
Monday, 7 November 2005

W9: The Semantic Web and
Policy Workshop (SWPW)

Organisers: Lalana Kagal,
Tim Finin, Jim Hendler

ISWC 2005 could not take place without the generous support of the following sponsors

Super Emerald Sponsors

Gold Sponsors

Silver Sponsors

ISWC 2005 Organising Committee

General Chair Mark Musen, Stanford University

Research Track Co-Chair Yolanda Gil, Information Sciences Institute

Research Track Co-Chair Enrico Motta, The Open University

Industrial Track Chair V Richard Benjamins, iSOCO, S.A.

Workshop Chair Natasha F Noy, Stanford University

Tutorial Chair R.V. Guha, Google

Poster & Demo Chair Riichiro Mizoguchi, Osaka University

Semantic Web Challenge Michel Klein, Vrjie Universiteit Amerdam

Semantic Web Challenge Ubbo Visser, Universitat Bremen

Doctoral Symposium Co-Chair Edward Curry, National University of Ireland, Galway

Doctoral Symposium Co-Chair Enda Ridge, University of York

Meta-Data Chair Eric Miller, W3C

Sponsorship Chair Liam O’Móráin, DERI Galway

Local Organising Co-Chair Christoph Bussler, DERI Galway

Local Organising Co-Chair Stefan Decker, DERI Galway

Local Organiser Brian Cummins, DERI Galway

Webmaster Seaghan Moriarty, DERI Galway

Web Design Johannes Breitfuss, DERI Innsbruck

Contents

Forward 3

Schedule 4

Call for papers 5

Applying Semantic Web in Mobile and Ubiquitous Computing: Will Policy-Awareness 6
Help?, Ora Lassila

The TriQL.P Browser: Filtering Information using Context- , Content- and Rating- 12
Based Trust Policies, Christian Bizer, Richard Cyganiak, Tobias Gauss and Oliver Maresch

The REWERSE View on Policies, Grigoris Antoniou, Matteo Baldoni, Cristina Baroglio, 21
Piero A. Bonatti, Claudiu Duma, Norbert E. Fuchs, Alberto Martelli, Wolfgang Nejdl,
Daniel Olmedilla, Viviana Patti, Joachim Peer and Nahid Shahmehri

Design and Application of Rule Based Access Control Policies, Huiying Li, Xiang 34
Zhang, Honghan Wu and Yuzhong Qu

Rule-based and Ontology-based Policies: Toward a Hybrid Approach to Control 42
Agents in Pervasive Environments, Alessandra Toninelli, Jeffrey Bradshaw, Lalana
Kagal and Rebecca Montanari

Policy Based Dynamic Negotiation for Grid Services Authorization, Ionut Constandache, 55
Wolfgang Nejdl and Daniel Olmedilla

A Logic Based SLA Management Framework, Adrian Paschke, Jens Dietrich and 68
Karsten Kuhla

Real-world trust policies, Vinicius da Silva Almendra and Daniel Schwabe 84

Specification of Policies for Automatic Negotiations of Web Services, Steffen 99
Lamparter and Sudhir Agarwal

Towards a Policy-Aware Web, Vladimir Kolovski, Yarden Katz, James Hendler, 110
Daniel Weitzner and Tim Berners-Lee

Semantic Web Framework and Meta-Control Model to Enforce Context-Sensitive 120
Policies, Jinghai Rao and Norman Sadeh

Towards Integrated Specification and Analysis of Machine-Readable Policies 128
Using Maude, Rukman Senanayake, Grit Denker and Jon Pearce

An Integration of Reputation-based and Policy-based Trust Management, Piero 136
Bonatti, Claudiu Duma, Daniel Olmedilla and Nahid Shahmehri.

Semantic Policy-based Security Framework for Business Processes, Dong Huang 142

RBAC policy engineering with patterns, Taufiq Rochaeli and Claudia Eckert 148

Forward

The Semantic Web and Policy Workshop (SWPW) is a one day workshop held as part of the 4th Interna-
tional Semantic Web Conference 7 November 2005 in Galway, Ireland. This follows a similar workshop,
Policy Management for the Web held at the 14th International World Wide Web Conference on 10 May
2005, in Chiba, Japan. SWPS is aimed at two different areas of research - (i) policy-based frameworks for
the semantic web for security, privacy, trust, information filtering, accountability, etc.; and (ii) the applica-
bility of semantic web technologies in policy frameworks for other application domains such as grid com-
puting, networking, storage systems, and describing norms for multiagent systems. This workshop brings
together not only researchers and developers but also users of policy systems in both these areas in an at-
tempt to understand the scope of semantic web based policy frameworks and their usefulness.

From the submitted papers, fifteen were selected for inclusion in the printed proceedings and of these, nine
for presentation and discussion during the workshop. The proceedings is available online from the SWPW
web site at http://www.cs.umbc.edu/swpw/ and can be cited as

Lalana Kagal, Tim Finin and James Hendler, Proceedings of the Semantic Web and Policy
Workshop, 4th International Semantic Web Conference, 7 November, 2005, Galway, Ireland.

Ora Lassila of the Nokia Research Center in Burlington Massachusetts will give an invited talk entitled
“Applying Semantic Web in Mobile and Ubiquitous Computing: Will Policy-Awareness Help?” and an
accompanying paper is included in the proceedings.

At the end of the day a panel will be held to discuss the Web Policy Zeitgeist is as 2005 comes to a close.
The panelists are Piero Bonatti, Wolfgang Nejdl (moderator), Karl Quinn, Norman Sadeh, and Kent Sea-
mons. Each has been asked to respond to any or all of the following positions. Workshop participants are
encouraged to think up new and provocative positions and to spring them on the panelists without warning
and ask for a response.

• Policies must be norms. Policies must express norms for ideal behavior -- both positive and negative.

Policies for real world applications will always be over constrained. What's interesting and challenging
is how a poor agent plans around, trades off, and navigates through all of the conflicting constraints. Is
it also important for policies to guide user in obtaining what they want?

• Policies are not just about security or privacy. Business rules are policies; Quality of service is regu-
lated by policies. Policy specification languages should be able to express all of these shades of the no-
tion of policy. What are the requirements for such a language?

• Policies are not "islands". They must interact with all sorts of software, data, and (why not?) knowl-
edge. Decisions making needs different, specific kinds of information in each application. Adapting a
policy framework to a specific application domain shall almost surely need some work. Our frame-
works should minimize the effort.

• Policies must be integrated with ontologies. Or not. What is such integration expected to provide? Will
this be useful only for the Semantic Web or are there advantages of using ontology based policies for
other systems as well?

• Policies must be X. For some X. Articulate your own position and argue for it.

The SWPW organizers wish thank the excellent program committee for their hard work in reviewing the
submitted papers and providing constructive feedback to the authors. We also thank the workshop authors
for submitting good papers, responding to the reviewers’ comments and keeping to our production sched-
ule. Finally we thank the ISWC organizers for their help and especially Dr. Natalya F. Noy who, the ISWC
2005 workshop chair.

Lalana Kagal (chair), MIT CSAIL Laboratory
Tim Finin, UMBC Ebiquity Laboratory
Jim Hendler, UMD Mindswap Laboratory

ISWC2005 Semantic Web and Policy Workshop 7 November 2005

 3

Schedule

8.45 – 9.00 Welcome from the SWPW Chair

9.00 - 10.00 Invited talk

Applying Semantic Web in Mobile and Ubiquitous Computing: Will Policy-Awareness Help? Ora Lassila,
Nokia Research Center

10.00 - 10.30 Information Filtering

The TriQL.P Browser: Filtering Information using Context- , Content- and Rating-Based Trust Policies,
Christian Bizer, Richard Cyganiak, Tobias Gauss and Oliver Maresch

10.30 - 11.00 Coffee Break

11.00 - 12.30 Authorization Policies

The REWERSE View on Policies, Grigoris Antoniou, Matteo Baldoni, Cristina Baroglio, Piero A. Bonatti,
Claudiu Duma, Norbert E. Fuchs, Alberto Martelli, Wolfgang Nejdl, Daniel Olmedilla, Viviana Patti,
Joachim Peer and Nahid Shahmehri (22 mins)

Design and Application of Rule Based Access Control Policies, Huiying Li, Xiang Zhang, Honghan Wu
and Yuzhong Qu (22 mins)

Rule-based and Ontology-based Policies: Toward a Hybrid Approach to Control Agents in Pervasive Envi-
ronments, Alessandra Toninelli, Jeffrey Bradshaw, Lalana Kagal and Rebecca Montanari (22 mins)

Policy Based Dynamic Negotiation for Grid Services Authorization, Ionut Constandache, Wolfgang Nejdl
and Daniel Olmedilla (22 mins)

12.30 - 14.00 Lunch

14.00 – 16.00 Policy and Trust Frameworks

A Logic Based SLA Management Framework, Adrian Paschke, Jens Dietrich and Karsten Kuhla

Real-world trust policies, Vinicius da Silva Almendra and Daniel Schwabe

Specification of Policies for Automatic Negotiations of Web Services, Steffen Lamparter and Sudhir
Agarwal

Towards a Policy-Aware Web, Vladimir Kolovski, Yarden Katz, James Hendler, Daniel Weitzner and Tim
Berners-Lee

16.00 - 16.30 Coffee Break

16.30 - 17.30 Panel

2005 Web Policy Zeitgeist, Piero Bonatti, Wolfgang Nejdl, Karl Quinn Norman Sadeh and Kent Seamons

17.30 - 17.45 Wrap up

ISWC2005 Semantic Web and Policy Workshop 7 November 2005

 4

SWPW

Chairs

Lalana Kagal, MIT
Jim Hendler, University of Maryland
Tim Finin, UMBC

Program Committee

Anne Anderson, Sun Microsystems
Vijay Atluri, Rutgers University
Jeremy Carroll, HP labs
Dan Connolly, W3C
Lorrie Cranor, CMU
Naranker Dulay, Imperial College
Tim Finin, UMBC
Benjamin Grosof, MIT
Jim Hendler, UMCP
Lalana Kagal, MIT
Jonathan Moffett, U. of York
Rebecca Montanari, U. of Bologna
Wolfgang Nejdl, L3S and U.
 Hannover
Daniel Olmedilla, L3S
Bijan Parsia, UMCP
Eric Prud'hommeaux, W3C
Norman Sadeh, CMU
Babak Sadighi, SICS
Stefan Poslad, Queen Mary, U.
 London
Kent Seamons, BYU
Anna Squicciarini, Purdue
William Winsborough, GMU
Mahesh Tripunitara, Purdue

Semantic Web and Policy Workshop
4th International Semantic Web Conference

7 November 2005, Galway, Ireland
This workshop is aimed at two different areas of research - (i) policy-based frameworks
for the semantic web for security, privacy, trust, information filtering, accountability,
etc. and (ii) the applicability of semantic web technologies in policy frameworks for
other application domains such as grid computing, networking, storage systems, and
describing norms for multiagent systems. This workshop will bring together not only
researchers and developers but also users of policy systems in both these areas in an at-
tempt to understand the scope of semantic web based policy frameworks and their use-
fulness.

• Policy specification, implementation, and enforcement
• Static and dynamic conflict resolution
• Dynamic policy modification
• Formal models for policy verification
• Applicability of XML, RDF and OWL for policy specification
• Using SW rule languages (e.g. RuleML, SWRL, N3) for policies
• Policies for access control, privacy, and accountability
• Obligation management
• Business contracts and rules
• Decidability and tractability issues
• Policy engineering and user-oriented policy authoring systems
• Case studies for policy management using semantic web technologies, in-

cluding web site access, network routing, storage management, grid com-
puting, pervasive computing, information filtering , digital rights manage-
ment, collaboration

Format and venue. SWPW will be a one day workshop consisting of invited talks,
presentations of submitted papers, a panel and ample time for discussion. The workshop
will be held as part of ISWC 2005 in Galway, Ireland.

Submission details. We seek two kinds of papers: research papers that report on the
results of original research and short papers that articulate a position, describe an appli-
cation or demonstrate a working language or system. Both research papers and short
papers will be included in the workshop proceedings. Research papers should describe
original research not published elsewhere and should not exceed eight pages in length.
Short papers are expected to be four to six pages. Short position papers should provide
insight into the requirements for, or challenges of, developing or applying policies for
web-based information systems. Short application papers should describe an imple-
mented novel use of policies in a web-based environment. Short demonstration papers
should document an implemented system or language that uses policies. Each submis-
sion should indicate the type of paper being submitted: research, position, application or
demonstration.

Deadlines. Papers must be submitted electronically through the SWPW web site by 25
July 2005. Decisions will be announced on 5 September and final camera ready copy
must be submitted by 30 September.

http://cs.umbc.edu/swpw/

Applying Semantic Web in Mobile and Ubiquitous
Computing: Will Policy-Awareness Help?

Ora Lassila

Nokia Research Center
5 Wayside Road

Burlington MA, USA

Abstract. The Semantic Web can be seen as a means of improving the interoperabil-
ity between systems, applications, and information sources. Emerging personal computing
paradigms such as mobile and ubiquitous computing will benefit from better interoperability,
as this is an enabler for a higher degree of automation of many tasks that would other-
wise require the end-users’ attention. In this paper we present one possible view of mobile
and ubiquitous computing enhanced with the application of Semantic Web technologies, and
explore the various benefits of policy-awareness to this application domain.

1 Introduction

The emergence of smartphones – mobile phones capable of functions typically associated with
personal digital assistants (PDAs) or even personal computers – has made mobile information access
an everyday reality, and mobile computing the new (emerging) paradigm of personal computing and
communications. With wide-area, local-area and proximity networking technologies now available
on these mobile devices, we are rapidly transitioning towards Mark Weiser’s vision of ubiquitous
computing [1], where a single (personal) device is no longer the focal point of user’s attention and
where computation is effectively distributed to the environment surrounding the user.

Mobile and ubiquitous computing, while offering new opportunities, also pose several technological
challenges not necessarily present in (or critical to) the current paradigm of personal computing
based on the desktop metaphor. In the short term, progress is being made to better enable many
typical personal computing tasks on these devices (for example, good progress has been made to
enable normal “Web experience” on smartphones [2]), but ultimately the form-factor of handheld
devices will force us to radically rethink user interfaces and user interaction, rather than merely
suggesting a “miniaturization” of the prevalent graphical desktop interface. Even though we could
eventually overcome the physical limitations inherent in mobile information retrieval, the real limi-
tations have more to do with the usage situations of mobile devices: Information access often (if not
predominantly) takes place in situations where the user is “attention-constrained”; in other words,
the user is primarily paying attention to something else (say, driving a car) and cannot expend full
attention to the process of finding and retrieving information (or to any other “personal computing”
task for that matter).

In addition, mobility in itself introduces a more challenging environment with regard to connectivity,
security, privacy, service discovery, etc., while at the same time making completely new applications
possible that simply would not make sense in a more stationary form of computing. A device such

ISWC2005 Semantic Web and Policy Workshop 7 November 2005

 6

as a mobile phone, by virtue of being a constant companion to the user, can also be trusted with
considerable amount of useful personal and private information; this, in turn, will force us to ensure
that issues of information access (security, privacy) are properly dealt with.

We believe that mobile and ubiquitous computing devices would become more useful if they could
undertake tasks on behalf of the user, rather than – as is currently the case – forcing the user to do
essentially everything herself. The transition from mobile devices as tools to mobile assistants will
require the application of not only technologies for implementing autonomous operation, but also
sophisticated ontological techniques for representing information about the mobile devices, their
functionality, users, environments, etc. [3, 4]

In general, this paper discusses the possible application of Semantic Web [5] technologies to mobile
and ubiquitous computing. This application is motivated by the need for better automation of
user’s tasks (as a means of making the user’s life easier); we will adopt the view that automation
is best enabled by improving the interoperability between systems, applications, and information.
In particular, we hope to demonstrate the need for policy-awareness as the ultimate enabler of
the next generation personal information systems, and will offer the observation the not only are
Semantic Web technologies are particularly well suited to rich, flexible representation of various
policies, but that without the policy-awareness the application of Semantic Web technologies to
mobile and ubiquitous computing may be hampered.

2 Ubiquitous Computing as an “Interoperability Nightmare”

Although much of ubiquitous computing research has focused on various aspects of user interaction
[6], we can argue that a key characteristic of the paradigm – and one that makes ubiquitous com-
puting distinctly different from the current personal computing paradigm(s) – is the proliferation
of devices that need to be connected. Today’s user connects his PC to a handful of other devices
(printers, network gateways, etc.) and these connections are fairly static. Distinctly different from
today’s situation, ubiquitous computing scenarios are anticipated to involve dozens, if not hun-
dreds of devices (sensors, external input and output devices, remotely controlled appliances, etc.).
We therefore observe that ubiquitous computing, in its full-blown manifestations, represents the
ultimate “interoperability nightmare”. Furthermore, with the advent of mobility and associated
proximity networking, the set of connected devices will constantly change as the usage context
changes and as devices come into and leave the range of the user’s ubiquitous computing device(s).
Because of the dynamic nature of the new paradigm, technologies that improve interoperability will
be crucial.

Given the need to dynamically connect to a large ever-changing set of devices and services, devices
in a ubiquitous computing environment should be capable of sophisticated discovery and device
coalition formation: the goal should be to accomplish discovery and configuration of new devices
without “a human in the loop.” In other words, the objective is the discovery and utilization of
services offered by other automated systems without human guidance or intervention, thus enabling
the automatic formation of device coalitions through this mechanism. Ultimately, one of the most
important components of the realization of the Semantic Web (and also that of mobile and ubiq-
uitous computing) is “serendipitous interoperability”, the ability of software systems to discover
and utilize services they have not seen before, and that were not considered when the systems

ISWC2005 Semantic Web and Policy Workshop 7 November 2005

 7

were designed [7]. To realize this, qualitatively stronger means of representing service semantics are
required, enabling fully automated discovery and invocation, and complete removal of unnecessary
interaction with human users.

Semantic Web techniques have proven useful in providing richer descriptions for Web resources, and
consequently they can also applied to describing functionality: Semantic Web Services1 appear to
be an appropriate paradigm to be applied in representing the functionality of ubiquitous computing
devices. Virtual and physical functions can be abstracted as services, providing a uniform view of all
different kinds of functionality [3, 9]. Realization of this is contingent on the continuing emergence
of suitable ontologies for modeling ubiquitous computing environments [10].

Avoiding a priori commitments about how devices are to interact with one another will improve
interoperability and will thus make dynamic, unchoreographed ubiquitous computing scenarios more
realistic. With reference to the aforementioned serendipitous interoperability, the true fulfillment of
the vision for ubiquitous computing has a promise of serendipity in it that cannot be realized
without discovery mechanisms that are qualitatively stronger than the current practice.

Semantic Web technologies represent a potential for this qualitatively stronger interoperability as
compared to the traditional standards-based approach (where one essentially has to anticipate
all future scenarios). With the Semantic Web approach it is possible for agents to “learn” new
vocabularies and – via reasoning – make meaningful use of them. Furthermore, in addition to current
notions of device and application interoperability, the Semantic Web represents interoperability at
the level of the information itself.

3 Role of Context-Awareness in Ubiquitous Computing

As a primary means of addressing many of the issues in mobile and ubiquitous computing, context-
awareness [11] offers a way to adapt a device’s behavior to each usage situation, location, environ-
ment, user goal, etc. More generally, determining the user’s context serves as a convenient means of
limiting the search space along multiple dimensions of the system’s operation:

Information retrieval: Which information is interesting, relevant and applicable? Given that
her attention is focused elsewhere, the mobile user may merely “have questions” and will need
very specific (and thus potentially terse) answers; using context information to limit the scope
will make it easier to provide high-quality answers. Generally, having access to information
in “raw” form (i.e., without any forethought as to how the information is to be presented or
formatted), combined with the representation and reasoning capabilities enabled by Semantic
Web technologies, will be helpful, because then what information gets presented (and how it
gets formatted) can be a context-based decision.

User Interfaces: Which user interface choices and configurations are appropriate? Mobile devices
suffer from various limitations such as small display size, awkward keyboard, etc. Taking context
very broadly – covering just about everything that is known about the user, her task, the
current environment, and the device she is using to access information – allows us to customize

1 Semantic Web Services are generally defined as the augmentation of Web Service descriptions through
semantic annotations, to facilitate a higher degree of automation of service discovery, composition, invo-
cation and monitoring in an open, unregulated and often chaotic environment [8].

ISWC2005 Semantic Web and Policy Workshop 7 November 2005

 8

user interfaces; it may, in fact, be possible to go well beyond contemporary content repurposing
approaches (such as [12]). We have been able to demonstrate that context information, combined
with rich semantic models of the user, her environment and tasks, can be helpful in providing
good default values and more generally tailoring the user interfaces to be ergonomically efficient
for a particular user, task or purpose [13].

Service Discovery: Which services to consider as relevant and/or applicable? Service discovery in
completely open-ended situations may suffer from the difficulty of having to pick services with
little guidance and/or no limitations wrt. the search space; context here serves as a means of
providing tighter boundaries for queries. Furthermore, characteristic to mobile and ubiquitous
computing environments is that services are often tied to a particular location (or other notion
of context); being able to choose or substitute appropriate functionality will enable flexible and
robust operation [14].

Security & Privacy: How to appropriately restrict access to information and services? Access is
sometimes dependent on the user’s context. For example, a context may include associative
aspects of the user’s situation (e.g., a particular context may depend on who the other people
are in the user’s immediate vicinity), which, in turn, may have ramifications to privacy-related
services and functionality.

Automation & Autonomy: How to decide which operations to automate, and how? Autonomous
operation (which can be considered the extreme form of automation) is typically implemented
using automated planning technologies (e.g., in agent-based systems); context can, again, serve
as a means of limiting the search space when performing planning.

The process of determining context benefits from access to as many sources of information as
possible, related to the user, her task, the environment, etc. [15]; we will subsequently argue that
without a proper solution for security and privacy, efforts to implement context-awareness may be
hampered.

4 Benefits of Policy-Awareness

In a general sense, a policy is a prescriptive means of limiting a system’s behavior in some future
situations. Typically policies are expressed using various deontic modalities [16] such as rights and
obligations. With regard to information access, the use of an open, policy-aware infrastructure has
been proposed for the World Wide Web [17]; we argue that this is a potentially applicable approach
in mobile and ubiquitous computing as well. Semantic Web techniques, again, are well suited to
describing, reasoning about, and exchanging policies [18, 19].

Policy-awareness may benefit mobile and ubiquitous computing in several ways:

Access: By providing access to maximal amount of information, policy-awareness enables higher-
quality context derivation than would otherwise be possible. With the proper application of
security and privacy policies it may be possible to base context derivation on data whose other
uses would be prohibited.

Autonomy: The view of a policy as a prescriptive set of instructions about how a system should
behave in some particular situation supports the use of policies as part of the realization to

ISWC2005 Semantic Web and Policy Workshop 7 November 2005

 9

increase personal computing systems’ overall capability of autonomous behavior. Mobile and
ubiquitous computing require intelligent response to changing conditions in a system’s operating
environment (e.g., changes in communication bandwidth); the use of policies may enable correct
yet opportunistic exploitation of these changes without constant user intervention.

Contracts: Since devices in mobile and ubiquitous computing environments are always dependent
on external services and functionality, mechanisms for contracting between systems will be
necessary. As a general notion, contracting between agents has been and remains a standard
technique in distributed problem solving [20]; more recently, the idea has been extended to
allow contract representation using standard Semantic Web formalisms and to make it possible
to reason about contracts [21, 22].

5 Conclusions

Semantic Web technologies offer several benefits to new computing paradigms such as mobile and
ubiquitous computing. Not only do Semantic Web technologies lend themselves well to representa-
tion, reasoning and exchange of many different kinds of information (about functionality, contexts,
policies, contracts, user models, etc.), but generally these technologies are a qualitatively stronger
approach to interoperability than contemporary standards-based approaches. With sophisticated
ontological representations we can realize effortless access to heterogeneous information sources
and services, independent of the access device or the user’s context; furthermore, we can finally
untap the serendipitous potential that exists in unchoreographed encounters of automated and
autonomous systems in cyberspace.

We do believe, however, that a pervasive framework for expressing and enforcing policies described
using rich knowledge representation formalisms, is necessary for the full realization of this vision.
For mobile and ubiquitous computing, the application of policy-awareness enables several key char-
acteristics such as better access to information, higher degree of autonomy, and the ability to use
and enforce contracts when employing external services and functionality.

References

1. Weiser, M.: The computer for the twenty-first century. Scientific American 265 (1991) 94–104
2. Nokia: Nokia develops a new browser for Series 60 by using open source software. Nokia press release,

2005-06-13 (2005)
3. Lassila, O., Adler, M.: Semantic Gadgets: Ubiquitous Computing Meets the Semantic Web. In Fensel,

D., Hendler, J., Wahlster, W., Lieberman, H., eds.: Spinning the Semantic Web. MIT Press (2003)
363–376

4. McGrath, R.E., Ranganathan, A., Campbell, R.H., Mickunas, M.D.: Use of Ontologies in Pervasive
Computing Environments. Technical report, University of Illinois at Urbana-Champaign (2003)

5. Berners-Lee, T., Hendler, J., Lassila, O.: The Semantic Web. Scientific American 284 (2001) 34–43
6. Abowd, G.D., Mynatt, E.D.: Charting past, present, and future research in ubiquitous computing.

ACM Transactions on Computer-Human Interaction 7 (2000) 29–58
7. Lassila, O.: Serendipitous Interoperability. In Eero Hyvönen, ed.: The Semantic Web Kick-off in Finland

– Vision, Technologies, Research, and Applications. HIIT Publications 2002-001. University of Helsinki
(2002)

ISWC2005 Semantic Web and Policy Workshop 7 November 2005

 10

8. Payne, T., Lassila, O.: Semantic Web Services (guest editors’ introduction). IEEE Intelligent Systems
19 (2004) 14–15

9. Masuoka, R., Parsia, B., Labrou, Y.: Task Computing – the Semantic Web meets Pervasive Computing.
In Fensel, D., Sycara, K., Mylopoulos, J., eds.: The SemanticWeb - ISWC 2003. Volume 2870 of Lecture
Notes in Computer Science., Springer-Verlag (2003)

10. Chen, H., Perich, F., Finin, T., Joshi, A.: SOUPA: Standard Ontology for Ubiquitous and Pervasive
Applications. In: International Conference on Mobile and Ubiquitous Systems: Networking and Services
(MobiQuitous), Boston, MA (2004)

11. Dey, A., Abowd, G., Salber, D.: A conceptual framework and a toolkit for supporting the rapid
prototyping of context-aware applications. Human-Computer Interaction 16 (2001) 97–166

12. Nokia: Nokia acquires Eizel to enhance mobile enterprise portfolio. Nokia press release, 2003-04-22
(2003)

13. Khushraj, D., Lassila, O.: Ontological Approach to Generating Personalized User Interfaces for Web
Services. 4th International Semantic Web Conference, to appear (2005)

14. Lassila, O., Dixit, S.: Interleaving Discovery and Composition for Simple Workflows. In: Semantic Web
Services, AAAI Spring Symposium Series, AAAI (2004)

15. Lassila, O., Khushraj, D.: Contextualizing Applications via Semantic Middleware. In: The Second
Annual International Conference on Mobile and Ubiquitous Systems: Networking and Services (Mo-
biQuitous), IEEE Computer Society (2005)

16. Mally, E.: Grundgesetze des Sollens: Elemente der Logik des Willens. Graz: Leuschner und Lubensky,
Universitäts-Buchhandlung (1926)

17. Weitzner, D.J., Hendler, J., Berners-Lee, T., Connolly, D.: Creating a Policy-Aware Web: Dicretionary,
Rule-based Access for the World Wide Web. In Ferrari, E., Thuraisingham, B., eds.: Web and Infor-
mation Security. Idea Group, Inc., Hershey, PA (2005)

18. Kagal, L., Parker, J., Chen, H., Joshi, A., Finin, T.: Security and Privacy Aspects. In: Security, Privacy
and Trust in Mobile Computing Environments. CRC Press (2003)

19. Kagal, L.: A Policy-Based Approach to Governing Autonomous Behavior in Distributed Environments.
PhD thesis, University of Maryland Baltimore County, Baltimore MD (2004)

20. Davis, R., Smith, R.: Negotiation as a metaphor for distributed problem solving. Artificial Intelligence
20 (1983) 63–109

21. Grosof, B.N., Poon, T.C.: SweetDeal: representing agent contracts with exceptions using XML rules,
ontologies, and process descriptions. In: WWW ’03: Proceedings of the 12th international conference
on World Wide Web, New York, NY, USA, ACM Press (2003) 340–349

22. Uszok, A., Bradshaw, J.M., Jeffers, R., Johnson, M., Tate, A., Dalton, J., Aitken, S.: Policy and Contract
Management for Semantic Web Services. In: Semantic Web Services, AAAI Spring Symposium Series,
AAAI (2004)

Acknowledgements

The author’s own research cited in this paper was supported in part by the Nokia Technology
Platforms and the Nokia Research Center. The author would also like to thank the anonymous
reviewers of the workshop who provided many constructive comments.

ISWC2005 Semantic Web and Policy Workshop 7 November 2005

 11

The TriQL.P Browser: Filtering Information
using Context-, Content- and Rating-Based

Trust Policies

Christian Bizer1, Richard Cyganiak1, Tobias Gauss1, and Oliver Maresch2

1 Freie Universität Berlin, Germany
chris@bizer.de

richard@cyganiak.de

tobias.gauss@web.de
2 Technische Universität Berlin, Germany

Oliver-Maresch@gmx.de

Abstract. The TriQL.P browser is a general purpose RDF browser that
supports users in exploring RDF datasets containing information from
multiple information sources. Information can be filtered using a wide
range of user-definable trust policies. Policies can be based on infor-
mation context, information content, information or information source
ratings, and on the presence or absence of digital signatures. In order
to help users understand the filtering decisions, the browser can explain
why a piece of information fulfils the selected trust policy.

1 Trust Policies for the Semantic Web

The Semantic Web is an open, dynamic network of independent information
providers all having different views of the world, different levels of knowledge,
and different intentions. Thus, information found on the Semantic Web has to
be seen as claims rather than as facts. Before using these claims, the information
consumer has to evaluate their trustworthiness and determine the subset which
he wants to trust for his specific task.

In everyday life, we use a wide range of trust assessment policies for evaluating
the trustworthiness of information: We might trust Andy on restaurants but not
on computers, trust professors on their research field, believe foreign news only
when it is reported by several independent sources and buy only from sellers on
eBay who have more than 100 positive ratings.

Which policy is chosen depends on the specific task, our subjective prefer-
ences, our past experiences and the trust relevant information available. For tasks
which are economically relevant to the information consumer he might require
a very strict trust policy, involving for example recommendations by people he
knows. For other tasks, a looser policy like ‘Accept all information that has been
asserted by at least two independent information providers, no matter who they
are.’ might be acceptable.

The future Semantic Web is supposed to be a dense mesh of interrelated
information, similar to the information perception situation we face in the offline

ISWC2005 Semantic Web and Policy Workshop 7 November 2005

 12

world. Thus, we argue, a trust policy framework for the Semantic Web can and
should support a similarly wide range of trust policies as used offline [4].

Every trust policy employs one or more trust assessment methods. These
methods can be classified into three categories:

Rating-Based Methods include rating systems like the one used by eBay
and Web-Of-Trust mechanisms. Most trust architectures proposed for the
Semantic Web so far fall into this category [1][11]. The general problem with
these approaches is that they require explicit and topic-specific trust ratings.
For many application domains, providing such ratings and keeping them up-
to-date puts an unrealistically heavy burden on information consumers.

Context-Based Methods use meta-data about the circumstances in which
information has been claimed, e.g. who said what, when and why. They in-
clude role-based trust methods, using the author’s role or his membership in
a specific group, for trust decisions. Example policies from this category are:
‘Prefer product descriptions published by the manufacturer over descriptions
published by a vendor’ or ‘Distrust everything a vendor says about its com-
petitor.’ Context-based trust mechanisms do not require explicit ratings, but
rely on the availability of background information. Within many Semantic
Web application areas, such background information might be available.

Content-Based Methods do not use meta-data about information, but rules
and axioms together with the information content itself and related infor-
mation about the same topic published by other authors. Example policies
following this approach are: ‘Believe information which has been stated by
at least 5 independent sources.’ or ‘Distrust product prices that are more
than 50% below the average price.’

2 The TriQL.P Browser

The TriQL.P browser is a general purpose RDF browser which shows how Se-
mantic Web content can be filtered using a wide range of trust policies, combining
methods from all three categories described above.

The TriQL.P browser is based on the Piggy Bank extension for the Firefox
browser [10]. Piggy Bank extracts Semantic Web content from Web pages as
users browse the Web. On websites where Semantic Web content is not available,
Piggy Bank can invoke screen-scrapers to re-structure content into Semantic Web
format. The extracted information can be browsed, sorted and searched using a
comfortable user-interface, and saved into a local repository for future reference
and aggregation.

In addition to the functionality provided by Piggy Bank, the TriQL.P browser
gives users the ability to:

– collect provenance meta-data together with information from the Web;
– import information aggregated from multiple sources by a third party into

the local repository using the RDF/XML, TriX [7] and TriG [3] syntaxes;
– load trust policy suites containing sets of policies;

ISWC2005 Semantic Web and Policy Workshop 7 November 2005

 13

– filter information in the local repository using these policies;
– explain on demand why displayed information fulfils a selected policy.

Figure 1 shows the user interface of the TriQL.P browser. Information items
from the local repository are displayed on the left-hand side. The policy selec-
tion box on the right side allows users to select a policy from the policy suite
currently loaded. After selecting a policy, the left-hand view updates to show
only information matching this policy. There is a ‘Oh, yeah?’-button [2] next to
each piece of information. Pressing this buttons opens a new window with an
explanation why the piece of information fulfils the selected trust policy.

Fig. 1. The TriQL.P user interface. The user selects a trust policy from the right-hand
box. The left-hand view updates to show only matching information. The ‘Oh, yeah?’
buttons open new windows with explanations why a piece of information fulfils the
selected policy.

Figure 2 shows an explanation why information information about Peter
Smith’s email address fulfils the policy ’Trust only information that has been
asserted by at least two different sources.’

Figure 3 shows an explanation why a news article fulfils the policy ’Trust only
information from information providers who have a Tidal Trust score above 0.5’.
The Tidal Trust metric calculates trust scores by determining shortest paths
between individuals in a social network of weighted trust statements and calcu-

ISWC2005 Semantic Web and Policy Workshop 7 November 2005

 14

Fig. 2. The explanation window. This explanation establishes why information about
Peter Smith’s email address fulfils the policy ‘Asserted by at least two different sources’.

lating its weighted average [11]. The explanation generated for this trust metric
shows the calculation result and contains details about the calculation steps and
the information sources used, allowing an information consumer to comprehend
the calculations at different levels of detail.

The TriQL.P browser is pretty flexible in rendering explanations for different
policies. An explanation for the policy ’Trust only information providers which
are working for at least two projects about a specific topic’ would contain the
list of projects for each information provider. An explanation for the policy
’Trust only information that has been signed by the information providers’ would
contain details about the signature verification process3.

The following sections explain how information collected from different sources
is represented within the TriQL.P browser, how trust policies are expressed and
applied, and how explanations are generated.

3 Representing Information

The TriQL.P browser uses Named Graphs [5] as internal data model. Named
Graphs are a slight extension of the RDF abstract syntax and provide well-
defined semantics for the attachment of provenance information and other meta-
data to RDF graphs.

3 Various policies and corresponding explanations are found at http://www.wiwiss.fu-
berlin.de/suhl/bizer/TriQLP/browser/

ISWC2005 Semantic Web and Policy Workshop 7 November 2005

 15

Fig. 3. Explanation for the policy ’Trust only information from information providers
who have a Tidal Trust score above 0.5’

Such provenance information can be expressed with the Semantic Web Pub-
lishing Vocabulary (SWP) [6]. SWP also provides terms to indicate whether a
graph is asserted or quoted and to attach digital signatures to it.

Whenever the browser saves information from a webpage into the local repos-
itory, it creates a new named graph for this visit of the page and stores the cur-
rent timestamp, the URL of the page and the authority (website URL) together
with the actual information. The following example shows the browser’s inter-
nal representation of information about Peter Smith collected from the URL
http://www.bizer.de/myFriends.htm, together with the recorded provenance
information. The example uses the TriG syntax [3].

<urn:uuid:8c845860-dce7-11d9-b9c0-00112ff60c7f> {
ex:PeterSmith a foaf:Person ;

foaf:name "Peter Smith" ;
foaf:mbox <mailto:peter.smith@petersmith.com> .

ISWC2005 Semantic Web and Policy Workshop 7 November 2005

 16

<urn:uuid:8c845860-dce7-11d9-b9c0-00112ff60c7f>
swp:assertedBy

<urn:uuid:8c845860-dce7-11d9-b9c0-00112ff60c7f> ;
swp:authority <http://www.bizer.de> ;
dc:date "2005-06-14T17:18:10+02:00" ;
swp:savedFrom <http://www.bizer.de/myFriends.htm> . }

4 Expressing and Applying Policies

The TriQL.P browser displays information from a virtual trusted graph which
contains a subset of the triples from all named graphs stored in the local reposi-
tory. The browser’s trust evaluation layer uses trust policies to determine which
triples from the untrusted named graphs are promoted into the virtual trusted
graph. The decision is made on a triple-by-triple basis, although many policies
are written to accept or reject entire graphs.

The heart of every trust policy is a TriQL.P query. TriQL.P is a query lan-
guage similar to but predating SPARQL [14]. In addition to basic graph pattern
matching, TriQL.P offers two language constructs which are especially useful
for expressing trust policies: COUNT() for formulating quantity conditions and
METRIC() as an open interface to different rating metrics.

An example TriQL.P query is shown below. When executed against the un-
trusted repository, it selects all triples (bound to the variables ?SUBJ, ?PRED and
?OBJ) which are asserted by at least two authorities.

SELECT ?SUBJ, ?PRED, ?OBJ
WHERE ?GRAPH (?SUBJ, ?PRED, ?OBJ)

(?GRAPH swp:assertedBy ?warrant .
?warrant swp:authority ?authority)

AND COUNT(?authority) >= 2

In order to associate explanation templates with individual graph patterns
and to provide additional metadata about a policy, TriQL.P queries are divided
into single graph patterns and constraints and are recombined using the TPL -
Trust Policy Language. The example below shows a TPL policy built from the
query above:

:Policy6 rdf:type tpl:TrustPolicy ;
tpl:policyName "Asserted by at least two sources" ;
tpl:policyDescription "Trust only information that has

been asserted by at least two different sources." ;
tpl:textExplanation "it was stated by at least two

different sources. The sources are:" ;
tpl:graphPattern [

tpl:pattern "(?GRAPH swp:assertedBy ?warrant .
?warrant swp:authority ?authority)";

ISWC2005 Semantic Web and Policy Workshop 7 November 2005

 17

tpl:textExplanation "@@?authority@@" ;] ;
tpl:constraint "COUNT(?authority) >= 2" .

The display layer retrieves information from the trust evaluation layer using
find queries (queries for all triples matching a triple pattern where subject,
predicate and object may be wildcards) against the virtual trusted graph.

Fig. 4. A find query asking for all information about ex:PeterSmith is combined with
a trust policy resulting into a complete TriQL.P query.

To display all information about the resource ex:PeterSmith, the following
steps are performed:

1. The display layer sends a find query and a policy URI to the trust evaluation
layer.

2. The engine combines the find query with the graph patterns and constraints
contained within the policy into a complete TriQL.P query. The variable
?SUBJ is pre-bound to the value ex:PeterSmith.

3. The TriQL.P query is executed against the untrusted repository.
4. RDF triples are created from the variables ?SUBJ, ?PRED and ?OBJ of every

query solution, and sent back to the display layer.

The trust evaluation layer caches the values bound to all other query vari-
ables, like ?warrant and ?authority in the example. They may be used later
to generate explanations.

TriQL.P offers an open interface for rating metrics that cannot be expressed
as graph patterns. The following example shows how the TidalTrust metric is
used as a constraint within a policy:

tpl:constraint "METRIC(tpl:TidalTrustMetric, ?USER, ?author, 0.5)".

ISWC2005 Semantic Web and Policy Workshop 7 November 2005

 18

Metrics are implemented as Java plug-ins into the TriQL.P query engine.
There are currently four metric plug-ins available: eBay, TidalTrust [11], Apple-
seed [15] and PageRank [13]. The first three metrics require explicit ratings. The
PageRank metric avoids the nessesarity of explicit ratings but allows common
RDF predicates like foaf:knows or rdf:seeAlso to be used as links for ranking.

