
into the details of IPFP.

Definition 1 (I-divergence)

Let P be a set of probability distributions over X = {X1, ..., Xn}, and for
P , Q ∈ P, I-divergence (also known as Kullback-Leibler divergence or Cross-
entropy, which is often used as a distance measure between two probability
distributions) is defined as:

I(P‖Q) =





∑
x∈X,P (x)>0

P (x) log P (x)
Q(x) if P ¿ Q

+∞ if P 3 Q
(1)

here P ¿ Q means P is dominated by Q, i.e.

{x ∈ X|P (x) > 0} ⊆ {y ∈ X|Q(y) > 0}

where x (or y) is an assignment of X, or equivalently:

{y ∈ X|Q(y) = 0} ⊆ {x ∈ X|P (x) = 0}

since a probability value is always non-negative. The dominance condition in
(1) guarantees division by zero will not occur because whenever the denomi-
nator Q(x) is zero, the numerator P (x) will be zero. Note that I-divergence is
zero if and only if P and Q are identical and I-divergence is non-symmetric.

Definition 2 (I-projection)

The I1-projection of a probability distribution Q ∈ P on a set of probability
distributions εεε is a probability distribution P ∈ εεε such that the I-divergence
“I(P‖Q)” is minimal among all probability distributions in εεε. Similarly, the
I2-projections of Q on εεε are probability distributions in εεε that minimize the
I-divergence “I(Q‖P )”.

Note that I1-projection is unique but I2-projection in general is not. If εεε is
the set of all probability distributions that satisfies a set of given constraints,
the I1-projection P ∈ εεε of Q is a distribution that has the minimum distance
from Q while satisfying all constraints [34].

Definition 3 (IPFP)

Let X = {X1, X2, ..., Xn} be a space of n discrete random variables, given
a consistent set of m marginal probability distributions {R(Si)} where X ⊇
Si 6= ∅ and an initial probability distribution Q(0) ∈ P, iterative proportional
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fitting procedure (IPFP) is a procedure for determining a joint distribution
P (X) = P (X1, X2, ..., Xn) ¿ Q(0) satisfying all constraints in {R(Si)} by
repeating the following computational process over k and i = ((k − 1) mod
m) + 1:

Q(k)(X) =





0 if Q(k−1)(Si) = 0

Q(k−1)(X) · R(Si)
Q(k−1)(Si)

if Q(k−1)(Si) > 0
(2)

This process iterates over distributions in {R(Si)} in cycle. It can be shown
[34] that in each step k, Q(k)(X) is an I1-projection of Q(k−1)(X) that satisfies
the constraint R(Si), and Q∗(X) = limk→∞Q(k)(X) is an I1-projection of
Q(0) that satisfies all constraints, i.e., Qk(X) converges to Q∗(X) = P (X) =
P (X1, X2, ..., Xn).

C-IPFP from [2, 4] is an extension of IPFP to allow constraints in the
form of conditional probability distributions, i.e. R(Si|Li) where Si, Li ⊆ X.
The procedure can be written as:

Q(k)(X) =





0 if Q(k−1)(Si|Li) = 0

Q(k−1)(X) · R(Si|Li)
Q(k−1)(Si|Li)

if Q(k−1)(Si|Li) > 0
(3)

CIPF-P has similar convergence result [4] as IPFP and (2) is in fact a
special case of (3) with Li = ∅.

2.2.3 Constructing CPTs for Concept Nodes

Let X = {X1, X2, ..., Xn} be the set of binary variables in the translated
BN. As stated earlier, X is partitioned into two sets XC and XL, for concept
nodes, and L-Nodes, respectively. As a BN, by chain rule [26] we have Q(X) =∏

Xi∈X Q(Xi|πXi). Now, given a set of probability constraints in the forms of
either

(a) prior or marginal constraint: P (Vi); or
(b) conditional constraint: P (Vi|OVi) where OVi ⊆ πVi , πVi 6= ∅, OVi 6= ∅;

for Vi ∈ XC . Also recall that all logical relations defined in the original ontol-
ogy hold in the translated BN only if τττ is true (i.e., all variables in XL are set
to “True”), our objective is to construct CPTs Q(Vi|πVi) for each Vi in XC

such that Q(XC |τττ), the joint probability distribution of XC in the subspace
of τττ , is consistent with all the given constraints. Moreover,we want Q(XC |τττ)
to be as close as possible to the initial distribution, which may be set by hu-
man experts, by some default rules, or by previously available probabilistic
information.