5 Explaining Filtering Decisions

Each ‘Oh, yeah?’ button in the browser’s user interface corresponds to one RDF
triple of the virtual trusted graph. The following steps are executed to generate
an explanation why a triple fulfils a selected policy:

1. The engine retrieves the previously cached set of variable bindings that was
used to produce the triple.

2. The explanation templates associated with the trust policy are instantiated
using the variable bindings.

3. The resulting text snippets are grouped into a tree which is rendered into
HTML.

In addition to this basic explanation mechanism, METRIC() plug- ins generate
their own explanations about their calculation process and information used
within the process.

6 Conclusions

We have argued that trust frameworks for the Semantic Web should not rely
solely on explicit ratings but also facilitate information context and information
content for trust assessments. We have shown a flexible way to express trust
policies and to explain filtering decisions based on these policies, and we have
described how to integrate our policy framework into a general-purpose Semantic
Web browser.

Our approach of expressing policies as query templates instead of expressing
them as rules [8] might suit users familiar with query languages like SPARQL.
The information provenance explanations generated by the browser are similar to
the provenance traces used within TRELLIS [9]. Compared with TRELLIS, our
explanations are more flexible as they don’t assume a single provenance ontology.
The explanations generated by Inference Web [12] are complementary to our
work. Inference Web focuses on explaining distributed reasoning paths, while we
are focusing on explaining information provenance, background knowledge used
in the assessments and metric calculations.

We hope that our prototype facilitates further thinking about pragmatic
ways to incorporate trust policy frameworks into Semantic Web applications, as
trust is an essential topic for the Semantic Web but is often ignored by current
applications.

The TriQL.P browser is available under BSD license. More information about
the browser, example RDF datasets and example policy suites are found at:
http://www.wiwiss.fu-berlin.de/suhl/bizer/TriQLP/browser/

ISWC2005 Semantic Web and Policy Workshop 7 November 2005

 19

References

1. R. Agrawal, P. Domingos, and M. Richardson. Trust Management for the Semantic
Web. In 2nd International Semantic Web Conference, 2003.

2. T. Berners-Lee. Cleaning up the user interface, section - the ”oh, yeah?”-button,
1997. http://www.w3.org/DesignIssues/UI.html.

3. C. Bizer. The trig syntax. http://www.wiwiss.fu-berlin.de/suhl/bizer/TriG/.
4. C. Bizer and R. Oldakowski. Using context- and content-based trust policies on

the semantic web. In 13th World Wide Web Conference (Poster), 2004.
5. J. Carroll, C. Bizer, P. Hayes, and P. Stickler. Named graphs website.

http://www.w3.org/2004/03/trix/.
6. J. Carroll, C. Bizer, P. Hayes, and P. Stickler. Named graphs, provenance and

trust. In 14th International World Wide Web Conference, 2005.
7. J. Carroll and P. Stickler. TriX: RDF Triples in XML. In Proceedings of Extreme

Markup Languages, 2004.
8. T. Gianluca. Semantic web languages for policy representation and reasoning: A

comparison of kaos, rei, and ponder. In 2nd International Semantic Web Confer-
ence, 2003.

9. Y. Gil and V. Ratnakar. Trusting information sources one citizen at a time. In 1st
International Semantic Web Concerence, 2002.

10. D. Huynh, S. Mazzocchi, and D. Karger. Piggy bank: Experience the semantic web
inside your web browser. Submitted to the International Semantic Web Conference
2005.

11. Jennifer Golbeck. Computing and Applying Trust in Web-based Social Networks.
PhD thesis, 2005. http://trust.mindswap.org/papers/GolbeckDissertation.pdf.

12. D. L. McGuinness and P. P. da Silva. Infrastructure for web explanations. In 2nd
International Semantic Web Conference, 2003.

13. L. Page, S. Brin, R. Motwani, and T. Winograd. The pagerank citation ranking:
Bringing order to the web. Technical report, Stanford Digital Library Technologies
Project, 1998.

14. E. Prud’hommeaux and A. Seaborne. SPARQL Query Language for RDF.
http://www.w3.org/TR/2005/WD-rdf-sparql-query-20050217/, 2005.

15. C.-N. Ziegler and G. Lausen. Spreading activation models for trust propagation.
In IEEE International Conference on e-Technology, e-Commerce, and e-Service,
2004.

ISWC2005 Semantic Web and Policy Workshop 7 November 2005

 20

The REWERSE View on Policies

P.A. Bonatti, G. Antoniou, M. Baldoni, C. Baroglio, C. Duma, N. Fuchs, A.
Martelli, W. Nejdl, D. Olmedilla, J. Peer, V. Patti, and N. Shamheri

REWERSE (REasoning on the WEb with Rules and SEmantics)
WG-I2: Policy specification, composition, and conformance

Abstract. In this position paper we outline the vision adopted by the
working group on policies of the EU FP6 Network of Excellence REW-
ERSE, IST-2004-506779.

Keywords: Integrated heterogeneous policies, Cooperative policy enforce-
ment, Lightweight trust, Trust management, Natural language interfaces,
Explanation mechanisms.

1 Introduction

REWERSE (REasoning on the WEb with Rules and SEmantics) is one of the
two european networks of excellence on the semantic web funded by the Euro-
pean Union within the 6th framework program.1 The focus of REWERSE is on
lightweight knowledge representation and reasoning, based as much as possible
on rule-based languages because of their low computational complexity.

One of REWERSE’s working groups, WG I2, is expressly devoted to pol-
icy specification, composition, and conformance. The members of WG I2 have
identified in policies one of the most interesting areas for applying semantic web
ideas.

Policies are pervasive in web applications. They play crucial roles in enhanc-
ing security, privacy, but also service usability. They may determine the success
of a web service (or its failure). A user will not be able to benefit of the protection
mechanisms of its system until she understands and is able to personalize the
policies applied by the system. Simlarly, the facilities of a web service will not
be fully available to its customers unless they understand the policies applied by
the system (access control policies, privacy policies, and business rules, at least).

The vision of WG I2 can be summarized by the following list of strategic
goals and lines of research:

– We adopt a broad notion of policy, encompassing not only access control
policies, but also privacy policies, business rules, quality of service, etc. We
believe that all these different kinds of policies should eventually be inte-
grated into a single framework.

1 REWERSE has 27 academic and industrial participants distributed across 14 euro-
pean countries. The network officially started on March 1, 2004. More information
on http://www.rewerse.net.

ISWC2005 Semantic Web and Policy Workshop 7 November 2005

 21

– Strong and lightweight evidence: Policies make decisions based on properties
of the peers interacting with the system. These properties may be strongly
certified by—say—cryptographic techniques, or be reliable to an intermedi-
ate degree, where evidence gathering and validation are easier (lightweight
evidence). A flexible policy framework shall merge the two forms of evidence
to meet the efficiency and usability requirements of web applications.

– The above two points imply that trust negotiation, reputation models, busi-
ness rules, and action specification languages should be integrated into a
single framework, to some extent. It is crucial to find the right tradeoff be-
tween generality and efficiency. So far, no framework has tried to merge all
these aspects together into a coherent system. This is one of the hard chal-
lenges of WG I2.

– Automated trust negotiation (ATN)—adapted to other forms of negotiation—
is one of the main ingredients that we use to make heterogeneous peers effec-
tively interoperate. Therefore we are actively contributing to the advances
in the area of trust management.

– By lightweight knowledge representation and reasoning we do not only refer
to computational complexity; we mean also reducing the effort to specialize
our general frameworks to specific application domains; and we mean that
our tools should be easy to learn and use for common users, with no partic-
ular training in computers or logic. We regard these properties as crucial for
the success of a semantic web framework.

– The last issue cannot be tackled simply by adopting a rule language. We
are working at a controlled natural language syntax for policy rules, to be
translated by a parser into the internal logical format.

– Cooperative policy enforcement : A secure cooperative system should (almost)
never say no. Web applications need to help new users in obtaining the
services that the application provides—potential customers should not be
discouraged. When the prerequisites for accessing a service are not met, the
web application should better explain what is missing and help the user in
obtaining the required permissions.

– As part of cooperative enforcement, advanced explanation mechanisms should
be developed to help users in understanding policy decisions and obtaining
the permission to access the desired service.

In the rest of this paper we expand on the above issues and point out what we
regard as interesting research directions.

2 A broad notion of policy

Policies are pervasive in all web-related contexts. Access control policies are
needed to protect any system open to the internet. Privacy policies are needed
to assist users while they are browsing the web and interacting with web services.
Business rules (that in the view of WG I2 are just another kind of policy) specify
which conditions apply to each customer of a web service. Other policies specify

ISWC2005 Semantic Web and Policy Workshop 7 November 2005

 22

constraints related to Quality of Service (QoS). In E-government applications,
visas and other documents are released according to specific eligibility policies. Of
course this list is not exhaustive, and is limited only by the class of applications
that can be deployed in the world wide web.

Note that most of these policies make their decisions based on similar pieces
of information—essentially, properties of the peers involved in the transaction.
For example, age, nationality, customer profile, identity, and reputation may all
be considered both in access control decisions, and in determining which dis-
counts are applicable (as well as other eligibility criteria). Then it is appealing
to integrate these kinds of policies into a coherent framework, so that (i) a com-
mon infrastructure can be used to support interoperability and decision making,
and (ii) the policies themselves can be harmonized and synchronized.

In the general perspective depicted above, policies may also establish that
some events must be logged (audit policies), that user profiles must be updated,
and that when a transaction fails, the user should be told how to obtain missing
permissions. In other words, policies may specify actions whose execution may
be interleaved with the decision process. Such policies are called provisional
policies.

Then, in our view, policies act both as decision support systems and as declar-
ative behavior specifications. An effectively user-friendly approach to policy spec-
ification would give common users (with no training in computer science or logic)
a better control on the behavior of their own system (see the discussion in Sec-
tion 5).

Of course, the extent to which this goal can be actually achieved depends
on the policy’s ability of interoperating with legacy software and data—or more
generally, with the rest of the system. Then a policy specification language should
support suitable primitives for interacting with external packages and data in a
flexible way.

The main challenges raised by the above discussion are the following:

– Harmonizing security and privacy policies with business rules, provisional
policies, and other kinds of policy is difficult because their standard formal-
izations are based on different derivation strategies, and even different rea-
soning mechanisms, sometimes (cf. Section 4.3). Deduction, abduction, and
event-condition-action rule semantics need to be integrated into a coherent
framework, trying to minimize subtleties and technical intricacies (otherwise
the framework would not be widely accessible to common users).

– The interactions between a rule-based theory and “external” software and
data has been extensively investigated in the framework of logic-based medi-
ation and logic-based agent programming [11, 10]. However, there are novel
issues related to implementing high-level policy rules with low-level mech-
anisms such as firewalls, web server and DBMS security mechanisms, op-
erating system features etc., that are typically faster and more difficult to
bypass than rule interpreters [8]. A convincing realization of this approach
might boost the application of the rich and flexible languages developed by
the security community.

ISWC2005 Semantic Web and Policy Workshop 7 November 2005

 23

3 Strong and lightweight evidence

There exist currently two different major approaches for managing trust: policy-
based and reputation-based trust management. The two approaches have been
developed within the context of different environments and targeting different
requirements. On the one hand, policy-based trust relies on objective “strong se-
curity” mechanisms such as signed certificates and trusted certification authori-
ties (CA hereafter) in order to regulate the access of users to services. Moreover,
the access decision is usually based on mechanisms with well defined semantics
(e.g., logic programming) providing strong verification and analysis support. The
result of such a policy-based trust management approach usually consists of a
binary decision according to which the requester is trusted or not, and thus the
service (or resource) is allowed or denied. On the other hand, reputation-based
trust relies on a “soft computational” approach to the problem of trust. In this
case, trust is typically computed from local experiences together with the feed-
back given by other entities in the network. For instance, in eBay buyers and
sellers rate each other after each transaction. The ratings pertaining to a certain
seller (or buyer) are aggregated by the eBay’s reputation system into a number
reflecting seller (or buyer) trustworthiness as seen by the eBay community. The
reputation-based approach has been favored for environments, such as Peer-to-
Peer or Semantic Web, where the existence of certifying authorities could not
be always assumed but where a large pool of individual user ratings is often
available.

Yet another approach—very common in today’s applications—is based on
forcing users to commit to contracts or copyrights by having users click an “ac-
cept” button on a pop-up window. This is perhaps the lightest approach to
trust, that can be generalized by having users utter declarations (on their e-mail
address, on their preferences, etc.) e.g. by filling an HTML form.

Real life scenarios often require to make decisions based on a combination
of the above approaches. Transaction policies must handle expenses of all mag-
nitudes, from micropayments (e.g. a few cents for a song downloaded to your
iPod) to credit card payments of a thousand euros (e.g. for a plane ticket) or
even more. The cost of the traded goods or services typically contributes to de-
termining the risk associated to the transaction and hence the trust needed for
performing it.

Strong evidence is generally harder to gather and verify than lightweight
evidence. Sometimes, a “soft” reputation measure or a declaration (in the sense
outlined above) is all one can obtain in a given scenario. We strongly believe that
the success of a trust management framework can be determined by the ability
of balancing trust levels and risk levels for each particular task supported by
the application. So we add the following items to the list of interesting research
directions:

– How should the different forms of trust be integrated? A first proposal can
be found in these proceedings (see the paper by Bonatti, Duma, Nejdl,
Olmedilla, and Shahmehri). However, new reputation models keep on be-
ing introduced, and there is a large number of open research issues in the

ISWC2005 Semantic Web and Policy Workshop 7 November 2005

 24

reputation area (e.g., vulnerability to coalitions). Today, it is not clear which
of the current approaches will be successful and how the open problems will
be solved (this is why our current proposal aims at maximal modularity in
the integration of numerical and logical trust).

– How many different forms of evidence can be conceived? In principle, prop-
erties of (and statements about) an individual can be extracted from any—
possibly unstructured—web resource. Supporting such a variety of informa-
tion in policy decisions is a typical semantic web issue—and an intriguing
one. However, such general policies are not even vaguely as close to become
real as the policies based on more “traditional” forms of evidence (see the
discussion in the next section).

4 Trust management

4.1 Some history

During the past few years, some of the most innovative ideas on security policies
arose in the area of automated trust negotiation [1, 2, 5, 6, 12–15]. That branch of
research envisaged peers that automatically negotiate credentials according to
their own declarative, rule-based policies. Rules specify for each resource or cre-
dential request which properties should be satisfied by the subjects and objects
involved. Then, at each negotiation step, the next credential request is formu-
lated essentially by reasoning with the policy, e.g. by inferring implications or
computing abductions.

Since year 2000 there exist frameworks where credential requests are formu-
lated by exchanging sets of rules [2, 5]. Requests were formulated intensionally
in order to express compactly and simultaneously all the possible ways in which
a resource can be accessed—thereby shortening negotiations and improving pri-
vacy protection (because peers can choose the best option from the point of view
of sensitivity). Intuitively, it is not appealing to request “an ID and a credit card”
by enumerating all possible pairs of ID credentials and credit card credentials;
it seems much better to define what IDs and credit cards are and send the def-
inition itself. Another peer may use it to check whether some subset of its own
credentials fulfills the request. This boils down to gathering the relevant concept
definitions in the policy (so-called abbreviation rules) and sending them to the
other peer that reasons with those rules locally.

In other words, in [2, 5] peers communicate by sharing their ontologies. Inter-
estingly, typical policies require peers to have a common a priori understanding
only of the predicate representing credentials and arithmetic predicates, because
any other predicate can be understood simply by sharing its definition. There-
fore, the only nontrivial knowledge to be shared is the X.509 standard credential
format. In this framework, interoperability based on ontology sharing is already
at reach! This is one of the aspects that make policies and automated trust
negotiation a most attractive application for semantic web ideas.

Another interesting proposal of [5] is the notion of declaration, that has al-
ready been discussed in Section 3. This was the first step towards a more flexible

ISWC2005 Semantic Web and Policy Workshop 7 November 2005

 25

and lightweight approach to policy enforcement, aiming at a better tradeoff be-
tween protection efforts and risks.

This framework was chosen as the starting point for the work of WG I2,
because according to [9] it was still one of the most complete trust negotiation
systems in 2002. The major limitation was the lack of distributed negotiations
and credential discovery, which are now supported as specified in [3, 2]. As we
already pointed out, a first approach at integrating crisp and soft notions of trust
is described in [3] and in these proceedings.

4.2 Negotiations

In response to a resource request, a web server may ask for some credentials,
proving that the client can access the resource. However, the credentials them-
selves are sensitive resources, in general. So the two peers are in a completely
symmetrical situation: the client, in turn, may ask the server for credentials
(say, proving that it participates into the Better Business Bureau program) be-
fore sending off the required credentials. Each peer decides how to react to
incoming requests according to a local policy, which is typically a set of rules
written in some logic programming dialect. As we already pointed out, requests
are formulated by selecting some rules from the policies.

This basic schema has been refined along the years taking several factors into
account [1, 2, 5, 6, 12–15].

First, policy rules may possibly inspect a local state (such as a legacy database)
that typically is not accessible by the other peers. In that case, in order to make
rules intelligible to the recepient, they are first partially evaluated w.r.t the cur-
rent state.

Second, policies themselves are sensitive resources, therefore not all relevant
rules are shown immediately to the peer. They are first filtered according to
policy release rules; the same schema may be applied to policy release rules
themselves for an arbitrary but finite numer of levels.

As a consequence, some negotiations that might succeed, in fact fail just
because the peers do not tell each other what they want. The study of method-
ologies and properties that guarantee negotiation success (when appropriate) is
an interesting open research issue.

Moreover, credentials are not necessarily on the peer’s host. It may be nec-
essary to locate them on the network [7]. As part of the automated support to
cooperative enforcement, peers may give each other hints on where a credential
can be found [16].

There are further complications related to actions (cf. Section 4.3). In order to
tune the negotiation strategy to handle all these aspects optimally, Protune—
the core policy language of REWERSE—supports a metapolicy language [3, 2]
that specifies which predicates are sensitive, which are associated to actions,
which peer is responsible for each action, where credentials can be searched for,
etc., thereby guiding negotiation in a declarative fashion and making it more
cooperative and interoperable. Moreover, the metapolicy language can be used

ISWC2005 Semantic Web and Policy Workshop 7 November 2005

 26

to instantiate the framework in different application domains and link predicates
to the ontologies where they are defined.

4.3 Provisional policies

Policies may state that certain requests or decisions have to be logged, that the
system itself should search for certain credentials, etc. In other words, policy
languages should be able to specify actions. Event-condition-action (ECA) rules
constitute one possible approach. Another approach, supported by the current
core policy language of REWERSE, consists in labelling some predicates as pro-
visional, and associating them to actions that (if successful) make the predicate
true [3, 2]. It may also be specified that an action should be executed by some
other peer; this results in a request.

A cooperative peer tries to execute the actions under its responsibility when-
ever this helps in making negotiations succeed. For example, provisional predi-
cates may be used to encode business rules. The next rule (formulated in Pro-

tune’s language) enables discounts on low selling articles in a specific session:

allow(Srv)← . . . , session(ID),

in(X , sql:query(′select ∗ from low selling
′),

enabled(discount(X), ID) .

Intuitively, if enabled(discount(X), ID) is not yet true but the other conditions
are verified, then the negotiator may execute the action associated to enabled

and the rule becomes applicable (if enabled(discount(X), ID) is already true,
no action is executed). The (application dependent) action can be defined and
associated to enabled through the metapolicy language of Protune. With the
metalanguage one can also specify when an action is to be executed.

Some actions would be more naturally expressed as ECA rules. However,
it is not obvious how the natural bottom-up evaluation schema of ECA rules
should be integrated with the top-down evaluation adopted by the current core
language. The latter fits more naturally the abductive nature of negotiation
steps. The integration of ECA rules in the core policy language is one of the
open issues in REWERSE’s agenda.

4.4 Stateful vs. stateless negotiations

The negotiations described above are in general stateful, because (i) they may
refer to a local state—including legacy software and data—and (ii) the sequence
of requests and counter requests may become more efficient if credentials and
declarations are not submitted again and again, but are rather kept in a local
negotiation state.

However, negotiations are not necessarily stateful:

– the server may refuse to answer counter-requests, or—alternatively—the cre-
dentials and declarations disclosed during the transaction may be included
in every message and need not be cached locally;

ISWC2005 Semantic Web and Policy Workshop 7 November 2005

 27

– the policy does not necessarily refer to external packages.

In other words, stateless protocols are just special cases of the frameworks in-
troduced so far. Whether a stateless protocol is really more efficient depends on
the application. Moreover, efficiency at all costs might imply less cooperative
systems.

The question is: are stateful protocols related to scalability issues? We do not
think so. The web started as a stateless protocol, but soon a number of tech-
niques have been implemented to simulate stateful protocols and transactions in
a number of real world applications and systems, capable of answering a huge
number of requests per time unit. We must observe that if the support for state-
ful negotiations had been cast into http, then probably many of the intrinsic
vulnerabilities of simulated solutions (like cookies) might have been avoided.

So we think that policy languages and frameworks for the web should support
both stateful and stateless protocols to face the variety of different needs of web
applications.

4.5 What’s new?

The existing approaches to trust management and trust negotiation already
tackle the need for flexible, knowledge based interoperability, and take into ac-
count the main idiosyncrasies of the web—because ATN frameworks have been
designed with exactly that scenario in mind. Today, to make a real contribution
(even in the context of a policy-aware web), one should work on the open issues
of trust management, that include at least the following topics:

– Negotiation success: how can we guarantee that negotiations succeed de-
spite all the difficulties that may interfere? For example: rules not disclosed
because of lack of trust; credentials not found because their repository is
unknown. What kind of properties of the policy protection policy and of the
hints (see Section 4.2) guarantee a successful termination when the policy
“theoretically” permits access to a resource?

– Optimal negotiations: which strategies optimize information disclosure dur-
ing negotiation? Do any reasonable preconditions prevent unnecessary infor-
mation disclosure?

– A related problem is: In the presence of multiple ways of fulfilling a request,
how should the client choose a response? One needs both a language for
expressing preferences, and efficient algorithms for solving the corresponding
optimization problem. While this negotiation step is more or less explicitly
assumed by most works on trust negotiation, there is no concrete proposal
so far.

Moreover, the integration of abductive semantics and ECA semantics is an open
issue, as we have pointed out in a previous section. Of course this list is not
exhaustive.

ISWC2005 Semantic Web and Policy Workshop 7 November 2005

 28

5 Cooperative policy enforcement

Cooperative enforcement involves both machine-to-machine and human-machine
aspects. The former is handled by negotiation mechanisms: published policies,
provisional actions, hints, and other metalevel information (see Section 4.2) can
be interpreted by the client to identify automatically what information is needed
to access a resource, and how to obtain that information. The human-machine
interaction aspect deserves some discussion.

One of the causes of the enormous number of computer security violations
on the Internet is the users’ lack of technical expertise. In particular, users are
typically not aware of the security policies applied by their system, not to speak
about how those policies can be changed and how they might be improved by
tailoring them to specific needs. As a consequence, most users ignore their com-
puter’s vulnerabilities and the corresponding countermeasures, so the system’s
protection facilities cannot be effectively exploited.

For example, it is well known that the default, generic policies that come
with system installations—biased toward functionality rather than protection—
are significantly less secure than a policy specialized to a specific context, but
very few users know how to tune or replace the default policy. Moreover, users
frequently do not understand what the policy is really checking up on, and hence
they are unaware of the risks involved in many common operations.

Similar problems affect privacy protection. In trust negotiation, credential
release policies are meant to achieve a satisfactory tradeoff between privacy and
functionality (many interesting services cannot be obtained without releasing
some information about the user). However, one cannot expect such techniques
to be effective unless users are able to understand and possibly personalize the
privacy policy enforced by their system.

Additionally, a better understanding of a web service’s policy makes it eas-
ier for a first-time user to interact with the service. If a denied access results
simply in a “no”, then the user has no clue on how he or she can possibly ac-
quire the permission to get the desired service (e.g., by completing a registration
procedure, by supplying more credentials, by filling in some form, etc.) This is
why we are advocating a form of cooperative policy enforcement, where negative
responses are enriched with suggestions and other explanations whenever such
information does not violate confidentiality (sometimes, part of the policy itself
is sensitive).

For these reasons, WG I2 selected as one of its main objectives greater user
awareness and control on policies. We are making policies easier to understand
and formulate to the common user in the following ways:

– We adopt a rule-based policy specification language, because such languages
are very flexible and at the same time structurally similar to the natural way
in which policies are expressed by nontechnical users.

– We are making the policy specification language more friendly by developing
a controlled natural language front-end to translate natural language text
into executable rules (see next section).

ISWC2005 Semantic Web and Policy Workshop 7 November 2005

 29

– We are developing advanced explanation mechanisms to help the user un-
derstand what policies prescribe and control.

We have just published a deliverable on such explanation mechanisms [4]. It
contains a requirements analysis for explanations in the context of automated
trust negotiation (ATN). Moreover, we define explanation mechanisms for why,
why-not, how-to, and what-if queries. There are several novel aspects in our
approach:

– We adopt a tabled explanation structure as opposed to more traditional ap-
proaches based on single derivations or proof trees. The tabled approach
makes it possible to describe infinite failures (which is essential for why not
queries).

– Our explanations show simultaneously different possible proof attempts and
allow users to see both local and global proof details at the same time. Such
combination of local and global (intra-proof and inter-proof) information is
expected to facilitate navigation across the explanation structures.

– We introduce suitable heuristics for focussing explanations by removing ir-
relevant parts of the proof attempts. Anyway, we provide a second level of
explanations where all the missing details can be recovered, if desired.

– Our heuristics are generic, i.e. domain independent. This means that they
require no manual configuration.

– The combination of tabling techniques and heuristics yields a completely
novel method for explaining failure. In the past, the problem has been ignored
or formulated differently.

Moreover, we make our explanation mechanisms lightweight and scalable in
the sense that (i) they do not require any major effort when the general frame-
work is instantiated in a specific application domain, and (ii) most of the com-
putational effort can be delegated to the clients.

Queries are answered using the same policy specifications used for negotia-
tion. Query answering is conceived for the following categories of users:

– Users who are trying to understand how to obtain access permissions;
– Users who are monitoring and verifying their own privacy policy;
– Policy managers who are verifying and monitoring their policies.

Currently, advanced queries comprise why/why not, how-to, and what-if queries.
Why/why not queries can be used by security managers to understand why

some specific request has been accepted or rejected, which may be useful for
debugging purposes. Moreover, why-not queries may help a user to understand
what needs to be done in order to obtain the required permissions (a process
that in general may include a combination of automated and manual actions).
Such features are absolutely essential to enforce security requirements without
discouraging users that try to connect to a web service for the first time. How-to
queries have a similar role, and differ from why-not queries mainly because the
former do not assume a previous query as a context, while the latter do.

ISWC2005 Semantic Web and Policy Workshop 7 November 2005

 30

What-if queries are hypothetical queries that allow to predict the behavior
of a policy before credentials are actually searched for and before a request is
actually submitted. What-if queries are good both for validation purposes and
for helping users in obtaining permissions.

Among the technical challanges related to explanations, we mention:

– Finding the right tradeoff between explanation quality and the effort for
instantiating the framework in new application domains. Second order ex-
planation systems prescribe a sequence of expensive steps, including the
creation of an independent domain knowledge base expressly for communi-
cating with the user. This would be a serious obstacle to the applicability of
the framework.

5.1 Natural language policies

Policies should be written by and understandable to the final users, to let them
keep the behavior of their system under control. Otherwise the risk that users
keep on adopting generic (hence ineffective) built-in policies, and remain unaware
of which controls are actually made by the system would be extremely high—and
this would significantly reduce the benefits of a flexible policy framework.

Of course, most users have no specific training in programming nor in formal
logics. Fortunately, they spontaneously tend to formulate policies as rules; still,
logical languages may be intimidating.

For this reason, we are designing front-ends based on graphical formalisms as
well as natural language interfaces. We would like policy rules to be formulated
like: “Academic users can download the files in folder historical data whenever
their creation date precedes 1942”.

Clearly, the inherent ambiguity of natural language is incompatible with the
precision needed by security and privacy specifications. For this reason we adopt
a controlled fragment of English where a few simple rules determine a unique
meaning for each sentence. This approach is complemented with a suitable in-
terface that clarifies what the machine understands.

Some working group members have long standing expertise in controlled nat-
ural language, and a natural language front-end based on the Attempto system
(http://www.ifi.unizh.ch/attempto/) is being progressively adapted to the
need of policy languages, including negation as failure and deontic constructs.

6 Conclusions and perspectives

In our vision policies are really knowledge bases: a single body of declarative
rules used in many possible ways, e.g., for negotiations, query answering, and
other forms of system behavior control.

As far as trust negotiation is concerned, transparent interoperation based
on ontology sharing can potentially become “everyday technology” in a short
time (cf. Section 4.1). As such, trust negotiation may become a success story for
semantic web ideas and techniques.

ISWC2005 Semantic Web and Policy Workshop 7 November 2005

 31

We are currently implementing the features described in this paper by extend-
ing the PeerTrust automated negotiation system (http://www.learninglab.
de/english/projects/peertrust.html) and the parser of the Attempto sys-
tem. Our current prototypes support real credential verification and real dis-
tributed computations, as well as the grammar structure and the anaphora
mechanism underlying the sample natural language rule illustrated above.

Recently, the Semantic Web community declared interest in a notion of pol-
icy very similar to REWERSE’s approach (see the paper co-authored by Hendler
and Berners-Lee in these proceedings). While the examples outlined there are
just special cases of what can be done in the old framework introduced in [5],
there is evidence of interest in more advanced and powerful developments, in
line with the curret goals of the research in ATN. There seems to be an empha-
sis on stateless interactions (i.e. degenerate negotiations consisting of one step
only) defended by scalability arguments. However, we do not believe in such a
priori restrictions. After all, the web started as a stateless protocol, but soon a
number of techniques have been implemented to simulate stateful protocols and
transactions in a number of real world applications.

We insist on the importance of cooperative policy enforcement and trust man-
agement, that give common users better understanding and control on the poli-
cies that govern their systems and the services they interact with. The closer we
get to this objective, the higher the impact of our techniques and ideas will be.

References

1. M. Blaze, J. Feigenbaum, and M. Strauss. Compliance Checking in the Policy-
Maker Trust Management System. In Financial Cryptography, British West Indies,
February 1998.

2. P.A. Bonatti and D. Olmedilla. Driving and monitoring provisional trust negoti-
ation with metapolicies. In IEEE 6th Intl. Workshop on Policies for Distributed
Systems and Networks (POLICY 2005), pages 14–23. IEEE Computer Soc., 2005.

3. P.A. Bonatti and D. Olmedilla. Policy specification language. Technical Report
I2-D2, REWERSE, Feb 2005. http://www.rewerse.net.

4. P.A. Bonatti, D. Olmedilla, and J. Peer. Advanced policy queries. Technical Report
I2-D4, REWERSE, Aug 2005. http://www.rewerse.net.

5. P.A. Bonatti and P. Samarati. A uniform framework for regulating service access
and information release on the web. Journal of Computer Security, 10(3):241–272,
2002. Short version in the Proc. of the Conference on Computer and Communica-
tions Security (CCS’00), Athens, 2000.

6. Rita Gavriloaie, Wolfgang Nejdl, Daniel Olmedilla, Kent E. Seamons, and Mari-
anne Winslett. No registration needed: How to use declarative policies and negoti-
ation to access sensitive resources on the semantic web. In 1st European Semantic
Web Symposium (ESWS 2004), volume 3053 of Lecture Notes in Computer Science,
pages 342–356, Heraklion, Crete, Greece, may 2004. Springer.

7. N. Li, W. Winsborough, and J.C. Mitchell. Distributed Credential Chain Discovery
in Trust Management (Extended Abstract). In ACM Conference on Computer and
Communications Security, Philadelphia, Pennsylvania, November 2001.

ISWC2005 Semantic Web and Policy Workshop 7 November 2005

 32

8. Arnon Rosenthal and Marianne Winslett. Security of shared data in large systems:
State of the art and research directions. In Proceedings of the ACM SIGMOD In-
ternational Conference on Management of Data, Paris, France, June 13-18, 2004,
pages 962–964. ACM, 2004.

9. K. Seamons, M. Winslett, T. Yu, B. Smith, E. Child, J. Jacobsen, H. Mills, and
L. Yu. Requirements for Policy Languages for Trust Negotiation. In 3rd Interna-
tional Workshop on Policies for Distributed Systems and Networks, Monterey, CA,
June 2002.

10. V. S. Subrahmanian, Piero A. Bonatti, Jürgen Dix, Thomas Eiter, Sarit Kraus,
Fatma Ozcan, and Robert Ross. Heterogenous Active Agents. MIT Press, 2000.

11. V.S. Subrahmanian, S. Adali, A. Brink, R. Emery, J.J. Lu, A. Rajput, T.J. Rogers,
R. Ross, and C. Ward. Hermes: Heterogeneous reasoning and mediator system.
http://www.cs.umd.edu/projects/publications/ abstracts/hermes. html.

12. W. Winsborough, K. Seamons, and V. Jones. Negotiating Disclosure of Sensi-
tive Credentials. In Second Conference on Security in Communication Networks,
Amalfi, Italy, September 1999.

13. W. Winsborough, K. Seamons, and V. Jones. Automated Trust Negotiation. In
DARPA Information Survivability Conference and Exposition, Hilton Head Island,
SC, January 2000.

14. Marianne Winslett, Ting Yu, Kent E. Seamons, Adam Hess, Jared Jacobson, Ryan
Jarvis, Bryan Smith, and Lina Yu. Negotiating trust on the web. IEEE Internet
Computing, 6(6):30–37, 2002.

15. Ting Yu, Marianne Winslett, and Kent E. Seamons. Supporting structured cre-
dentials and sensitive policies through interoperable strategies for automated trust
negotiation. ACM Trans. Inf. Syst. Secur., 6(1):1–42, 2003.

16. C. Zhang, P.A. Bonatti, and M. Winslett. Peeraccess: A logic for distributed
authorization. In 12th ACM Conference on Computer and Communication Security
(CCS 2005). ACM. To appear.

ISWC2005 Semantic Web and Policy Workshop 7 November 2005

 33

Design and Application of Rule Based Access Control
Policies

Huiying Li, Xiang Zhang, Honghan Wu, Yuzhong Qu

Department of Computer Science and Engineering, Southeast University,
Nanjing 210096, P.R.China

{huiyingli, xzhang, hhwu, yzqu} @seu.edu.cn

Abstract. Access control is an important issue among the security problems of
resources in distributed systems. In order to enable entities in distributed systems to
understand and interpret policies correctly, common concern is drawn to the
problem of expressing access control policies with semantic information. In this
paper, we introduce how to express access control policies based on OWL and
SWRL. It includes a definition of OWL ontology to describe the terms and a
declaration of SWRL rules to explicit the relationship between properties. Finally
some use cases are given to explain how to express policies in form of rule using the
terms defined beforehand.

1 Introduction

The dissemination and manipulation of information resources across large-scale networks
of computers is increasingly prevalent. As a result, common concern is drawn to the
security of resources in distributed systems, which deals with many aspects, such as
identification and authentication of users, encryption of resources and access control
issue. Instead of dealing with all the aspects, this paper introduces how to design rule-
based access control policies using semantic language-OWL (Web Ontology
Language)[10] and rule language-SWRL (Semantic Web Rule Language)[3].

Policy language has been studied for a long time, there are also some languages can
express access control policy, such as XACML (eXtensible Access Control Markup
Language)[12], X-RBAC (XML Role-Based Access Control)[6], KAoS(Knowledge-able
Agent-oriented System)[5], Rei[8] and Ponder[9]. Among them, XACML is an OASIS
standard specification now. It defines a general policy language based on XML used to
protect resources as well as an access decision language. X-RBAC is based on an
extension of the role-based access control model, it provides a framework for specifying
mediation policies in a multidomain environment and allows specification of RBAC
policies and facilitates specification of timing constraints on roles and access requirements
as well [6]. Both XACML and X-RBAC are based on XML, and they have had broad

ISWC2005 Semantic Web and Policy Workshop 7 November 2005

 34

applications in some enterprise environments. However it is difficult for them to deal with
the inter-operation at the level of semantics, because the entities and relationships defined
by XML are lack of formal meaning. In order to enable entities in distributed systems to
understand and interpret polices correctly, it will be better to represent policy language in
semantic language such as RDF-S, DAML+OIL or OWL[7]. KAoS and Rei both have
accomplished some work in this regard. Providing an open distributed architecture for
software agents is the initial purpose to develop KAoS[5], it could also express the agents
action control policy relying on the DAML-based ontology in Web/Grid Service
environment. Represented in OWL-Lite, Rei is a policy language based on deontic
concepts and includes constructs for rights, prohibitions, obligations and dispensations
[8]. Another policy language is Ponder, which is a declarative, object-oriented language
that can be used to specify both security and management policies [9]. Different from the
policy languages discussed above, we design the access control policies based on OWL
and SWRL in the form of rules using entities defined in advance.

As mentioned above, policy language expressed in ontology language has the
advantage of dealing with inter-operation at semantics level. We define ontology to help
express access control policies using OWL, which added considerable expressive ability.
But OWL still has the expressive limitations, particularly with respect to what can be said
about properties [1]. For enhancing the expressive and deducible ability, we also define
some rules to explain the relationship between properties using SWRL, a Horn clause
rules extension to OWL.

The paper is structured as follows: a brief introduction to SWRL is given in Section 2.
Following this, the ontology and rules designed by us are presented in Section 3. In
Section 4, we talk about the advantage of our method to express policy using some use
cases. Finally, the summary of our work and future research directions are discussed in
Section 5.

2 Semantic Web Rule Language

SWRL is a Horn clause rules extension to OWL proposed as a W3C member submission
in 2004. It extends OWL DL by adding a simple form of Horn-style rules in a
syntactically and semantically coherent manner for the purpose of enhancing expressive
ability.

The main axiom added to OWL DL is Horn clause rules, which are of the form of an
implication between an antecedent (body) and consequent (head). The informal meaning
of a rule can be read as: whenever (and however) the conditions specified in the
antecedent hold, then the conditions specified in the consequent must also hold.

A rule written in an informal human readable syntax has the form below:
antecedent → consequent.

Both the antecedent and consequent of a rule consist of zero or more atoms. Atoms can be
of the form C(x), P(x, y), Q(x, z), sameAs(x, y) or differentFrom(x, y), where C is an

ISWC2005 Semantic Web and Policy Workshop 7 November 2005

 35

OWL DL description which may be a class name or a complex description using Boolean
combination, restrictions etc. P is an OWL DL individual-valued Property, Q is an OWL
DL data-valued Property, and x, y are either variables or OWL individuals, z is either a
variable or an OWL data value. Informally, an atom C(x) holds if x is an instance of the
class description C, an atom P(x, y) (or Q(x, z)) holds if x is related to y(z) by property
P(Q), an atom sameAs(x, y) holds if x is interpreted as the same object as y, and an atom
differentFrom(x, y) holds if x and y are interpreted as different objects.

Having the rules discussed above, it will be easy to assert more complex relationships
between properties, such as the composition of two properties. A typical example is
showed as follows:

parent(?a, ?b) ∧ brother(?b, ?c) → uncle(?a, ?c).
Hereinto, variables are indicated using the standard convention of prefixing them with a
question mark, parent and brother are both OWL properties. Then the rule above asserts
that the composition of parent and brother properties implies the uncle property. In other
words, if John has Mary as a parent and Mary has Bill as a brother, then this rule requires
that John has Bill as an uncle.

Using SWRL, we define some rules similar with the one presented above to express
relationships between the properties in our OWL ontology. It makes the meaning of the
property more clear. We also allow users to assert their own access control policies in the
form of rules using entities defined in our ontology.

3 Design of Rule Based Access Control Policies

In overview, we design access control policies in the form of rules using entities defined
in our OWL ontology. The ontology includes concepts about agent and resource and
properties between them such as isPermittedDoWith and isProhibittedDoWith. We also
express some rules using SWRL to describe the relationships between the properties
defined in the ontology. Currently, our application domain is the project of WonderSpace,
which is a Semantic Web application developed by our Lab (http://xobjects.seu.edu.cn/).
Its potential users are researcher groups. The project aims at speeding up their research
and study, and bringing high efficiency in collaborations by providing an environment for
resource and knowledge sharing.

3.1 The ontology

The purpose of designing our ontology is to help users express their access control
policies in WonderSpace, the core classes and properties are defined as Fig. 1.

ISWC2005 Semantic Web and Policy Workshop 7 November 2005

 36

Fig. 1. Graph model of the core classes

Using this model, user can assert that what kinds of agents are permitted/prohibited to
access to what kinds of resources. The access control policy is associated with the
properties of the agent instead of identities. For example, a research group leader
published a resource and specified the access control policy like this: only PhD students in
my group are permitted to download this resource. Such policy can be expressed in the
form of rules using classes and properties defined in our ontology. For the reason of
providing more properties for user to describe agent and resource, we design the Agent
class and Resource class showed in Fig. 2 and Fig.3. We also specify many subproperties
of isPermittedDoWith and isProhibittedDoWith to express more actions that
can/cannot take to the resource, such as isPermittedPublishWith,
isPermittedDeleteWith, isPermittedDownloadWith, isPermittedReadWith,
isPermittedUpdateWith, which are all the subproperties of isPermittedDoWith, while
isProhibittedPublishWith, isProhibittedDeleteWith, isProhibittedDownloadWith,
isProhibittedReadWith, isProhibittedUpdateWith are all subproperties of
isProhibittedDoWith.

Fig. 2. Agent ontology

Fig. 2 shows the main properties and subclasses of Agent class, the entities are
borrowed from the ontology of Friend of a Friend (FOAF) project. FOAF project is about
creating a Web of machine-readable homepages describing people, the links between
them and the things they create and do (http://www.foaf-project.org/). FOAF has already
done a good work about developing ontology about Agent, so we use the basic classes and

ISWC2005 Semantic Web and Policy Workshop 7 November 2005

 37

properties in the FOAF ontology for reference. For the purpose of expressing domain
information about agent, we also extend the ontology by adding some properties, some of
them are DatatypeProperty such as grade, technicalTitle, some are ObjectProperty to
describe the relationship between peoples such as studentOf, sameGroupOf,
colleagueOf, schoolmateOf. We define these four objectproperties as the subproperty of
knows, and some of them had subproperties likewise, for example, the phdStudentOf,
masterStudentOf, collegeStudentOf are the subproperty of studentOf.

The resource ontology showed in Fig. 3 is the one used in the WonderSpace now. It
denotes the classification of resources and figures out some attributes of resources.

Fig. 3. Resource ontology

Currently, the ontology discussed above is relatively rough, and some entities defined
in it are domain dependent. One of our future researches is to define a more general and
domain independent ontology.

3.2 The rules

Besides the ontology, we give more explicit meaning to the properties by defining some
rules, such as:

member(?z, ?x) ∧ member(?z, ?y) ∧ Person(?x) ∧ Person(?y) → sameGroupOf(?x, ?y).
It means that if ?x and ?y are persons and group ?z has the member ?x and ?y, then ?x
and ?y have the relationship of sameGroupOf. In fact, this rule gives a more clear
meaning to sameGroupOf property. And a group may declare all its members, it can be
deduced that any two of these members has the relationship of sameGroupOf then.

Another rule different from the one above looks like this:
phdSchoolmateOf(?x, ?y) ∧ phdStudentOf(?y, ?z) → phdStudentOf(?x, ?z).

That is to say, if ?y is a PhD student of ?z, and ?x and ?y have the relationship of
phdSchoolmateOf (note: the meaning of this property in the context is that they are both
PhD students of one superviser), we can deduce that ?x is also a PhD student of ?z. It

ISWC2005 Semantic Web and Policy Workshop 7 November 2005

 38

means that although there do not have the explicit declaration to denote ?x is a PhD
student of ?z, it can be reasoned using the exiting information and the rules.

By adding such rules, the expressive ability and reasoning ability are both enhanced
commendably.

4 Case Study

Now, the application domain of policy language is WonderSpace, a Semantic Web
application developed by our Lab. The basic scenario in WonderSpace is that user can
upload the resources s/he wants to share with others to the server and specify access
control policy about the resources using entities defined in our ontology. Whenever a user
requests to access to one resource, the server will decide to accept or reject the request by
using the policy and FOAF information of the users stored in server.

Here, we propose some use cases to denote how to express access control policies.
Example 1. Jack published a paper and asserted that the members of WonderSpace

group could read this paper, while the members of DrSNP group could download it.
member(wonderspace, ?x) → isPermittedReadWith(?x, paper1),
member(drsnp, ?y) → isPermittedDownloadWith(?y, paper1).

Example 2. Colin published a presentation and asserted the access control policy like
this: only my PhD students in the same group with me will be allowed to download this
presentation. This policy can be expressed as follows:

sameGroupOf(?x, colin) ∧ phdStudentOf(?x, colin) → isPermittedDownloadWith(?x,
presentation1).

Example 3. One of the system policies may be announced like this: only the students of
a professor can publish a book. Though it looks a little unreasonable (in some cases it will
be useful), it may be represented as follows:

technicalTitle(?z, “professor”) ∧ studentOf(?x, ?z) ∧ Book(?y)→
isPermittedPublishWith(?x, ?y).

As phdStudentOf is the subproperty of studentOf, considering this rule, it can be
deduced that a PhD student of a professor can also publish book.

Example 4. A student Mary uploaded a note and denoted that: my teachers and their
colleagues were prohibited to read this note,

studentOf(Mary, ?x) ∧ colleagueOf(?x, ?z) → isProhibittedReadWith(?x, note1) ∧
isProhibittedReadWith(?z, note1).

Our policy engine is under development, it is undoubtedly a hard work because of the
complex reason over policies, but it is also proved an interesting work. For simplifying
the problem, we suppose that both resources and related policies and the FOAF
information of users are all creditable and stored in the server. When a user proposes a
request to access (such as download) to one resource, the policy engine will search all
related policy about the resource and verify one by one whether the user satisfy the
conditions specified in the policy by using the FOAF information. Take example 2 as an

ISWC2005 Semantic Web and Policy Workshop 7 November 2005

 39

instance, if Bill requests to download presentation1, this policy will be found and the
engine will look into Bill’s FOAF file and try to find if there have the sameGroupOf and
phdStudentOf properties related to Colin. If succeed, Bill will be allowed to download
presentation1, if not (one may possibly not declare all relationship in his FOAF file), the
engine will look through Colin’s FOAF file and try to deduce the relationships between
Bill and Colin. At the same time, because there has a rule about sameGroupOf defined in
advance, the engine will also investigate whether the group Colin belongs has announced
that both Bill and Colin are all its members. These are only basic ideas about the policy
engine, it still have a lot of work for us to do.

5 Conclusion and Future Work

We have introduced an approach to design access control policies based on OWL and
SWRL. Our work includes the definition of OWL ontology and some policy rules, it help
users to specify who are permitted/prohibited to take what action to what resources. The
most obvious feature of our work different from early work is that we use rules to help
users express their access control policies. We give more formal meaning to the property
defined in OWL ontology and help the engine deduce more information by adding some
rules. And we also allow the users to assert their access control policies in the form of
rule, which is more nature to the users, and they will express the policy more accurately
because of the powerful expressive ability of rules.

As discussed earlier, the policy ontology and rules is still domain dependent in some
ways. One of our future researches is to develop a more general ontology. The reasoning
engine is also an important work under consideration. And we are planning to develop a
full access control policy language and apply it to the no central controlled environment:
it means that the information about users and resources are not controlled centrally in
server, and are incomplete sometimes. It will give more obvious prominence to the
language’s advantage of interoperability at the level of semantics and powerful reasoning
ability. Of course, it will bring other problems too, such as the resolution of policy
confliction, the problem of trust. Our future work will also include how to resolve these
problems.

Acknowledgments

This work is supported in part by National Key Basic Research and Development
Program of China under grant 2003CB317004 and in part by JSNSF under grant
BK2003001. We would like to thank the members of WonderSpace group for their
suggestions on this paper.

References

ISWC2005 Semantic Web and Policy Workshop 7 November 2005

 40

1. I. Horrocks, P. F. Patel-Schneider: A Proposal for an OWL Rules Language. WWW (2004)
ACM

2. I. Horrocks, P. F. Patel-Schneider, and F. Harmelen: From SHIQ and RDF to OWL: The Making
of a Web Ontology Language. Journal of Web Semantics (2003)

3. I. Horrocks, P. F. Patel-Schneider, H. Boley, S. Tabet, B. Grosof, and M. Dean: SWRL: A
semantic web rule language combining owl and ruleml. W3C Member Submission, 21 May
2004. Available at http://www.w3.org/Submission/SWRL/.

4. I. Horrocks, B. Parsia, P. F. Patel-Schneider, and J. Hendler: Semantic Web Architecture: Stack
or Two Towers? PPSWR (2005): Accepted Papers

5. J. M. Bradshaw, S. Dutfield, P. Benoit, and J. D. Woolley:KAoS: Toward An Industrial-Strength
Open Agent Architecture. Software Agents, J.M. Bradshaw (ed.), AAAI Press (1997) 375-418

6. J.B.D Joshi.: Access-control language for multidomain environments. Internet Computing, IEEE
Volume 8, Issue 6, Nov.-Dec(2004) 40 - 50

7. L. Kagal, T. Finin, and A. Joshi: A policy language for a pervasive computing environment. IEEE
4th International Workshop on Policies for Distributed Systems and Networks (2003).
http://citeseer.ist.psu.edu/kagal03policy.html

8. L. Kagal: Rei Ontology Specifications, Ver 2.0. http://www.cs.umbc.edu/~lkagal1/rei/.
9. N. Damianou, N. Dulay, E. Lupu, and M. Sloman: The ponder policy specification language. The

Policy Workshop (2001) , Bristol U.K. Springer-Verlag, LNCS 1995
10. P.F. Patel-Schneider, P. Hayes, I. Horrocks (eds.): OWL: Web Ontology Language Semantics

and Abstract Syntax. W3C Recommendation 10 February 2004. Latest version is available at
http://www.w3.org/TR/owl-semantics/

11. P. Hayes (ed.):RDF Semantics. W3C Recommendation 10 February 2004. Latest version is
available at http://www.w3.org/TR/rdf-mt/

12. T. Moses, Entrust Inc: eXtensible Access Control Markup Language (XACML), Ver 2.0.
http://docs.oasis-open.org/xacml/2.0/access_control-xacml-2.0-core-spec-os.pdf

ISWC2005 Semantic Web and Policy Workshop 7 November 2005

 41

Rule-based and Ontology-based Policies: Toward a
Hybrid Approach to Control Agents in Pervasive

Environments

Alessandra Toninelli1, Jeffrey M. Bradshaw2, Lalana Kagal3, Rebecca Montanari1

1Dipartimento di Elettronica, Informatica e Sistemistica
Università di Bologna

Viale Risorgimento, 2 - 40136 Bologna - Italy
{atoninelli, rmontanari}@deis.unibo.it

2 Florida Institute for Human and Machine Cognition (IHMC)

40 S. Alcaniz Street, Pensacola, FL 32502, USA
jbradshaw@ihmc.us

3MIT CSAIL

32 Vassar Street, Boston, MA, USA
lkagal@csail.mit.edu

Abstract. Policies are being increasingly used for controlling the behavior of
complex multi-agent systems. The use of policies allows administrators to regulate
agent behavior without changing source code or requiring the consent or
cooperation of the agents being governed. However, policy-based control can
sometimes encounter difficulties when applied to agents that act in pervasive
environments characterized by frequent and unpredictable changes. In such cases,
we cannot always specify policies a priori to handle any operative run time
situation, but instead require continuous adjustments to allow agents to behave in a
contextually appropriate manner. To address these issues, some policy approaches
for governing agents in pervasive environments specify policies in a way that is both
context-based and semantically-rich. Two approaches have been used in recent
research: an ontology-based approach that relies heavily on the expressive features
of Description Logic (DL) languages, and a rule-based approach that encodes
policies as Logic Programming (LP) rules. The aim of this paper is to analyze the
emerging directions for the specification of semantically-rich context-based policies,
highlighting their advantages and drawbacks. Based on our analysis we describe a
hybrid approach that exploits the expressive capabilities of both DL and LP
approaches.

ISWC2005 Semantic Web and Policy Workshop 7 November 2005

 42

1. Introduction

The multi-agent paradigm offers a promising software engineering approach for the
development of applications in complex environments [1]. By their ability to operate
autonomously without constant human supervision, agents can perform tasks that would
be impractical or impossible using traditional software techniques [2]. However, this
autonomy, if unchecked, has also the potential of causing severe damage if agents are
poorly designed, buggy, or malicious.

Explicit policies can help in dynamically regulating the behavior of agents and in
maintaining an adequate level of security, predictability, and responsiveness to human
control. Policies provide the dynamic bounds within which an agent is permitted to
function autonomously and limit the possibility of unwanted events occurring during
operations. By changing policies, agent behavior can be continuously adjusted to
accommodate variations in externally imposed constraints and environmental conditions
without modifying the agent code or requiring the cooperation of the agents being
governed [3].

Until recently, policies have been primarily exploited to govern complex distributed
systems within traditional computing environments that rely on a relatively fixed set of
resources, users, and services. However, with the Internet becoming ubiquitous,
researchers started to investigate how to develop adequate policy-based techniques for
controlling agent behavior within pervasive environments [4]. The dynamicity,
unpredictability and heterogeneity of pervasive environments complicate the design of
policy languages and techniques for agent control. Resources are not pre-determined,
interacting agents are not always known a priori and, if agents roam across different
network localities, they have different resource visibility and availability, depending on
their location and on other context-dependent information, such as local security policies
and resource state. In this setting, agents need to be provided with a semantically clear and
interoperable description of the context where they execute and need to acquire, reason
about and negotiate the policies that rule their behavior in each new context, so that they
can decide whether to adhere or not. In addition, policies for controlling agent behavior
cannot always be specified beforehand to handle any operative run-time situation, but may
require a high rate of dynamic and continuous adjustments to allow agents to act in any
execution context in the most suitable way and to accommodate context changes.

To address these issues, some policy approaches for pervasive environments are
starting to emerge that share common design principles [5, 6, 7]. A significant design
concept that guides these approaches is the use of contextual information for driving
policy specifications. Since context is a prime quality of pervasive environments, it should
explicitly appear in policy specifications. In fact, in pervasive scenarios it is almost
impossible to know the identities or roles of all agents that are likely to interact and
request services in advance. Instead of defining identity- or role-based policies,
administrators may more easily define the conditions for making resources available and

ISWC2005 Semantic Web and Policy Workshop 7 November 2005

 43

for allowing or denying agents resource visibility and access, according to the context of
their operating conditions.

Another important design principle is the adoption of a semantically-rich
representations for policy definition. Semantically-rich representations permit both
structure and properties of the elements of a pervasive system and the management
operations themselves (e.g., policies) to be described at a high level of abstraction, thus
enabling policy conflict detection and harmonization.

Recent research efforts in the area of semantically-rich context-based approaches to
policy representation follow one of two possible directions. Ontology-based approaches
rely largely on the expressive features of Description Logic languages, such as OWL [7],
to classify contexts and policies, thus enabling deductive inferences and static policy
conflict resolution to be performed. In contrast, rule-based approaches take the
perspective of Logic Programming to encode rules in a clear, logic-like way. Moreover, a
rule-based approach facilitates the straightforward mapping of policies to lower level
enforcement mechanisms thanks to its concise and understandable syntax.

The scope of this paper is to analyze the emerging directions for the specification of
semantically-rich context-based policies, highlighting their advantages and drawbacks.
Based on our analysis we describe a hybrid approach that exploits the expressive
capabilities of both approaches. On the one hand, it should rely on an ontology-based
approach to enable policy classification, comparison and static conflict resolution. On the
other hand, it should be able to reap the benefits of a rule-based approach, thus enabling
the efficient enforcement of policies defined over dynamically determined values.

The structure of the paper follows. Section 2 outlines some fundamental requirements
for policy languages to enable the specification of semantic context-based policies.
Section 3 analyzes how some relevant well-known approaches to semantic policy
representation, i.e., KAoS and Rei, deal with the aforementioned requirements. The
comparison allows us to discuss, in Section 4, a possible direction toward the integration
of ontology-based and rule-based policy approaches in order to exploit their full
advantages. Conclusions and future work are presented in Section 5.

2. Novel Requirements for Semantic Context-based Policies

The control of agent behavior in pervasive scenarios raises novel requirements for the
design of policy languages and policy run-time environments. In pervasive scenarios,
users, on behalf of whom agents act, typically move from one environment to another,
thus determining continuous variations in their physical position and in their execution
context, including the set of entities and resources they may be able to interact with.
Moreover, users can access the network using various devices, e.g., laptops, PDAs or
mobile phones, which exhibit different capabilities in terms of resources and
computational abilities. As it is not possible to exactly predict all the interactions an entity
may be involved in and the kind of resources it may wish to have access to, policy-based

ISWC2005 Semantic Web and Policy Workshop 7 November 2005

 44

control cannot rely on any precise knowledge about the subjects/events/actions that need
to be governed.

To deal with such environmental characteristics, recent research efforts propose to
adopt semantically-rich representations to express policy and domain knowledge. The
adoption of Semantic Web languages to specify and manage policies in pervasive
computing scenarios brings several advantages. In fact, semantically-rich representations
ensure that there is a common understanding between previously unknown entities about
their capabilities, the current execution context and the actions they are permitted or
obliged to perform. Moreover, modeling policies at a high level of abstraction simplifies
their description and improves the analyzability of the system. Semantic Web languages
also enable expressive querying and automated reasoning about policy representation.

Another emerging direction suggests that, in order to deal with the dynamic context
changes that are typical of pervasive applications, it may be advantageous to build
policies directly over context conditions, i.e., to consider context as a primary element in
the specification of policies [8]. Context is a complex notion that has many definitions.
Here we consider context as any information that is useful to characterize the state or the
activity of an entity, e.g., its location or its characteristics, and any useful information
about the world in which this entity operates, e.g., date and time. In pervasive
environments, where client users are typically unknown and where context operating
conditions frequently change even unpredictably, the specification of context-based
policies, instead of traditional subject-or role-based ones, allows to control the behavior of
entities without having to foresee all the possible interactions that an entity may have with
other entities and resources.

The adoption of a semantic context-based policy approach to control pervasive systems
requires the definition of a policy model that can precisely identify the basic types of
policies required to control agents, can specify how to express and represent context and
related policies in a semantically expressive form, and how to enforce them. In this paper
we focus particularly on specification rather than on enforcement issues. To this extent,
we consider the following as basic requirements for a semantic-based policy language:
• the ability to model and represent the contexts in which agents operate and to which

policies are associated, at a high level of abstraction.
• the ability to define what actions are permitted or forbidden to do on resources in

specific contexts (authorizations or permission/prohibition policies);
• the ability to define the actions that must be performed on resources in specific

contexts (obligations).
The aim of this paper is not to provide a general survey of the state-of-the-art in

context-based policy representation, but to carefully analyze how some relevant semantic
policy approaches deal with the specification of semantic context-based policies. We first
present KAoS, followed by Rei, both of which were originally designed for governing
agent behavior and that represent, respectively, significant examples of ontology-based
and rule-based policy languages. Then, from this analysis, we derive some suggestions
toward the design of a hybrid policy approach.

ISWC2005 Semantic Web and Policy Workshop 7 November 2005

 45

3. Semantic Approaches to Context-based Policy Specification

To illustrate the expressive capabilities of the two considered policy frameworks, i.e.,
KAoS and Rei, let us consider a usage scenario that is likely to become more and more
usual in the next future. Let us consider the case of a traveler, Alice, who is waiting at the
airport for her flight to leave. The airport is equipped with several 802.11b hot spots
providing travelers with wireless connectivity for their portable devices, e.g., laptops,
PDA and mobile phones. Airline companies may also provide additional services and
resources to travelers, such as the possibility to print documents stored on their devices
using public printers that are placed in various areas of the airport. Moreover, while
waiting to board, users may wish to share files with other users, by exploiting the wireless
connectivity available at the airport. Since she has to wait a couple of hours for her plane
to leave, Alice starts to work on some documents she has on her laptop. Therefore, she
may wish to access the printer that is available in the waiting area around her boarding
gate to print the documents she needs. In addition, as she likes jazz music very much, she
would like to exchange music files with other travelers waiting in the airport hall. These
activities need to be regulated by appropriate policies. In particular, the following policies
governing adequate access to services and resource sharing may apply. We will use these
policies as a running policy example throughout the rest of the paper.

LocationSharing Policy
Users that are currently co-located with the owner of the policy, i.e., with her device, are
authorized to access the shared files stored on the owner device.

This policy may be instantiated and enforced by Alice to share her music files with co-
located travelers in a secure way, depending on current context conditions.

PrinterAccess Policy
Travelers that are flying with a company of the Sky Team group, and are currently
located in the airport area including gate from 31 to 57 are authorized to access the
printer.

This policy may be enforced by the provider of a printing service that is offered to
travelers flying with the Sky Team alliance in some areas of the airport. The enforcement
of this authorization should ensure that travelers having proper rights are enabled to
access the service. Furthermore, if the default behavior of the system states that
everything that is not explicitly permitted is prohibited, this policy also prevents
unauthorized travelers from accessing the service.

In the following sections we first analyze KAoS, and subsequently Rei, showing how

they deal with the specification of the previously described policies.

ISWC2005 Semantic Web and Policy Workshop 7 November 2005

 46

KAoS

KAoS is a framework that provides policy and domain management services for agent and
other distributed computing platforms [9, 10, 17]. It has been deployed in a wide variety
of multi-agent and distributed computing applications. KAoS policy services allow for the
specification, management, conflict resolution and enforcement of policies within agent
domains. KPAT, a powerful graphical user interface, allows non-specialists to specify and
analyze complex policies without having to master the complexity of OWL.
KAoS adopts an ontology-based approach to semantic policy specification. In fact,
policies are mainly represented in OWL [7] as ontologies. The KAoS policy ontologies
distinguish between authorizations and obligations. In KAoS, a policy constrains the
actions that an agent is allowed or obliged to perform in a given context. In particular,
each policy controls a well-defined action, whose subject, target and other context
conditions are defined as property restrictions on the action type. Figure 1a shows an
example of KAoS authorization, which represents the PrinterAccess policy previously
described. The property performedBy is used to define the class to which the actor must
belong for the policy to be satisfied.

<owl:Class rdf:ID=”SkyTeamGate31-57PrinterAccessAction”>
<owl:intersectionOf rdf:parseType="Collection">
 <owl:intersectionOf rdf:parseType="Collection">
 <rdfsowl:Class rdf:about=”&action;AccessAction”/>
 <owl:Restriction>
 <owl:onProperty rdf:resource=”&action;performedBy”/>
 <owl:allValuesFrom rdf:resource=”#SkyTeamCustomer”/>
 </owl:Restriction>
 <owl:Restriction>
 <owl:onProperty rdf:resource=”&action;accessedEntity”/>
 <owl:allValuesFrom rdf:resource=”#Printer31-57”/>
 </owl:Restriction>
</owl:intersectionOf>
 </owl:Class>

< policy:PosAuthorizationPolicy rdf:ID=” SkyTeamGate31-57PrinterAccess”>
 < policy:controls rdf:resource=”# SkyTeamGate31-57PrinterAccessAction”/>
 <policy:hasSiteOfEnforcement rdf:resource=”&some-ontology;TargetSite”/>
 <policy:hasPriority>10</policy:hasPriority>
</policy:PosAutihorizationPolicy>

a)

<owl:Class rdf:ID=”SkyTeamCustomer”>
<rdfs:subClassOf rdf:resource=”&some-ontology;Customer”/>
 <rdfs:subClassOf>
 <owl:Restriction>
 <owl:onProperty rdf:resource=”&some-ontology;firm”/>
 <owl:allValuesFrom rdf:resource=”&some-ontology;SkyTeamAlliance”/>
 </owl:Restriction>

ISWC2005 Semantic Web and Policy Workshop 7 November 2005

 47

 </rdfs:subClassOf>

b)

Fig. 1. KAoS policy examples.

In KAoS, context conditions that constrain a policy may be specified through the
definition of appropriate classes defined via property restrictions. In particular, two main
properties, i.e., the hasDataContext and the hasObjectContext properties, and their sub-
properties are used to characterize the action context. Some sub-properties are defined in
the KAoS ontology, like for instance the ones defining the actor (performedBy), the time
and the target resource (accessedEntity) of an action, while others may be created within
domain-specific ontologies. Figure 1b shows the definition of a class, namely
SkyTeamCustomer, which represents all the individuals that are flying with a company
belonging to the Sky Team alliance. This class is defined as a subclass of the Customer
class, having the affiliation property restricted to the Sky Team.

As these examples show, KAoS is based on an ontological approach to policy
specification, which exploits OWL, i.e., description logic, features to describe and specify
policies and context conditions. In fact, contexts and related policies are expressed as
ontologies. Therefore, KAoS is able to classify and reason about both domain and policy
specification basing on ontological subsumption, and to detect policy conflicts statically,
i.e., at policy definition time.

However, a pure OWL approach encounters some difficulties with regard to the
definition of some kinds of policies—specifically those requiring the definition of
variables. For instance, by relying purely on OWL, we could not define policies such as
the FileSharing policy, which defines constraints over property values that refer to
statically unknown values, e.g., the policy owner location. Other examples include
policies that contain parametric constraints, which are assigned a value only at
deployment or run time. For this reason, KAoS developers have introduced role-value
maps as OWL extensions and implementing them within the Java Theorem Prover, used
by KAoS [11, 17]. The adoption of role value maps, description logic-based concept
constructors that were originally introduced in the KL-ONE system [12], allows KAoS to
specify constraints between property values expressed in OWL terms, and to define policy
sets, i.e., groups of policies that share a common definition but can be singularly
instantiated with different parameters. The proposed extensions effectively add sufficient
expressive flexibility to KAoS to represent the policies discussed in this paper. However,
non-experienced users may have difficulties in writing and understanding these policies
without the help of the KPAT graphical user interface.

Rei

Rei is a policy framework that permits to specify, analyze and reason about declarative
policies defined as norms of behavior [4, 6]. Rei adopts a rule-based approach to specify

ISWC2005 Semantic Web and Policy Workshop 7 November 2005

 48

semantic policies. Rei policies restrict domain actions that an entity can/must perform on
resources in the environment, allowing policies to be developed as contextually
constrained deontic concepts, i.e., right, prohibition, obligation and dispensation. The first
version of Rei (Rei 1.0) is defined entirely in first order logic with logical specifications
for introducing domain knowledge [13]. The current version of Rei (Rei 2.0), that we
analyze in this paper, adopts OWL-Lite to specify policies and can reason over any
domain knowledge expressed in either RDF or OWL [4].

A policy basically consists of a list of rules and a context that is used to define the
policy domain. Rules are expressed as OWL properties of the policy. In particular, the
policy:grants property is used to associate a deontic object with a policy either directly or
via a policy:Granting. Figure 2 shows the Rei 2.0 policy specification of the
LocationSharing policy. In order to specify context conditions, one or more constraints
must be defined. A constraint, which may be simple or boolean, i.e., the boolean
combination of a pair of simple constraints, defines a set of actors or a set of actions that
fulfill a certain property. A simple constraint, as shown in Figure 2b, is modeled as a triple
consisting of a subject, a predicate and an object, which defines the value of the property
for the entity, following a pattern that is typical of logical languages like Prolog.

A constraint can be associated to a policy at three different levels. The first possibility
is to impose a constraint within the definition of a deontic object, by means of the
deontic:constraint property, as shown in Figure 2c. In this case, the constraint can be
expressed over the actor, the action to be controlled or over generic environmental states,
e.g., the time of the day. Additional constraints can be imposed within the Granting
specification over the entity the granting is made to, the deontic object the granting is
made over and, again, over generic environmental states. Finally, it is possible to express
a set of constraints directly within the policy definition through the policy:context
property. These constraints are generically defined as conditions over attributes of entities
in the policy domain.

<policy:Policy rdf:ID="FileAccessPolicy">
 <policy:actor rdf:resource="#requester"/>
 <policy:grants rdf:resource="#Perm_FileAccess"/>
</policy:Policy>
<policy:Policy rdf:ID=”FileSharingPolicy”>

...
</policy:Policy>

a)

<constraint:SimpleConstraint rdf:ID="LocationOfUser">
 <constraint:subject rdf:resource="&some-ontology;user"/>
 <constraint:predicate rdf:resource="&some-ontology;location"/>
 <constraint:object rdf:resource="#user-location"/>
</constraint:SimpleConstraint>

<constraint:SimpleConstraint rdf:ID="CoLocatedWithUser">
 <constraint:subject rdf:resource="#requester"/>
 <constraint:predicate rdf:resource="&some-ontology;location"/>

ISWC2005 Semantic Web and Policy Workshop 7 November 2005

 49

 <constraint:object rdf:resource="#user-location"/>
</constraint:SimpleConstraint>

<constraint:And rdf:ID="Constraint_CoLocated">
 <constraint:first rdf:resource="#LocationOfUser"/>
 <constraint:second rdf:resource="#CoLocatedWithUser"/>
</constraint:And>

b)

<deontic:Permission rdf:ID="Perm_FileAccess">
 <deontic:actor rdf:resource="#requester"/>
 <deontic:action rdf:resource="&some-ontology;AccessToSharedFiles"/>
 <deontic:constraint rdf:resource="#Constraint_CoLocated"/>
</deontic:Permission>

c)
Fig. 2. Rei policy examples.

Rei 2.0 uses OWL-Lite for the specification of policies and of domain-specific
knowledge. Though represented in OWL-Lite, Rei still allows the definition of variables
that are used as placeholders as in Prolog. In fact, as shown in Figure 2b, the definition of
constraints follows the typical pattern of rule-based programming languages, like Prolog,
i.e., defining a variable and the required value of that variable for the constraint to be
satisfied. In this way, Rei overcomes one of the major limitations of the OWL language,
and more generally of description logics. i.e., the inability to define variables. For
example, as shown in Figure 2, Rei allows developers to express a policy stating that a
user is allowed to access the shared files of another user if they are located in the same
area, whereas pure OWL would not allow for the definition of the “same as” concept.
Therefore, Rei’s rule-based approach enables the definition of policies that refer to a
dynamically determined value, thus providing greater expressiveness and flexibility to
policy specification.

On the other hand, the choice of expressing Rei rules similarly to declarative logic
programs prevents it from exploiting the full potential of the OWL language. In fact, Rei
rules knowledge is treated separately from OWL ontology knowledge due to its different
syntactical form. OWL inference is essentially considered as an oracle, i.e., the Rei policy
engine treats inferences from OWL axioms as a virtual fact base. Hence, Rei rules cannot
be exploited in the reasoning process that infers new conclusions from the OWL existing
ontologies, which means that the Rei engine is able to reason about domain-specific
knowledge, but not about policy specification. As a main consequence of this limitation,
Rei policy statements cannot be classified by means of ontological reasoning. Therefore,
in order to classify policies, the variables in the rules need to be instantiated, which
reduces to a constraint satisfiability problem. Let us consider, for example the previously
described PrinterAccess policy. Unlike KAoS, Rei does not allow for a policy disclosure
process that retrieves policies controlling a specific type of action. Hence, the user willing
to use the printer could only try to access it and see what the Rei engine has answered,
with regard to this particular access. For the same reason, Rei cannot statically detect

ISWC2005 Semantic Web and Policy Workshop 7 November 2005

 50

conflicts, like KAoS does, but it can only discover them with respect to a particular
situation.

4. Toward a Hybrid Approach to Semantic Policy Specification?

The management of context and related policies is a demanding task and requires the
appropriate description of context and subsequent policies. Our analysis of current
approaches to semantic context-based policy specification has outlined two main research
directions, which move from two opposite sides.

On one side, a purely ontology-based approach exploits description logic, e.g., OWL,
to describe contexts and associated policies at a high level of abstraction, in a form that
allows their classification and comparison. This feature is essential, for instance, in order
to detect conflicts between policies before they are actually enforced, thus granting
interoperability among entities belonging to different domains that adopt different
policies. In fact, by means of a preliminary analysis of policy typologies holding in
different domains, the required behaviors of each domain can be compared and
harmonized, if needed, avoiding the cost of failures due to conflicts arising in the
enforcement phase. Another interesting application of an ontology-based approach lies in
the possibility of exploiting policy description to facilitate negotiation in policy
disclosure. As an entity may wish to interact with potentially untrusted entities,
negotiating policy disclosure may help interacting parties in the effort of reaching an
agreement about their mutual behavior without imposing too heavy limitations to their
privacy.

On the other side, a rule-based approach relies on the features of logic programming
languages, e.g., Prolog, to enable evaluation and reasoning about concrete context and
policy instances. In fact, from the enforcement point of view, policy rules can be
considered as “instructions” to be executed provided that their activating conditions, i.e.,
contexts, are evaluated to be true. This perspective suggests that contexts and related
policies should be expressed in a clear, concise and expressive way to facilitate their
evaluation and enactment, similarly to the code of a programming language that needs to
be compiled or interpreted. For example, the language should allow for the definition of
policies over dynamically determined constraints, including run time variables, as this is a
crucial expressive feature that most programming languages offer.

KAoS and Rei represent intermediate approaches between the two opposite approaches
previously described. KAoS was originally based only on description logic, provided by
the OWL language features, but current features aim at overcoming the intrinsic
limitations of OWL as a description logic-based language, i.e., the inability to allow
variable-based reasoning [11, 17]. Rei, the first version of which was strongly oriented to
a declarative logic programming approach, has recently moved from a Prolog-like syntax
to an OWL encoding that permits ontological reasoning over domain knowledge (but not
over policy rules), mainly to solve the extensibility problem of Rei 1.0.

ISWC2005 Semantic Web and Policy Workshop 7 November 2005

 51

We claim that a policy framework for pervasive computing systems should be able to
provide support to context modeling and evaluating with different levels of granularity
and flexibility. In particular, we suggest the possibility of an integrated approach that
exploits both description logic (DL) and logic programming (LP). At a higher level of
granularity and abstraction, DL should be exploited to classify contexts and related
policies, thus allowing static conflict resolution and favoring gradual policy disclosure
between interacting parties. At a more operational level, LP should be used to encode
rules in a clear and expressive fashion that may also facilitate their enforcement.

Let us consider, for instance, the LocationSharing policy. This policy can be described
using description logic through the definition of the ontological concepts of location
context and co-location, thus enabling classification, comparison and static conflict
detection with other policies that are related with the same concepts. On the other side,
logic programming can be used to encode the rule that effectively enforces the policy,
namely: if user Y is located in the same place as user X, then user Y is allowed to access
user X’s shared files.

Let us illustrate with an example how a policy framework could benefit from such a
hybrid approach to policy specification. Let us suppose that Bob is waiting to check-in at
the airport and wishes to share some music files with other travelers at the airport. In order
not to waste battery, he would like to avoid a random approach where he just tries to
access other users devices to share files with them, without knowing in advance if the
access will be permitted or denied. To this extent, before attempting to send or receive
files from his portable device, he asks other users to disclose their public access control
policies. Let us suppose that the LocationSharing policy is in force and active on Alice
laptop. Upon receiving Bob request for policy disclosure, she retrieves and sends the
policies that controls the “file sharing” action type, i.e., the LocationSharing policy. At
this point, Bob can statically check for conflicts between Alice’s policy and his own
policies controlling the same type of action, i.e., file sharing. If, for instance, Bob has
enforced a policy to control file sharing that does not include any location context, then he
can deduce that there is no conflict between his own policy and Alice’s. It is worth noting
that policy disclosure and conflict detection is enabled by the ontology-based definition of
policies. On the other hand, when Bob actually tries to access Alice shared files, the
access control policy is enforced on the basis of its rule-based definition, by evaluating the
current value of variables, i.e., Alice and Bob current location. Let us note that, due to the
dynamic nature of the policy whose evaluation can be made only at access time, it may
still be possible that Bob is not allowed to access Alice files because of his current
location. However, thank to the preliminary policy disclosure phase, Bob is able to decide
whether he agrees to adhere to a policy that imposes some conditions on user location. If,
for instance, Bob is waiting at the check-in desk and he already knows that his location
will not change in the next hour because there is a very long queue, then he may decide to
choose another user that does not impose any condition on location.

It is worth stating that an integrated approach like the one we have described would
require the establishment of a semantic and inferential correspondence between DL and
LP. This is a complex issue, which nonetheless may be addressed, as demonstrated, for

ISWC2005 Semantic Web and Policy Workshop 7 November 2005

 52

instance, by recent work. For example, the approach described in [15] could represent a
valid guideline toward a viable integration process. According to the authors, the idea was
on the one hand to enable to “build rules on top of ontologies”, i.e., enable the rule
knowledge base to have access to DL ontological definitions for vocabulary primitives,
and on the other hand to enable to “build ontologies over rules”, i.e., enable ontological
definitions to be supplemented by rules, or imported into DL from rules. Let us note that
Rei seems to have taken the first approach, as in its latest version it allows to specify
policy rules using policy and domain ontologies. KAoS, by means of appropriate
extensions of the OWL language, is aiming at supplementing its ontological specification
of policies with rules. In particular, the authors of [15] propose a mapping between DL
and LP, based on the consideration that, under appropriate restrictions, both logics can be
considered as restricted sets of first order logic. As a final consideration, we believe that
the way toward interoperation between rules and ontologies could be further explored to
achieve more powerful and flexible expressive means for the specification of context-
based policies.

5. Conclusions and Future Work

The specification of semantically-rich context-based policies to regulate agent behavior
in pervasive environments is a complex task that requires appropriate representations to
describe both context information relevant for policy specification and the policies
themselves. Our analysis of current approaches to semantically-rich context-based policy
specification has described two main research directions that are moving toward the
middle from two opposite sides, i.e., an ontology-oriented approach, based on description
logic features, and a rule-oriented approach, based on logic programming. The paper
proposes a hybrid approach to policy specification that allows better handling of the
highly dynamic, uncertain and heterogeneous conditions that are typical of the pervasive
environments where agents operate. This paper has analyzed the problem and the issues to
be solved in developing such a hybrid policy approach. Further investigation is needed to
conduct more formal and thorough analyses of existing and proposed systems in order to
understand their strengths and weaknesses, and to propose the basis for new research and
development. Along this direction, stimulating ideas and results can come from the
investigation of existing proposals, such as SWSL [16], which describes the attempt to
combine first-order logic with rule based languages to specify the Semantic Web Services
ontologies as well as individual Web services.

References

1. Jennings, N., “An agent-based approach for building complex software systems”.,
Communications of the ACM, 44(4), pp. 35-41, 2001.

ISWC2005 Semantic Web and Policy Workshop 7 November 2005

 53

2. Bradshaw, J. M. (Ed.). Software Agents. Cambridge, MA: The AAAI Press/The MIT Press,
1997.

3. Bradshaw, J. M., Jung, H., Kulkarni, S., & Taysom, W. “Dimensions of adjustable autonomy
and mixed-initiative interaction”. In M. Klusch, G. Weiss, & M. Rovatsos (Ed.), Computational
Autonomy, Springer-Verlag, Berlin, Germany, 2004.

4. Kagal, L.: “A Policy Based Approach to Governing Autonomous Behavior in Distributed
Environments”. Dissertation submitted to the Faculty of the Graduate School of the University
of Maryland for the degree of Doctor of Philosophy, Baltimore County, USA, 2004.

5. Tonti, G., Bradshaw, J. M., Jeffers, R., Montanari, R., Suri, N., Uszok, A.: “Semantic Web
languages for policy representation and reasoning: A comparison of KAoS, Rei, and Ponder”,
Proc. of the Second International Semantic Web Conference (ISWC2003), LNCS, Vol. 2870.
Springer-Verlag, Berlin, pp. 419-437, Sanibel Island, Florida, USA, October 2003.

6. Kagal, L., Finin, T., Joshi, A.: “A Policy Language for Pervasive Computing Environment” In:
Proc. of IEEE Fourth International Workshop on Policy (Policy 2003). Lake Como, Italy, pp.
63-76, IEEE Computer Society Press 4-6 June 2003.

7. Van Harmelen, F., et al.: “OWL Web Ontology Language Reference, W3C Recommendation 10
February 2004”, http://www.w3.org/TR/owl-ref/.

8. Montanari, R., Toninelli, A., Bradshaw, J.M.: “Context-Based Security Management for Multi-
Agent Systems”, To be published In: Proc. of the Second IEEE Symposium on Multi-Agent
Security and Survivability, IEEE Press, Philadelphia, USA, 30-31 August 2005.

9. Bradshaw, J. M., Uszok, A., Jeffers, R., Suri, N., Hayes, P., Burstein, M. H., Acquisti, A.,
Benyo, B., Breedy, M. R., Carvalho, M., Diller, D., Johnson, M., Kulkarni, S., Lott, J., Sierhuis,
M., & Van Hoof, R. (2003). Representation and reasoning for DAML-based policy and domain
services in KAoS and Nomads. Proceedings of the Autonomous Agents and Multi-Agent
Systems Conference (AAMAS 2003). 14-18 July, Melbourne, Australia. New York, NY: ACM
Press, pp. 835-842

10. Uszok, A., et al.: “KAoS policy management for semantic web services”. IEEE Intelligent
Systems, 19(4), p. 32-41, 2004.

11. Moreau, L., Bradshaw, J., Breedy, M., Bunch, L., Johnson, M., Kulkarni S., Lott J., Suri N.,
Uszok A.: “Behavioural Specification of Grid Services with the KAoS Policy Language”, Proc.
of the Cluster Computing and Grid 2005. Cardiff, UK, 9-12 May 2005.