Note that all parents of Vi are concept nodes which are superclasses of Vi

defined in the original ontology. The superclass relation can be encoded by
letting every entry in Q(Vi|πVi) be zero (i.e., Q(vi|πVi) = 0 and Q(v̄i|πVi) = 1)
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if any of its parents is “False” in that entry. The only other entry in the table
is the one in which all parents are “True”. The probability distribution for
this entry indicates the degree of inclusion of Vi in the intersection of all its
parents, and it should be filled in such a way that is consistent with the given
probabilistic constraints relevant to Vi. Construction of CPTs for all concept
nodes thus becomes a constraint satisfaction problem in the scope of IPFP.
However, it would be very expensive in each iteration of (2) or (3) to compute
the joint distribution Q(k)(X) over all the variables and then decompose it into
CPTs at the end. A new algorithm (called Decomposed-IPFP or D-IPFP
for short) is developed to overcome this problem.

Let Q(k)(XC |τττ) be a distribution projected from Q(k)(XC , XL) with XL =
τττ (that is, every L-Node Bj in XL is set to bj , the “True” state). Then by
chain rule,

Q(k)(XC |τττ) =
Q(k)(XC , τττ)

Q(k)(τττ)

=

Q(k)(Vi|πVi
) · ∏

Bj∈XL

Q(k)(bj |πBj
) · ∏

Vj∈XC ,j 6=i

Q(k)(Vj |πVj
)

Q(k)(τττ)
(4)

Suppose all constraints can be decomposed into the form of R(Vi|OVi ⊆ πVi),
that is, each constraint is local to the CPT for some Vi ∈ XC . Apply (3) to
Q(k)(XC |τττ) with respect to constraint R(Vi|OVi) at step k,

Q(k)(XC |τττ) = Q(k−1)(XC |τττ) · R(Vi|OVi)
Q(k−1)(Vi|OVi , τττ)

(5)

Then, substituting (4) to both sides of (5) and cancelling out all CPTs other
than Q(Vi|πVi), we have our D-IPFP procedure as:

Q(k)(Vi|πVi) = Q(k−1)(Vi|πVi) ·
R(Vi|OVi)

Q(k−1)(Vi|OVi , τττ)
· α(k−1)(πVi) (6)

where α(k−1)(πVi) = Q(k)(τττ)/Q(k−1)(τττ) is the normalization factor.
The process starts with Q(0) = Pinit(X), the initial distribution of the

translated BN where CPTs for L-Nodes are set as in Subsect.2.2.1 and CPTs
for concept nodes in XC are set to some distributions consistent with the se-
mantics of the subclass relation. At each iteration, only one table, Q(Vi|πVi),
is modified. D-IPFP by (6) converges because (6) realizes (5), a direct appli-
cation of (3), which has been shown to converge in [4].

It will be more complicated if some constraints cannot be decomposed
into local constraints, e.g., P (A|B), where A, B are non-empty subsets of XC

involving variables in multiple CPTs. Extending DIPFP to handle non-local
constraints of more general form can be found in [28].
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Some other general optimization methods such as simulated annealing
(SA) and genetic algorithm (GA) can also be used to construct CPTs of the
concept nodes in the translated BN. However, they are much more expensive
and the quality of results is often not guaranteed. Experiments show that D-
IPFP converges quickly (in seconds, most of the time in less than 30 iterative
steps), despite its exponential time complexity in theoretical analysis. The
space complexity of D-IPFP is trivial since each time only one node’s CPT,
not the entire joint probability table, is manipulated. Experiments also verify
that the order in which the constraints are applied do not affect the solution,
and the values of the initial distribution Q(0)(X) = Pinit(X) (but avoid 0 and
1) do not affect the convergence.