12. Schmidt-Schauss, M.: “Subsumption in KL-ONE is undecidable”, In: Proc. of the First Intl
Conference on the Principles of Knowledge Representation and Reasoning (KR 1989), Morgan
Kaufmann: Los Altos, 1989.

13. Kagal, L.: Rei: “A Policy Language for the Me-Centric Project”, HP Labs Technical Report,
HPL-2002-270, 2002.

14. N. Damianou, et al., “The Ponder Policy Specification Language,” Proc. 2nd Int’l Workshop
Policies for Distributed Systems and Networks, LNCS 1995, Springer-Verlag, pp. 18-38, 2001.

15. Grosof, B.N., Horrocks I., Volz, R., and Decker, S.: “Description Logic Programs: Combining
Logic Programs with Description Logic”, In: Proc. of WWW 2003, 20-24 May 2003, Budapest,
Hungary, 2003.

16. Battle S., et al., Semantic Web Service Language (SWSL), Version 1.0.
http://www.daml.org/services/swsf/1.0/swsl/ (2005).

17. Uszok, A., Bradshaw, J. M., Jeffers, R., Tate, A. & Dalton, J. (2004). Applying KAoS services
to ensure policy compliance for semantic web services workflow composition and enactment. In
S. A. McIlraith, D. Plexousakis, F. van Harmelen (Eds.), The Semantic Web—ISWC 2004,
Proceedings of the Third International Semantic Web Conference, Hiroshima, Japan, November
7-11, LNCS 3298, Berlin: Springer, pp. 425-440.

ISWC2005 Semantic Web and Policy Workshop 7 November 2005

 54

Policy Based Dynamic Negotiation for Grid Services
Authorization

Ionut Constandache, Daniel Olmedilla, and Wolfgang Nejdl

L3S Research Center and University of Hannover, Germany
{constandache,olmedilla,nejdl}@l3s.de

Abstract. Policy-based dynamic negotiations allow more flexible authorization
in complex Grid environments, and relieve both users and administrators from up
front negotiations and registrations. This paper describes how such negotiations
overcome current Grid authorization limitations, and how policy-based negotia-
tion mechanisms can be easily integrated into a Grid infrastructure. Such an ex-
tension provides advanced access control and automatic credential fetching, and
can be integrated and implemented in the new version 4.0 of the Globus Toolkit.

1 Introduction

Grid environments provide the middleware needed for access to distributed computing
and data resources. Distinctly administrated domains form virtual organizations and
share resources for data retrieval, job execution, monitoring, and data storage. Such an
environment provides users with seamless access to all resources they are authorized
to. In current Grid infrastructures, in order to be granted access at each domain, user’s
jobs have to secure and provide appropriate digital credentials for authentication and
authorization. However, while authentication along with single sign-on can be provided
based on client delegation of X.509 proxy certificates [21] to the job being submitted,
the authorization mechanisms are still mainly identity based. Due to the large number of
potential users and different certification authorities, this leads to scalability problems
calling for a complementary solution to the access control mechanisms specified in the
current Grid Security Infrastructure (GSI) [8].

In this paper, following up previous work described in [2], we address the limita-
tions in current grid environments and introduce an extension to the Grid Security In-
frastructure and Globus Toolkit 4.0 in which policy-based negotiation mechanisms offer
the basis for overcoming these limitations. This extension includes property-based au-
thorization mechanisms, automatic gathering of required certificates, bidirectional and
iterative trust negotiation and policy based authorization, ingredients that provide ad-
vanced self-explanatory access control to grid resources.

The rest of the paper is organized as follows: in section 2 we describe the current
limitations and motivate our approach. Section 3 provides a brief overview of policy
based trust negotiation and further section 4 introduces this mechanism to Grid illus-
trating its benefits. Our proposed architecture along with a description of our imple-
mentation is given in section 5, while section 6 presents related approaches to Grid
authorization. Finally, section 7 concludes our presentation and describes further work.

ISWC2005 Semantic Web and Policy Workshop 7 November 2005

 55

2 Motivation

A group of scientists at the Engineering Department of a well known University needs
to obtain some simulation data regarding oceanic water waves in order to develop sig-
naling instruments for tsunami hazards avoidance. Fortunately, the University and the
Navy Institute have an agreement, allowing University members to utilize any of the
Institute scientific instruments, as long as it is not already in use and the University has
not exceeded its 40 monthly allocated hours using Institute resources. Both the Univer-
sity and the Navy Institute support Globus Toolkit 4.0 [7] providing the middleware the
scientists need to collect the required data from a Wave Tank available at the Institute
site.

Alice, the leader of our group of scientists, prepares a job and submits it to the
University HPC Center Linux Cluster via the University Grid Portal. Together with the
job, Alice delegates to the Linux Cluster an X.509 Proxy Certificate [17] which can
further be used by the job to prove that is acting on Alice’s behalf. Normally, Alice
would directly use her long-term X.509 End Entity Certificate1 in order to delegate the
proxy certificate2 to the job. However, as she is not in her office today (and therefore
she does not have access to her End Entity certificate), she instructs the University Grid
Portal to retrieve such a proxy certificate from The University MyProxy [12] online
credential repository and to use it to delegate a proxy certificate to the job running on
the University HPC Center Linux Cluster. Once the job is executed, it will set up the
Navy Institute Wave Tank, retrieve and correct the simulation data and save it to the
University Mass Storage Solution.

For each remote resource involved, the job has to authenticate (achieving single
sign-on through its delegated proxy certificate) and be authorized (the identity of the
certificate is checked against access control lists, for example by mapping the identity
of the certificate to a local account by means of a gridmap file). In addition, Alice has
been informed that the Navy Institute requires a proof of her University affiliation before
being granted access to any instrument. Therefore, Alice has programmed the job to
contact the University Community Authorization Service(CAS) [13] and retrieve, after
another round of authentication and identity based authorization, a statement attesting
Alice’s involvement with the University. Using this certificate and assuming that all the
other Wave Tank local requirements are fulfilled (the Wave Tank is not in use and the
University has not exceeded its allocated hours) authorization is granted at the Navy
Institute site. Finally after one more authentication and authorization round with the
University Reliable File Transfer Service the corrected and refined data is stored, being
available to Alice and her group.

Although it seems that this scenario (depicted in figure 1) fits Alice’s and the re-
source owners’ needs, there are some implicit assumptions which are necessary for
Alice’s job to succeed:

1 An End Entity certificate is a long-term certificate issued by a certification authority and there-
fore, its private key must be stored securely to prevent unauthorized access.

2 A Proxy certificate is a certificate issued by an End Entity certificate or another proxy certifi-
cate with a lifetime of several hours. Due to this short lifetime, it is considered safe to store its
private key unencrypted, protected only by file system local permissions.

ISWC2005 Semantic Web and Policy Workshop 7 November 2005

 56

HPC Center
Linux Cluster

Alice

M.A.

Reliable
File Transfer

Service

4 The portal submits
Alice’s job

0
Store proxy
certificate

MyProxy Credential
Repository

3 Delegate proxy
certificate

job

5 Delegate proxy
certificate

M.A.

M.A. : Mutual Authentication

M.A.Grid PortalGrid Portal
2 Request

proxy certificate

1
Alice submits a job

CAS Server

M.A.

6 Retrieve SAML
assertion

Wave Tank
Access Manager

7 Access the
Wave Tank

8 Store data

Fig. 1. Grid Scenario

– One credential for all. A job is submitted together with a proxy certificate signed
by a Certification Authority (CA) which is further used to authenticate to other
resources. This assumes that all resources trust the same CA.

– Identity Based Authorization. Resources, where a job is allowed access, have to
know in advance the identity of the certificate.

– Simple Authentication/Authorization. It is based on a one-shot process where the
job requests access and the resource grants or denies it.

– Manual Credential Fetching. Users need to find out in advance which credentials
are required to access each resource and program their jobs to fetch and give these
credentials while authenticating/requiring authorization.

These requirements become liabilities when the Grid grows more complex and the
number of resources a job has to access increases. Mapping identities raises serious scal-
ability problems due to the large number of potential users, even more when we take
into account the difficult requirement of having a single trusted Certification Authority
(which is hard enough to have within one Grid and not feasible when trying to integrate
different Grids). Because of these reasons, property based certificates have started to
appear (PRIMA [10], VOMS [1], CAS [13] and X.509 attribute certificates [5]) even
though there is no standard interface for using them yet. Furthermore, access control is
not a simple task, as both a job and a resource might require to specify constraints in the
way they disclose their certificates. This asks for extension of the usual one-shot mech-
anism to an iterative process where the level of trust increases at each iteration [22].
Finally, resources should advertise the credentials they require thus allowing the job to
perform dynamic credential fetching. This not only frees job owners of “what resource
requires what credential” problem 3 or that of coding credential fetching within their
jobs but also allows dynamic selection of resources as they would be self explanatory
in terms of authorization requirements.

3 Currently, users must keep track of the right/required credential for each resource they might
access. Application needs may be difficult to predict prior to its execution and the user might
not be available when a certain credential is required. On the other hand providing the appli-
cation with all user credentials is not feasible as it may imply revealing sensitive information.

ISWC2005 Semantic Web and Policy Workshop 7 November 2005

 57

We argue in the following sections that Grid with support for specifying, adver-
tising and enforcing service level access control policies together with capabilities for
automatic fetching of credentials can indeed suit large scale collection of resources,
enabling dynamic negotiation for authorization and access granting based on parties
properties, and can be implemented on top of the Globus Toolkit 4.0.

3 Trust Negotiation

Distributed environments like the Web, P2P systems or Grids are built with the as-
sumption that service providers and consumers are known to each other. In common
scenarios before allowing access to (possibly) sensitive resources, entities establish trust
relations by having clients pass a registration phase. This registration phase consists of
the creation of an account, the addition of the user identity to an access control list or
some offline contact specifying who provides the service, under what conditions and to
which consumers. This becomes a liability due to the lengthy process the registration
phase supposes (resource administrators often have to manually verify user data e.g.
associations with institutions or projects), which delays resource usage and restricts its
availability even if the client is entitled to access it. Moreover clients are required to
reveal sensitive information (name, residence, position or credit card number) with no
mean of imposing their own requirements checking the service provider reliability.

Trust relations are constructed based on a set of digital credentials (e.g. certificates,
signed assertions, capabilities or roles) which are disclosed by two entities to prove
certain properties they pose. Digital credentials bind the identity of the holder to a
public key, are signed by a credential issuer and may attest a quality of the holder.
Since the credential may include personal information (e.g., roles and capabilities) users
should be entitled to have their own requirements with regard to the entity to which
this information is released. In such a case, a more adequate approach would be that
distributed environments treat clients and service providers equally, similarly to P2P
systems, both having the ability of imposing restrictions on resource disclosure (being
resource services or credentials).

Trust negotiation [22] provides a gradual establishment of trust between parties
through requests for and disclosure of credentials in an iterative and bilateral process.
The requests for credentials can be viewed as the resource authorization policies, en-
abling upon satisfaction the authorization decision for accessing the resource. Trust ne-
gotiation approach distinguishes from the identity based access control in the following
regards:

– Trust is established between previously unknown parties based on their properties.
– Providers and consumers can define policies to protect their resources (credentials

or services provided).
– Authorization is established incrementally through a sequence of mutual require-

ments and disclosures of credentials.
– The authorization process may involve more than two entities and their trusted

credential issuer, as requirements for a credential may determine a new negotiation
with a third entity, which at its turn may call for another negotiation and so on.

Trust negotiation is triggered when one party requests to access a resource owned
by another party. The goal of a trust negotiation is to find a sequence of credentials

ISWC2005 Semantic Web and Policy Workshop 7 November 2005

 58

(C1, · · · , Ck, R) where R is the resource where access is attempted, such that when
credential Ci is disclosed, its access control policy has been satisfied by credentials
disclosed earlier in the sequence, or to determine that no such credential disclosure
sequence exists.

Having introduced the concepts behind trust negotiation we concentrate in the next
sections on our vision of a policy based trust negotiation mechanism which enables an
automated authorization scheme over a Grid environment.

4 Dynamic Negotiation for Grid Services Authorization

Our initial example (illustrated in section 2) involved two distinct domains sharing re-
sources over a Grid: one administrated by the University and the other by the Navy Insti-
tute. University resources (Grid Portal, MyProxy Credential Repository, Linux Cluster,
CAS) have been carefully setup to interoperate and previous contacts with the Navy In-
stitute have established the requirements for addressing its instruments. In this section
we provide a more flexible scenario able to accommodate a large, loosely coupled Grid
environment, reducing the current management overhead.

We propose a scheme in which entities advertise their authorization requirements as
access control policies and are able to query for these policies and fulfill them through
automatic credential fetching. Credentials can be protected by policies that have to be
satisfied by the requesting part before having them revealed. Acting in a self describing
environment, services and clients will automatically negotiate authorization by itera-
tively increasing their trust relationship, through credential disclosures until a decision
regarding authorization can be made. The following scenario reflects these new func-
tionalities:

Alice attends a Grid Conference in another country. She can not log into the Uni-
versity Grid Portal as for security issues it can only be addressed from the University
network. Luckily the conference organizers provide a policy enabled Grid Portal and
Alice can use it to submit her job. She logs into the Conference Grid Portal with her
registration number and instructs the portal to obtain a delegated certificate from the
University MyProxy Server.

Policies set up by the Conference Grid Portal administrators permit user requests
for delegated certificates if the user can prove to be registered at the conference and the
MyProxy Server contacted belongs to an accredited university. The University MyProxy
Server has no problem in disclosing a credential signed by the State Ministry of Educa-
tion attesting University accreditation, but when asked to delegate a credential on behalf
of a user, the University MyProxy Server has its own requirement as to receive a creden-
tial signed by IEEE or Verisign. The Conference Grid Portal has an IEEE signed cre-
dential attesting its organization under IEEE supervision but first has to check whether
this certificate is protected by a policy. Indeed this is the case. The policy states that the
entity asking for the IEEE credential has to prove her affiliation with a university. This
has already been achieved through the certificate previously disclosed by the University
MyProxy Server so the IEEE signed certificate is disclosed and negotiation succeeds
with the Conference Grid Portal retrieving a credential for Alice’s job.

For performance issues, Alice decides to submit her job to a Linux Cluster belong-
ing to the Research Center for Aeronautical Sciences. For the job to be submitted, a

ISWC2005 Semantic Web and Policy Workshop 7 November 2005

 59

University CAS Server
Job at Research Center

for Aeronautical Sciences
Linux Cluster

Wave Tank Access Manager

Request Access to Wave Tank

Is Alice member of the University?

Are you acting on behalf of Alice?

Is Alice member of the University?

< Proof of Alice is member of Dpt. of Energy at University >

< Proof of acting on behalf of Alice >

< Proof of Alice is member of Dpt. of Energy at University >

Wave Tank access granted

Fig. 2. Simplified sequence diagram of the job negotiations

new round of negotiation takes place as the Linux Cluster policies require the client
to provide a credential attesting her acting as member of a project present in the State
Ministry of Education database. The Conference Grid Portal forwards a query to the
State Ministry of Education CAS and, by providing Alice’s job credential, retrieves a
certificate attesting that Alice participates in a project regarding signaling instrumenta-
tion. By using this certificate, job authorization is granted at the Research Center for
Aeronautical Sciences Linux Cluster. As the job needs to contact further resources, a
Proxy Certificate is delegated by the Grid Portal to the Linux Cluster.

The job resumes its work by querying Navy Institute policies for Wave Tank access
(job negotiations are represented in figure 2). It finds out that it has to prove Alice’s
association with a university organization. To demonstrate this, the job contacts the
University CAS server and retrieves an assertion attesting that Alice is member of De-
partment of Engineering at her university, not before proving to the CAS server that it
is acting on Alice’s behalf. Again we assume that the other local Navy Institute policies
are fulfilled (the number of hours allocated to the University has not been exceeded and
the Wave Tank is not in use) so the job can setup the Wave Tank and start receiving
data.

For storing the output data with the University Reliable File Transfer (RFT) Ser-
vice, the job has to provide a credential signed by the University Certification Authority
(CA). Such a credential has been previously delegated to the Linux Cluster and, by pro-
viding its chain of certificates 4, the job meets the University RFT Service requirements
and it is allowed to store the results without further negotiation.

The job has been submitted with only one credential, but then dynamically negoti-
ated authorization at each resource accessed and whenever required, knowing where to
retrieve the needed credentials. This was possible due to the contacted grid services abil-
ity to advertise policies, to indicate what credentials are needed and to specify where to
retrieve them from. Resources were shared with no implied previous interactions with

4 The certificate chain has at its root Alice X509 End Entity Certificate issued by the University
CA

ISWC2005 Semantic Web and Policy Workshop 7 November 2005

 60

entities interested in accessing them, and administrators involvement reduces to setting
policies for access control and credential disclosure.

5 Architecture Overview and Implementation

This section presents an extension to the recently released Globus Toolkit version 4.0
(GT 4.0), which allows advanced access control mechanisms and policy based negoti-
ations, as depicted in figure 2. One of our main design goals was easy integration with
current grid services paradigms and, therefore, our extension is backwards compatible
and provides a straightforward installation with almost no additional effort.

The GT 4.0 Authorization Framework [9] supports grid service pluggable Policy
Decision Points (PDPs) [9]. A PDP intercepts client calls and is responsible for autho-
rizing them. It must return an authorization decision which can be either “granted” or
“denied”. In addition, a chain of PDPs can be specified for authorization allowing a
series of verifications to be performed. In this case, the final decision is the conjunc-
tion of all of them, that is, all of them must return “granted” in order to permit access.
This introduces a set of limitations as configuring custom PDPs for each access policy
forces the client to follow only one chain of requirements and be granted access only
if all policies have been satisfied. We desire to support also disjunction in the autho-
rization decision and in this way provide to a larger number of clients the possibility
of accessing the resource through the satisfaction of one chain of policies from sev-
eral (presumably) available with the resource. This boosts the authorization mechanism
by allowing resources administrators to have a single point of configuration for all au-
thorization policies and permitting access to clients holding different sets of attributes.
Moreover, because clients are offered several options for authorization, they may be
able to choose according to their preferences (expressed in their own policies) which
credentials are to be disclosed (e.g., credentials available locally or revealing less sen-
sitive information).

Due to the restricting support of GT 4.0 in terms of service PDPs decision aggrega-
tion, we have developed a custom Interceptor PDP responsible for client call filtering
and checking of a successfully completed negotiation process while the policy require-
ments and proofs are handled outside the PDP through the integration of a Negotiation
Module into the service functionality. Check figure 3 for an architectural overview.

The Interceptor PDP allows client calls to a service in case no extra requirement is
needed for the requested operations. Otherwise, they are denied with a negotiation ex-
ception sent to the client, until a successful policy based trust negotiation is completed.
The Interceptor PDP and the operations which can directly be accessed without negotia-
tions are configured through a security descriptor pointed out in the service deployment
descriptor.

If authorization is denied, the client can start a negotiation with the service, having
his negotiation module contact the service negotiation module and requesting access.
The service sends back the access policy for the operation requested and the client
can answer disclosing the credentials specified in the service policy or sending its own
access policy for those credentials.

A grid service describes the operations supported and their parameters through its
WSDL file. At the WSDL level the service is identified as a port type having a name

ISWC2005 Semantic Web and Policy Workshop 7 November 2005

 61

In
te

rc
ep

to
r

P
D

P Grid Service

Negotiation Module

Job Program

Negotiation Module

CLIENT

Negotiation Topic

SERVICE

getTopic()

notification

negotiateTrust()

Authorization Exception

Service Calls

subscribe()

Fig. 3. Architecture Overview

and several operations, and using messages to carry input and output data. GT4.0 pro-
vides a useful feature in writing WSDL code for a grid service, the WSDLPreprocessor
namespace which contains a tag “extends” permitting the inclusion of definitions of
other port types in the current grid service definition. Using this feature it is possible to
include the functionality of a service (giving that this functionality is also implemented
in code) into another service. We have defined a WSDL file for a port type called Trust-
Negotiation, which describes messages targeted for trust negotiation and exposes two
extra operations (getTopic and negotiateTrust) enabling the exchange of policies and
proofs between clients and services. By extending the TrustNegotiation port and having
the functionality of the two extra operations implemented in the Negotiation Module, a
general grid service is enhanced with trust negotiation capabilities. We emphasize that
in order to confer this functionality to a usual grid service we have to modify only its
descriptors (that is, configuration) files.

The disclosure of a policy from one entity to another may result in a credential being
fetched from a service which at its turn may result in another policy based trust negotia-
tion process, making it difficult to predict when one request can finish its evaluation, and
thus to estimate how long a client has to wait for the negotiation process to conclude. In
order to overcome this problem we used the GT 4.0 support for WS-Notification [23] as
a mechanism for asynchronous client information of the grid service decisions: policies
required to be satisfied, proofs disclosed or authorization reached.

The WS-Notification family of specifications includes WS-BaseNotification [18]
and WS-Topics [20], standardizing asynchronous communications between consumers
and providers. WS-Topics specifies how topics can be organized and categorized as
items of interest for subscription. We associate each trust negotiation (triggered by the
client request for a service operation) with a topic of interest through which messages
can be delivered to the client side. Consumers register themselves with a certain topic
of interest, while providers deliver the notifications to the consumers, each time the
topic has changed. Notification producers (in our case grid services) expose a subscribe
operation through which, each consumer (either grid service or client) can register with
a certain topic. Notification consumers expose a notify function that producers use to
send notifications. The grid service use of notifications is configured also, through the
service descriptors and their functionality is supported by the GT4.0 container. The

ISWC2005 Semantic Web and Policy Workshop 7 November 2005

 62

functionality behind topic assignment, management and client registration for service
notifications is implemented in our Negotiation Topic Module (figure 3).

In our design, each client interested in negotiating trust calls the getTopic operation
(exposed by the grid service through the extension of the TrustNegotiation port)in order
to receive a unique namespace associated with a topic [20] and subscribes to it. Service
side policies and disclosed credentials reach the client asynchronously as notifications,
while client policies and proofs are pushed to the service through client invocation of
the trustNegotiate operation (also exposed by extending the TrustNegotiation port).

The use of the GT 4.0 implementation of the notification paradigm imposes one
limitation to the grid service, that of exposing its state as a “Resource” in conformity
with the Web Service Resource Framework (WSRF) [19]. “Resources” are used for
storing a web service state from one invocation to another. Thus the only requirement
we impose for integrating our policy based architecture for grid service authorization is
having the service use such a “Resource”. The addition of a resource to a grid service
is straightforward, with only minimal additions to its descriptor files and code (only a
matter of having the service implement the interface Resource with no methods).

The client has a complementary functionality to that of a grid service. For client pro-
gramming we have developed a jar file and an API, to facilitate easy integration of trust
negotiation capabilities to client code. The client has to use one class (GridClientTrust-
Negotiation) for setting the grid service address and the namespace of the negotiation
topic received. Also the client has to hide the service invocations by implementing one
interface (SendWrapper), part of our API, for using the stub of the service with whom
he wants to negotiate trust.

Service stubs mask the intricacies of communication with a service and can be gen-
erated automatically from the grid service WSDL file. In Java, stubs are represented
as objects with methods for each operation exposed by the service. Since each stub is
specifically generated for the service it targets to invoke, we have developed an inter-
face (SendWrapper) abstracting the calls made to a trust negotiation enabled service
stub (supporting our defined getTopic and negotiateTrust operations). The client has to
implement this interface and one of its functions (sendMessage) to call the trustNegoti-
ate operation on the stub. By implementing the same interface (SendWrapper), we have
provided to the client an object/class he can use for automatic fetching of credentials
from a CAS server.

On the client side a thread registers with the topic returned by the grid service and
listens for notifications. SendWrappers are used on the client side for sending queries to
the service with which the negotiation process is undergoing, or to third party services
(e.g., CAS) for credential retrieval. The same client code can be used by the service to
register for negotiation with other services or to retrieve credentials, as one service may
be the client of another service with whom it negotiates trust.

Credentials used in our implementation may virtually be expressed under any kind
of format (certificates, signed assertions, signed RDF statements) as the policies and
the negotiation modules are decoupled of credential types. Currently we have support
for X.509 v3 Certificates holding in extensions the owner attributes. In addition to this,
we have integrated the use of proxy certificates which carry SAML Assertions [15] re-
trieved from a Community Authorization Service (CAS). A SAML Assertion indicates
its issuer, the subject of the statement, a resource, and an action allowed on this re-

ISWC2005 Semantic Web and Policy Workshop 7 November 2005

 63

source. The client can wrap such a SAML Assertion in a proxy certificate and push it
as a proof satisfying a policy disclosed during a trust negotiation process.

The architecture we propose is general enough to deal with different policy lan-
guages and policy evaluation procedures, which are implemented in the negotiation
module of each entity. In our implementation we use a negotiation module based on the
PEERTRUST project and language [6] with built-in support and verification of X.509
v3 certificates. The entire implemention is done in Java and uses an inference engine to
reason over policies and credentials. We have tested our extension accessing different
Grid services and automatically fetching credentials from a CAS server with positive
results. Our implementation is distributed as a jar file which together with the small
changes to the appropriate configuration files allows users and administrators to easily
integrate it with current GT 4.0 grid services.

6 Related Work

In this section we provide a brief overview of related approaches to Grid authorization.
The common characteristic of these authorization schemes is the replacement of identity
based access with the usage of user attributes in the authorization process. In this regard,
the major improvement comes from the increased number of entities able to be accom-
modated by a Grid environment released of the consistent mapping of client identities to
user accounts. Nevertheless, despite its benefits for increased scalability, this approach
still places on the client side the burden of appropriate certificate provision and retrieval
for every accessed location. In addition, the authorization schemes presented further,
tend to be client centered, with attribute requirements and their demonstrated possesion
enforced only for the client side and no policy imposed to the service itself.

Virtual Organization Management Service (VOMS) [1] supports attribute based ac-
cess control to the Globus Toolkit Resource Allocation Manager (GRAM) responsible
for job execution. Clients retrieve pseudo certificates containing client attributes (groups
and roles) from VOMS compliant servers and include them in a non-critical extension
of a usual proxy certificate. Such proxy certificates are pushed to the resource together
with the submitted jobs, and based on their contained attributes an authorization deci-
sion is made.

PERMIS [3] project has as its main goal the construction of an X.509 role based
Privilege Management Infrastructure that could accommodate diverse role oriented sce-
narios. PERMIS consists of two subsystems: the privilege allocation subsystem which
issues user X.509 Attribute Certificates and stores them in LDAP directories for later
retrieval and the privilege verification subsystem which pulls the user certificates and
the policies regarding user roles from a pre-configured list of LDAP directories (clients
can also push certificates to the privilege verification subsystem).

AKENTI [16] uses distributed policy certificates signed by stakeholders from dif-
ferent domains in order to make a decision regarding access to a resource. Akenti uses
an XML format for representing three types of certificates: attribute certificates bind-
ing an attribute-value pair to the principal of the certificate, use-condition certificates
indicating lists of authoritative principals for user attributes and containing relational
expressions of required user attributes for access rights and policy certificates consist-
ing of trusted CAs and stakeholders issuing use-condition certificates and lists of URLs

ISWC2005 Semantic Web and Policy Workshop 7 November 2005

 64

from where use-condition and attribute certificates can be retrieved. Akenti engine au-
thenticates clients based on their X.509 certificate, gathers in a pull model certificates
available with the authenticated identity (attribute certificates) and those of the accessed
resource (use-condition certificates) and makes a decision regarding user rights at the
resource.

System for Privilege Management and Authorization (PRIMA) [10] manages and
enforces privilege and policy statements expressed in X.509 Attribute Certificates. In
PRIMA design, resource administrator and stakeholder issued certificates are revealed
by the client to the resource Policy Enforcement Point (PEP). The PEP validates user
attributes and verifies with the resource Policy Decision Point (PDP) if the issuers are
authoritative for user’s presented privileges. All acknowledged privileges are gathered
by the PEP in a policy further presented to the PDP for verification against the config-
ured access control policies. The PDP returns to the PEP an authorization decision and
a set of recommendations (file access permissions, user quotas and network access [11])
for setting up a local account with support for the user validated privileges.

Similar to the above discussed authorization approaches, our architecture accom-
modates user attributes for access granting, but in addition offers solutions for client
query of resource access policies and their compliance through negotiations and auto-
matic credential fetching. Furthermore we allow clients to define and enforce their own
policies for service authorization.

Another area of research is concerned with the standardization of policy represen-
tation. Currently there is an extensive effort in enabling eXtensible Access Control
Markup Language (XACML) [4] usage for authorization management in Grid envi-
ronments. XACML is an OASIS standard for specifying access control policies and the
associated request/response formats. It allows use and definition of combining algo-
rithms which provide a composite decision over policies governing the access require-
ments of a resource. Future versions of Globus Toolkit are expected to be delivered with
an integrated XACML authorization engine. However, current versions of XACML are
not yet expressive enough to deal with some of the requirements for the integration of
our approach (e.g. delegation of authority).

7 Conclusions and Further Work

This paper described current authorization mechanisms in Grids together with their
limitations. We described how support for policy-based negotiation can be integrated
into a Grid infrastructure, allowing advanced access control and automatic credential
fetching, in order to provide a solution to most of those limitations. We discussed how
to easily integrate these extensions into the Globus Toolkit 4.0 and presented our current
implementation.

Our future research will focus on online credential repositories in order to extend
the automatic credential fetching capabilities. We have already integrated CAS servers
and we plan to do the same with MyProxy repositories. Unfortunately, these two types
of online credential repositories do not share a common interface (requiring an ad-hoc
integration by means of wrappers) and do not yet allow us to store arbitrary credentials
which would be desirable for more complex scenarios.

ISWC2005 Semantic Web and Policy Workshop 7 November 2005

 65

We also investigate policy representation in XACML and the possibility of relying
on the SAML support for querying and exchanging policies [14].

In addition, we are planning to perform more experiments in order to study the
performance loss induced by policy integration into current grid services. However,
although we know in advance that access will be somewhat more expensive than based
on current approaches, we are certain that it will pay off as many of the tasks that have
to be done manually so far can then be done automatically. On the other hand if we
consider that Grid is designed to enable resource sharing for large computational jobs,
whose requirements can not be met locally, an increased setup time is less significant
compared to the ability of dynamic satisfaction of resource authorization policies.

Acknowledgments

This research was partially supported by the Network of Excellence REWERSE
(http://rewerse.net, IST-506779)

References

1. R. Alfieri, R. Cecchini, V. Ciaschini, L. dell’Agnello, A. Frohner, A. Gianoli, K. Lőrentey,
and F. Spataro. Voms: An authorization system for virtual organizations. In Proceedings of
the 1st European Across Grids Conference, Santiago de Compostela, Feb. 2003.

2. J. Basney, W. Nejdl, D. Olmedilla, V. Welch, and M. Winslett. Negotiating trust on the grid.
In 2nd WWW Workshop on Semantics in P2P and Grid Computing, New York, USA, may
2004.

3. D. Chadwick and O.Otenko. The permis x.509 role based privilege management infrastruc-
ture. In 7th ACM Symposium on Access Control Models and Technologies, 2002.

4. eXtensible Access Control Markup Language. http://www.oasis-
open.org/committees/tc home.php?wg abbrev=xacml.

5. S. Farrel and R. Housley. An internet attribute certificate profile for authorization, rfc3281.
6. R. Gavriloaie, W. Nejdl, D. Olmedilla, K. E. Seamons, and M. Winslett. No registration

needed: How to use declarative policies and negotiation to access sensitive resources on the
semantic web. In 1st European Semantic Web Symposium (ESWS 2004), volume 3053 of
Lecture Notes in Computer Science, pages 342–356, Heraklion, Crete, Greece, may 2004.
Springer.

7. Globus toolkit 4.0. http://www.globus.org/toolkit/docs/4.0/.
8. Grid security infrastructure. http://www.globus.org/security/overview.html.
9. Gt 4.0 authorization framework. http://www.globus.org/toolkit/docs/4.0/security/authzframe/.

10. M. Lorch, D. Adams, D. Kafura, M. Koneni, A. Rathi, and S. Shah. The prima system for
privilege management, authorization and enforcement in grid environments. In Proceedings
of the 4th Int. Workshop on Grid Computing - Grid 2003, Phoenix, AZ, USA, Nov. 2003.

11. M. Lorch and D. G. Kafura. The prima grid authorization system. J. Grid Comput., 2(3):279–
298, 2004.

12. J. Novotny, S. Tuecke, and V. Welch. An online credential repository for the grid: MyProxy.
In Symposium on High Performance Distributed Computing, San Francisco, Aug. 2001.

13. L. Pearlman, V. Welch, I. Foster, C. Kesselman, and S. Tuecke. A community authorization
service for group collaboration. In Proceedings of the IEEE 3rd International Workshop on
Policies for Distributed Systems and Networks, 2002.

14. Saml 2.0 profile of xacml v2.0. http://docs.oasis-open.org/xacml/2 0/access control-xacml-
2.0-saml-profile-spec-os.pdf.

ISWC2005 Semantic Web and Policy Workshop 7 November 2005

 66

15. Security assertion markup language. http://www.oasis-
open.org/committees/tc home.php?wg abbrev=security.

16. M. R. Thompson, A. Essiari, and S. Mudumbai. Certificate-based authorization policy in a
pki environment. ACM Trans. Inf. Syst. Secur., 6(4):566–588, 2003.

17. S. Tuecke, V. Welch, D. Engert, L. Pearlman, and M. Thompson. Internet X.509 Public Key
Infrastructure Proxy Certificate Profile. http://www.ietf.org/internet-drafts/draft-ietf-pkix-
proxy-10.txt, Dec. 2003.

18. Web services base notification. http://docs.oasis-open.org/wsn/2004/06/wsn-WS-
BaseNotification-1.2-draft-03.pdf.

19. Web services resource framework. http://www.oasis-
open.org/committees/tc home.php?wg abbrev=wsrf.

20. Web services topics. http://docs.oasis-open.org/wsn/2004/06/wsn-WS-Topics-1.2-draft-
01.pdf.

21. V. Welch, I. Foster, C. Kesselman, O. Mulmo, L. Pearlman, S. Tuecke, J. Gawor, S. Meder,
and F. Siebenlist. X.509 proxy certificates for dynamic delegation. In 3rd Annual PKI R&D
Workshop, Apr. 2004.

22. W. H. Winsborough, K. E. Seamons, and V. E. Jones. Automated trust negotiation. DARPA
Information Survivability Conference and Exposition, IEEE Press, Jan 2000.

23. Ws-notification.
http://www.oasis-open.org/committees/tc home.php?wg abbrev=wsn.

ISWC2005 Semantic Web and Policy Workshop 7 November 2005

 67

A Logic Based SLA Management Framework

Adrian Paschke1, Jens Dietrich2, Karsten Kuhla3

1Internet-based Information Systems, Technische Universität München
Paschke@in.tum.de

2Information Sciences & Technology, Massey University
J.B.Dietrich@massey.ac.nz

3FileAnts GmbH München
Kuhla@fileants.com

Abstract. Management, execution and maintenance of Service Level Agreements (SLAs) in
the upcoming service oriented IT landscape need new levels of flexibility and automation not
available with the current technology. In this paper we evolve a rule based approach to SLA
representation and management which allows a clean separation of concerns, i.e. the contrac-
tual business logic are separated from the application logic. We make use of sophisticated, logic
based knowledge representation (KR) concepts and combine adequate logical formalisms in
one expressive logic based framework called ContractLog. ContractLog underpins a declara-
tive rule based SLA (RBSLA) language with which to describe SLAs in a generic way as ma-
chine readable and executable contract specifications. Based on ContractLog and the RBSLA
we have implemented a high level architecture for the automation of electronic contracts - a
rule-based Service Level Management tool (RBSLM) capable of maintaining, monitoring and
managing large amounts of complex contract rules.

1 Why declarative rule-based SLA representation?

Our studies of a vast number of SLAs currently used throughout the industry have
revealed that today’s prevailing contracts are plain natural language documents. Con-
sequently, they must be manually provisioned and monitored, which is very expen-
sive and slow, results in simplified SLA rules and is not applicable to a global dis-
tributed computing economy, where service providers will have to monitor and exe-
cute thousands of contracts. First basic automation approaches and recent commercial
service management tools1 directly encode the contractual rules in the application
logic using standard programming languages such as Java or C++. The procedural
control flow must be completely implemented and business logic, data access and
computation are mixed together, i.e. the contract rules are buried implicitly in the ap-
plication code. SLAs are therefore hard to maintain and can not be adapted to new
requirements without extensive reimplementation efforts. Consequently, the upcom-
ing service orientation based on services that are loosely coupled across heterogene-
ous, dynamic environments needs new ways of knowledge representation with a high
degree of flexibility in order to efficiently manage, measure and continuously monitor
and enforce complex SLAs. Examples which illustrate this assertion are dynamic
rules, dependent rules, graduated rules or normative rules with exceptions/violations

1 e.g. IBM Tivoli Service Level Advisor, HP OpenView, Remedy SLAs

ISWC2005 Semantic Web and Policy Workshop 7 November 2005

 68

of rights and obligations, in order to pick up a few examples which frequently occur
in SLAs:

• Graduated rules are rule sets which e.g. specify graduated high/low ranges for certain SLA
parameters so that it can be evaluated whether the measured values exceed, meet or fall be-
low the defined service levels. They are often applied to derive graduate penalties or bo-
nuses. Other examples are service intervals, e.g., “between 0 a.m. and 6 a.m. response time
must be below 10 s, between 6 a.m. and 6 p.m. response time must be below 4 s …” or ex-
ceptions such as maintenance intervals.

• Dependent rules are used to adapt the quality of service levels. For example an reparation
service level must hold, if a primary service level was missed (for the first time / for the
umpteen times), e.g.: “If the average availability falls below 97 % then the mean time to re-
pair the service must be less than 10 minutes.”

• Dynamic rules either already exist within the set of contract rules or are added dynamically
at run time. They typically define special events or non regular changes in the contract envi-
ronment, e.g. a rule which states that there might be an unscheduled period of time which
will be triggered by the customer. During this period the bandwidth must be doubled.

• Normative rules with violations and exceptions define the rights and obligations each
party has in the present contract state. Typically, these norms might change as a consequence
of internal or external events / actions, e.g. an obligation which was not fulfilled in time and
hence was violated, might raise another obligation or permission: “A service provider is
obliged to repair an unavailable service within 2 hours. If she fails to do so the customer is
permitted to cancel the contract.”

The code of pure procedural programming languages representing this type of rules
would be cumbersome to write and maintain and would not be considered helpful in
situations when flexibility and code economy are required to represent contractual
logic. In this paper we describe a declarative approach to SLA representation and
management using sophisticated, logic based knowledge representation (KR) con-
cepts. We combine selected adequate logical formalisms in one expressive framework
called ContractLog. It enables a clean separation of concerns by specifying contrac-
tual logic in a formal machine-readable and executable fashion and facilitates delegat-
ing service test details and computations to procedural object-oriented code (Java)
and existing management and monitoring tools. ContractLog is extended by a de-
clarative rule based SLA language (RBSLA) in order to provide a compact and user-
friendly SLA related rule syntax which facilitates rule interchange, serialization and
tool support. Based on ContractLog and the higher-level RBSLA we have imple-
mented a rule based service level management (RBSLM) prototype as a test bed and
proof of concept implementation. The essential advantages of our approach are:

1. Contract rules are separated from the service management application. This allows easier
maintenance and management and facilitates contract arrangements which are adaptable to
meet changes to service requirements dynamically with the indispensable minimum of ser-
vice execution disruption at runtime, even possibly permitting coexistence of differentiated
contract variants.

2. Rules can be automatically linked (rule chaining) and executed by rule engines in order to
enforce complex business policies and individual contractual agreements.

3. Test-driven validation and verification methods can be applied to determine the correctness
and completeness of contract specifications against user requirements [1] and large rule sets
can be automatically checked for consistency. Additionally, explanatory reasoning chains
provide means for debugging and explanation. [2]

ISWC2005 Semantic Web and Policy Workshop 7 November 2005

 69

4. Contract norms like rights and obligations can be enforced and contract/norm violations and
exceptions can be (proactively) detected and treated via automated monitoring processes
and hypothetical reasoning. [2]

5. Existing tools, secondary data storages and (business) object implementations might be
(re)used by an intelligent combination of declarative and procedural programming.

The contribution of this paper is twofold. First it argues that in a dynamic service
oriented business environment a declarative rule based representation of SLAs is su-
perior to pure procedural implementations as it is used in common contract manage-
ment tools and gives a proof of concept solution. Second it presents a multi-layered
representation and management framework for SLAs based on adequate logical con-
cepts and rule languages. The paper is organised as follows. We give an overview on
our approach in section 2 and describe its main components, in particular the expres-
sive logical ContractLog framework, the declarative XML based RBSLA language
and the RBSLM tool in the sections 3 to 5. In section 6 we present a use case in order
to illustrate the representation, monitoring and enforcement process. Finally, in sec-
tion 7 we conclude with a short summary and some final remarks on the performance
and usability of the presented rule-based SLA management approach.

2 Overview

Fig. 1 shows the general architecture of our rule based service level management tool
(RBSLM). The rule
engine Mandarax (1)
acts as execution
component and infer-
ence engine for the
formalized, logical
contract rules. The
rules are represented
on basis of our ex-
pressive, logical Con-
tractLog framework
(2) and are imported
over the Prova lan-
guage extension into
the internal know-
ledgebase of the rule

engine. An additional declarative language format based on XML2, called the rule
based SLA (RBSLA) language, is provided to facilitate machine-readability, reusabil-
ity, rule interchange, serialisation, tool based editing and verification. A mapping is
defined which transforms the RBSLA into executable ContractLog rules. The graphi-
cal user interface - the Contract Manager (4) - is used to write, edit and maintain the
SLAs which are persistently stored in the contract base (3). The repository (5) con-

2 The semantic web rule standard RuleML (in particular object oriented RuleML)

Fig. 1. Architecture of the Rule Based Service Level Management Tool (RBSLM)

ISWC2005 Semantic Web and Policy Workshop 7 November 2005

 70

Fig. 2. Layered Model of the Rule Based Approach

tains typical rule templates
and predefined SLA domain
specific objects, built-in met-
rics and contract vocabularies
(ontologies) which can be
reused in the SLA specifica-
tions. During the enforcement
and monitoring of the SLAs
existing external business
object implementations,
quality and system
management tools and
external databases can be
integrated (6). Finally, the
Service Dash Board (7)

visualizes the monitoring results and supports further SLM processes, e.g. reports on
violated services, metering and accounting functionalities, notification services etc.
Figure 2 summarizes the components of our rule based SLM approach in a layered
model. In the following three sections we give a more detailed insight into the differ-
ent layers described in figure 2 with a particular focus on the RBSLA serialization
syntax.

3 ContractLog Framework

Table 1. Main logic concepts of ContractLog
Logic Usage

Derivation rules (horn rules with NaF) Deductive reasoning on contract rules.
Event-Condition-Action rules (ECA) Active sensing and monitoring, event detection and

“situative” behaviour by event-triggered actions.
Event Calculus (temporal reasoning a la "transac-
tion logic")

Temporal reasoning about dynamic systems, e.g.
effects of events on the contract state (fluents).

Defeasible / Courteous logic (priorities and con-
flicts)

Default rules and priority relations of rules. Facili-
tates conflict detection and resolution as well as
revision/updating and modularity of rules.

Deontic Logic (contract norms) with norm viola-
tions and exceptions

Rights and obligations modelled as deontic contract
norms and norm violations (contrary-to-duty obliga-
tions) and exceptions (condit. defeasible obliga-
tions).

Description logic (domain descriptions) / Des-
cription Logic Programs

Semantic domain descriptions (e.g. contract ontolo-
gies) in order to hold rules domain independent.
Facilitates exchangeability and interpretation.

Object-oriented typed logic and procedural at-
tachments

Typed terms restrict the search space. Procedural
attachments integrate object oriented programming
into declarative rules.

Table 1 summarizes the main concepts used in ContractLog. In the following we
sketch the basic logical components. More details can be found in [2-4] and on our
project site[5].

Typed Derivation Rules, Procedural Attachments and external Data Integration:
Derivation rules based on horn logic supplemented with negation as failure (NaF) and

ISWC2005 Semantic Web and Policy Workshop 7 November 2005

 71

rule chaining enable a compact representation and a high degree of flexibility in auto-
matically combining rules to form complex business policies and graduated dynamic
contract rules. [6] On the other hand procedural logic as used in programming lan-
guages is highly optimized in solving computational problems and many existing
business object implementations such as EJBs as well as existing system management
and monitoring tools already provide useful functionalities which should be reused.
Procedural attachments and the typed logic3 used in ContractLog offer a clean way of
integrating external programs into logic based rule execution paving the way for intel-
ligently accessing or generating data for which the highest level of performance is
needed and the logical component is minimal. This supports a smooth integration of
facts managed by external systems (databases accessed via optimized query languages
like SQL; systems, accessed using web services etc.) and avoids replication, because
references are resolved at query time - which is crucial, as in SLA management we
are facing a knowledge intensive domain which needs flexible data integration from
multiple rapidly changing data sources, e.g. business data from data warehouses, sys-
tem data from system management tools, process data from work flows, domain data
from ontologies etc. Additionally, the tight integration with Java enables (re-)using
existing business objects implementations such as EJBs and system management tools
and allows for active sensing/monitoring and effecting via triggered actions in ECA
rules.

ECA Rules: A key feature of a SLA monitoring system is its ability to actively detect
and react to events. We implemented support for active ECA rules: eca(T,E,C,A).
Each term T (time), E (event), C (condition) and A (action) references to a derivation
rule which implements the respective functionality of the term. The additional term T
(time) is introduced to define monitoring intervals or schedules in order to control
monitoring costs for each rule and to define the validity periods. Example:

eca(everyMinute, serviceUnavailable, notScheduledMaintanance , sendNotification)
everyMinute(DT) serviceUnavailable(DT) notScheduledMaintanance(DT) endNotification(DT)

Rule chaining combining derivation rules offers maximum flexibility to build com-
plex functionalities, which can be referenced and reused in several ECA rules. More
details on the ECA implementation can be found in [2-4].

Event Calculus: The Event Calculus (EC) [7] defines a model of change in which
events happen at time-points and initiate and/or terminate time-intervals over which
some properties (time-varying fluents) of the world hold. We implemented the classi-
cal logic formulations using horn clauses and made some extensions to the core set of
axioms to represent derived fluents, delayed effects (e.g. validity periods and dead-
lines of norms), continuous changes (e.g. time-based counter) and epistemic knowl-
edge (planned events for hypothetical reasoning) [2, 4]:

Classical Domain independent predicates/axioms ContractLog Extensions
happens(E,T) event E happens at time point T
initiates/terminates(E,F,T) E initiates/terminates fluent F
holdsAt(F,T) fluent F holds at time point T

valueAt(P,T,X) parameter P has value X at time point T
planned(E,T) event E is believed to happen at time point T
derivedFluent(F) derived fluent F

3 ContractLog supports typed variables and constants based on the object-oriented type system of Java or other OO typed sys-

tems.

ISWC2005 Semantic Web and Policy Workshop 7 November 2005

 72

The EC and ECA rules might be combined and used vice versa, e.g. fluents might be
used in the condition parts of ECA rules or ECA rules might assert detected events to
the EC knowledgebase. The EC models the effects of events on changeable SLA
properties (e.g. deontic contract norms such as rights and obligations) and allows rea-
soning about the contract state at certain time points. Its rules define complex transac-
tion logics with state changes similar to workflows. This is very useful for the repre-
sentation of deontic contract norms and exceptions or violations of norms.

Deontic Logic with Norm Violations and Exceptions: Deontic Logic (DL) studies
the logic of normative concepts such as obligation (O), permission (P) and prohibition
(F). However, classical standard deontic logic (SDL) offers only a static picture of the
relationships between co-existing norms and does not take into account the effects of
events on the given norms, temporal notions and dependencies between norms, e.g.
violations of norms or exceptions. Another limitation is the inability to express per-
sonalized statements. In real world applications deontic norms refer to an explicit con-
cept of an agent. We extended the concepts of DL with a role-based model and inte-
grated it in the Event Calculus implementation in order to model the effects of
events/actions on deontic norms [2]. This enables the definition of institutional power
assignment rules (e.g. empowerment rules) for creating institutional facts which are
initiated by a certain event and hold until another event terminates them. Further, we
can define complex dependencies between norms in workflow like settings which ex-
actly define the actual contract state and all possible state transitions and which allow
representing norm violations and their conditional secondary norms, e.g. contry-to-
duty (CTD) obligations as well as exceptions of (defeasible prima facie) norms.. A
deontic norm consists of the normative concept (norm N), the subject (S) to which the
norm pertains, the object (O) on which the action is performed and the action (A) it-
self. We represent a role based deontic norm Ns,oA as an EC fluent: norm(S, O, A), e.g.
inititates(e1, permit(s,o,a), t1). We implemented typical DL inference axioms in Con-
tractLog such as Os,oA Ps,oA or Fs,oA Ws,oA etc. and further rules to deal with deon-
tic conflicts (e.g. Ps,oA ٨ Fs,oA), exceptions (E) (E Os,o¬A), violations (V) of deontic
norms (e.g. Os,oA ٨ ¬A) and contrary-to-duty (CTD) obligations (V Os,oCTD) or other
“reparational” norms. In particular derived fluents and delayed effects (with trajecto-
ries and parameters [2]) offer the possibility to define norms with deadline-based va-
lidity periods, (time-based) violations of contract norms and conditional secondary
norms e.g., contrary-to-duty (CTD) obligations. A typical example which can be
found in many SLAs is a primary obligation which must be fulfilled in a certain pe-
riod, but if it is not fulfilled in time, then the norm is violated and a certain “repara-
tional” norm is in force, e.g., a secondary obligation to pay a penalty or a permission
to cancel the contract etc. [2-4]

Remark. DL is plagued by a large number of paradoxes. We are aware of this. How-
ever, because our solution is based on temporal event logic we often can avoid such
conflicts, e.g. a situation where a violated obligation and a CTD obligation of the vio-
lated obligation are true at the same time is avoided by terminating the violated obli-
gation so that only the consequences of the violation (CTD obligation) are in effect.
Other examples are defeasible prima facie obligations (Os,oA) which are subject to
exceptions (E Os,o¬A) and lead to contradictions, i.e. Os,o¬A and Os,oA can be derived
at the same time. We terminate the general obligations in case of an exception and ini-

ISWC2005 Semantic Web and Policy Workshop 7 November 2005

 73

tiate the conditional more specific obligation till the end of the exceptional situation.
After this point the exception norm is terminated and we re-initiate the initial “de-
fault” obligation. Note that we can also represent norms which hold initially via the
initially axiom in order to simulate “non-temporal” norms. A third way is to represent
conflicts as defeasible deontic rules with defined priorities (overrides) between con-
flicting norms, i.e. we weaken the notion of implication in such a way that the coun-
terintuitive sentences are no longer derived (see. defeasible logic).

Defeasible Logic: We adapt two basic concepts in ContractLog to solve conflicting
rules (e.g. conflicting positive and negative information) and to represent rule prece-
dences: Nute’s defeasible logic (DfL) [8] and Grosof´s Generalized Courteous Logic
Programs (GCLP) . There are four kinds of knowledge in DfL: strict rules, defeasible
rules, defeaters and priority relations. We base our implementation on a meta-
program [9] to translate defeasible theories into logic programs and extended it to
support priority relations r1>r2 : overrides(r1,r2) and conflict relations in order to define
conflicting rules not just between positive and negative literals, but also between arbi-
trary conflicting literals. Example:

Rule1 “discount”: All gold customers get 10 percent discount.”
Rule2 “nodiscount”: Customers who have not paid get no discount.”
ContractLog DfL: … overrides(discount, nodiscount) … // rule 1 overrides rule 2

GCLP is based on concepts from DfL. It additionally implements a so called Mutex to
handle arbitrary conflicting literals. We use DfL to handle conflicting and incomplete
knowledge and GLCP for prioritisation of rules. A detailed formulation of our imple-
mentation can be found in [4].

Description Logics: Inspired by recent approaches to combine description logics and
logic programming [10] we have implemented support for RDF/RDFS/OWL descrip-
tions to be used in ContractLog rules. At the core of our approach is a mapping from
RDF triples (constructed from RDF/XML files via a parser) to logical facts: RDF tri-
ple:subject predicate object LP Fact: predicate(subject, object), e.g.:

Ca : , i.e., the individual a is an instance of the class C: type(a,C)
Pba :, >< , i.e., the individual a is related to the individual b via the property P: property(P,a,b)

On top of these facts we have implemented a rule-based inference layer and a class
and instance mapping4 to answer typical DL queries (RDFS and OWL Lite/DL infer-
ence) such as class-instance membership queries, class subsumption queries, class hi-
erarchy queries etc. This enables reasoning over large scale DL ontologies and it pro-
vides access to ontological definitions for vocabulary primitives (e.g. properties, class
variables and individual constants) to be used in LP rules. In addition to the existing
Java type system, we allow domain independent logical objects in rules to be typed
with external ontologies (taxonomical class hierarchies) represented in RDF, RDFS or
OWL.

4 to avoid backward-reasoning loops in the inference algorithms

ISWC2005 Semantic Web and Policy Workshop 7 November 2005

 74

4 RBSLA language

Real usage of a formal representation language which is usable by others than its in-
ventors immediately makes rigorous demands on the syntax: declarative syntax, com-
prehension, readability and usability of the language by users, compact representa-
tion, exchangeability with other formats, means for serialization, tool support in writ-
ing and parsing rules etc. The rule based SLA language (RBSLA) tries to address
these issues. It stays close to the emerging XML-based Rule Markup language
(RuleML) in order to address interoperability with other rule languages and tool sup-
port. Therefore, it adapts and extends RuleML to the needs of the SLA domain.

RuleML is a standardization initiative with the goal of creating an open, vendor
neutral XML/RDF-based rule language. The initiative develops a modular specifica-
tion and transformations via XSLT from and to other rule standards/systems. RuleML
arranges rule types in a hierarchical structure comprising reaction rules, transforma-
tion rules, derivation rules, integrity constraints, facts and queries. Since the object
oriented RuleML (OO RuleML) specification 0.85 it adds further concepts from the
object-oriented knowledge representation domain namely user-level roles, URI
grounding and term typing and offers first ideas to prioritise rules with quantitative or
qualitative priorities. However, the latest version 0.88 is still mostly limited to deduc-
tion rules, facts and queries. Currently, reaction rules have not been specified in
RuleML and other key components needed to efficiently represent SLAs such as pro-
cedural attachments on external programs, complex event processing and state
changes as well as normative concepts and violations to norms are missing; in order
to pick up a few examples. As such improvements must be made. RBSLA therefore
adds the following aspects to RuleML:

- Typed Logic and Procedural Attachments
- External Data Integration
- Event Condition Action Rules with Sensing, Monitoring and Effecting
- (Situated) Update Primitives
- Complex Event Processing and State Changes (Fluents)
- Deontic Norms and Norm Violations and Exceptions
- Defeasible Rules and Rule Priorities
- Built-Ins, Aggregate and Compare Operators, Lists
- If-Then-Else-Syntax and SLA Domain Specific Syntax

It is very important to note, that serialization of RBSLA in XML using RuleML
does not require any new constructs, i.e., it can be done by using existing RuleML
features. However, for the reason of brevity and readability RBSLA introduces appo-
site abbreviations for the prime constructs needed in SLA representation. A XSLT
transformation might be applied normalizing the syntax into the usual RuleML syn-
tax. We first present the abbreviated, compact RBSLA syntax and we will give an ex-
ample of the normalization afterwards. Lack of space prevents us from giving an ex-
tensive description of the XML Schema representation of the RBSLA model. More
details can be found in [11] and the latest version can be downloaded from our web-
site [5]. Here, we blind out some details such as optional “oids” etc. and sometimes
use a more compact DTD notation to present the concrete syntax.

ISWC2005 Semantic Web and Policy Workshop 7 November 2005

 75

Typed Logic: Logical terms (variables (Var), individuals (Ind) and complex terms
(Cterm)) are either un-typed or typed. RBSLA supports the following type systems
and data types: java:type , rdf:type , rdfs:type , owl:type , xsi:type , sql:type.

Example: <Var java:type=”java.lang.Integer">1234</Var>
<Ind xsi:type=”xs:nonNegativeInteger”>12</Ind>
<Var rdfs:type=”rbsla#Provider>Service Provider</Var>

Values of primitive data types such as integer, string, decimal, float, date, time
etc. can be interchanged between the different type systems, i.e. they are unified and
evaluated against each other. We therefore extend the unification process so that the
following rules apply:
Untyped-Typed Unification:
1. The un-typed query variable assumes the type of the typed target variable or constant (individual)
Variable-Variable Unification:
2. If the query and the target variable are not assignable, the unification fails otherwise it succeeds
3. If the query variable belongs to a subclass of the class of the target variable, the query variable

assumes the type of the target variable.
4. If the query variable belongs to a superclass of the class of the target variable or is of the same

class, the query variable retains its class
Variable-Constant Unification:
5. If a variable is unified with a constant (individual) of its superclass, the unification fails otherwise

if the type of the constant is the same or a sub-type of the variable it succeeds and the variable be-
comes instantiated.

Constant-Constant Unification:
6. The type of term from the head of the fact or rule is the same as or inherits from the type of term

from the body of the rule or query

Procedural Attachments: Om[p1..pn] [r1..rn]. Here, O denotes an object or a class
which is also an object, m denotes a method invocation, p1..pn the parameters and
r1..rn the list of result objects which might also be a Boolean true or false value. The
serialization in RuleML extends complex terms: Cterm(Ctor | Attachment). The first
element of an <Attachment> is either a link on a qualified Java class, a variable
bound to a Java object/class instance or a nested complex term which itself con-
structs/returns an object. The second element specifies the method call: Attach-
ment((Ind|Var|Cterm), Ind). The parameters for the method invocation are the subsequent
elements under the Cterm element, which are defined after an attachment. RBSLA
supports Java (via reflection), e.g.: java.lang.IntegerparseInt[1234] Integer(1234)
<Cterm java:type=”java.lang.Integer”> // (types are optional)
 <Attachment>

<Ind java:type=”java.lang.Class”>java.lang.Integer</Ind>
<Ind java:type=”java.lang.reflect.Method”>parseInt</Ind>

 </Attachment>
 <Ind java:type="java.lang.String">1234</Ind>

</Cterm>

The result of a method invocation finally replaces the complex term and is used in the
further derivation process. Results can be bound to variables via the Equal element:
<Equal>

<Var> Varible </Var>
 <Cterm> … Attachment … </Cterm>
</Equal>

ISWC2005 Semantic Web and Policy Workshop 7 November 2005

 76

External Data Integration: RBSLA supports a smooth integration of facts managed
by external databases in particular SQL databases or XML/RDF files. It therefore
provides different built-in predicates such as <Location> (database location with user-
name and password), <Select> (SQL select query), <XML> (construct a DOM tree
from a XML file) etc. to access and query the database in order to reuse the result as
facts in a knowledge system.

Event Condition Action Rules: An ECA rule <Eca> is a rule with four terms:
<(Time?,Event?,Condition?,Action)>. Each term defines a reference <Ref> on a derivation
rule (or a fact) which implements the respective functionality of the ECA term. This
offers maximum flexibility. Logical rule chaining between derivation rules facilitates
the implementation of complex functionalities which can be referenced and reused in
several ECA rules and procedural attachments might be applied for active sensing,
monitoring and triggering actions. A reference is semantically interpreted as a
RuleML query (conclusion less derivation rule). Therefore, the only semantics we
add is that of the ECA paradigm, which executes the ECA rule in a forward direc-
tional manner, i.e., it proceeds with the next rule term iff the query on the currently
referenced derivation rule succeeds.
Example: <Eca>
 <Time><Ref><Ind>everyMinute</Ind></Ref></Time>
 <Event><Ref><Ind>serviceUnavailable</Ind></Ref></Event>
 <Condition><Ref><Ind>notMaintenance</Ind></Ref></Condition>
 <Action><Ref><Ind>sendNotification</Ind></Ref></Action>
 </Eca>
 <Implies> // referenced time derivation rule

<Atom><Rel>… respective time function … </Rel></Atom> //body
<Atom><Rel>everyMinute</Rel></Atom //head

</Implies>
 <Implies> // referenced event derivation rule
 […]

Situated Update Primitives: Update primitives change the state of a knowledge sys-
tem. RBSLA supports primitives to add (<Assert>) and delete (<Retract>; <Retrac-
tAll>) facts and rules. Typically, these primitives are applied in ECA rules (a la trans-
action logic).

Complex Event Processing and State Changes (Fluents): RBSLA supports com-
plex event processing and temporal reasoning about events/actions and their effects
on the internal state of the knowledge system (a la event calculus). Therefore, it de-
fines the following elements:
• Fluent: <!Element Fluent(Ind|Var|Cterm)>
• Parameters: <!Element Parameter(Ind|Var|Cterm)>
• Persistent Events: <!Element Happens((Event|Action),Time)>
• Believed/Planned Events: <!Element Planned((Event|Action),Time)>
• Effects of events:

o <!Element Initially(Fluent)>
o <!Element Initiates((Event|Action), Fluent, Time)>
o <!Element Terminates((Event|Action), Fluent, Time)>

• Queries:
o <!Element HoldsAt(Fluent, Time)>
o <!Element ValueAt(Parameter, Time, (Ind|Var|Cterm))>

ISWC2005 Semantic Web and Policy Workshop 7 November 2005

 77

Fluents or parameters might be used in addition to individuals, variables or complex
terms in rules: (Ind|Var|Cterm|Plex|Fluent|Parameter). By default fluents do not hold, but can
be defined as initially true.

Deontic Norms and Norm Violations: Deontic Norms such as obligations, permis-
sions or prohibitions are defined as personalized, time-varying fluents: norm(S,O,A)

<Oblige><Ind>Subject</><Ind>Object</><Action><Ind>Action</></></Oblige>
<Permit><Ind>Subject</><Ind>Object</><Action><Ind>Action</></></Permit>
<Forbid><Ind>Subject</><Ind>Object</><Action><Ind>Action</></></Forbid>
<Waived><Ind>Subject</><Ind>Object</><Action><Ind>Action</></></Waived>

RBSLA defines a special violation event which happens if a norm is violated, e.g. an
obligation which is not fulfilled in time: <Violation><Ind>Violation</></Violation>

Defeasible Rules and Rule Priorities: Beside strict rules which a represented as
normal derivation rules “head body” (<Implies>) RBSLA supports defeasible
rules “body => head” and therefore introduces the new rule element <Defeasible>.
Although, incompatible and conflicting literals between rules in general can be ex-
pressed as specializations of RuleML integrity constraints, RBSLA introduces a new
<Mutex> element (for mutually exclusive, derived von GCLP), e.g.:
<Mutex>

<Atom> <Rel>discount</Rel> <Var>X</Var> </Atom>
<Atom> <Rel>discount</Rel> <Var>Y</Var> </Atom>
<Atom><Cond>
 <Neg><Equal> <Var>X</Var> <Var>Y</Var> </Equal></Neg>
</Cond></Atom>

</Mutex>

An <Overrides> element defines the priority of rules or rule sets / modules:
<Overrides>

<Ref><Ind>rule1</Ind></Ref>
<Ref><Ind>rule2</Ind></Ref>

</Overrides>

Built-Ins, Aggregate and Compare Operators, Lists: RBSLA provides different
useful built-in functions and predicates to effectively work with variables, numbers,
strings, date and time values, lists etc. Here we can only list the interesting ones:
Variables:
• <Bound>, <Free>: Given an input variable, test whether it is instantiated or not
• <Type>: Given an input variable, return the type name.
Numbers:
• <Add|Sub|Mult|Div|Mod|Max|Min|Abs>: Compute two numeric values and return the result.
Strings:
• “\” : separator “\” to allow special characters in string such as \n \r \t etc.
• <Concat>, <Parse>, <Tokenize> etc.
Date and Time:
• <Date> <Ind>Year</><Ind>Month</><Ind>Day</> </Date>
• <Time><Ind>Hour</>, <Ind>Min</>, <Ind>Sec</> </Time>
• <DateTime> ((<Date>,<Time>) | (<Ind> Epoch Value in millis </Ind>))</DateTime>
• <TimeSpan>, <Intervall>
• <Compare>, <Less>, <Equal>, <More>, <Add>, <Sub> etc.
Lists:

ISWC2005 Semantic Web and Policy Workshop 7 November 2005

 78

• <Plex><Var1/><Var2/>…<VarN/></Plex>: List of the form [Var1 .. VarN]
• <Plex><Var>Head</Var><repo><Var>Rest</Var></repo></Plex>: List of the form [Head|Rest]
• <Member>: Test whether an object is member of a list
• <Element_At>: Return the object at position X in a list
• <Append>,<Delete>: Add/Delete an element/list. The result is the concatenated list.
• <Head>, <Tail>: Return the head / the tail of a list
• <First>, <Last>: Return the first / last element of a list
• <Size>: Return the size of a list
Aggregations:
• <Sum>,<Max>,<Min>,<Mean>: Calculate the aggregation of a list and return the result.
Comparison:
• <Equal>, <LessEqual>, <Less>, <More>, <MoreEqual>, <Between>

If-Then-Else-Syntax and SLA Domain Specific Syntax: In order to make pro-
gramming in RBSLA and specification of SLAs more efficient and easier, RBSLA
provides an additional If-Then-Else Syntax for rules:

<If> <Atom> … Body … </Atom> </If>
<Then> <Atom>Head</Atom> </Then>
<Else> <Atom>Head of corresponding Naf rule </Atom> </Else>

Whilst the if-then part of such a rule maps to a normal RuleML derivation rule (<Im-
plies>) the else part maps to a corresponding negated (with Negation as Failure NaF)
rule. RBSLA provides direct serialization of reusable SLA metrics <Metric>. SLA
metrics are used to measure the performance characteristics. They are either retrieved
directly from the managed resources such as servers, middleware or instrumented ap-
plications or are created by aggregating such direct metrics into higher level compos-
ite metrics. Typical examples of direct metrics are the MIB variables of the IETF SMI
such as number of invocations, system uptime, outage period etc. which are collected
via measurement directives such as management interfaces, protocol messages, URIs
etc. Composite metrics use a specific function averaging one or more metrics over a
specific amount of time, e.g. average availability, or breaking them down according
to certain criteria, e.g. minimum throughput, maximum response time, etc. Direct met-
rics contain measurement directives implemented as attachments:

<Metric type=”rbsla#DirectMetric”>
 <Rel><Ind>Metric Name</Ind></Rel>
 <Cterm><Attachment> […] </Attachment> </Cterm>
</Metric>

Composite metrics use the built-in RBSLA aggregate operators over list structures
which temporarily store the measurement results of direct metrics or they shift these
expensive computations to highly optimized query languages such as SQL. Metrics
might be (re)used in rules, e.g. in the event declaration of an ECA rule:

<Event><Ref><Ind>serviceUnavailable</Ind></Ref></Event>
<Implies> // referenced rule

<Less><Metric>…AverageAvailability …</Metric><Ind >0.98</Ind></Less>
<Atom><Rel>serviceUnavailable</Rel></Atom>

</Implies>

As mentioned before the presented RBSLA syntax can be normalized to the usual
RuleML syntax via XSLT, for example:

ISWC2005 Semantic Web and Policy Workshop 7 November 2005

 79

<Oblige>
 <Ind>Service Provider</Ind>
 <Ind>Service Consumer</Ind>
 <Action><Ind>payPenalty</Ind></Atom>
</Oblige>
Maps to: <Cterm rdfs:type=”rbsla#Obligation”> (type are optional)

<Ctor>oblige</Ctor>
<Ind rdfs:type=”rbsla#Provider”>Service Provider</Ind>
<Ind rdfs:type=”rbsla#Consumer”>Service Consumer</Ind>
<Ind rds:type=”rbsla#Action>payPenalty</Ind>

</Cterm>

RBSLA comprises an additional ontology (based on RDFS) which describes the SLA
domain vocabulary and can be used to semantically annotate and type used objects.
This restricts search space to clauses where the type restrictions are fulfilled and
makes the derivation process more efficient.

We have implemented a transformation process based on Java which maps the
RBSLA rules into the basic logical ContractLog rules (Prova/Prolog syntax). During
the transformation process we apply automated “refactorings” on the rules in order to
improve the execution efficiency: loops, order of rules / order of prerequisites in rules
might matter or performance critical issues like extensive use of negation as failure or
cuts might be applied. For example we do some narrowing on multiple rules which
share the same set of prerequisites in order to reduce redundancies (A1,..,AN.→B and
A1,..,AN.→C becomes A1,.., AN.→A ; A..→B; A..→C). Other examples are removing dis-
junctions in the prerequisites (replacing A∨B → C by two new rules A → C and B →
C), remove conjunctions from rule heads (transform B → (H ٨ H´) via Lloyd-Topor
transformation into two rules B → H and B → H`), remove function symbols from rule
heads or reducing typing information in rule chains etc.

To sum up the additional RBSLA layer solves the demands stated at the beginning
of this section, in particular compatibility with other languages via transformations
and a declarative, compact and readable rule representation. Additionally it provides
means for refactoring and validation of rules during transformation into ContractLog.

5 RBSLM tool

The RBSLM tool splits into the Contract Manager (CM) and the Service
Dashboard (SD). The CM is used to manage, write, maintain and update SLA rules.
The SD visualizes the monitoring and enforcement process in the contract life cycle
and supports further SLM processes. We first describe the CM.

The CM provides a basic editor for ContractLog rules and a repository approach
which represents the structure and meta-data of a knowledge base. It supports two
roles: the business practitioner and the rule experts. The rule experts have a back-
ground in logic and are therefore responsible for the basic design of contract rules.
They fill the repository with needed and reusable domain specific measurement,
monitoring and computing functions, interface implementations to existing databases
or system tools, references on existing business objects (e.g. EJBs) as well as rule
templates and other domain specific concepts (e.g. contract vocabularies). Addition-

ISWC2005 Semantic Web and Policy Workshop 7 November 2005

 80

ally, they specify test cases together with certain test data to be used for verification
and validation of contract rules in order to ensure the correct usage and a high-quality
of SLA rule sets [1]. The business practitioners are involved in the daily business.
They make use of the predefined templates to write and maintain the contract rules.
They do not need to know any implementation details of used functions, objects or
interfaces nor do they need to have a complete overview of all the rules in the contract
system, meaning they do not know what the effect is on existing rules when a rule is
added or changed. They just use the GUI to adapt the templates and build rules by
clicking together the needed functionality. The test cases safeguard the authoring of
rules and allow validation of complete rule sets and contracts to detect anomalies like
inconsistencies, incompleteness or redundancies referring to the intended goals.

Fig. 3. The ContractManager GUI

Whilst the Contract Manager is used to manage the SLAs and their rules, the Ser-
vice Dashboard visualizes status information and metrics during the monitoring and
execution process. We provide different and adaptable visualisation views in order to
satisfy the needs of different user roles e.g. for the customer advisor to face customer
complains and problems, for the accountancy to forecast fees and recourse receivables
and for the administrator to give detailed information to fix arising problems. Similar
to the process of deriving quality metrics from base data to verifying contractual rules,
the logic engine can also be used to get meaningful quantities for each of these par-
ties. Predefined parsers and chart formations enable the user to present the informa-
tion in an adequate way. New user views can be easily plugged into the framework
dynamically through the class loader. The underlying Model-View-Controller notifies
these views if data are changed in the knowledge base (observer pattern) and triggers
the visualization process.

Fig. 4. Service Dashboard with different visualization views

ISWC2005 Semantic Web and Policy Workshop 7 November 2005

 81

6 Use Case

We now want to illustrate the SLA representation, monitoring and enforcement proc-
ess. We therefore use the following example agreement:

The service availability will be measured every tcheck by a ping on the service. If the service is unavailable,
the SP is obliged to restore it within tdeadline. If SP fails to restore the service in tdeadline (violation), SC is per-
mitted to cancel the contract.”
RBSLA representation
<Eca> // ECA rule monitoring the service availability
 <Time><Ref><Ind> tcheck</Ind></Ref></Time>
 <Event><Ref><Ind>unavailable</Ind></Ref></Time>
 <Action><Ref><Ind>assertEvent</Ind></Ref></Action>
</Eca>
<Rule> // referenced time derivation rule
 <If> <Intervall>… [monitoring schedule] … </Intervall> </If> // body
 <Then> <Atom><Rel> tcheck</Rel></Atom> </Then> // head
</Rule>
<Rule> // referenced event derivation rule
 <If> <Metric>… [test availability] ... </Metric> </If> // body
 <Then> <Atom><Rel> unvailable</Rel></Atom> </Then> // head
</Rule>
 […]
<Initiates> // unavailable event initiates primary obligation
 <Event><Ind>unavailable</Ind></Event>
 <Oblige> … [obligation norm] … </Oblige>
</Initiates>
 […]
<Rule> // if deadline elapsed then raise violation event
 <If><ValueAt><Parameter>deadline</Parameter><Time> tdeadline</Time><Ind>0</Ind></ValueAt></If>
 <Then><Assert><Violation><Ind>elapsed</Ind></Violation></Then>
</Rule>
<Initiates> // violation event initiates reparation permission norm
 <Violation></Ind>elapsed</Ind></Violation>
 <Permit> … [cancel contract] </Permit>
</Initiates>
 […]
ContractLog representation
eca(everyTcheck , serviceUnavailable , assertUnavailable) // ECA rule
Time: everyTcheck (DT) < interval function for tcheck,> // referenced derivation rule
Event: serviceUnavailable(DT) not ping(service) // referenced derivation rules
Action: assertUnavailable(DT) assert(happens(unavailable,T) // referenced derivation rules

initiates(unavailable, oblige(SP, Service, start()),T) // defines the primary obligation initiated by an certain event
 terminates(available, oblige(SP, Service, start()),T) // defines the event which normally terminates the obligation
trajectory(oblige(SP,Service,start()),T1,deadline,T2,(T2 - T1)) // defines the period in which the norm must be fulfilled
happens(elapsed,T) valueAt(deadline,T, tdeadline) // defines the violation of the obligation norm
initiates(elapsed, permit(SC, Contract, cancel()),T) // initiates the derived permission to cancel the contract

The RBSLA representation is translated via the RBSLA compiler (transformation)
into the ContractLog representation. The Prova engine (based on Mandarax rule en-
gine) together with the ContractLog extensions execute and monitor the contract.

We assume that the service becomes unavail-
able at time t2 and is restarted by the service
provider at time t5 which is after tdeadline. The
ECA meta interpreter of the ContractLog
framework monitors the ECA rule. Every t =
tcheck it pings the service via a procedural at-
tachment and asserts the respective event to the Fig. 5. Contract tracking

ISWC2005 Semantic Web and Policy Workshop 7 November 2005

 82

knowledgebase if the service is unavailable. This leads to the conclusions illustrated
in fig. 5. The derived status information can be used to feed periodical reports, en-
force rights and obligations or visualize monitoring results on quality aspects in the
Service Dashboard.

7 Conclusion and Key Findings

In this paper we have described our declarative rule based approach to SLA represen-
tation and management. We have given an insight into the logical core, the Contract-
Log framework which underpins the declarative RBSLA language. Based on this we
have implemented a prototypical rule based service level management tool (RBSLM).
In contrast to conventional pure procedural programming approaches our declarative
logic based approach simplifies maintenance, management and execution of SLA
rules and allows easy combination and revision of rule sets to build sophisticated and
graduated contract agreements, which are more suitable in a dynamic service oriented
environment than the actually used, simplified rules. Although the framework de-
scribed in this paper is still a proof of concept implementation, we have attempted to
gather some data on its performance and usability. The important reasoning task in
SLA monitoring and enforcement is query answering which is known to be only
semi-decidable. However, the combination of highly optimized OO programming and
database techniques as well as the use of adequate logical formalism implemented on
the basis of horn logic and meta-programming techniques makes possible the high ef-
ficiency of the framework although it provides rich expressiveness. Usability analyses
and qualitative comparisons with other representation approaches such as WSLA have
revealed the higher flexibility and automation of our rule based approach.

References
1. Dietrich, J. and A. Paschke. On the Test-Driven Development and Validation of Business

Rules. in ISTA05, Massey, New Zealand. 2005.
2. Paschke, A. and M. Bichler. SLA Representation, Management and Enforcement - Combining

Event Calculus, Deontic Logic, Horn Logic and Event Condition Action Rules. in EEE05. 2005.
Hong Kong, China.

3. Paschke, A., M. Bichler, and J. Dietrich. ContractLog: An Approach to Rule Based Monitoring
and Execution of Service Level Agreements. in RuleML 2005. Galway, Ireland.

4. Paschke, A., ContractLog - A Logic Framework for SLA Representation, Management and
Enforcement. 7/2004, IBIS, TUM, Technical Report.

5. Paschke, A., RBSLA: Rule-based SLA, http://ibis.in.tum.de/staff/paschke/rbsla/index.htm..
6. Paschke, A., Rule Based SLA Management - A rule based approach on automated IT service

management (in german language). 6/2004, IBIS, TUM, Working Paper.
7. Kowalski, R.A. and M.J. Sergot, A logic-based calculus of events. New Generation Computing,

1986. 4: p. 67-95.
8. Nute, D., Defeasible Logic, in Handbook of Logic in Artificial Intelligence and Logic

Programming Vol. 3, D.M. Gabbay, C.J. Hogger, and J.A. Robinson, Editors. 1994, Oxford
University Press.

9. Antoniou, G., et al. A flexible framework for defeasible logics. in AAAI-2000. 2000.
10. Grosof, B.N., et al. Description Logic Programs: Combining Logic Programs with Description

Logic. in WWW03. 2003: ACM.
11. Paschke, A., RBSLA: A Rule Based Service Level Agreements Language. 8/2004, IBIS, TUM,

Technical Report.

ISWC2005 Semantic Web and Policy Workshop 7 November 2005

 83

Real-world Trust Policies

Vinicius da S. Almendra1, Daniel Schwabe1

(1) Departamento de Informática
Pontifícia Universidade Católica do Rio de Janeiro - PUC-Rio

Rio de Janeiro - Brazil
{almendra,dschwabe}@inf.puc-rio.br

Abstract. One of the most important problems on the semantic web area is the
one of trust. The growing exchange of semantic web data raises the need of
policies that allow filtering out untrustworthy information. It is necessary, how-
ever, to model adequately the concept of trustworthiness, otherwise one may
end up with operational trust measures that lack a clear meaning. It is also im-
portant to have a path from one’s trust requirements to concrete trust policies.
Our proposal is to ease the building of this path, through a representation of
trust requirements grounded on a specific notion of trust and an algorithm to
map this representation to trust policies. We report our ongoing effort on this
direction.

1 Introduction

One of the great challenges to the semantic web is the problem of trust. Operational
measures of trustworthiness are needed to separate relevant and truthful data from
those that are not [2]. However, to be correctly interpreted, these measures must be
linked with real-world concepts of trust. They also must meet the trust requirements
of their users. Building on the trust concept found in [4], our work aims to pave the
path leading from a user’s trust requirements to operational trust policies that can be
applied to semantic web data, while preserving the relation between the resulting
policies and the trust requirements we started with. This relation is important as it en-
ables the user to find out why a piece of data was found trustful. We’re focusing on
the semantic web data exchange scenario, where an agent receives some data and
must decide whether or not to trust them.

Here we report our ongoing effort in this direction, which includes a model to rep-
resent trust requirements and a small test implementation, based on the Semantic Web
Publishing vocabulary [3].

1.1 Related Work

In [1] we find a very similar work: a Semantic Web Browser with filtering based on
trust policies. The user selects the trust policy he wishes to use and then the software
filters information using that policy. Besides that, it offers explanations of why each
piece of information was trusted. The difference lies in the level of abstraction. The

ISWC2005 Semantic Web and Policy Workshop 7 November 2005

 84

proposal in [1] offers facilities to express trust policies as pieces of TriQL queries in
such a way that it allows an explanation of why a triple was found trustful. Our work
deals with representing trust requirements and translating them to trust policies that
preserve real-world trust relationships.

1.2 A Motivating Scenario

The scenario we are focusing on is based upon two works: the Semantic Web Publish-
ing scenario [3] and the DBin project [5]. The Semantic Web Publishing scenario has
agents embodying two roles: of information providers and of information consumers.
An information provider publishes RDF graphs; these graphs contain information and
its metadata, such as provenance, publishing date etc. An information consumer gath-
ers these graphs and decides what to do with them, provided that these graphs can be
seen as claims of the information provider, rather than definitive facts. The formal
meaning of these claims, that is, what statements about the world are being made, is
given by a set of accepted graphs, which is a subset of the graphs the information
consumer receives. It is assumed that the agent will act based solely on information
contained in accepted graphs.

The Semantic Web Publishing proposal also enables the user to specify a trust pol-
icy, that is, a set of conditions that the received information should meet to be ac-
cepted. An example of a policy would be “trust all information that comes from direct
friends and is about computers”.

This scenario can be integrated with the one outlined in [5]: a P2P network where
people exchange RDF graphs of interest and store all the received graphs in a local
database. Filtering can be applied to hide triples that do not match the user’s criteria.
One use for this is the implementation of trust policies. The set of visible triples is
similar to the one of accepted graphs seen above; we will name it the set of accepted
triples.