2.3 Two Simple Translation Examples

First, to illustrate the using of L-Nodes, consider four concepts A, B, C,
and D where A is equivalent to C, B is equivalent to D, and C and D are
disjoint with each other. The translated BN according to our rules is depicted
in Fig. 5 which realizes the given logical relations when all three L-nodes are
set to “True”. It also demonstrates that A and B are disjoint with each other
as well.

Fig. 5. Example I: Usage of L-Nodes

For the second example, a simple ontology is used here to demonstrate the
validity of the approach. In this ontology, six concepts and their relations are
defined as follows:

(a) “Animal” is a primitive concept class;
(b) “Male”, “Female”, “Human” are subclasses of “Animal”;
(c) “Male” and “Female” are disjoint with each other;
(d) “Man” is the intersection of “Male” and “Human”;
(e) “Woman” is the intersection of “Female” and “Human”; and
(f) “Human” is the union of “Man” and “Woman”.
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The following probability constraints are attached to XC = {Animal, Male,
Female, Human, Man, Woman}:

(a) P (Animal) = 0.5
(b) P (Male|Animal) = 0.5
(c) P (Female|Animal) = 0.48
(d) P (Human|Animal) = 0.1
(e) P (Man|Human) = 0.49
(f) P (Woman|Human) = 0.51
When translating this ontology into BN, first the DAG of the BN is con-

structed (as described in Sect. 2.1), then the CPTs for L-Nodes in XL (as
described in Subsect.2.2.1) are specified, and finally the CPTs of concept
nodes in XC are approximated by running D-IPFP. Fig. 6 shows the result
BN. It can be seen that, when all L-Nodes are set to “True”, the conditional
probability of “Male”, “Female”, and “Human”, given “Animal”, are 0.5, 0.48,
and 0.1, respectively, the same as the given probability constraints. All other
constraints, which are not shown in the figure due to space limitation, are also
satisfied.

Fig. 6. Example II: DAG
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The CPTs of concept nodes obtained by D-IPFP are listed in Fig. 7. It
can be seen that the values on the first rows in all CPTs have been changed
from their initial values of (0.5, 0.5).
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Fig. 7. Example II: CPT

2.4 Comparison to Related Work

Many of the suggested approaches to quantify the degree of overlap or in-
clusion between two concepts are based on ad hoc heuristics, others combine
heuristics with different formalisms such as fuzzy logic, rough set theory, and
Bayesian probability (see [32] for a brief survey). Among them, works that
integrate probabilities with description logic (DL) based systems are most
relevant to BayesOWL. This includes probabilistic extensions to ALC based
on probabilistic logics [15, 17]; P-SHOQ(D) [13], a probabilistic extension
of SHOQ(D) based on the notion of probabilistic lexicographic entailment;
and several works on extending DL with Bayesian networks (P-CLASSIC [18]
that extends CLASSIC, PTDL [36] that extends TDL (Tiny Description Logic
with only “Conjunction” and “Role Quantification” operators), and the work
of Holi and Hyvönen [16] which uses BN to model the degree of subsumption
for ontologies encoded in RDF(S)).

The works closest to BayesOWL in this field are P-CLASSIC and PTDL.
One difference is with CPTs. Neither of the two works has provided any
mechanism to construct CPTs. In contrast, one of BayesOWL’s major con-
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tribution is its D-IPFP mechanism to construct CPTs from given piece-
wised probability constraints. Moreover, in BayesOWL, by using L-Nodes,
the “rdfs:subclassOf” relations (or the subsumption hierarchy) are separated
from other logical relations, so the in-arcs to a concept node C will only come
from its parent superclass nodes, which makes C’s CPT smaller and easier to
construct than P-CLASSIC or PTDL, especially in a domain with rich logical
relations.