These scenarios are only examples of possible uses of trust and trust policies
within the Semantic Web context; many other scenarios are possible, such as Seman-
tic Social Desktops.

2 A Model of Trust

2.1 The Concept of Trust

Following the ideas presented in [4] and [7], we will use the concept of trust as
“knowledge-based reliance on received information”, that is, an agent decides to trust
(or not) based solely on his knowledge, and the decision to trust implies the decision
to rely on the truth of the received information to perform some action. We will
elaborate some key aspects of this definition below.
• Knowledge-base trust. The agent's knowledge includes all information the agent

has, which in turn includes information received from other agents and self-
gathered information. We will call the subset of this information that the agent has
decided to trust “trusted information”. Received information that is not trusted will

ISWC2005 Semantic Web and Policy Workshop 7 November 2005

 85

be called “known information”. The decision to trust is not irrevocable: knowledge
can evolve and new evidence may render formerly trusted information untrusted,
and vice versa.

• Trust as reliance. The idea of reliance means that the agent can use the trusted in-
formation to achieve some goal, without further analysis – although this may imply
running the risk of taking an inappropriate action if the information is false. For
example, if an agent trusts the information that www.mybank.com is the URL of
his bank, then he will send his password to this site without further checks: he re-
lies on this information for performing financial transactions. If the agent does not
have any action depending on that information, then there is no reliance attitude
and the concept of trust does not apply (for example, if he has no relationship with
this bank, then the information about the URL does not matter: it is not an object of
reliance).

• Reliance on information. This concept is about trust on information, where “to
trust” means “to move known information to the set of trusted information”. There
are other actions that need trust, beyond accepting information: moving money
from one account to another, running an unknown software, providing sensitive in-
formation to a website, granting access to an intranet etc. Nevertheless, many of
these actions rely on knowledge about the action itself, the agents involved and the
circumstances: a bank normally relies on a supplied account number and password
to grant access to a person's account (actually, it relies on the relation between the
person, an account and a password). So, the trust concept as defined here can also
be applied to these actions whenever it is possible to factor out the reliance on
some kind of received information. In the case of running an unknown software,
the agent will trust it or not based on the information he has about that software,
e.g. who obtained it, what it does, who is the publisher etc.
There are other important aspects of the concept of trust that are relevant to the

proposed model:
• Trust can be seen as a relationship between two agents mediated by a goal: one

trusts somebody for something [7]; in our case, trusts somebody for receiving in-
formation from him.

• Trust is subjective, that is, each agent may have a different view about what can be
trusted. So, from now on we will use the term trusting agent to denote from whose
viewpoint trust is being evaluated.

• It is of common sense that a person normally trusts himself as a provenance of in-
formation, although he might give up on this perception if someone he believes to
be wiser (with respect to this particular subject matter) contradicts him. In this
work we assume that the default attitude of the trusting agent is to trust everything
that comes from himself.

2.2 The Trust Act

When an agent receives information, he must decide whether or not to trust it: this is
the trust act [4]. To do this, the agent can use the following elements [6]:
• The context of the received information, that is, metainformation about circum-

stances (provenance, date, time, location, reason, relation of the provenance with

ISWC2005 Semantic Web and Policy Workshop 7 November 2005

 86

the trusting agent etc). For example, the sender, the date and the subject of an e-
mail are part of its context. However, the context may include information not pre-
sent in the received information but in the agent's knowledge, like the sender's job,
which one might have stored in his personal agenda. This is possible when there is
some kind of URI for the sender, which “links” the agent's knowledge with the re-
ceived information.

• The content of the received information.
• The reputation of the source, that is, what other agents say about it.

These elements provide information about the received information. The trust act
consists of checking whether or not these elements satisfy some conditions. One trusts
a received e-mail when he knows the sender, for example. These conditions will be
called trust requirements. Continuing the e-mail example, we can formulate the fol-
lowing example trust requirements when reading e-mail:
• To download an e-mail, it must be from a known source.
• To open an e-mail, it must be written in my native language.
• To run an executable attachment, it must have been sent by a close friend and must

have been verified by some kind of antivirus software.
As the trust act itself relies on information, it is reasonable to require that it should

be based only on trusted information. This has two important side effects:
• A source’s reputation becomes part of the context, as it will be composed by

trusted information (that is, trusted opinions of other agents) related to the source.
Consequently, we will restrict the elements of the trust act to encompass context
and content. Notice that it is possible to use untrusted information about reputation
to make a trust decision: it is what happens in many reputation systems, where the
score used to evaluate an agent is made from opinions of unknown agents.

• Some of the contextual information may come together with the received informa-
tion. An e-mail carries information about its sender, the date it was posted etc. If
the trust acts related to e-mail demands some of this contextual information, these
acts will fail (that is, the e-mail will not be trusted) until the contextual information
is also the subject of a trust act and gets included in the set of trusted information.
So, for a trust act about the content of received information to succeed, prior trust
acts about its context should have been made, otherwise the former trust act may
fail due to lack of trusted information. For instance, to reason about an e-mail using
the sender's name, I must trust that who claims to be the sender is the sender in-
deed.

2.3 Formalizing Trust

From the concepts presented above it is possible to define trust as a predicate over
knowledge (K), provenance (p), context (c’) and content (c) of information:
T(K,p,c’,c). This predicate is defined by the set of trust requirements of the trusting
agent. From now on, we will call it the root trust predicate. Notice that agents with
the same knowledge may react differently when faced with the same information, as
they may have different trust requirements.

Using the idea of trust requirements as conditions on received information, we can
represent one's trust requirements using logical predicates, similarly to [8]. The trust

ISWC2005 Semantic Web and Policy Workshop 7 November 2005

 87

problem then becomes the one of building the root trust predicate. Instead of tackling
the problem of building a single predicate that encodes all trust requirements of an
agent (a “top-down” approach), we can try to reduce the problem to building the root
trust predicate as a composition of simpler predicates that can be evaluated independ-
ently. This way, the root trust predicate becomes a disjunction of these simpler predi-
cates: when faced with some information, it will be trusted if at least one of these
simpler predicates is true. We call these simply trust predicates.

As an example, the root trust predicate shown below states that the user will trust
information if it is “good email” or “good software”.

)',,(),',,(),',,(cpKreGoodSoftwaccpKGoodEmailccpKT ∨← (1)

Each of the trust predicates states necessary and sufficient conditions to trust some

piece of information. This can be put in evidence by breaking them into conjunctions
of other trust predicates:

)'()(
),(),',,(
cOldcIsEmail

pKndIsFromFrieccpKGoodEmail
¬∧∧

←
 (2)

What distinguishes trust predicates from other logical predicates is that the former

express meaningful conditions for trust from the agent's viewpoint. In the example, it
does not matter how the name of a source is represented; what matters is whether or
not the source is a friend.

Trust predicates should express trust conditions that make sense for the trusting
agent, linking his trust-related concepts (e.g. “being a friend”, “belonging to a re-
search group”, “being a relevant author”) to logical conditions on the information
available (e.g. “being referenced in my personal FOAF file”, “having a link from a
specific web page to the source's FOAF”, “appearing in the citations of more than five
publications”). Another possibility is to define them in terms other trust predicates
(e.g. the GoodEmail predicate in the example above: it is a trust predicate composed
by other trust predicates), in this case, we will call it a composite trust predicate. In
contrast, an elementary trust predicate is one that has no meaningful decomposition
from the agent’s point of view and must be built by directly stating conditions on in-
formation.

To strengthen the connection with real-world trust, we will apply the formal model
with the trust concept presented in [4], where the decision to trust is made based on
the appreciation of three things: the subject matter (the content), the entity involved
(in our case, the provenance), and the circumstances (the context). Therefore, if trust
predicates can be specified to verify these three aspects, then it is possible to solve
completely an arbitrary instance of the trust problem (within the limits of expressive-
ness of the formalisms used) by making a trust predicate that is a conjunction of those
trust predicates. We will call this conjunction, namely, the triple <subject matter, en-
tity, circumstances>, a trust-point [4]. Accordingly, the root trust predicate can be de-
scribed as a disjunction of trust-points. In the preceding example, GoodEmail is a
trust-point: it evaluates the entity (first predicate, IsFriend), the subject matter (second

ISWC2005 Semantic Web and Policy Workshop 7 November 2005

 88

predicate, IsEmail) and the circumstances (third predicate, not Old). If the three trust
predicates are true for the received information, then it is considered trustful. Summa-
rizing, a trust-point is a set of conditions on who sent the information, on what is the
information, and on what circumstances surround it. According to this model, the
trust act consists of applying the root trust predicate to a known fact to determine
whether or not it should be trusted.

It is important to notice that the provenance of information is part of the context in
[6], whereas it is factored out in [4]. We adopted the latter approach, grounded on the
idea that trust is a relationship between agents and hence the model should capture
this explicitly.

2.4 An Example

Looking at the scenario presented and restricting it to the exchange of scientific in-
formation among researchers, we can identify many trust predicates, some more gen-
eral (i.e., they apply to other domains), others more specific. Each predicate is fol-
lowed by its name in the logical formulas:
• Trust predicates related to entities involved: “works with me” (Colleague), “is a

relevant researcher” (IsRes), “is cited by other authors” (IsCited).
• Trust predicates related to the matter: “is a publication” (IsPubl), “is a website”

(IsSite), “is a relevant website” (GoodSite), “is cited by a relevant website” (Cite-
ByGoodSite), “is the contact information of a researcher” (InfoRes), “is a relevant
publication” (GoodPubl), “is the contact information of a person” (IsCInfo).

• Trust predicates related to circumstances: “is recent enough” (IsRecent), “is old
enough”, “is newer than my preferred publications”, “is hosted in a university”
(HostUniv).
With these trust predicates, we can model the trust requirements of two hypotheti-

cal agents, John and Mary, concerning acceptance of scientific information.

),,(),',,(),',,(
),,(),,(),',,(
cpKsoReInfccpKGoodPublccpKT

cpKGoodSitecpKGoodPublccpKT

MaryMary

JohnJohn

∨←
∨←

 (3)

TJohn and TMary are the root trust predicates representing trust requirements of the
agents. John is prepared to trust relevant publications and websites; Mary also is pre-
pared to trust relevant publications (although she may have a different concept of
what a good publication is, as will become clearer the example), as well as contact in-
formation of researchers. GoodPubl, GoodSite and InfoRes are the trust-points in-
volved. Now we proceed to describe these trust-points using the <subject matter, en-
tity, circumstances> template. In Table 1, each trust-point will be described in natural
language, and then cast as trust predicates.

ISWC2005 Semantic Web and Policy Workshop 7 November 2005

 89

Table 1. Description of the trust-points

Trust-point Subject Matter Entity Circumstances
GoodPublJohn It is a publication and it

is cited by a relevant
website

It has been sent by a
colleague

-

GoodPublMary It is a publication and it
is cited by relevant
publications

It has been sent by a
researcher

It is not recent

GoodSite It is a website It has been sent by a
researcher

It is hosted in
an university

InfoRes It is contact information
of a known researcher

It has been sent by a
colleague

-

Now it is possible to specify each trust-point using the trust predicates shown be-

fore:

))rKsReIsrcIsCInfor
pKColleaguecpKResInfo

cKHostUniv
)pKsReIscKIsSitecpKGoodSite

cKdSiteCitedByGoo
p)K,Colleague(cIsPublcpKGoodPubl

cIsRecent
sKGoodPublscKIsCiteds

p)IsRes(K,cIsPublccpKGoodPubl

John

Mary

,(),((
),(),,(

),(
,(),(),,(

),(
)(),,(

)'(
)),(),,((

)(),',,(

∧∃
∧←

∧
∧←

∧∧←
¬∧

∧∃

∧∧←

 (4)

One thing to notice is the “reuse” of trust predicates (IsPubl, Colleague, IsRes): we

believe this decomposition allows great simplification of the process of building trust-
points, as many trust decisions rely on the presence (or absence) of the same proper-
ties (for example, “being a colleague”, “being a relevant author”, “being cited”).

2.5 A Model for the Trust Process

Having a model for the trust requirements, now we can proceed to model the dynam-
ics of trust: how the trust acts are combined to form what we call the trust process,
which is the process by which an agent keeps its trusted facts base with all the facts
that the agent trusts, according to its trust-points, and with no facts that he does not
trust.

ISWC2005 Semantic Web and Policy Workshop 7 November 2005

 90

We propose the following procedure for realizing the trust process:

1. Include in the known facts base facts contained in the received information.
2. Remove one fact from either the trusted or the known facts base that has not been

analyzed yet.
3. Apply the trust act to it.
4. If the fact tested is found trustful, then include it in the trusted facts base. If not, in-

clude it in the known facts base.
5. Go back to step 1 until all facts (either known or trusted) have been analyzed.
6. If no fact changed its status (from known to trusted or vice versa), the process

ends; otherwise, restart the process from step 2.
This procedure is depicted in figure 1. Notice that the trust act uses only the set of

trusted facts and the trust-points to decide the trustfulness of a fact.

Fig. 1. Depiction of the trust process

An iterative procedure is used, as the conditions that each trust-point states to ac-
cept a set of facts (for a given provenance) are fulfilled depending on the presence (or
absence) of other trusted facts. So, to trust a fact, it may be necessary that other facts
have already been trusted, which also means that trusting a fact may lead other facts
to be trusted. The same happens when a fact loses its trust status: other facts that de-
pended on this one may also become untrusted.

The last step of the procedure is justified by the functional nature of the trust act: if
there are no changes in the inputs, then nothing will change if it is applied again.

The dependence among facts shown above presents an interesting property of the
model: the interplay between trust-points. The dependence that exists in practice
among facts reveals the intrinsic dependence among trust-points. When a trust-point
is added, it may implicitly enter in a chain of trust-points. These implicit chains of
trust-points resemble the trust policies that are explicitly defined in other approaches

ISWC2005 Semantic Web and Policy Workshop 7 November 2005

 91

like [8]. We say that the model allows the implicit definition of arbitrarily complex
trust policies through the use of its building blocks, the trust-points.

2.6 Trust Transitivity

One often-used property of the trust relationship is the transitivity [9, 10]. It is com-
monly used jointly with trust degrees to represent trust relationships as weighted
graphs, where the weight is the degree of trust. Trust propagation algorithms are used
to infer the degree of trust between unrelated nodes (that is, nodes with no direct edge
between them).

Our approach does not yet use transitivity of trust in the model: it does not support
trust-point inference through the use of trust relationships. In other words, trust-points
are independent: the fact that one agent trusts another on some aspect does not influ-
ence the agent’s trust on a third agent.

However, the model does provide transitivity de facto in a scenario of information
sharing where agents use the proposed trust model and each one of them only shares
information that they trust. To see how this happen, we must derive a trust graph,
where each trust-point originates an edge from the trusting agent to the trusted agent
(the provenance); this edge’s “weight” is the subject matter of the trust-point. If we
merge the trust graphs of several agents, one might find a path in which all edges have
the same subject matter, e.g. John trusts Mary on finding papers, Mary trusts Daniel
on finding papers and Daniel trusts Mark on finding papers. In the example, when
Mark finds an interesting paper, it will eventually end up being trusted by all the
agents in the path (see Fig. 2).

Fig. 2. De facto trust transitivity

2.7 Degrees of Trust

It is a common perception that trust has degrees: one can trust someone more than
someone else [7]. In formal terms, there is an order on the relation of trusting agents
and information sources. Some models try to capture this order through the assign-
ment of trust ratings to trust relationships [10]. This assignment is made for some
pairs of agent-source and then the remaining ratings are inferred [9].

Although the proposed model does not use trust degrees, it does capture the order-
ing of trust relationships based on the idea that to trust more one agent means to trust
him over a larger scope of “things”. A single trust-point’s subject matter gives a set of
trusted facts for some provenance. Given a trusting agent Ta, another agent A, we can
group all trust-points of Ta that include A in their provenance. From this set of trust-
points we can extract the set of subject matters on which Ta trusts A, which gives the
extent of trust of Ta with respect to A. To visualize this, we can look again to the trust

ISWC2005 Semantic Web and Policy Workshop 7 November 2005

 92

graph originated by the trust-points: each pair of nodes can have one or more edges,
one for each subject matter. The set of edges between two nodes gives the extent of
the trust relationship, as exemplified in Fig. 3, which shows the extents of trust of
John with respect to Mary (accepting web sites, Semantic Web papers and rock mu-
sic) and Bob (accepting web sites and antivirus software). Formally, we can say that
the trust predicate associated with a subject matter entails the set of facts that will be
trusted. Then, we can say that the extent of trust of Ta with respect to A entails the set
of all facts that Ta trusts when coming from A.

Now the problem is reduced to finding an order on the set of extents. A partial or-
dering on it is given by the entailment relation: an extent A is strictly greater than the
extent B if A entails B and B does not entail A. Loosely speaking, an extent is greater
than other if it contains the other extent. If there is no entailment relation between two
extents, then it is not possible to order them.

Fig. 3. John is the trusting agent. The dashed lines show the extents of trust of John with re-
spect to Mary and Bob.

2.8 Applying the Model to the Motivating Scenario

The above model of trust can be applied to the scenario of interest with the following
mappings:
• A fact is an RDF triple pertaining to a named graph [3]. We used named graphs in

order to support attachment of provenance and contextual information to graphs
(see below).

• The trusted facts are the accepted triples.
• The trusting agent is the information consumer.
• The circumstances are facts whose subject is the context of a triple, that is, its sur-

rounding named graph. The provenance is a particular circumstance that will be
treated separately, as justified before.

ISWC2005 Semantic Web and Policy Workshop 7 November 2005

 93

• The Semantic Web Publishing vocabulary [3] provides means to attach provenance
information to graphs, establishing a relation between an agent and a graph. This
relation can be of assertion, quoting, denial etc. So, a triple’s provenance is the en-
tity asserting this triple’s graph.

• The subject matter entails a set of triples that the trusting agent relies on (for a
particular provenance). The subject matter “receiving academic articles” will entail
all triples that, in the domain theory of the agent, assert that something is an
academic article. Notice that this relation can (and normally will) be described
intensionally. In the preceding example, the entailment relation can be stated using
an RDF property whose domain is the set of academic articles.

• The trust policy of an agent for receiving information is given by its set of trust-
points. The trust process presented enforces this policy, separating reliable facts
from facts that are just known.

3 Prototype Implementation

We tested the preceding ideas in a prototype solution aimed to partially implement the
trust process presented above. We used named graphs to store triples and TriQL (the
extension of RDQL for named graphs) to represent (and apply) trust predicates. Cur-
rently we do not implement neither composite nor negated trust predicates. We also
do not support transparently blank nodes due to limitations of the underlying imple-
mentations used. Currently all blank nodes are transformed into fake URI nodes dur-
ing the prototype execution.

The trust-points were expressed using a simple ontology, mirroring the model’s
structure: each trust-point is composed by one or more trust predicates, which may be
predicates on the subject matter or on the provenance. We do not provide separate
predicates for circumstances yet, although they can be implemented as subject matter
predicates without loss of expressiveness. The elementary trust predicates are ex-
pressed as graph patterns and sentence patterns or URI, depending on the type of
predicate (subject matter or provenance). Follows a sample of the trust-points and
trust predicates we used in our tests. The trust-points are represented using N3 format.

Describes the trust-point GoodSite

ex:goodSite a trust:TrustPoint;

 # Provenance must be a researcher
 trust:provenance trustpred:isResearcher;

 # Subject matter must be a web site
 trust:subjectMatter trustpred:isSite;

 # The site must be hosted on a university
 trust:subjectMatter trustpred:isHostedOnUniv .

ISWC2005 Semantic Web and Policy Workshop 7 November 2005

 94

Describes the trust-point GoodPublJohn

ex:GoodPublJohn a trust:TrustPoint;

 # Provenance should be a John’s colleague
 trust:provenance trustpred:isColleagueJohn;

 # Subject matter must be a publication and
 # must be cited by a good web site
 trust:subjectMatter trustpred:isPublication;
 trust:subjectMatter trustpred:citedByGoodSite .

Describes the trust predicate IsRes

trustpred:isResearcher a trust:ElementaryPredicate;
 trust:graphPattern

"?g (?GRAPH swp:assertedBy ?g .
 ?g swp:authority ?ENTITY)
 (?ENTITY foaf:member ?u)
 (?u rdf:type ex:University)" .

Describes the trust predicate isPubl

trustpred:isPublication a trust:ElementaryPredicate;

 # This predicate is described as a sentence

pattern. It will allow sentences whose
predicate is dc:type. This is the trusting
agent’s view of what is a publication.

 trust:sentencePattern
"?ANYTHING dc:type ?ANYTHING" .

The graph patterns are used to express conditions on the set of trusted facts, that is,
what must be already known to trust a triple. They follow TriQL syntax and may use
variables. Each trust-point is converted to a TriQL query, which is applied to the set
of trusted facts. There are four special variables, whose values are bound before run-
ning the queries: GRAPH, SUBJ, PRED and OBJ, which are bound respectively to
the graph name, the subject of the triple being tested, its predicate and its object.
These variables allow the trust predicates to test relationships between the triple being
analyzed with the trusted facts. The graph patterns of all trust predicates of a trust-
point are concatenated to build the query.

The sentence patterns restrict the valid values on each of the triple’s components. If
the agent does not wish to restrict some of them, he may use the special variable
ANYTHING. These restrictions appear in the query as conditions on the variable’s
values.

ISWC2005 Semantic Web and Policy Workshop 7 November 2005

 95

To deal with provenance information, the prototype recognizes the special variable
ENTITY and allows the trust predicate to specify a concrete URI value for it. The
trust predicate is responsible for providing a graph pattern that binds this variable to
the node that represents the provenance of the triple being tested.

The trust-point GoodSite shown above is translated to the following TriQL query
that, given a triple, rules it out if it does not match the conditions imposed by the
trust-point.

SELECT * WHERE ?GRAPH (?SUBJ ?PRED ?OBJ)
 (?SUBJ ex:hostedOn ?u)
 (?u rdf:type ex:University)
 ?g (?GRAPH swp:assertedBy ?g .
 ?g swp:authority ?ENTITY)
 (?ENTITY foaf:member ?u)
 (?u rdf:type ex:University)

 AND ?PRED eq rdf:type
 AND ?OBJ eq ex:Website

Once the trust-points are translated into queries, the prototype cycles through the

set of triples not yet trusted, following the trust process defined earlier. Currently it
operates on a static knowledge-base, that is, no new facts can be added during its exe-
cution. This restriction will be removed in future developments.

We tested the prototype with some hand-made sample data and it performed as ex-
pected, being capable of implement and enforce the trust policies expressed by the
sample trust points presented. Follows the output of the prototype in one of the tests,
showing which triples got trusted in which cycle. The name of the trust-point who al-
lowed the inclusion of the fact is between angle brackets before each sentence.

Loading knowledge base...
Loading trust-points...
Running trust-point engine...

====> Cycle 1

+ {goodProvenance1} ex:JohnWarrant swp:assertedBy
ex:JohnWarrant
+ {goodProvenance1} ex:AnnWarrant swp:assertedBy
ex:AnnWarrant
+ {goodProvenance3} ex:JohnWarrant swp:authority
ex:John
+ {goodProvenance3} ex:AnnWarrant swp:authority
ex:Ann
+ {selfTrust} ex:JohnData swp:assertedBy
ex:JohnWarrant
+ {selfTrust} ex:John foaf:knows ex:Ann
+ {selfTrust} ex:John foaf:name "John M."
+ {selfTrust} ex:puc rdf:type ex:University
+ {selfTrust} ex:Ann foaf:member ex:puc
+ {selfTrust} ex:swsite ex:cites ex:book

ISWC2005 Semantic Web and Policy Workshop 7 November 2005

 96

+ {hosting} ex:swsite ex:hostedOn ex:puc
+ {goodProvenance2} ex:AnnData swp:assertedBy
ex:AnnWarrant

====> Cycle 2

+ {goodSite} ex:swsite rdf:type ex:Website

====> Cycle 3

+ {GoodPublJohn} ex:book dc:type ex:Book

====> Cycle 4

FINISHED

4 Conclusions

Our goal was to build a formalism to capture, represent and apply trust requirements
of an agent in the scenario of Semantic Web data exchange, while preserving the real-
world semantics of trust. This was done using the trust-point concept as a unit com-
prising all information needed to decide the trustfulness of received information. The
composition of trust-points yields trust policies that can be realized using the trust
process proposed. We presented a partial prototype implementation fulfilling this trust
process, using TriQL queries to implement the trust policies.

Differently from Bizer’s work [1], where each policy must specify all the condi-
tions the triples must fulfill to be accepted, in the proposed model the trust policies
can be built incrementally, as each trust-point can be specified independently from the
others, while cooperating with them in each trust act. The addition of new trust-points
enriches the resulting trust policies. In fact, these trust policies emerge from the inter-
actions between the different trust-points. We believe this represents more realisti-
cally how trust acts occur in the real-world.

The next steps in this work include a deeper study of the proposed formalism in
order to evaluate its properties (expressiveness and computational complexity, among
others) and to see how it compares to other existing models. We also wish to com-
plete the prototype’s implementation and use it in more realistic scenarios, including
Social Semantic Desktops and P2P networks.

5 References

1. Bizer, C., Cyganiak, R., Maresch, O., Gauss, T.: TriQL.P - Trust Policies Enabled Semantic
Web Browser. http://www.wiwiss.fu-berlin.de/suhl/bizer/TriQLP/browser/

2. Guha, R.: Open Rating Systems. 1st Workshop on Friend of a Friend, Social Networking and
the Semantic Web (2004).

3. Carroll, J. J., Bizer, C., Hayes, P., Stickler, P.: Named Graphs, Provenance and Trust. Tech-
nical report HPL-2004-57 (2004).

ISWC2005 Semantic Web and Policy Workshop 7 November 2005

 97

4. Gerck, E.: Toward Real-World Models of Trust: Reliance on Received Information.
http://www.safevote.com/papers/trustdef.htm.

5. Tummarello, G., Morbidoni, C., Puliti, P., Piazza, F.: The DBin Semantic Web platform: an
overview. http://www.instsec.org/2005ws/papers/tummarello.pdf.

6. Bizer, C., Oldakowski, R.: Using Context- and Content-Based Trust Policies on the Semantic
Web. In: International World Wide Web Conference (2004).

7. Castelfranchi, C., Falcone, R.: Social Trust: A Cognitive Approach. In: Castelfranchi, C.;
Yao-Hua Tan (Eds.): Trust and Deception in Virtual Societies. Springer-Verlag (2001).

8. Nejdl, W., Olmedilla, D., Winslett, M.: PeerTrust: Automated Trust Negotiation for Peers
on the Semantic Web. Workshop on Secure Data Management in a Connected World
(SDM'04) in conjunction with 30th International Conference on Very Large Data Bases,
Aug.-Sep. 2004, Toronto, Canada

9. Guha, R., Kumar, R., Raghavan, P., Tomkins, A.: Propagation of Trust and Dis-
trust. In: International World Wide Web Conference (2004).

10. Golbeck, J., Parsia, B., Hendler, J.: Trust Networks on the Semantic Web. Proceedings of
Cooperative Intelligent Agents (2003), Helsinki, Finland.

ISWC2005 Semantic Web and Policy Workshop 7 November 2005

 98

Specification of Policies for
Automatic Negotiations of Web Services

Steffen Lamparter and Sudhir Agarwal

Institute of Applied Informatics and Formal Description Methods (AIFB),
University of Karlsruhe (TH), Germany

{lamparter,agarwal}@aifb.uni-karlsruhe.de

Abstract. Market mechanisms provide an efficient institution for allocating ser-
vice offers and requests. In doing so, negotiations betweenthe market participants
play a crucial role. However, current policy languages are ill-suited to realize ben-
eficial trade-offs within a negotiation, since they supportonly boolean decisions.
Therefore, we suggest an approach where preferences are modeled as utility func-
tions. We show, how such preferences can be specified with description logics to
enable the use of existing inference engines for calculating the degree of policy
satisfaction by offers/requests which can be considered inthe negotiation process.

1 Introduction

Web services are self-contained, modular business applications that have open, Internet-
oriented, standards-based interfaces, e.g. WSDL. They allow flexible and dynamic soft-
ware integration that is often referred to as the ”Find-Bind-Execute”-paradigm. More-
over, by using standard Internet technology, Web services facilitate cross-organizational
transactions and thus outsourcing of software functionality to external service providers.
When moving from distributed systems operating within one company to systems that
involve different, independent companies, the ”Find-Bind-Execute”-schema describes
nothing else than a B2B procurement process, where digital services such as informa-
tion delivery or execution of calculations are purchased. Thus, service-oriented com-
puting requires an infrastructure that provides a mechanism for coordinating between
service requesters and providers. This coordination mechanism has to provide a plat-
form where potential business partners can be discovered, prices can be ascertained,
and contracts can be closed. A marketplace, where prices aredetermined by the inter-
play between supply and demand, can be regarded as a coordination mechanism that
efficiently provides these functionalities [1].

1.1 Web Service Markets

Figure 1 brings together the phases that can be identified in an electronic market [2, 3]
and the typical Web Service usage process which comprises the steps discovery, compo-
sition, negotiation, and finally contracting. In theMatchmaking Phase suitable services
are discovered. Since a certain goal can not be accomplishedonly by a single service
but also by a combination of services this phase also includes composition. After having
determined those services that are able to achieve a certaingoal an optimal assignment
of service requests and offers with respect to the individual utility of the participants or

ISWC2005 Semantic Web and Policy Workshop 7 November 2005

 99

Fig. 1.Market phases and the Web Service usage process

to the overall welfare has to be found in theAllocation Phase. To achieve this, nego-
tiations between the participants have to be carried out. For determining the allocation
and price many different mechanisms are available ranging from simple selection ap-
proaches to complex negotiation or auction schemes. After this allocation, legally bind-
ing contracts are closed between the corresponding business partners in theContract
Formation Phase. These contracts have to be formalized in a machine-understandable
way in order to allow automated execution and monitoring.

In each market phase different kind of information is required.Functional prop-
erties, required in theMatchmaking Phase, are those attributes that are mandatory to
be able to invoke a service and to integrate the results, e.g.the input and output of a
service. That means, that for functional properties no alternatives can be specified and
thus negotiations about such properties are impossible. All discovered services fulfill
the desired goal but may differ in theirnon-functional properties which are attributes
that are not required to invoke the service nor to integrate the results, but they are the
decisive factors for service selection and price determination. For example, price, pay-
ment method, security as well as trust attributes, and most notably quality of service
attributes. Typically, for each non-functional attributethere are several alternatives that
can be adopted depending on the preferences of the trading partners. Thus, a negotiation
has to be carried out to agree on one of the alternatives. In order to be able to negotiate,
preference information about the different alternatives is required. In case of an auto-
matic negotiation it is not enough that preferences are in the user’s mind, but they have
to be formalized explicitly.

Here, the policies come into play. Policies allow to declaratively express prefer-
ences, i.e. which of the different alternatives a non-functional property may adopt. Thus,
policies can be regarded as constraints or rules that restrict the decision space within the
negotiation of agreements.

1.2 Some Motivating Scenarios

In this section some motivating examples are presented in order to illustrate why nego-
tiations about non-functional properties are required. Wecome up with examples from
the domains privacy and quality of service. However, the problems are the same for
other non-functional properties.

ISWC2005 Semantic Web and Policy Workshop 7 November 2005

 100

Privacy. A Web service might support different privacy levels. For example, a provider
either gives a guarantee to delete customer data straight after the business interaction
was carried out or the provider stores customer data for further usage. In the latter case
a discount on the service price is given to the customer, i.e.the customer could sell
private data in exchange for a discount. Which of the alternatives is more preferable to
the customer depends on how important data privacy as well asa cheap price is judged
by the customer.

Quality of Service. A Web Service interaction involves several different quality of ser-
vice criteria like response time, availability, etc. Typically, not all criteria are perfectly
met by the service providers, rather each provider has his strengths and weaknesses. In
order to decide which service suits best exact information about the requesters prefer-
ences are required, e.g. is a service with fast response timeand bad availability better
than a service with the converse properties. Moreover, one has to know if a $10 discount
in price justifies a slower response time of 10s.

In each of this examples there is a trade-off between different service properties
(e.g. quality vs. price, privacy vs. price, privacy vs. quality) which can only be resolved
by making the different attributes comparable. This can be realized by assigning utility
values to the different decision alternatives. Such cardinal preferences allow to decide
whether a certain discount is high enough to compensate the loss in utility that re-
sults from a disadvantageous property value. Hence, negotiations between the parties
may lead to service configurations that yield higher welfarefor providers as well as
requesters.

The paper is organized as follows. In section 2 a general policy framework is intro-
duced and extended to enable the representation of fine-grained preferences. We show
how preferences can be evaluated in a DL reasoner by mapping utility functions to an
appropriate description logic. We conclude in section 4 after discussing related work in
section 3.

2 Specifying Policies for Negotiation

In this section, a formalism is presented that allows formalspecification of preferences
and thus facilitates automatic decision making and negotiations. In section 2.1, a general
framework for expressing policies is introduced. This framework is based on the foun-
dational ontology DOLCE [4]. Foundational ontologies capture typicalontology design
patterns (e.g. location in space and time). By providing a sound conceptual model with
precise concept definitions they facilitate integration ofdifferent policy efforts (cf. [5]).
In section 2.2 the description framework is extended to enable the representation of
fine-grained preferences by means of description logics.

2.1 Policy Description Framework

In this section, the generic policy description framework introduced in [5] is refined.
The framework provides a generic ontology for expressing policies. Ontologies formal-
ize concepts and concept relationships very similar to conceptual database schemata or
UML class diagrams [6]. However, ontologies typically feature logic-based representa-
tion languages. Those languages come with executable calculi that allow querying and

ISWC2005 Semantic Web and Policy Workshop 7 November 2005

 101

reasoning during run-time. Moreover, ontologies facilitate the conceptual integration
of heterogeneous policy efforts by providing well-defined and machine understandable
semantics.

-subclassof DnS:Description
-Age of Information

-Information Source

Policy Description

-

OoP:Task

-subclassof. DnS:Parameter

Attribute

-subclassof DnS:Role

Object

-subclassof: DnS:Role

Agent
DnS:obliged-to

DnS:requisite for

DnS:anakastic
duty towards

DnS:defines
DnS: defines

DnS:defines

DnS:

defines

DnS:valued by

Policy Value

DnS:requisite forDnS:requisite for

-subclassof DnS:Situation

Policy Enforcement Situation

DnS:satisfies

DnS:setting

Situation Value

-subclassof Dolce:Region

Attribute Value

Fig. 2. Sketch of the Policy Description Framework.

In order to express policies we add a Core Policy Ontology to the DOLCE ontology
stack. In the remaining part of this section we introduce thebasic principles of DOLCE,
present the design of the Core Policy Ontology, and show how the framework can be
used to express concrete policies by means of an example.

DOLCE. The foundational ontology DOLCE (Descriptive Ontology forLinguistic and
Cognitive Engineering) provides the basis for the policy description framework used in
this paper. Foundational ontologies are high-quality formalizations of domain indepen-
dent concepts and associations that contain a rich axiomatization of their vocabulary.
D&S (DnS) is an ontology module that extends DOLCE and introduces the basic dis-
tinction between descriptive (DnS : Description)1 and ground entities (DnS : Situation).
A Situation defines a state of affair (e.g. real settings in the world suchas facts or
cases), while aDescription is a conceptualization which encompasses objects such as
laws, plans, policies, etc. A detailed description of DOLCEand D&S can be found in
[4] and [7], respectively. Moreover, in order to model workflow information as well as
data the modules Ontology of Plans (OoP) and Ontology of Information Objects are in-
troduced [7].Descriptions containConcepts such asFunctionalRoles, CourseofEvents,
andParameters. Ground entities in D&S are derived from DOLCE.FunctionalRoles

are played− by Endurants, CoursesofEvents sequences Perdurants, Parameters are
valued − by Regions.

Core Policy Ontology. In order to express policies we have to extend the basic vocab-
ulary with policy specific concepts and relations, while reusing the foundational ontolo-
gies as far as possible. This core ontology contains the basic building blocks needed for
modeling policies.

1 Concepts of the ontology are written insansserif . For concepts and relations that are directly
contained in the corresponding ontology name spaces are omitted, for those derived from other
modules the corresponding name space is mentioned explicitly.

ISWC2005 Semantic Web and Policy Workshop 7 November 2005

 102

Figure 2 sketches the Core Policy Ontology (CPO) in a simplified way. All con-
cepts of the CPO are subclasses of DOLCE top-level concepts.A policy description
consists of the conceptsAgent, OoP : Task, Object, andAttribute. The entitiesAgent,
OoP : Task, andObject allow to define the application area of the policy, whileAttribute

defines the property that is constrained by the policy. This could be, for instance, a con-
straint regarding the service, the agent that invokes the service, etc. TheAttribute is
DnS : valued − by an AttributeValue which is aDolce : Region and specifies which
attribute values are allowed according to the policy.

During run-time the policy has to be enforced by the system. This is done in a
concretePolicyEnforcementSituation which represents the current state of the system.
In doing so, it has to be checked if theDnS : Concepts in the DnS : Description are
DnS : classified by an entity in theDnS : Situation. If this is the case aDnS : satisfies

relation is introduced betweenPolicyEnforcementSituation andPolicyDescription as
specified in [8]. The actual attribute value in the situation(denoted bySituationValue)
classifies thePolicyValue only in case theDolce : Region defined in theSituationValue

is contained in theDolce : Region of thePolicyValue. In this case the policy is met.

Example. In the following we show how the framework introduced above is applied to
specify concrete policies. Again we fall back on the privacyand quality of service do-
mains. Consider a requester policy which says that a provider may store private data of
the customer only for up to 14 days. This can be formalized by means of the Core Policy
Ontology as show in figure 3. All concepts of the description are instantiated by domain
specific entities. The policy will be applied if Web Service Providers (WSProvider)
store PrivateData and permits this only for 14 days. Additionally, a quality ofservice
policy is added, which specifies that the response time of theother party should be
less than 5 seconds. Therefore, a additionalAttribute ResponseTime is added. Both
attributes arevaluedby anIntegerRegion.

-type Policy Description

PrivacyPolicy

-type OoP:Task

store

-type Attribute

Storage Duration

-type Object

Private Data

-type Agent

WS Provider
DnS:obliged-to

DnS:
requisite

for

DnS:anakastic
duty towards

DnS:defines

DnS: defines

DnS:defines

DnS:

defines
DnS:

valued by
-

<14

-subclassof Attribute Value

Integer Region

-type Attribute

Response TimeDnS:

defines -

<5DnS:

valued by

Fig. 3. Specification of a Privacy Policy.

2.2 Utility-based preference specification

In section 2 a generic framework for specifying policies is introduced. However, this
framework is not expressive enough to capture fine-grained preferences as required for

ISWC2005 Semantic Web and Policy Workshop 7 November 2005

 103

supporting automatic negotiations. In the field of economics multi-attributive utility
theory [9] is typically used to address these problems. It allows to handle trade-offs
between alternatives and provides the right means for finding optimal service config-
urations. After introducing the basic idea behind utility theory, we show how such an
utility approach can be integrated into our policy description model. To achieve this,
utility functions are mapped to description logics. Further, we come up with an exam-
ple to illustrate how fine-grained policies can be specified and rankings can be derived.

Utility Theory. In the context of utility theory a preference structure is defined by the
complete, transitive, and reflexive relation�. This means the property valuep1 ∈ P is
preferred top2 ∈ P if p1 � p2. The preference structure can be derived from the value
functionvi(p) of a useri.

∀a, b ∈ P : pa � pb ⇔ vi(a) ≥ vi(b)

The functionvi(x) represents the utility defined by the relation� in a sense that the
attribute values can be ranked by comparing the numeric values of the value function.
Utility theory allows to decompose complex outcome spaces into utility functions com-
posed of several lower-dimension functions. Thus, we can describe the preference struc-
ture for the attributes relevant to a specific service separately and then combine them
to get the overall valuation. According to those definitionsa useri specifies the util-
ity function of the individual service propertiesX . Then, the overall valuation can be
approximated by using the following additive value function.

V i(x) =

n
∑

j=1

λi
jv

i
j(xj) (1)

For the additive value function above we assume mutual preferential independence be-
tween the attributes [9]. Under this assumption we can easily aggregate the utility func-
tionsvi

j(xj) of the individual attributesj to obtain the overall valuation of a service.
Additive value functions are valid in many real world scenarios and might still provide
a good approximation, even when mutual preferential independence does not hold ex-
actly [10]. The weighting factorλi

j is normalized in the range[0, 1] and allows to model
the relative importance of an attributej for a specific agenti.