Also, BayesOWL is not to extend or incorporate into OWL or any other
ontology language or logics with probability theory, but to translate a given
ontology to a BN in a systematic and practical way, and then treats onto-
logical reasoning as probabilistic inferences in the translated BNs. Several
benefits can be seen with this approach. It is non-intrusive in the sense that
neither OWL nor ontologies defined in OWL need to be modified. Also, it
is flexible, one can translate either the entire ontology or part of it into BN
depending on the needs. Moreover, it does not require availability of complete
conditional probability distributions, pieces of probability information can be
incorporated into the translated BN in a consistent fashion. With these and
other features, the cost of the approach is low and the burden to the user is
minimal. One thing to emphasis is that BayesOWL can be easily extended
to handle other ontology representation formalisms (syntax is not important,
semantic matters), if not using OWL.

On the other side, to deal with vague and imprecise knowledge, research in
extending description logics with fuzzy reasoning has gained some attention
recently. Interested readers may refer to [23, 31, 1] for a rough picture about
this topic.

2.5 Semantics

The semantics of the Bayesian network obtained can be outlined as follows.
(a) The translated BN will be associated with a joint probability distri-

bution P ′(XC) over the set of concept nodes XC , and P ′(XC) = P (XC |τττ)
(which can be computed by first getting the product of all the CPTs in the
BN, and then marginalizing it to the subspace of τττ), on top of the standard
description logic semantics. A description logic interpretation I = (∆I , .I)
consists of a non-empty domain of objects ∆I and an interpretation func-
tion .I . This function maps every concept to a subset of ∆I , every role and
attribute to a subset of ∆I × ∆I , and every individual to an object of ∆I .
An interpretation I is a model for a concept C if CI is non-empty, and C is
said “satisfiable”. Besides this description logic interpretation I = (∆I , .I),
in BayesOWL semantics, there is a function P to map each object o ∈ ∆I

to a value between 0 and 1, 0 ≤ P (o) ≤ 1, and
∑

P (o) = 1, for all o ∈ ∆I .
This is the probability distribution over all the domain objects. For a class
C: P (C) =

∑
P (o) for all o ∈ C. If C and D are classes and C ⊆ D, then

P (C) ≤ P (D). Then, for a node Vi in XC , P ′(Vi) = P (Vi|τττ) represents the
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probability distribution of an arbitrary object belonging (and not belonging)
to the concept represented by Vi.

(b) In the translated BN, when all the L-Nodes are set to “True”, all the
logical relations specified in the original OWL file will be held, which means:

1) if B is a subclass of A then “P (b|ā) = 0 ∧ P (a|b) = 1”;
2) if B is disjoint with A then “P (b|a) = 0 ∧ P (a|b) = 0”;
3) if A is equivalent with B then “P (a) = P (b)”;
4) if A is complement of B then “P (a) = 1− P (b)”;
5) if C is the intersection of C1 and C2 then “P (c|c1, c2) = 1 ∧ P (c|c̄1) =

0 ∧ P (c|c̄2) = 0 ∧ P (c1|c) = 1 ∧ P (c2|c) = 1”; and
6) if C is the union of C1 and C2 then “P (c|c̄1, c̄2) = 0 ∧ P (c|c1) =

1 ∧ P (c|c2) = 1 ∧ P (c1|c̄) = 0 ∧ P (c2|c̄) = 0”.
Note it would be trivial to extend 5) and 6) to general case.

Fig. 8. Three Types of BN Connections

(c) Due to d-separation in the BN structure, additional conditional inde-
pendencies may be imposed to the concept nodes in XC in the translated BN.
These are caused by the independence relations assumed in the three (serial,
diverging, converging, as in Fig. 8) types of BN connections:

1) serial connection: consider A is a parent superclass of B, B is a par-
ent superclass of C, then the probability of an object o belonging to A and
belonging to C is independent if o is known to be in B;

2) diverging connection: A is the parent superclass for both B and C, then
B and C is conditionally independent given A;

3) converging connection: both B and C are parent superclasses of A, then
B and C are assumed to be independent if nothing about A has been known.

These independence relations can be viewed as a default relationship,
which are compatible with the original ontology since there is no informa-
tion to the contrary in the OWL file that defines this ontology.

2.6 Reasoning

The BayesOWL framework can support common ontology reasoning tasks
as probabilistic reasoning in the translated BN. The follows are some of the
example tasks.

(a) Concept Satisfiability: whether the concept represented by a de-
scription e exists. This can be answered by determining if P (e|τττ) = 0.
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(b) Concept Overlapping: the degree of the overlap or inclusion of a
description e by a concept C. This can be measured by P (e|C,τττ).

(c) Concept Subsumption: find concept C that is most similar to a given
description e. This task cannot be done by simply computing the posterior
P (e|C,τττ), because any concept node would have higher probability than its
children. Instead, a similarity measure MSC(e, C) between e and C based on
Jaccard Coefficient [30] is defined:

MSC(e, C) = P (e ∩ C|τττ)/P (e ∪ C|τττ) (7)

This measure is intuitive and easy-to-compute. In particular, when only con-
sidering subsumers of e (i.e., P (c|e, τττ) = 1), the one with the greatest MSC
value is a most specific subsumer of e.

In the previous example ontology (see Fig. 6), to find the concept that
is most similar to the description e = ¬Male u Animal, we compute the
similarity measure between e and each of the nodes in XC = {Animal, Male,
Female, Human, Man, Woman} using (7):

MSC(e,Animal) = 0.5004
MSC(e,Male) = 0.0
MSC(e, Female) = 0.9593
MSC(e,Human) = 0.0928
MSC(e,Man) = 0.0
MSC(e,Woman) = 0.1019

This leads us to conclude that “Female” is the most similar concept to e. When
a traditional DL reasoner such as Racer 19 is used, the same description would
have “Animal” as the most specific subsumer, a clear over generalization.

Reasoning with uncertain input descriptions can also be supported. For
example, description e′ containing P (Male) = 0.1 and P (Animal) = 0.7 can
be processed by inputting these probabilities as virtual evidence to the BN
[27]. Class “Female” remains the most similar concept to e′, but its similarity
value MSC(e′, F emale) now decreases to 0.5753.

3 Representing Probabilities in OWL

Information about the uncertainty of the classes and relations in an ontology
can often be represented as probability distributions (e.g., P (C) and P (C|D)
mentioned earlier), which we refer to as probabilistic constraints on the ontol-
ogy. These probabilities can be either provided by domain experts or learned
from data.

Although not necessary, it is beneficial to represent the probabilistic con-
straints as OWL statements. We have developed such a representation. At

19 http://www.racer-systems.com/index.phtml
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the present time, we only provide encoding of two types of probabilities: pri-
ors and pair-wise conditionals. This is because they correspond naturally to
classes and relations (RDF triples) in an ontology, and are most likely to be
available to ontology designers. The representation can be easily extended to
constraints of other more general forms if needed.

The model-theoretic semantics 20 of OWL treats the domain as a non-
empty collection of individuals. If class A represents a concept, we treat it as
a random binary variable of two states a and ā, and interpret P (A = a) as
the prior probability or one’s belief that an arbitrary individual belongs to
class A, and P (a|b) as the conditional probability that an individual of class
B also belongs to class A. Similarly, we can interpret P (ā), P (ā|b), P (a|b̄),
P (ā|b̄) and with the negation interpreted as “not belonging to”.