Formal representation of preferences. In order to allow standard DL reasoners to
make decisions based on the introduced utility approach, utility information has to be
specified in a formal way. This can be done by modifying the conceptPolicyValue of
the Core Policy Ontology in a way that each property value in the set refers to a specific
utility value. To allow for handling of discrete as well as continuous properties complex
functions are required that map properties to utility values. In doing so, thesatisfies-
relation does no longer lead only to a pure boolean statementabout the conformity of
a Situation with respect to thePolicyDescription, but it leads to a statement about the
degree of conformity. This is exactly the information that is required in order to auto-
mate negotiations. To facilitate the representation usingdescription logics we restrict
ourself to piecewise linear utility functions since such functions can be defined just by
sets of points inR2. We use the description logicALC(D + Σ) with concrete domains
and aggregates as proposed in [11]. The set of two points withadjacentx-coordinates

ISWC2005 Semantic Web and Policy Workshop 7 November 2005

 104

-subclassof OIO:Information Object

Satisfiability

Policy Value

Situation Value

-subclassof OIO:Information Object

YL

-subclassof Dolce:Abstract Region

µ

-subclassof Dolce:Region

R_[0,1]

yl

degreepv

satisfies

Fig. 4.Extended policy description framework.

can be interpreted as a straight line. For every line between(x1, y1) and(x2, y2) and a
givenx, we calculate anα as follows.

α =

{

y1−y2

x1−x2

(x − x1) + y1, if x1 ≤ x ≤ x2

0, otherwise,
(2)

We model this by defining a conceptYL, to capture theαs as described above.

YL ⊑ OIO : InformationObject ⊓ ∃α.R[0,1], (3)

whereα is a functional role. This means for defining piecewise linear functions the se-
mantics ofPolicyValue has to be modified to a subclass of theDolce : AbstractRegion

µ that contains the set of points(x, y) which constitutes the utility function. More-
over, we define the relation∃yl.YL from SituationValue to theDolce : AbstractRegion

YL. A SituationValue will be in as many relation instances ofyl with instances ofYL

as there are lines in the utility functionµ. The utility value of aSituationValue a ac-
cording toµ is then just the sum of all suchα over all the lines ofµ. Further, we
define a relationsatisfies (specialization ofOIO : realizes) from SituationValue to the
OIO : InformationObject Satisfiability, which is defined as

Satisfiability ⊑ OIO : InformationObject ⊓ ∃pv.PolicyValue ⊓ ∃degree.R[0,1]. (4)

Now, the axiom
P=(satisfies ◦ degree,

∑

(yl ◦ α)), (5)

where the predicateP=(x, y) is true iff x = y, ensures that the utility value of an
individual a according to the functionµ is equal to the sum of allα over all lines of
µ. Based on this result we can calculated the weighted degree of satisfactionwds by
means of the following formula:

P∗(wds ◦ degree, satisfies ◦ degree, λi
j), (6)

ISWC2005 Semantic Web and Policy Workshop 7 November 2005

 105

The predicateP∗(x, y) is true iff the conditionwds ∗ degree = (satisfies ∗ degree) ∗
weight holds. As already introduced,λi

j represents the relative importance of attribute
j defined by useri.

Finally, the weighted degrees of satisfactionwds have to be aggregated in order to
derive the overall degree of satisfaction. Analogously, this is done by the axiom

P=(satisfies ◦ degree,
∑

aj ◦ wds ◦ degree) (7)

whereaj refers to thejth attribute.

0

0

0.55

14

0.55

yl yl yl
satisfies

degree

0

0

0

5

0.7

yl yl yl

degree

satisfies

0.7

0.625

0.275 0.35

wdswds

degree degree

a1 a2

degree satisfies

0.5 0.52
1

Fig. 5.Example

Example For this example the privacy policy used in section 2.1 is modified by intro-
ducing a piecewise linear functionµ as follows:{(0, 1), (10, 0.75), (20, 0.25), (30, 0)}.
That means the best alternative for the customer is realizedwhen the provider does not
store her private data. Consequently, the utility decreases with the number of days the
private data is stored. After 10 days only 75% and after 20 days only one quarter of
the overall utility remains. Beginning with a storage time of 30 days no utility can be
derived from the property any more. The four points defined above result in a function
containing three lines. This obviously leads to three relation instancesyl in YL. For a
service that stores data for 14 days the relation to all threeinstances ofYL has to be
calculated in order to derive the utility valuesα. Now, according to equation 6 the de-
gree of satisfiability can be determined by aggregating theα-values. For our example,
this calculation results in a degree of0 + 0.55 + 0 = 0.55. Analogously, the degree
of satisfiability can be calculated for the attributeResponseTime. We assume this re-
sults in adegree of 0.7 and that quality and privacy are equally important to our user
(λ1 = λ2 = 0.5).

Now, the weighted degree of satisfactionwds for an attribute can be calculated by
multiplying degree with the corresponding weighting factor. This results in awds of
0.55 ∗ 0.5 = 0.275 for the privacy policy and0.7 ∗ 0.5 = 0.35 for the quality policy.
Consequently, the overall degree of satisfaction will be0.275 + 0.35 = 0.625.

ISWC2005 Semantic Web and Policy Workshop 7 November 2005

 106

3 Related Work

Many policy languages such as WS Policy, WS Security, EPAL, XACML, and others
emerged in the Web Service community. Our work differs from these languages in that
we base on a formal and extensible conceptual model. Furthermore, the WS* languages
base on discrete reasoning or only vaguely define the semantics. Like our work, KAoS
[12] and Rei [13] are also based on formal ontologies. In contrast to KAoS and Rei
our work is currently restricted to obligations. Other modalities like permissions are
not supported yet. However, both do not aim at unifying policy languages via foun-
dational ontologies and apply a discrete reasoning approach that allows for boolean
decisions only. For instance, those languages are suitablefor deciding if a service is
suitable according to specific policy, but make no statementabout the degree of suit-
ability. Furthermore, ontology-based policy languages often lack support for aggrega-
tion functions. This is tackled in our approach by relying onan expressive description
logic (ALC(D + Σ)).

Moreover, in contrast to this work existing policy languages do not allow for ex-
pressing preference relations between different service configurations (e.g. between dif-
ferent privacy or quality levels) as well as weighting factor for the service properties.
But this is necessary realizing beneficial trade-offs in a multi-attributive environment.
However, some allow to assign priorities to individual policies or rules, which is not yet
possible using our approach.

[14, 15] suggest to use utility functions in order to expresspolicies and facilitate
negotiation. However, they present no formal model for representing such utility in-
formation in a declarative, machine understandable, and interoperable way. But this is
required to enable automatic negotiations in a distributedand heterogeneous environ-
ment. Therefore, we suggest an approach where utility information is represented by
means of OWL-DL. This allows reasoning over preference information by means of
standard inference engines.

Moreover, there are already existing approaches for policybased negotiation in the
Semantic Web Service domain. Since deriving accurate as well as complete descrip-
tions of Web Services is hardly manageable due to the information volume needed and
the dynamic aspects that might require continuous updates of the service description,
[16] introduces a contracting step where abstract service descriptions are concretized
by means of individual negotiations. This procedure aims tofind suitable services while
keeping the descriptions simple and thus manageable. The work in this paper is com-
plementary since we focus on the selection of the most suitable service while assuming
that the set of suitable services are discovered already in the matchmaking phase be-
fore the negotiation. In [17] functional goals as well as policies are considered to find
compatible services. In doing so delegation as well as trustnegotiation play a crucial
role, i.e. trust between two parties increases with each negotiation step. However, both
approaches mentioned above allow only to derive a pure boolean statement about the
compliance between policies. For selection as well as negotiation more fine-grained
information about the degree of compliance might be necessary, e.g. in order to rank
services or generate a counteroffer.

ISWC2005 Semantic Web and Policy Workshop 7 November 2005

 107

4 Conclusion

In this paper, we considered electronic markets as big picture and motivated the need
of formal specification of policies in the allocation phase.We presented a technique
for formally specifying user preferences for Web service properties and how ranking
for Web services can be calculated based on such preferences. Our policy description
framework is based on the foundational ontology DOLCE and thus facilitates easier
integration of other policy specification languages.

In section 2.1, we have used the standard DOLCE satisfiability relation, which is in
our opinion too weak. In section 2.2, we extend the satisfiability relation in a way such
that one can talk about the degree of satisfiability. We have shown, how the degree of
satisfiability can be calculated by aALC(D + Σ) reasoner. Note, that the description
logicALC(D+Σ) is undecidable, whereas the description logicALC(D) is decidable
[18]. To be able to model the preferences withALC(D), we only need to fix the maxi-
mum number of attributes (cf. equation (1)) and the maximum number of points in the
utility function.

As discussed above, in order to enable agents to negotiate automatically without
human intervention they require very detailed informationabout the preferences of
users (e.g. utility functions for all attributes or attribute combinations, weights of the
attributes). This leads to a considerable modeling effort,which obstructs the practical
applicability. Thus, means have to be found to support and partly automate preference
specification. Since our approach is based on utility theorywe can rely on a substan-
tial quantity of decision analysis and preference elicitation tools [19] that are already
available in this context like the Analytic Hierarchy Process (AHP) [20] or a conjoint
analysis.

Acknowledgements

This work was funded by the Federal Ministry of Education andResearch (BMBF),
the German Research Foundation (DFG), and the European Union in scope of the In-
ternetökonomie project SESAM, the Graduate School Information Management and
Market Engineering as well as the IST project SEKT.

References

1. Hurwicz, L.: The design of mechanisms for resource allocation. American Economic Review
69 (1973)

2. Lindemann, M.A., Schmid, B.F.: Elements of a reference model for electronic markets.
In: HICSS ’98: Proceedings of the Thirty-First Annual Hawaii International Conference on
System Sciences-Volume 4. (1998)

3. Ströbel, M., Weinhard, C.: The montreal taxonomy for electronic negotiations. Group Deci-
sion and Negotiation12 (2003) 143–164

4. Masolo, C., Borgo, S., Gangemi, A., Guarino, N., Oltramari, A., Schneider, L.: The Won-
derWeb library of foundational ontologies. WonderWeb Deliverable D17 (2002)

5. Lamparter, S., Eberhart, A., Oberle, D.: Approximating service utility from policies and
value function patterns. In: 6th IEEE Int. Workshop on Policies for Distributed Systems and
Networks, IEEE Computer Society (2005)

6. Staab, S., Studer, R.: Handbook on Ontologies. Springer Verlag, Heidelberg (2004)

ISWC2005 Semantic Web and Policy Workshop 7 November 2005

 108

7. Gangemi, A., Borgo, S., Catenacci, C., Lehmann, J.: Task taxonomies for knowledge content.
Metokis deliverable d07 (2004)

8. Gangemi, A., Sagri, M.T., Tiscornia, D.: A constructive framework for legal ontologies. In
Benjamins, R., Casanovas, P., Breuker, J., Gangemi, A., eds.: Law and the Semantic Web:
Legal Ontologies, Methodologies, Legal Information Retrieval, and Applications. (2005)

9. Keeney, R.L., Raiffa, H.: Decisions with Multiple Objectives: Preferences and Value Trade-
offs. J. Wiley, New York (1976)

10. Russel, S., Norvig, P.: Artificial Intelligence - A Modern Approach. second edn. Prentice
Hall Series in Artificiall Intelligence (2003)

11. Baader, F., Sattler, U.: Description logics with concrete domains and aggregation. In Prade,
H., ed.: Proc. of the 13th European Conf. on AI (ECAI-98), John Wiley & Sons Ltd (1998)

12. Uszok, A., Bradshaw, J.M., Jeffers, R., Tate, A., Dalton, J.: Applying KAoS services to
ensure policy compliance for semantic web services workflowcomposition and enactment.
In: Int. Semantic Web Conf. (ISWC’04). (2004)

13. Kagal, L.: A Policy-Based Approach to Governing Autonomous Behavior in Distributed
Environments. PhD thesis, University of Maryland, Baltimore MD 21250 (2004)

14. Kephart, J.O., Walsh, W.E.: An artificial intelligence perspective on autonomic computing
policies. In: Proc. of 5th IEEE Int. Workshop on Policies forDistributed Systems and Net-
works. (2004)

15. Karp, A.H.: Representing utility for automated negotiation. Technical Report HPL-2003-
153, HP Laboratories Palo Alto (2003)

16. Lara, R., Olmedilla, D.: Discovery and contracting of semantic web services. In: W3C
Workshop on Frameworks for Semantic in Web Services, Innsbruck, Austria (2005)

17. Olmedilla, D., Lara, R., Polleres, A., Lausen, H.: Trustnegotiation for semantic web services.
In: 1st International Workshop on Semantic Web Services andWeb Process Composition
(SWSWPC). Volume 3387 of Lecture Notes in Computer Science., San Diego, CA, USA,
Springer (2004) 81–95

18. Baader, F., Hanschke, P.: A schema for integrating concrete domains into concept languages.
In: Proc. of the 12th Int. Joint Conf. on AI (IJCAI-91), Sydney (1991)

19. Chen, L., Pu, P.: Survey of Preference Elicitation Methods. Technical report (2004)
20. Saaty, T.L.: How to make a decision: The analytic hierarchy process. European Journal of

Operational Research48 (1990) 9–26

ISWC2005 Semantic Web and Policy Workshop 7 November 2005

 109

Towards a Policy-Aware Web

Vladimir Kolovski1, Yarden Katz2, James Hendler2,
Daniel Weitzner3, and Tim Berners-Lee3

kolovski@cs.umd.edu, yarden@umd.edu, hendler@cs.umd.edu,
djw@w3.org, timbl@w3.org

1 Maryland Information and Network Dynamics Laboratory Lab, University of
Maryland , College Park , MD 20740

2 Dept. of Computer Science, University of Maryland, College Park, MD
3 CSAIL, Massachusetts Institute of Technology, Cambridge, MA

Abstract. In this paper, we argue that a new generation of Policy-
Aware Web (PAW) technology can hold the key for providing open, dis-
tributed and scalable information access on the World Wide Web. Our
approach provides for the publication of declarative access policies in a
way that allows transparency for information sharing among parties. In
addition, greater control over information release can be placed in the
hands of the information owner, by employing rule-based discretionary
access control. In this paper, we outline the kind of reasoning support
which is needed to achieve these goals. Also, we present our initial steps
in this direction. Our example application for this purpose is a calen-
dar and photo sharing web site that uses a distributed policy framework
(REIN) built on top of a rule-based reasoner (CWM).

1 Introduction/Motivation

While Semantic Web (SW) technologies continue to increase in popularity and
scope, certain data owners are still reluctant to make their data public. The
reluctance to share information prevents the full effects and benefits of Semantic
Web data and tools. The main reason behind the reluctance is the lack of suffi-
ciently sophisticated security and access control. Another issue is privacy; with
so much information electronically available and increasingly sophisticated data
aggregation techniques, individual privacy might be compromised and liberties
put at risk if the information were to be made public with no qualifications. The
problem is exacerbated when information must be shared between parties that
do not have information sharing policies, or when the components of the data
shared are not finely grained (in the cases where access control operates on the
level of an entire website or data resource, for example.)

Consider the task of sharing photographs with friends. When sharing a pic-
ture with a friend or colleague offline, the context of the interaction and the na-
ture of the information being shared are enough for both parties to understand
the social rules governing how the information can be used. When we email pic-
tures, many of the same social conventions are likely to apply. However, when

ISWC2005 Semantic Web and Policy Workshop 7 November 2005

 110

sharing pictures with informally-defined online communities and unknown audi-
ences, problems soon emerge. The inability to write even very simple rules for
specifying who can view this information on the Web leaves us with an inflexible
set of choices. We must either share with everyone, share with no one, or engage
in the arduous task of managing access via domain-specific security mechanisms
(like IP address filtering, or distribution of user names and passwords.)

In this paper, we will argue that a new generation of Policy-Aware Web tech-
nology can hold the key for providing open, distributed and scalable information
access on the World Wide Web. Our approach provides for the publication of
declarative access policies in a way that allows significant transparency for shar-
ing among partners without requiring pre-agreement. In addition, greater control
over information release can be placed in the hands of the information owner,
allowing discretionary access control to flourish. We will show that it is possible
to deploy rules in a distributed and open system, and to produce and exchange
proofs based on these rules in a scaleable way. These techniques, properly applied
by taking crucial Web architecture issues into account, will extend Semantic Web
technology to allow information resources on the World Wide Web to carry ac-
cess policies that allow a wide dissemination of information without sacrificing
individual privacy concerns.

In the next section, we describe in more detail the rule-based infrastructure
that we are bulding. Section 3 discusses the kind of reasoning support needed for
successful operation of our system. In Section 5, we describe a calendar/photo
sharing web application that embodies the core ideas of PAW. Finally, we discuss
the related work and future directions of our project.

2 Infrastructure

Most Web access today is performed using identity- and role-based approaches.
A disadvantage of these approaches is that the roles (classes of users with specific
access rights) have to be defined in advance. Setting up a temporary class for new,
unforeseen access rights, in most implementations, difficult. Also, it is difficult to
setup these access schemes in a fine-grained way because most web-based access
generally works at the file-directory level. Our goal is to be able to describe
policies at the level of individual URIs, grounding the system in the smallest
externally nameable Web resources.

We are employing a rule-based approach, where a declarative set of rules is
used to define fine-grained access to resources. In this framework, requesters are
asked to provide a proof showing that they satisfy the policy encoded in the rules.
The complexity of the required proof can vary depending on the application and
domain.

There are two types of rule-based access mechanisms: Mandatory access con-
trol (MAC) and Discretionary access control (DAC). MAC systems usually do
not allow the owner of the information to control protection decisions - the sys-
tem is designed to enforce a priori protection decisions, such as enforcing the
security policy over the wishes or intentions of the object owner.

ISWC2005 Semantic Web and Policy Workshop 7 November 2005

 111

Discretionary Access Control, on the other hand, allows the information
owner to locally determine the access policy. The problem with DAC is that it
generally requires the information requesters to prove that they have access, and
for the objects in the system to have a finer-grained control of the information
than in MAC systems. The system we’re trying to build is of the discretionary,
rule-based access type - thus, our work addresses the DAC challenges.

For an illustration of discretionary access control, consider the following ex-
ample of a Girl Scout troop photo sharing. In this particular Girl Scout organi-
zation, pictures of the events can only be seen by Girl Scouts or their parents.
Mary is a Girl Scout and her mother Jane wants to look at the pictures. In order
to access these photos, Jane has to prove two things: she is a parent of Mary and
that Mary is a girlscout. Our goal is to provide a general framework for providing
those proofs. This framework will consist of a proof-exchange mechanism and
also a way by which the system receiving the proof can check is correctness. On
the Web, we cannot assume that every user will employ the same proof-checking
software, so a set of standards is required be sure that all participants evaluate
proofs on the semantic web in a consistent manner.

The central piece of the PAW project is the rules language that we are using
for representing access policies and the inference engine that handles the proof
checking. Since we are building on already existing Web standards, we need a
rules language that can be serialized in a form where rules can be published,
searched, browsed and shared using HTTP. Our language of choise is Notation
3 (N3), RDF-based rule language that was designed to be consistent with a
number of Web Architecture principles. N3 is also designed to work closely with
Closed World Machine (CWM), a forward-chaining reasoner that can be used
for querying, checking, transforming and filtering information on the Web. Its
core language is RDF, extended to include N3 rules. More detail and examples
are available in the next section.

It is important to note one distinct feature of our approach. The current use
of CWM requires the bulk of the reasoning to be done on the server’s side. We
are working on a system that is more scalable because CWM (or a CWM-like
reasoner) will be used to generate proofs on the client side, so the only job of
the server will be to check the proof to see if its grounded and consistent. Also,
the authentication used by the client is not the key feature of our work (for
example we might use transparent distributed authentication like openID [4]).
The main contribution of our project will be combining the authentication, the
proof generation on the client side and server-side proof checking to achieve a
truly transparent, policy-aware web.

By shifting the burden of finding the access justification to the requesting
party (and leaving only the task of checking the justification to the authorizing
party), the resulting system (a) has a much smaller trusted computing base (only
the part that verifies justifications) and (b) is much more transparent: any third
party can audit that the justification is valid.

ISWC2005 Semantic Web and Policy Workshop 7 November 2005

 112

3 Reasoning Support for PAW

Reasoning is a critical issue when dealing with policies. Our recent work [11]
shows the usefulness of having policies written in a formally defined language,
OWL-DL in specific, for which there are reasoners available. The generic services
of an OWL-DL reasoner were capable of capturing key tasks related to policies,
such as policy containment (“If I meet policy X, do I also meet policy Y?”) and
detection of contradictory policies (“Is it impossible to meet policy X?”), among
others.

Rule-based languages have also played a dominant role in reasoning on the
Semantic Web, the primary example being N3. In the space of policies, the REIN
language, based off of N3, was proposed in [10] as a generic framework for rep-
resenting rule-based policies. In this section, we focus on the kind of inference
licensed by languages like N3 and REIN. We sketch a brief outline of require-
ments from policy-aware inference engines that work with these languages, based
on our preliminary work. Lastly we offer some directions in which future work
may follow.

3.1 Rules, policies and proofs

Rules are desirable on the Semantic Web, and policies are no exception. The
numerous proposals for rule languages offered recently suggest that rules are
desirable due to their expressivity, and in some cases, because of their attractive
computational properties. The latter is particularly important in PAW, where
inference will be performed over a large number of policies, and will be addressed
in a later section.

Once a policy is expressed as a set of rules, several challenges occur. A key
challenge, and one which PAW reasoners must address, is proof checking. Ab-
stractly, consider the following: agent B would like agent A to reveal certain
information.4 A has a publicly available policy (a collection of rules) P which
mandates who is allowed to view the information B wishes to receive–B must
meet this policy.

The simplistic proof checking scenario might then go as follows. B presents
a proof Π (a sequence of assertions) to A, which is intended to establish B’s
eligibility to receive A’s information. That is, the set of assertions π1, ..., πn−1 ∈
Π are supposed to justify the last line in Π (πn ∈ Π), i.e., the assertion that B
is authorized to view the information. A naive proof checker might check that
{π1, ..., πn−1}∪P ` πn. The use of “proof” in this context of a forward-chaining
is just a set of assertions, and nothing more. A proof will be a successful one
(allow B access to information of A) if it (the set of facts) plus the shared policy
rules between B and A entail B’s granted authorization to access A’s documents.
Note that under the assumption that both A and B can read and process policies

4 Note that we are assuming that these agents are acting on behalf of users. In other
words, we assume that it is possible for an agent to provide information about the
person for which it is performing a task if the person wishes to share this information.

ISWC2005 Semantic Web and Policy Workshop 7 November 2005

 113

written in the same language (say, REIN), there should be no disagreement
about what statements are provable. Thus, determining a valid assertion in the
deductive sense is trivial; simply run the rules by your own trusted reasoner
and see whether the client’s reported consequences follow. However, there can
certainly be disagreement about the truth of the premises used in a proof, as
we will now see. Suppose that A’s specific policy is the following: an agent can
access our information if (i) it is affiliated with the MIND lab institution, and
(ii) the information is requested on a workday. Furthermore, one meets (i) just
in case one’s provided email address is a MIND lab email address, which take
on a specific form. The “truth of the premise” disagreement is solved by having
the client and server agree (via public key signing) on the grounded assertions,
at which point it is sufficient to rely on deductive validity.

Policy P in N3
R1: Conditions for being an authorized agent
{?agent policyP:hasMINDAcct ?email.

?agent policyP:requestsAccess ?request.

?request policyP:requestTime ?time.

?time a policyP:validRequestTime.}

=> {?agent a policyP:authorizedAgent.}

R2 : Conditions for having the proper email credentials
{?agent foaf:mbox ?email.

?email string:matches ".*?@mindlab.umd.edu$".}

=> {?agent policyP:hasMINDAcct ?email}.

R3 : Conditions for the times when a request can be processed
{?agent policyP:requestsAccess ?request.

?agent policy:requestTime ?time.

"" time:localTime ?localTime.

?localTime time:dayOfWeek ?day.

?day math:greaterThan "0".

?day math:lessThan "6".

=> {?time a policyP:validRequestTime.}

Table 1. Policy P

In the case of policies, the naive approach is not sufficient. Certainly, there can
be “proofs” presented to B which fail the naive proof checking test immediately.
For example, if the triple :AgentB foaf:mbox "bob@umbc.edu". is part of Π,
then rule R2 will not fire, preventing us from concluding that B has the proper
email address. In this case, the policy will not be satisfied. The same holds true
for the case where the email address given is syntactically proper by our rule,
i.e. ends with ”mindlab.umd.edu”, but simply does not exist.

ISWC2005 Semantic Web and Policy Workshop 7 November 2005

 114

One might object that in light of the requirement that policies be open, an
agent can simply falsify the necessary triples satisfy the antecedents of every rule
in the policy, thus tricking the naive proof checker. Let us consider such a case.
Imagine B were a malicious agent, and used the valid address ”bernardo@mindlab.umd.edu”
without permission. Logically, this is sufficient to derive that B satisfied the
email requirement. But this is clearly not enough; in a case like this, A must
rely on an additional callback confirmation to B to guarantee the truth of the
premise :AgentB foaf:mbox "bernardo@mindlab.umd.edu". If B is not truly
representing the individual to which this email address belongs, the callback will
fail and the policy will be unsatisfied.

Notice that in both malicious scenarios, the work done to ensure the au-
thenticity of the proof was split between the client and the server. Traditional
authentication mechanisms would generally overload the server-side. For exam-
ple, in the case of a falsified email, the traditional approach might require the
server to contact an official server (the MIND lab server in our case) to verify the
existence of the email address. The callback approach instead requires the client
to do work in the process of a request (answering the callback), thus preventing
potential denial-of-service attacks from the client, and relaxing the commitment
to a trusted third-party server such as the university.

3.2 Engineering for scalability

For the goal of scalability, several insights from research into rule-based expert
systems in the AI community are relevant. A primary example is the Rete algo-
rithm, developed by Forgy [5], which allows for efficient processing of very large
rule bases. While other approaches may be equally relevant, the use of Rete
can prove useful in the context of rule-based policies for the following reasons:
(i) policies can be quite complex (composed of many rules) while facts sent in-
teractively by client may only trigger a small number of rules5 and (ii) there
will naturally be policies that are commonly used by a certain source (i.e. a
company’s policy to serve sensitive documents to its employees working from a
remote location) and implementations of Rete lend themselves to optimization
of such a use. For example, the Rete network, once constructed for a given large
policy, can be either kept persistent memory, or stored locally and reloaded. The
Rete network corresponding to a policy need not be rebuilt two separate client
interactions.

Pychinko [13] is a forward chaining rule engine, written in Python, that
implements Rete for such purposes. Its rules are expressed in the N3 language and
its facts as RDF triples. The use of Rete allows it to scale far better than a similar
and more popular rule engine, CWM [15], the engine supporting the REIN policy

5 This is the case where the efficiency of the Rete algorithm shines: many rules and a
newly added fact. A naive algorithm would be forced to check this newly added fact
against all the rules for a possible match, while the Rete will channel the fact only
to the relevant rules (i.e. rules that might be fired due to the addition of this new
fact)

ISWC2005 Semantic Web and Policy Workshop 7 November 2005

 115

language, which uses a naive rule processing algorithm. It is important to note
that while forward-chaining rule engines such as these add facts to the server’s
knowledge base (in order to determine whether’s a clients authorization follows
from its submitted proof), they do not in any way alter the state of the protocol
interactions. The application of the reasoner is merely a server-side computation
ordinarily performed in other stateless protocls.

4 Initial Results: Calendar/Photo Sharing Application

As an initial prototype, we have developed a calendar sharing application to
illustrate how the rule-based policy infrastructure can be used. The application
consists of a calendar view that displays events and photos associated with these
events. Access to every event and photo is controlled by rules specified in N3.
All of the calendar data is stored in an ontology and the policies that control
access to it are in separate files. We are employing finest level of granularity -
policies can be specified down to a single calendar event or a picture. REIN is
used to connect the policies, the calendar data and the reasoner.

Whenever a user (who may or may not be authenticated) attempts to browse
the calendar, the application first retrieves all of the events in the calendar view,
filters them through the REIN policies associated with them and returns the
accessible ones back to the user 6.

As an example of how policies are defined in the calendar application, con-
sider the calendar sharing rules of a student, member of Mindswap research
group at UMD). The student would like to specify that his public calendar can
be seen by any member of Mindswap, but his work calendar can only be seen
by his advisor.

In the first release, authentication is performed by an account-based mecha-
nism where individuals in the ontology are mapped to user names. Our primary
goal for the prototype was to use a distributed policy framework (REIN) as
a resource manager to demonstrate discretionary access control on the web. A
distributed authentication mechanism will be added in a future release.

5 Related Work

We are certainly not the first group to tackle access control on the web [7–9, 12,
14, 16]. In this section we will discuss two projects that have provided the most
direct influence to our work.

Proof-carrying Authorization (PCA) and related distributed proof systems
[2, 1] is an authorization framework that is based on a higher-order logic. We
have built our work on top of theirs (ideas of a client generating and server
checking proofs, integrating the proof exchange protocol into HTTP, etc.) The
higher-order logic (AF logic) used to check the proofs is undecidable, though this
problem is avoided by forcing clients to generate proofs on their own, using only
6 A demo is available at http://www.policyawareweb.org/2005/calendar/

ISWC2005 Semantic Web and Policy Workshop 7 November 2005

 116

Any member of Mindswap can access events
belonging to the public calendar
@forAll :x, :y.

{ ?x a ont:User.

ont:Mindswap ont:hasMember ?x.

?y a ical:Vevent.

ont:PrivateCalendar ont:hasEvent ?y.

} => { ?x reine:canAccess ?y}.

Any professor, member of Mindswap can access events
belonging to the work calendar (telecons, etc.)
@forAll :x, :y.

{ ?x a ont:Professor.

ont:Mindswap ont:hasMember ?x.

?y a ical:Vevent.

ont:WorkCalendar ont:hasEvent ?y.

\} => {?x reine:canAccess ?y}.

Table 2. Calendar sharing policies in REIN P

a decidable subset of AF logic. Consequently, the authorizing server’s task of
proof-checking is reduced to a tractable type-checking problem - but this leads
to large rate of increase of sizes of the client proof. We are currently in the process
of defining our own logic for the task of representing policies, by formalizing key
concepts in REIN and N3.

Bonatti et al. [3] discuss a uniform formal framework to formulate and reason
about both service access and information disclosure constraints on the web. It
introduces the ideas of servers publishing their policies as sets of rules and allow-
ing usage of uncertified declarations in the client proof. Related to [3], PeerTrust
[6] also deals with discretionary access control on the web using semantic web
technologies. PeerTrust is a language for policies and trust negotiation, and this
paper describes their implementation of implicit registration and authentication
that runs over a Prolog engine. The work differs from ours in a couple of as-
pects. First, the authors make the assumptions that information owners are not
willing to freely share their access control rules on the web, where one of the
main postulates of the PAW project is transparency. Also, the trust negotiation
protocol in [6] is keeping state, whereas our proof exchange protocol is stateless.

6 Conclusion and Future Work

In this paper, we have shown the need for a policy-aware infrastructure for the
web, and shown our work towards this infrastructue. We have described our
current work in developing a rule-based policy management system that can
be deployed in an open and distributed manner on the World Wide Web. We
have also shown in a demo application how it is possible to combine a Semantic
Web rules language (N3), a theorem prover designed for the Web (CWM), and

ISWC2005 Semantic Web and Policy Workshop 7 November 2005

 117

a distributed policy management system (REIN) to provide discretionary access
control for users. However this is still preliminary work and there are a lot of
open issues, just to name a few:

– An important issue is the proof generation/checking on the client side. Future
plans on this front include extending the Pychinko engine with proof checking
capabilities that are sensitive to CWM’s builtins.

– The party that requests access to data has to provide authentication as part
of its proof. We have been experimenting with email callback mechanisms
as means of proving identities, however this approach does not seem to gen-
eralize well. Other interesting mechanisms we are exploring are distributed
authentication systems such as OpenID [4]

– In an open system such as the Web inconsistencies are inevitable - most
logic-based systems built to date, however, are intolerant of inconsistencies.
Developing a model where inconsistency can be tolerated, and kept from
causing harm, is one of the key areas of research in our work.

References

1. L. Bauer, S. Garriss, and M. K. Reiter. Distributed proving in access-control
systems. In SP ’05: Proceedings of the 2005 IEEE Symposium on Security and
Privacy, pages 81–95, Washington, DC, USA, 2005. IEEE Computer Society.

2. L. Bauer, M. A. Schneider, and E. W. Felten. A proof-carrying authorization
system. Technical Report TR-638-01, Princeton University, 2001.

3. P. A. Bonatti and P. Samarati. A uniform framework for regulating service access
and information release on the web. J. Comput. Secur., 10(3):241–271, 2002.

4. B. Fitzpatrick. Openid:an actually distributed identity system, July 2005.
5. C. Forgy. Rete: A fast algorithm for the many pattern/many object pattern match

problem. Artificial Intelligence, 12:17–37, 1982.
6. R. Gavriloaie, W. Nejdl, D. Olmedilla, K. Seamons, and M.Winslett. No regis-

tration needed: How to use declarative policies and negotiation to access sensitive
resources on the semantic web. In European Semantic Web Symposium, May 2004.

7. S. Godik and T. Moses. Oasis extensible access control markup language
(xacml) version 1.1. oasis committee specification, July 2003. http://www.oasis-
open.org/committees/download.php/4103/cs-xacml-specification-1.1.doc.

8. JAAS. Java authentication and authorization service (jaas).
http://java.sun.com/products/jaas/.

9. S. Jajodia, P. Samarati, V. S. Subrahmanian, and E. Bertino. A unified framework
for enforcing multiple access control policies. In SIGMOD ’97: Proceedings of the
1997 ACM SIGMOD international conference on Management of data, pages 474–
485, New York, NY, USA, 1997. ACM Press.

10. L. Kagal and T. Berners-Lee. Rein : Where policies meet rules in the semantic
web. Technical report, MIT, 2005.

11. V. Kolovski, B. Parsia, Y. Katz, and J. Hendler. Representing web service policies
in owl-dl. In International Semantic Web Conference (ISWC), 2005.

12. N. H. Minsky and V. Ungureanu. A mechanism for establishing policies for elec-
tronic commerce. In ICDCS ’98: Proceedings of the The 18th International Con-
ference on Distributed Computing Systems, page 322, Washington, DC, USA, 1998.
IEEE Computer Society.

ISWC2005 Semantic Web and Policy Workshop 7 November 2005

 118

13. B. Parsia, Y. Katz, and K. Clark. Pychinko: Rete-based CWM clone, October
2004. http://www.mindswap.org/k̃atz/pychinko/.

14. M. Roscheisen and T. Winograd. A communication agreement framework for ac-
cess/action control. In SP ’96: Proceedings of the 1996 IEEE Symposium on Secu-
rity and Privacy, page 154, Washington, DC, USA, 1996. IEEE Computer Society.

15. W3C. cwm - a general purpose data processor for the semantic web, August 2004.
http://www.w3.org/2000/10/swap/doc/cwm.html.

16. T. Yu, X. Ma, and M. Winslett. Prunes: an efficient and complete strategy for
automated trust negotiation over the internet. In CCS ’00: Proceedings of the 7th
ACM conference on Computer and communications security, pages 210–219, New
York, NY, USA, 2000. ACM Press.

ISWC2005 Semantic Web and Policy Workshop 7 November 2005

 119

Semantic Web Framework and Meta-Control Model to
Enforce Context-Sensitive Policies

Jinghai Rao and Norman Sadeh

School of Computer Science, Carnegie Mellon University
5000 Forbes Avenue,

Pittsburgh, PA, 15213, USA
{sadeh; jinghai}@cs.cmu.edu

Abstract. Enforcing rich policies in open environments will increasingly re-
quire the ability to dynamically identify external sources of information neces-
sary to enforce different policies. In this paper, we introduce a semantic web
framework and a meta-control model for dynamically interleaving policy rea-
soning and external service discovery and access. Within this framework, ex-
ternal sources of information are wrapped as web services with rich semantic
profiles allowing for the dynamic discovery and comparison of relevant sources
of information. Each entity relies on one or more software agents responsible
for enforcing relevant privacy and security policies in response to incoming re-
quests. These agents implement meta-control strategies to dynamically inter-
leave semantic web reasoning, service discovery and access. This research has
been conducted in the context of myCampus, a pervasive computing environ-
ment aimed at enhancing everyday campus life at Carnegie Mellon University
though the proposed framework extends to a number of other environments
(e.g. virtual enterprises, coalition forces, homeland security). Preliminary em-
pirical results appear rather promising.

1 Introduction

As Web applications aim for increasingly high levels of sophistication and automa-
tion, there will be a growing need for enforcing complex policies whose satisfaction
is not tied to predefined sources of information. An example is enforcing context-
sensitive security and privacy policies, whether in pervasive computing applications
or in support of virtual enterprise scenarios, coalition force scenarios or interagency
collaboration in a homeland security context.. Enforcing such policies in open envi-
ronments is particularly challenging for several reasons:
− Sources of information available to enforce these policies may vary from one prin-

cipal to another (e.g. different users may have different sources of location track-
ing information made available through different cell phone operators);

− Available sources of information for the same principal may vary over time (e.g.
when a user is on company premises her location may be obtained from the wire-
less LAN location tracking functionality operated by her company, but, when she
is not, this information can possibly be obtained via her cell phone operator);

ISWC2005 Semantic Web and Policy Workshop 7 November 2005

 120

− Available sources of information may not be known ahead of time (e.g. new loca-
tion tracking functionality may be installed or the user may roam into a new area).

Enforcing context-sensitive policies in open domains requires the ability to oppor-

tunistically interleave policy reasoning with the dynamic identification, selection and
access of relevant sources of contextual information. This requirement exceeds the
capability of decentralized trust management infrastructures proposed so far and calls
for privacy and security enforcing mechanisms capable of operating external services.

We introduce a semantic web framework and a meta-control model for dynami-
cally interleaving policy reasoning and external service identification, selection and
access. Within this framework, external sources of information are wrapped as web
services with rich semantic profiles allowing for the dynamic discovery and compari-
son of relevant sources of information. In this paper, we look more particularly at the
issue of enforcing privacy and security policies in pervasive computing environments.
In this context, the owner of information sources relies on one or more software
agents for enforcing relevant policies in response to incoming requests. These agents
implement meta-control strategies to interleave policy enforcement, semantic web
reasoning and service discovery and access. This paper introduces one particular type
of agent we refer to as Information Disclosure Agents (IDA), who are responsible for
enforcing two types of policies: access control policies and obfuscation policies. The
latter are policies that manipulate the accuracy or inaccuracy with which information
is released (see section 2 for more detail). The research reported here has been con-
ducted in the context of MyCampus, a pervasive computing environment aimed at
enhancing everyday campus life at Carnegie Mellon University [6, 11].

The work presented in this paper builds on concepts of decentralized trust man-
agement developed over the past decade (see [3] as well as more recent research such
as [1, 2, 7]). Our own work in this area has involved the development of Semantic e-
Wallets that enforce context-sensitive privacy and security policies in response to
requests from context-aware applications implemented as intelligent agents [6, 10].
In this paper, we introduce a significantly more decentralized framework, where
policies can be distributed among any number of agents and web services. Within this
framework, our meta-control architecture interleaves semantic web reasoning and
web service discovery in enforcing context-sensitive privacy and security policies.

The remainder of this paper is organized as follows. Section 2 introduces a soft-
ware agent architecture for enforcing privacy and security policies. Section 3 details
the meta-control model based on query status information. Section 4 discusses our
service discovery model. Section 5 presents our current implementation and discusses
initial empirical results. Concluding remarks are provided in Section 6. Additional
details on the work described in this short paper, including a detailed description of
the operation of our meta-control architecture can be found in [10].

2 Overall Approach and Architecture

We consider an environment where sources of information are all modeled as ser-
vices that can be automatically discovered based on rich ontology-based service pro-

ISWC2005 Semantic Web and Policy Workshop 7 November 2005

 121

files advertised in service directories. Each service is applied to policies, which are
represented as rules. In this paper we focus on access control policies and obfuscation
policies enforced by Information Disclosure Agents (IDA), though the framework we
present could readily be used to enforce a variety of other policies.

An IDA receives requests for information or service access. In processing the re-
quests, it is responsible for enforcing access control and obfuscation polices specified
by its owner. As it processes requests, the agent records status information that helps
it monitor its own progress in enforcing its policies and in obtaining the necessary
information to satisfy the request. Based on this updated query status information, a
meta-control module (“meta-controller”) dynamically orchestrates the operations of
modules at its disposal to process queries (Fig. 1). As these modules report on the
status of activities they have been tasked to perform, this information is processed by
a housekeeping module responsible for updating query status information.

Fig. 1. Information Disclosure Agent: Overall Architecture

For obvious efficiency reasons, while an IDA consists of a number of logical mod-
ules, each operating according to a particular set of rules, it is typically implemented
as a single reasoning engine. The following provides a brief description of each of the
modules orchestrated by an IDA’s meta-controller:
− Query Decomposition Module takes as input a particular query and breaks it down

into elementary needs for information, which can each be thought of as subgoals
or sub-queries. We refer to these as Query Elements.