These two types of probabilities (prior or conditional) correspond naturally
to classes and relations in an ontology, and are most likely to be available to
ontology designers. Currently, our translation framework can encode two types
of probabilistic information into the original ontology (as mentioned earlier in
Subsect.2.2.3):

(a) prior or marginal probability P (C);
(b) conditional probability P (C|OC) where OC ⊆ πC , πC 6= ∅, OC 6= ∅.

for a concept class C and its parent superconcept class set πC .
We treat a probability as a kind of resource, and define two OWL classes:

“PriorProb”, “CondProb”. A prior probability P (C) of a variable C is de-
fined as an instance of class “PriorProb”, which has two mandatory proper-
ties: “hasVarible” (only one) and “hasProbValue” (only one). A conditional
probability P (C|OC) of a variable C is defined as an instance of class “Cond-
Prob” with three mandatory properties: “hasCondition” (at least has one),
“hasVariable” (only one), and “hasProbValue” (only one). The range of prop-
erties “hasCondition” and “hasVariable” is a defined class named “Variable”,
which has two mandatory properties: “hasClass” and “hasState”. “hasClass”
points to the concept class this probability is about and “hasState” gives the
“True” (belong to) or “False” (not belong to) state of this probability.

For example, P (c) = 0.8, the prior probability that an arbitrary individual
belongs to class C, can be expressed as follows:

<Variable rdf:ID=“c”>
<hasClass>C</hasClass>
<hasState>True</hasState>

</Variable>
<PriorProb rdf:ID=“P(c)”>

<hasVariable>c</hasVariable>
<hasProbValue>0.8</hasProbValue>

</PriorProb>

20 http://www.w3.org/TR/owl-semantics/direct.html
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and P (c|p1, p2, p3) = 0.8, the conditional probability that an individual of the
intersection class of P1, P2, and P3 also belongs to class C, can be expressed
as follows:

<Variable rdf:ID=“c”>
<hasClass>C</hasClass>
<hasState>True</hasState>

</Variable>
<Variable rdf:ID=“p1”>

<hasClass>P1</hasClass>
<hasState>True</hasState>

</Variable>
<Variable rdf:ID=“p2”>

<hasClass>P2</hasClass>
<hasState>True</hasState>

</Variable>
<Variable rdf:ID=“p3”>

<hasClass>P3</hasClass>
<hasState>True</hasState>

</Variable>
<CondProb rdf:ID=“P(c|p1, p2, p3)”>

<hasCondition>p1</hasCondition>
<hasCondition>p2</hasCondition>
<hasCondition>p3</hasCondition>
<hasVariable>c</hasVariable>
<hasProbValue>0.8</hasProbValue>

</CondProb>

For simplicity we did not consider the namespaces in above examples.
Similar to our work, [12] proposes a vocabulary for representing probabilistic
relationships in an RDF graph. Three kinds of probability information can
be encoded in his framework: probabilistic relations (prior), probabilistic ob-
servation (data), and probabilistic belief (posterior). And any of them can
be represented using probabilistic statements which are either conditional or
unconditional.

4 Concept Mapping Between Ontologies

It has become increasingly clear that being able to map concepts between
different, independently developed ontologies is imperative to semantic web
applications and other applications requiring semantic integration. Narrowly
speaking, a mapping can be defined as a correspondence between concept A in
Ontology 1 and concept B in Ontology 2 which has similar or same semantics
as A. [22] provides a brief survey on existing approaches for ontology-based
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semantic integration. Most of these works are either based on syntactic and
semantic heuristics, machine learning (e.g., text classification techniques in
which each concept is associates with a set of text documents that exemplify
the meaning of that concept), or linguistics (spelling, lexicon relations, lexical
ontologies, etc.) and natural language processing techniques.

It is often the case that, when mapping concept A defined in Ontology 1 to
Ontology 2, there is no concept in Ontology 2 that is semantically identical to
A. Instead, A is similar to several concepts in Ontology 2 with different degree
of similarities. A solution to this so-called one-to-many problem, as suggested
by [29] and [11], is to map A to the target concept B which is most similar to
A by some measure. This simple approach would not work well because 1) the
degree of similarity between A and B is not reflected in B and thus will not be
considered in reasoning after the mapping; 2) it cannot handle the situation
where A itself is uncertain; and 3) potential information loss because other
similar concepts are ignored in the mapping.

To address these problems, we are pursuing an approach that combines
BayesOWL and belief propagation between different BNs. In this approach,
the two ontologies are first translated into two BNs. Concept mapping can
then be processed as some form of probabilistic evidential reasoning between
the two translated BNs. Our preliminary work along this direction is described
in the next subsections (also refer to [10, 24] for more details and initial
experimental results).

4.1 The BN Mapping Framework

In applications on large, complex domains, often separate BNs describing re-
lated subdomains or different aspects of the same domain are created, but it
is difficult to combine them for problem solving – even if the interdependency
relations are available. This issue has been investigated in several works, in-
cluding most notably Multiply Sectioned Bayesian Network (MSBN) [35] and
Agent Encapsulated Bayesian Network (AEBN) [33]. However, their results
are still restricted in scalability, consistency and expressiveness. MSBN’s pair-
wise variable linkages are between identical variables with the same distribu-
tions, and, to ensure consistency, only one side of the linkage has a complete
CPT for that variable. AEBN also requires a connection between identical
variables, but allows these variables to have different distributions. Here, iden-
tical variables are the same variables reside in different BNs.

What we need in supporting mapping concepts is a framework that allows
two BNs (translated from two ontologies) to exchange beliefs via variables
that are similar but not identical. We illustrate our ideas by first describing
how mapping shall be done for a pair of similar concepts (A from Ontology
1 to B in Ontology 2), and then discussing how such pair-wise mappings
can be generalized to network to network mapping. We assume the similarity
information between A and B is captured by the joint distribution P (A,B).
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Now we are dealing with three probability spaces: SA and SB for BN1 and
BN2, and SAB for P (A,B). The mapping from A to B amounts to determine
the distribution of B in SB , given the distribution P (A) in SA under the
constraint P (A,B) in SAB .

To propagate probabilistic influence across these spaces, we can apply
Jeffrey’s rule and treat the probability from the source space as soft evidence
to the target space [27, 33]. This rule goes as follow. When the soft evidence
on X, represented as the distribution Q(X), is presented, not only P (X),
the original distribution of X, is changed to Q(X), all other variables Y will
change their distributions from P (Y ) to Q(Y ) according to (8)

Q(Y ) =
∑

i

P (Y |Xi)Q(Xi) (8)

where the summation is over all states Xi of X.
As depicted in Fig. 9, mapping A to B is accomplished by applying Jeffrey’s

rule twice, first from SA to SAB , then SAB to SB . Since A in SA is identical
to A in SAB , P (A) in SA becomes soft evidence Q(A) to SAB and by (8) the
distribution of B in SAB is updated to

Q(B) =
∑

i

P (B|Ai)Q(Ai) (9)

Q(B) is then applied as soft evidence from SAB to node B in SB , updating
beliefs for every other variable V in SB by

Q(V ) =
∑
j

P (V |Bj)Q(Bj)

=
∑
j

P (V |Bj)
∑
i

P (Bj |Ai)Q(Ai)

=
∑
j

P (V |Bj)
∑
i

P (Bj |Ai)P (Ai)

(10)
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Fig. 9. Mapping Concept A to B

Back to the example in Fig. 6, where the posterior distribution of “Hu-
man”, given hard evidence ¬Male u Animal, is (True 0.102, False 0.898).
Suppose we have another BN which has a variable “Adult” with marginal dis-
tribution (True 0.8, False 0.2). Suppose we also know that “Adult” is similar
to “Human” with conditional distribution (“T” for “True”, “F” for “False”)
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P (Adult|Human) =
T F

T
F

(
0.7 0.3
0.0 1.0

)

Mapping “Human” to “Adult” leads to a change of latter’s distribution from
(True 0.8, False 0.2) to (True 0.0714, False 0.9286) by (9). This change can
then be propagated to further update believes of all other variables in the
target BN by (10).

4.2 Mapping Reduction

A pair-wise linkage as described above provides a channel to propagate belief
from A in BN1 to influence the belief of B in BN2. When the propagation is
completed, (9) must hold between the distributions of A and B. If there are
multiple such linkages, (9) must hold simultaneously for all pairs. In theory,
any pair of variables between two BNs can be linked, albeit with different
degree of similarities. Therefore we may potentially have n1×n2 linkages ( n1

and n2 are the number of variables in BN1 and BN2, respectively). Although
we can update the distribution of BN2 to satisfy all linkages by IPFP using
(9) as constraints, it would be a computational formidable task.

Fig. 10. Mapping Reduction Example

Fortunately, satisfying a given probabilistic relation between P (A,B) does
not require the utilization, or even the creation, of a linkage from A to B.
Several probabilistic relations may be satisfied by one linkage. As shown in
Fig. 10, we have variables A and B in BN1, C and D in BN2, and probability
relations between every pair as below:

P (C, A) =
(

0.3 0.0
0.1 0.6

)
, P (D, A) =

(
0.33 0.18
0.07 0.42

)
,

P (D,B) =
(

0.348 0.162
0.112 0.378

)
, P (C,B) =

(
0.3 0.0
0.16 0.54

)
.

However, we do not need to set up linkages for all these relations. As Fig. 10
depicts, when we have a linkage from A to C, all these relations are satisfied
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(the other three linkages are thus redundant). This is because not only beliefs
on C, but also beliefs on D are properly updated by mapping A to C.

Several experiments with large BNs have shown that only a very small
portions of all n1 × n2 linkages are needed in satisfying all probability con-
straints. This, we suspect, is due to the fact that some of these constraints
can be derived from others based on the probabilistic interdependencies among
variables in the two BNs. We are currently actively working on developing a
set of rules that examine the BN structures and CPTs so that redundant
linkages can be identified and removed.

5 Conclusion

This chapter describes our on-going research on developing a probabilistic
framework for modeling uncertainty in semantic web ontologies based on
Bayesian networks. We have defined new OWL classes (“PriorProb”, “Cond-
Prob”, and “Variable”), which can be used to encode probability constraints
for ontology classes and relations in OWL. We have also defined a set of
rules for translating OWL ontology taxonomy into Bayesian network DAG
and provided a new algorithm D-IPFP for efficient construction of CPTs.
The translated BN is semantically consistent with the original ontology and
satisfies all given probabilistic constraints. With this translation, ontology rea-
soning can be conducted as probabilistic inferences with potentially better,
more accurate results. We are currently actively working on extending the
translation to include properties, developing algorithms to support common
ontology-related reasoning tasks. Encouraged by our preliminary results, we
are also continuing work on ontology mapping based on BayesOWL. This in-
cludes formalizing concept mapping between two ontologies as probabilistic
reasoning across two translated BN, and addressing the difficult issue of one-
to-many mapping and its generalized form of many-to-many mapping where
more than one concepts need to be mapped from one ontology to another at
the same time.

The BayesOWLframework presented in this chapter relies heavily on the
availability of probabilistic information for both ontology to BN translation
and ontology mapping. This information is often not available (or only par-
tially available) from domain experts. Learning these probabilities from data
then becomes the only option for many applications. Our current focus in this
direction is the approach of text classification [5, 21]. The most important and
also most difficult problem in this approach is to provide high quality sample
documents to each ontology class. We are exploring ontology guided search of
the web for such documents.

Another interesting direction for future work is to deal with inconsistent
probability information. For example, in constructing CPTs for the translated
BN, the given constraints may be inconsistent with each other, also, a set of
consistent constraints may itself be inconsistent with the network structure.
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This issue involves detection of inconsistency, identification of sources of in-
consistency, and resolution of inconsistency.
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