− Access Control Module is responsible for determining whether a query or sub-
query is consistent with relevant access control policies – modeled as access con-
trol rules. While some policies can be checked just based on facts contained in the

ISWC2005 Semantic Web and Policy Workshop 7 November 2005

 122

agent’s local knowledge base, many policies require obtaining information from a
combination of both local and external sources. When this is the case, rather than
immediately deciding whether or not to grant access to a query, the Access Control
Module needs to request additional facts – also modeled as Query Elements.

− Obfuscation Module sanitizes information requested in a query according to rele-
vant obfuscation policies – also modeled as rules. As it evaluates relevant obfusca-
tion policies, this module too can post requests for additional Query Elements.

− Local Information Reasoner corresponds to domain knowledge (facts and rules)
known locally to the IDA.

− Service Discovery Module helps the IDA identify potential sources of information
to complement its local knowledge. External services can be identified through ex-
ternal service directories (whether public or not), by communicating via the
agent’s External Communication Gateway. The service identification rules directly
map information needs on pre-specified services. We currently assume that all ser-
vice directories rely on OWL-S to advertise service profiles (see Section 4).

− Service Invocation Module allows the agent to invoke relevant services. It is im-
portant to note that, in our architecture, each service can have its own IDA. As re-
quests are sent to services, their IDAs may in turn respond with requests for addi-
tional information to enforce their own policies.

− User Interface Agent: The meta-controller treats its user as just another module
who is modeled both as a potential source of domain knowledge (e.g. to acquire
relevant contextual information) and a potential source of meta-control knowledge
(e.g. if a particular query element proves too difficult to locate, the user may be
asked whether to stop looking).

3 Query Status Model

An IDA’s Meta Controller relies on meta-control rules to analyze query status infor-
mation and determine which module(s) to activate next. Meta-control rules are mod-
eled as if-then clauses, with Left Hand Sides (LHSs) specifying their premises and
Right Hand Sides (RHSs) their conclusions. LHS elements refer to query status in-
formation, while RHS elements contain facts that result in module activations. Query
status information helps keep track of how far along the IDA is in obtaining the in-
formation required by each query and in enforcing relevant policies. Query status
information in the LHS of meta-control rules is expressed according to a taxonomy of
predicates that helps the agent keep track of queries and query elements - e.g.,
whether a query has been or is being processed, what individual query elements it has
given rise to, whether these elements have been cleared by relevant access control
policies and sanitized according to relevant obfuscation control policies, etc. All
status information is annotated with time stamps. In other words, query status infor-
mation includes:
− Status predicates to describe the status of a query or query element
− A query ID or query element ID to which the predicate refers
− A parent query ID or parent query element ID to help keep track of dependen-

cies (e.g. a query element may be needed to help check whether another query

ISWC2005 Semantic Web and Policy Workshop 7 November 2005

 123

element is consistent with a context-sensitive access control policy). These de-
pendencies, if passed between IDA agents, can also help detect deadlocks (e.g. two
IDA agents each waiting for information from the other to enforce their policies)

− A time stamp that describes when the status information was generated or up-
dated. This information is critical when it comes to determining how much time
has elapsed since a particular module or external service was invoked. It can help
the agent look for alternative external services or decide when to prompt the user
(e.g. to decide whether to wait any longer).

A list of query status predicates currently implemented can be found in [10]. In

general, query status information is updated by asserting new facts (with old informa-
tion being cleaned up by the IDA’s housekeeping module). As query updates come in,
they trigger one or more meta-control rules, which in turn result in additional query
status information updates and the eventual activation of one or more of the IDA’s
modules. As already mentioned earlier, this meta-control architecture can also be
used to model the user as a module that can be consulted by the meta-controller, e.g.
to ask for a particular piece of domain knowledge or to decide whether or not to
abandon a particular course of action such as looking for an external service capable
of providing a particular query element.

The following example illustrates a meta-control rule. This rule indicates the
status change after a service is invoked successfully to tell the value of the required
query element. Once the service response is received, the old status “waiting-for-
service-response” is cleaned, and the new status “element-available” is generated.
The rule, expressed in CLIPS [4], is of the form:

?x <- (triple "Status#predicate" ?s1 "waiting-for-service-response")
?y <- (triple "Query#queryId" ?s1 ?service)
(triple "Status#predicate" ?s2 "service-response-available")
(triple "Query#queryId" ?s2 ?result)
=>
(retract ?x)
(retract ?y)
(assert (triple "Status#predicate" ?newstatus "element-available))
(assert (triple "Query#queryId" ?newstatus ?result))

4 The Service Discovery Model

A central element of our method is the ability of IDA agents to dynamically identify
sources of information needed by query elements. Sources of information are modeled
as semantic web services and may operate subject to their own access control and
obfuscation policies enforced by their own IDA agents. Accordingly service invoca-
tion is itself implemented in the form of queries sent to a service’s IDA agent. .

Each service (or source of information) is described by a ServiceProfile in OWL-S
[9]. In general, a ServiceProfile consists of three parts: (1) information about the
provider of the service, (2) information about the service’s functionality and (3) in-
formation about non-functional attributes [12]. Functional attributes include the ser-
vice's inputs, outputs, preconditions and effects. Non-functional attributes are other
properties such as accuracy, quality of service, price, location, etc. An example of a

ISWC2005 Semantic Web and Policy Workshop 7 November 2005

 124

location tracking service operated on the premises of Company Y can be described as
follows:

<profileHierarchy:InformationService rdf:ID="PositioningServ">
 <!-- reference to the service specification -->
 <service:presentedBy rdf:resource="&Serv;#PositioningServ"/>
 <profile:has_process rdf:resource="&Process;#PositionProc"/>
 <profile:serviceName Positioning_Service_in_Y />

 <!-- specification of quality rating for profile -->
 <profile:qualityRating>
 <profile:QualityRating rdf:ID="SERVQUAL">
 <profile:ratingName SERVQUAL />
 <profile:rating rdf:resource="&servqual;#Good"/>
 </profile:QualityRating>
 </profile:qualityRating>

 <profile:hasPrecondition rdf:resource="&Process;#LocateInCompanyY"/>
 <profile:hasOutput rdf:resource="&Process;#RoomNoOutput"/>
</profileHierarchy:InformationService>

When invoking a service it has identified, an IDA may opt to provide upfront all
the input parameters required by that service or it may withhold one or more of these
parameters. The latter option forces the service to request the missing input parame-
ters from the IDA, thereby enabling the IDA to more fully determine whether the
invoked service meets its policies. This option is however more computation and
communication intensive.

Service outputs are represented as OWL classes, which play the role of a typing
mechanism for concepts and resources. Using OWL also allows for some measure of
semantic inference as part of the service discovery process. If an agent requires a
service that produces as output a contextual attribute of a specific type, then all ser-
vices that output the value of that attribute as a subtype are potential matches.

Service preconditions and effects are also used for service matching. For instance,
the positioning service above has a precondition specifying that it is only available on
company Y’s premises.

5 Current Implementation: Evaluation and Discussion

Our policy enforcing agents are currently implemented in JESS, a high-
performance rule-based engine in Java [5]. Domain knowledge, including service
profiles, queries, access control policies and obfuscation policies are expressed in
OWL [6]. As already indicated earlier, we use ROWL to define rules. XSLT trans-
formations are used to translate OWL facts and ROWL rules into CLIPS, the rule
language supported by JESS. Currently all information exchange between agents is
done in the clear and without digital signatures. In the future, we plan to use SSL or
some equivalent protocol for information exchange and without digital signatures. In
the future, we plan to use SSL or some equivalent protocol for all information ex-
change. This will include signing all queries and responses.

We have evaluated our solution on an IBM laptop with a 1.80GHz Pentium M
CPU and 1.50GB of RAM. The laptop was running Windows XP Professional OS,
Java SDK 1.4.1 and Jess 7.0. As part of the evaluation, we implemented the example

ISWC2005 Semantic Web and Policy Workshop 7 November 2005

 125

introduced in Section 4 and 6, using a light-weight rule/fact set. The set included 22
rules and 178 facts and features a single semantic service directory with 50 services,
each represented by 5 to 10 Jess rules. A breakdown of the CPU times required to
process Bob’s query is provided in the table below. For each module the table pro-
vides a cumulative CPU time, namely the sum of the CPU times of all invocations of
that module in processing the query.

Module CPU time in millisecond
Meta-Controller 28
Access-Controller 32
Local-KB 49
Service discovery / invocation 72
Total 181

While these results provide just one data point and only evaluate a subset of our
functionality, they seem to suggest that our solution can be viewed as practical in at
least some simple settings. It should be noted that our solution is not JESS-specific
and could be implemented in other rule languages.

6 Concluding Remarks

In this paper, we presented a semantic web framework for dynamically interleaving
policy reasoning and external service discovery and access. Within this framework,
external sources of information are wrapped as web services with rich semantic pro-
files allowing for the dynamic discovery and comparison of relevant sources of in-
formation. Each entity (e.g. user, sensor, application, or organization) relies on one
or more software agents responsible for enforcing relevant privacy and security poli-
cies in response to incoming requests. These agents implement meta-control strate-
gies to dynamically interleave semantic web reasoning and service discovery and
access. These meta-control strategies can also be extended to treat the user as an-
other source of information, e.g. to confirm whether a given fact holds or to provide
meta-control guidance such as deciding when to abandon trying to determine whether
a policy is satisfied.

The Information Disclosure Agent presented in this paper is just one instantiation
of our more general concept of Policy Enforcing Agents (PEAs)[10]. Other policies
(e.g. information collection policies, notification preference policies) will typically
rely on slightly different sets of modules and different meta-control strategies, yet
they could all be implemented using the same meta-control architecture and many of
the same principles presented in this paper. In general, PEAs rely on a taxonomy of
query information status predicates to monitor their own progress in processing in-
coming queries and enforcing relevant security and privacy policies. Preliminary
evaluation of an early implementation of our framework seems encouraging. At the
same time, it is easy to see that the generality of our framework also gives rise to a
number of challenging issues. Future work will focus on further evaluating and refin-
ing the scalability of our framework, evaluating tradeoffs between the expressiveness
of privacy and security policies we allow and associated computational and commu-
nication requirements. Other issues of particular interest include studying opportuni-

ISWC2005 Semantic Web and Policy Workshop 7 November 2005

 126

ties for concurrency (e.g. simultaneously accessing multiple web services), dealing
with real-time meta-control issues (e.g. deciding when to give up or when to look for
additional sources of information/web services), breaking deadlocks [8], and integrat-
ing the user as a source of information.

References

[1] L. Bauer, M.A. Schneider and E.W. Felten. "A General and Flexible Access Control Sys-
tem for the Web", In Proceedings of the 11th USENIX Security Symposium, August 2002.

[2] L.Bauer, S. Garriss, J. McCune, M.K. Reiter, J. Rouse, and P Rutenbar, “Device-Enabled
Authorization in the Grey System”, Submitted to USENIX Security 2005. Also available as
Technical Report CMU-CS-05-111, Carnegie Mellon University, February 2005.

[3] M. Blaze, J. Feigenbaum, an J. Lacy. “Decentralized Trust Management”. Proc. IEEE
Conference on Security and Privacy. Oakland, CA. May 1996.

[4] CLIPS. http://www.ghg.net/clips/CLIPS.html.
[5] E. Friedman-Hill. Jess in Action: Java Rule-based Systems, Manning Publications Com-

pany, June 2003, ISBN 1930110898, http://herzberg.ca.sandia.gov/jess/
[6] F. Gandon, and N. Sadeh. Semantic web technologies to reconcile privacy and context

awareness. Web Semantics Journal, 1(3), 2004.
[7] T. van der Horst, T. Sundelin, K. E. Seamons, and C. D. Knutson. Mobile Trust Negotia-

tion: Authentication and Authorization in Dynamic Mobile Networks. Eighth IFIP Confer-
ence on Communications and Multimedia Security, Lake Windermere, England, 2004

[8] T. Leithead, W. Nejdl, D. Olmedilla, K. Seamons, M. Winslett, T. Yu, and C. Zhang, How
to Exploit Ontologies in Trust Negotiation. Workshop on Trust, Security, and Reputation
on the Semantic Web, part of ISWC04, Hiroshima, Japan, November 2004.

[9] OWL-S: Semantic Markup for Web Services, W3C Submission Member Submission,
November 2004. http://www.w3.org/Submission/OWL-S

[10] J. Rao and N.M. Sadeh. Interleaving Semantic Web Reasoning and Service Discovery to
Enforce Context-Sensitive Security and Privacy Policies. Carnegie Mellon University Tech-
nical Report (CMU-ISRI-05-113), July 2005. http://www-
2.cs.cmu.edu/~sadeh/Publications/More%20Complete%20List/techreport%20%20july%20
27%202005.pdf

[11] N.M. Sadeh, F. Gandon, and Oh Byung Kwon. Ambient Intelligence: The MyCampus
Experience. Carnegie Mellon University Technical Report (CMU-ISRI-05-123). June 2005.

[12] J. O'Sullivan, D. Edmond, and A.T. Hofstede. What's in a service? Towards accurate
description of non-functional service properties. Distributedand Parallel Databases,
12:117.133, 2002.

Acknowledgements

The work reported herein has been supported in part under DARPA contract F30602-
02-2-0035 (“DAML initiative”) and in part under ARO research grant D20D19-02-1-
0389 ("Perpetually Available and Secure Information Systems") to Carnegie Mellon
University’s CyLab. Additional support has been provided by IBM, HP, Symbol,
Boeing, Amazon, Fujitsu, the EU IST Program (SWAP project), and the ROC’s Insti-
tute for Information Industry.

ISWC2005 Semantic Web and Policy Workshop 7 November 2005

 127

Towards Integrated Specification and Analysis of
Machine-Readable Policies Using Maude1

Rukman Senanayake, Grit Denker, and *Jon Pearce

SRI International, Menlo Park, CA 94025, *San Jose State University, CA 95112
rukman@csl.sri.com, Grit.Denker@sri.com, *pearce@cs.sjsu.edu

1. Introduction and Objectives
A policy is defined as “a plan or course of action, as of a government, political

party, or business, intended to influence and determine decisions, actions, and other
matters.” The behavior of many computerized systems and applications is determined
by policies. For such systems it is useful not only to specify policies in a machine-
readable way, as provided by semantic markup languages such as OWL2 and SWRL3,
but also to analyze whether a policy meets the intention of the policy designer. The
latter can be achieved by translating policies into an existing specification and
analysis framework and providing check lists, such as reachability of certain system
states while complying with the policy or consistency checks among sets of policies,
to increase the trust of the policy designer that the formalized policy captures her
intention.

We propose to investigate the use of the rule-based framework Maude4 for the
analysis of policies. The advantage of existing rule-based formal frameworks is that
they usually already support a variety of analysis tasks that can be adapted to the task
at hand. We believe that a rule-based system is adequate since many policies satisfy
the following two characteristics: 1. Often natural language policy uses “If-Then-
Else” statements and, thus, can be naturally formalized as rules. For example, a return
policy for an online purchase service may state “If an item is returned within 30 days,
then full refund is given.” 2. Often policies define constraints on the process or
behavior of a system that implements the policy.

For example, the policy “First it is determined whether an item is returnable, next
the exact refund amount is calculated” defines constraints in the sense that a certain
sequence of state transitions or actions must be followed. Thus many policies can be
formalized as a collection of rules and often policies abstractly define the behavior of
a system in terms of a state transition system where rules govern how a state changes.
This is also the case in one of our projects, the DARPA XG project5, in which
policies define the behavior of wireless radios. In the XG project policies are defined
using OWL extended by a rule mechanism similar to SWRL.

1 Supported by the Defense Advanced Research Projects Agency through Air Force Research

Laboratory under Contracts FA8750-05-C-0230 and F30602-00-C-0168.
2 Web Ontology Language: http://www.w3.org/2001/sw/WebOnt/
3 A Semantic Web Rule Language Combining OWL and RuleML:
http://www.daml.org/2003/11/swrl/
4 The Maude System: http://maude.csl.sri.com
5 DARPA Next Generation (XG) project: http://www.darpa.mil/ato/programs/xg/

ISWC2005 Semantic Web and Policy Workshop 7 November 2005

 128

Thus, in this paper we investigate by means of example the adequacy of Maude to
express OWL/SWRL policies and use the built-in analysis techniques for Maude. As
shown in this paper, our approach seems feasible, and future work must investigate
the existence of a formal translation from OWL/SWRL into Maude to show that
inference in OWL and SWRL can be reduced to inference in Maude.

In the remainder of this paper we will introduce a small example that we will use
for illustration purposes (Section 2), briefly overview the Maude framework (Section
3), apply the framework to the example (Section 4), illustrate the translation of SWRL
policies to Maude (Section 5), explain the various analysis tests that can be executed
in Maude on the policy (Section 6), and give a brief overview of related work and
close with a brief summary in Section 7.

2. Policy Specification and Semantics
2.1. A Policy Example

We selected a real-world policy as our primary example, namely, the return policy
of Amazon. Amazon uses a ‘wizard-like’ approach to guide a user through the return
process for an item sold to a customer. The policy as a whole can be described by a
collection of rules and a set of states through which the process transitions. The rules
define transitions between states, and the user needs to provide certain information,
such as “whether the item was opened or not” to determine the initial state of the
system. Table 1 summarizes some of the rules applicable to Amazon’s return policy.

Rule Description
1 Partial refund if item is returned after 30 days
2 Item is nonreturnable if stated in Product Description Page (PDP)
3 Partial refund if item is a book and has signs of usage
4 If there was a shipping error, Amazon pays return cost

Table 1. Example Rules of Amazon’s Return Policy.

Translating the Amazon return policy into a state transition system, we get seven
states and transitions as depicted in Figure 1.

(1), (3)

(4)

(2)

Item Received
(Initial State)

Item
Returnable

Item not Returnable

Full

Partial
Refund

Shipping cost
paid by Buyer

Shipping cost
paid by Amazon

ISWC2005 Semantic Web and Policy Workshop 7 November 2005

 129

Fig. 1. State Transition System for Amazon’s Return Policy. Labels on arrows refer to rules
that enable state transition. Unlabeled arrows are default transitions.

2.2. Policy Specification
The return policy was specified using the OWL and SWRL semantic markup

languages. OWL was used to define the attributes, classes, and instances that
collectively define a state space necessary for the return policy, and SWRL was used
to define the rules of the policy.

We used the Protégé Ontology editor to encode the policies, as defined in Table 2.
The class taxonomy contains classes such as ‘Manual’ which is a subclass of ‘Book’
which in turn is a subclass of ‘Item’. The class ‘Boo’ has datatype properties ‘isUsed’
and so on. The rule base for the policy was specified using SWRL.

Rule SWRL Encoding of the Rule
2 Item(?x) ∧ hasPDP(?x, "Can not be returned") →

isReturnable(?x, false)
3 Book(?x) ∧ isUsed(?x, true) → hasRefundRatio(?x, 2)
4 Item(?x) ∧ hasCondition(?x, "Shipping Error") ∧ hasSeller(?x,

?y) → hasShippingCostPayee(?x, ?y)

Table 2. Policy Rules Defined Using SWRL.

3. The Maude System
Maude [CEL+96] is a multiparadigm executable specification language based on

rewriting logic [Mes92, Mes00]. Maude sources, executables for several platforms,
the manual, a primer, cases studies, and papers are available from the Maude Web site
at http://maude.csl.sri.com.

We briefly summarize the syntax of Maude that is used in our case study. Maude
specifies systems as collections of modules. System modules are rewrite theories
specifying concurrent systems; they are declared with the syntax mod...endm.
Immediately after the module's keyword, the name of the module is given. After this,
a list of imported modules can be added. One can also declare sorts, subsorts, and
operators.

Operators are introduced with the op keyword followed by the operator name, the
argument, and result sorts. An operator may have mixfix syntax, with the name
containing ‘_’s (underscores) marking the argument positions.

Equational axioms are introduced with the keyword eq or ceq (for conditional
equations) followed by the two terms being declared equal separated by the equality
sign ‘=’. Rewrite rules are introduced with the keyword rl or crl (for conditional rules)
followed by an optional rule label, and terms corresponding to the premises and
conclusion of the rule separated by the rewrite sign ‘=>’. Variables appearing in
axioms or rules (and commands) may be declared globally using keyword var or
vars, or “inline” using the variable name and its sort separated by a colon; for

ISWC2005 Semantic Web and Policy Workshop 7 November 2005

 130

example, n:Nat is a variable named n of sort Nat. Rewrite rules are not allowed in
functional modules.

We model the ontology described by OWL and SWRL specifications in Maude by
using Maude’s notation and conventions for concurrent objects. A snapshot of a
system’s state can be thought of as a collection of objects (a configuration). The
multiset union operator for configurations is denoted with empty syntax
(juxtaposition) and (by definition of multiset) is associative and commutative.

An object has the form < O : C | att-1, ... , att-n > where O is an object
identifier (sort Oid), C is a class identifier (sort Cid), and att-1…att-n are attributes
(sort Attribute). This notation is part of a module called CONFIGURATION, which is
part of the standard Maude library.

A typical system configuration will consist of several objects. The dynamic
behavior of a concurrent object system is then axiomatized by specifying rewrite rules
for each class that determine, for example, how objects can evolve from one state to
another through rule application.

4. Example Policy in Maude
An abbreviated version of the generated Maude module is given in Table 3.

(1)

mod ATTRIBUTES is
 protecting STRING .
 protecting BOOL .

 op hasOriginalCondition:_ : String -

> Attribute .
 op isReturnable:_ : Bool ->

Attribute .
 op hasCondition:_ : String ->

Attribute .
endm

The module ATTRIBUTES
defines the collection of datatype
properties in the OWL ontology

(2) mod OWLONTOLOGY is
 inc CONFIGURATION .

 inc ATTRIBUTES .

The module OWLONTOLOGY
defines classes and rules. The ‘inc’
statements are somewhat
analogous to importing of URIs
that define namespaces.

(3) sort Book .
 op Book : -> Book .

 sort Item .
 op Item : -> Item .

 sort swrlAtom .
 op swrlAtom : -> swrlAtom .

Each class in the OWL ontology
is defined as a sort in the Maude
module. This includes the defining
of a constructor with the same
name as the class name using the
‘op’ keyword.

(4) subsort String < Oid .

 subsort String < Cid .
 subsort swrlAtom < Cid .
 subsort Item < Cid .
 subsort Book < Item .
 subsort Manual < Book .

The subsort definitions reflect
the correct class taxonomy within
Maude. All class names and object
names are strings. All other classes
are subclasses of the top-level class

ISWC2005 Semantic Web and Policy Workshop 7 November 2005

 131

 subsort Novell < Book . Cid or one of its subclasses.
(5) var atts : AttributeSet .

 var oid : Oid .
 var I1 : Int .
 var book : Book .

 var item : Item .

All variables used in the rewrite
rules (see (6)) are defined.

(6) rl [rule2] : < oid : item | hasPDP:
"Can not be returned", isReturnable: B1,
atts > => < oid : item | hasPDP: "Can
not be returned", isReturnable: false, atts
> .

Rewrite rule definitions consist
of keyword ‘rl’ (or crl), an optional
name ([rule1]), the start state, and
the terminating state. The example
rule implements Rule 1.

(7) op startState : -> Configuration .
 eq startState =
 < "Les Miserables" : Book |

isReturnable: true, hasCondition:
"Used", hasRefundRatio: 0, hasPDP:
"All time favorite" > .

The initial state of the ontology
is defined by the operator
‘startState’. It contains instances of
classes (one or more) together with
their attribute values.

Table 3. Partial Maude Module for Amazon’s Return Policy.

5. Translating Semantic Markup Specifications to Maude
5.1. Translating OWL Specifications to Maude

Translating the Class Taxonomy
Because of the object-oriented nature of the OWL ontology, we chose the object-

oriented specification style of Maude to stay as close as possible in our translation to
the original OWL/SWRL policy. The OWL-to-Maude translation process preserves
the class hierarchy and this is done using the ‘subsort’ definitions (see section (4) of
Table 3). Using the ‘subsort’ keyword of Maude is semantically comparable to the
OWL class taxonomy.

Some additional definitions are incorporated because of requirements within
Maude, namely, the subsort definitions ‘subsort String < Cid’ and ‘subsort String <
Oid’. This is to support using strings as class and object names. Another important
definition is ‘subsort Item < Cid’, which is analogous to the fact that every OWL
named class is a subclass of the OWL:thing class (since the sort ‘Cid’ corresponds to
the top-level class ‘thing’ in OWL).

Translating OWL Individuals
The collection of OWL individuals defined in the ontology is equivalent to the start

state of the Maude system module. The collection of OWL individuals is retrieved
and converted into a list of object definitions based on the attributes and sorts defined
in the Maude model (see section (7) of Table 3). This collection of objects is the start
state for the Maude rewrite logic, and is an instance of the Configuration sort. Since
the Configuration sort is a multiset of objects and messages this preserves the object-
oriented semantics of the OWL ontology.

5.2. Translating SWRL Specifications to Maude
The SWRL rule base is translated into a Maude rule collection. A Maude rule has a

start-state definition and an end-state definition. These definitions are simply

ISWC2005 Semantic Web and Policy Workshop 7 November 2005

 132

collections of objects with certain attributes, and a rule as a whole depicts how the
values of the attributes change when the rule is applied.

For example, Rule 4 of Table 2 is translated into a Maude rule by the following
technique:
i. The SWRL class membership predicate is identified for the relevant class of
objects that the rule affects. In Rule 4 this is equivalent to ‘Item(?x)’ and the Maude
representation of this would be ‘oid : item’ where ‘oid’ is a variable (typically of type
String) used as an object identifier.
ii. The collection of attributes in the antecedent and the consequent of the
SWRL rule are retrieved and translated into equivalent attribute definitions of Maude.
For example, ‘hasSeller(?x,?y)’ is written in Maude as ‘hasSeller: Y’ where ‘Y’ is a
variable of a suitable type (typically String).
iii. The Maude rule is generated by converting the antecedent of the SWRL rule
to the start state and the consequent to the end state.

The resulting Maude rule follows:

The rule says that an item with condition “Shipping Error” can be rewritten to a state
where the payee for the shipping cost is set to the seller (independent of the values in
the hasShippingCostPayee before). In the above Maude rule, ‘atts’ is a variable
representing a set of attributes a class may have. This is a simple technique used in
Maude to avoid listing the entire set of attributes for every state, since ‘atts’ represents
any subset of the attribute collection of a class, so that only the attributes affected by
the current rule need to be listed.

6. Analyzing Policies Using Maude
The dynamic behavior of a concurrent object system is axiomatized by specifying
rewrite rules for each type of state transition that can take place in the system. For
example, a rewrite rule may define the transition into a state where an item is not
returnable.
Maude [CEL+96] is not just a language. It also has an interpreter, making it an
executable, multiparadigm specification language. The Maude interpreter is very
efficient, allowing prototyping of quite complex test cases. In addition to modeling
capabilities, Maude provides efficient built-in search and model checking capabilities.
Maude is reflective [Cla98], providing a meta-level module that reflects both its
syntax and semantics. Using reflection, the user can program special-purpose
execution and search strategies, module transformations, analyses, and user interfaces.
Maude has several built-in analysis capabilities. For example, the user can define an
initial system state and use Maude to apply rules to find a final state. This is called
“default execution”, since one possible sequence of rules is applied. Obviously, a final
state is found only for rules that describe finite-state systems or, for an infinite-state

Rule 4 rl [Rule-5] < oid : item | hasCondition: “Shipping Error”, hasSeller:
S1, hasShippingCostPayee: S2, atts >

=> < oid : item | hasCondition: “Shipping Error”, hasSeller: S1,
hasShippingCostPayee: S1, atts >

ISWC2005 Semantic Web and Policy Workshop 7 November 2005

 133

system, when the number of rules applied is restricted by the user. Besides default
execution, Maude supports state search in at least two ways.
(1) A user can define an initial system state (which can be represented in a symbolic
way) and use a search strategy in Maude to determine all possible combinations of
rule applications and the resulting states. If this analysis results in more than one final
state for a given set of rules, it means that the system specified by the rules is not
deterministic and that the order in which policy rules are applied matters. This is
usually not the intent of policy designers, and in particular in a situation where several
policies are combined, it is important to know whether there are such “side effects”
due to rule ordering. This test can be generalized to test policy consistency. We define
a strategy that finds sequences of rule applications that result in contradictory
statements (e.g., refundRatio=partial and refundRatio=full).
(2) Maude also supports a search function for Linear Temporal Logic (LTL) formulas.
The user can define a state for which he would like to know whether the state is
reachable from a given initial state with the set of rules. Maude will find a path, if it
exists. This type of analysis is useful to check the adequacy of policies with regard to
the user’s intuition. For example, a user might expect for a given situation a certain
policy decision or outcome by applying the rules. She can check this by running the
LTL model checker that is part of Maude. If the desired and expected outcome is not
achieved, then the rule base does not correctly reflect the intention of the user. More
generally, the user might want to test what are all possible reachable states (if a finite
state system is described by the set of rules). In addition to analysis, Maude can serve
as an execution engine for rules or services since any Maude specification can be
efficiently executed.

7. Related Work and Concluding Remarks
Semantic Web Service (SWS) approaches (e.g., OWL-S or WSML) describe

services in semantically meaningful and machine-readable ways, and thus overcome
the issues of informal descriptions or natural language policies that describe a Web
service’s behavior. For example, the process specification of a service may say that
one cannot use the service without successfully completing a login phase or that a
service will always go through an order confirmation phase before charging a credit
card. Our approach could be used to formalize such process constraints on a high
abstraction level, and define a “refinement” or “implementation” relationship between
high-level policies and a service model. In this way, one could define a semantics for
service models using rewriting logic. Other approaches to give semantics to OWL-S
processes are [NM02] and [AHS02]. [NM02] gives semantics to some parts of the
process model in terms of Petri Nets, and [AHS02] gives an operational semantics. A
Maude formalization of the OWL-S process model in terms of rules describing the
state transitions would provide both a denotational and an executable semantics, since
Maude specifications are efficiently executable [CDE+03] and possess a well-founded
semantics based on rewriting logic [Mes92].

Recent work on machine-readable policy and rule languages (e.g., SWRL,
RuleML, SWSL, Rei [KFJ05] and KAoS [UBJ+03]) enables the formal definition of
policies and rules. Some of the languages have tools for analysis of policies, such as
checking whether a given action or instance matches a policy or whether policies are

ISWC2005 Semantic Web and Policy Workshop 7 November 2005

 134

consistent. Rei and KAoS make use of existing technology to achieve their reasoning
capabilities. Rei uses prolog-style reasoning and KAoS uses existing Description
Logic reasoning. In a manner somewhat similar to the Rei and KAoS approaches, we
are interested in investigating how the rule-based Maude technology can be used to
help with policy and service specification and analysis.

We designed and implemented a mapping from example policies expressed in
SWRL to executable Maude specifications. We support the analysis of machine-
readable policies in an integrated fashion from the policy editor, using Maude’s built-
in analysis capabilities. This encourages us to further investigate how the Maude
environment and its theoretical underpinning (i.e., rewriting logic) could be of use as
a framework for OWL/SWRL policies.

References
[AHS02] A. Ankolekar, F. Huch, and K. Sycara. Concurrent Execution Semantics

for DAML-S with Subtypes, First Int. Semantic Web Conference (ISWC), Sardinia
(Italy), June, 2002.

[CDE+03] M. Clavel, F. Duran, S. Eker, P. Lincoln, N. Marti-Oliet, J. Meseguer,
and C. Talcott. The Maude 2.0 System. In Nieuwenhus (ed). Rewriting Techniques
and Applications. Springer, LNCS 2706, pp 77-87, 2003.

[CEL+96] M. Clavel, S. Eker, P. Lincoln, and J. Meseguer. Principles of Maude, In
J. Meseguer (ed), Rewriting Logic and Its Applications, First Int. Workshop,
Asilomar, CA, pp 65-89, 1996.

[Cla98] M. Clavel. Reflection in General Logics, Rewriting Logic, and Maude.
Ph.D. Dissertation, University of Navarre, 1998.

[KFJ05] L. Kagal, T. Finin, and A. Joshi. Rei: A Policy Specification Language.
See http://rei.umbc.edu/.

[Mes92] J. Meseguer. Conditional Rewriting Logic as a Unified Model of
Concurrency, Theoretical Computer Science. 96(1):73-155, 1992.

[Mes00] J. Meseguer. Rewriting Logic and Maude: A Wide-spectrum Semantic
Framework for Object-based Distributed Systems. In S. Smith and T. Talcott (eds),
Formal Methods for Open Object-based Distributed Systems, FMOODS 2000, pp 89-
117. Kluwer, 2000.

[NM02] S. Narayanan and S. McIlraith. Simulation, Verification and Automated
Composition of Web Services, Proc. of the Eleventh International World Wide Web
Conference (WWW-11), Honolulu, May 2002.

[Protégé01] N. F. Noy, M. Sintek, S. Decker, M. Crubezy, R. W. Fergerson, and
M. A. Musen. Creating Semantic Web Contents with Protege-2000, IEEE Intelligent
Systems 16(2):60-71, 2001.

[UBJ+03] A. Uszok, J. Bradshaw, J. Jeffers, N. Suri, P. Hayes, M. Breedy, L.
Bunch, M. Johnson, S. Kulkarni, and J. Lott. KAoS Policy and Domain Services:
Toward a Description-Logic Approach to Policy Representation, Deconfliction, and
Enforcement, Proc. IEEE Workshop on Policy, 2003.

ISWC2005 Semantic Web and Policy Workshop 7 November 2005

 135

An Integration of
Reputation-based and Policy-based Trust Management

? Piero Bonatti1, Claudiu Duma2, Daniel Olmedilla3, and Nahid Shahmehri2

1 Universit̀a di Napoli Federico II, Napoli, Italy
bonatti@na.infn.it

2 Department of Computer and Information Science, Linköpings universitet
{cladu,nahsh }@ida.liu.se

3 L3S Research Center and University of Hannover, Hanover, Germany
olmedilla@l3s.de

Abstract. Trust management is currently being tackled from two different perspec-
tives: a “strong and crisp” approach, where decisions are founded on logical rules and
verifiable properties encoded in digital credentials, and a “soft and social” approach,
based on reputation measures gathered and shared by a distributed community. We
analyze the differences between the two models of trust and argue that an integrated
approach would improve significantly trust management systems. We support our
claim with real world scenarios and illustrate how the two models are integrated
in PROTUNE, the core policy specification language of the network of excellence
REWERSE.

1 Introduction

Trust management has been an important research line in the development of modern open
distributed and decentralized systems. Trust has been studied in the context of decentral-
ized access control [5, 16], public key certification [4, 9], and reputation systems for P2P
networks [2, 14, 10].

There exist currently two different major approaches for managing trust: policy-based
and reputation-based trust management. The two approaches have been developed within
the context of different environments and targeting different requirements. On the one
hand, policy-based trust relies on objective “strong security” mechanisms such as signed
certificates and trusted certification authorities (CA hereafter) in order to regulate the ac-
cess of users to services. Moreover, the access decision is usually based on mechanisms
with well defined semantics (e.g., logic programming) providing strong verification and
analysis support. The result of such a policy-based trust management approach usually
consists of a binary decision according to which the requester is trusted or not, and thus
the service (or resource) is allowed or denied. On the other hand, reputation-based trust
relies on a “soft computational” approach to the problem of trust. In this case, trust is typ-
ically computed from local experiences together with the feedback given by other entities
in the network (e.g., users who have used services of that provider). For instance, in eBay
buyers and sellers rate each other after each transaction. The ratings pertaining to a certain
seller (or buyer) are aggregated by the eBay’s reputation system into a number reflecting

? In alphabetical order. This work is partially supported by the Network of Excellence REWERSE,
IST-506779, http://rewerse.net.

ISWC2005 Semantic Web and Policy Workshop 7 November 2005

 136

seller (or buyer) trustworthiness as seen by the eBay community. The reputation-based ap-
proach has been favored for environments, such as Peer-to-Peer or Semantic Web, where
the existence of certifying authorities could not be always assumed but where a large pool
of individual user ratings was usually available.

The two trust management approaches address the same problem - establishing trust
among interacting parties in distributed and decentralized systems. However, they assume
different settings. While the policy based approach has been developed within the context
of structured organizational environments, the reputation systems have been proposed to
address the unstructured user community. Consequently, they assume different sources
for trust (CAs and community opinion, respectively) and accordingly employ different
mechanisms. Due to this, in the past years, researchers have targeted scenarios focusing
on requirements which they could address with only one of these approaches. However,
real life scenarios are not split in a way that they can just fit one of these approaches
and in many cases, a mixed approach is required. For example, users might be interested
in knowing whether a provider has a certificate from a CA but also in experiences other
users had in the past while performing transactions with it. In addition, a seller might be
interested in protecting an item on sale in different ways depending on the value of the
item: based on reputation if the price is of a few euros (e.g., a T-shirt) or based on policies
if it is of thousands (e.g., requiring a credit card for a flight).

Therefore, in this paper we propose the integration of policy based and reputation
based approaches into a versatile trust management language capable of addressing both
the structured organizational environments as well as the unstructured user communities.
By combining the two different approaches, our integrated trust mechanism enhances the
properties of the existing trust management tools.

2 Policy based vs. Reputation based Trust Management

The termtrust management, introduced in [5] as “a unified approach to specifying and
interpreting security policies, credentials, and relationships which allow direct authoriza-
tion of security-critical actions”, has been given later a broader definition, not limited to
authorizations [12]: “Trust management is the activity of collecting, encoding, analyzing
and presenting evidence relating to competence, honesty, security or dependability with
the purpose of making assessments and decisions regarding trust relationships”. Two main
approaches are currently available for managing trust: policy-based and reputation-based
trust management.

2.1 Policy-based Trust Management

This approach has been proposed in the context of open and distributed services architec-
tures [6, 15, 11, 7] as a solution to the problem of authorization and access control in open
systems. The focus here is on trust management mechanisms employing different policy
languages and engines for specifying and reasoning on rules for trust establishment. The
goal is to determine whether or not an unknown user can be trusted, based on a set of
credentials and a set of policies.

In addition, it is possible to formalize trust and risk within rule-based policy lan-
guages [18, 13] in terms of logical formulae that may occur in rule bodies.

ISWC2005 Semantic Web and Policy Workshop 7 November 2005

 137

Currently, policy-based trust is typically involved in access control decisions. Declar-
ative policies are very well suited to specifying access control conditions that are eventu-
ally meant to yield a boolean decision (the requested resource is either granted or denied).
Systems enforcing policy based trust typically use languages with well-defined semantics
and make decisions based on “non-subjective” attributes (e.g., requester’s age or address)
which might be certified by certification authorities (e.g., via digital credentials). In gen-
eral, policy-based trust is intended for systems with strong protection requirements, for
systems whose behavior is guided by complex rules and/or must be easily changeable, as
well as for systems where the nature of the information used in the authorization process
is exact.

2.2 Reputation-based Trust Management

This approach has emerged in the context of electronic commerce systems, e.g. eBay. In
distributed settings, reputation-based approaches have been proposed for managing trust
in public key certificates, in P2P systems, mobile ad-hoc networks, and, very recently,
in the Semantic Web. The focus here is on trust computation models capable to estimate
the degree of trust that can be invested in a certain party based on the history of its past
behavior.

The main issues characterizing the reputation systems are the trust metric (how to
model and compute the trust) and the management of reputation data (how to securely and
efficiently retrieve the data required by the trust computation) [3].

Marsh [17] made one of the early attempts at formalizing trust using simple trust met-
rics based on linear equations. This model has been further extended by Abdul-Rahman
and Hailes to address reputation-based trust in virtual communities [1]. A number of rep-
utation mechanisms for P2P systems, such as [3, 14, 10], followed similar trust and repu-
tation models.

Typically, reputation-based trust is used in distributed networks where a system only
has a limited view of the information in the whole network. New trust relationships are
inferred based on the available information (following the idea of exploiting world’s in-
formation). In these scenarios, the available information is based on the recommendations
and the experiences of other users, and it is typically not signed by certification authorities
but (possibly) self-signed by the source of the statement. This approach supports trust es-
timates with a wide, continuum range and allows the propagation of trust (e.g., transitive
propagation) along the network as well as weighting of values (e.g., fresher information
vs. older information).

3 Integrated View of Trust Management

As described in previuos sections, policy-based and reputation-based trust management
address the same problem but from different perspectives. However, these points of view
are not always just black or white and in many cases it would be desirable to combine
them. In this section we propose an approach in which both of them can be integrated,
based on the policy languagePROTUNE [7].

First, reputation-based trust can be formalized by relations betweentrustors, trustees,
actions, andtrust levels[18]. For instance, a fact like

trust(P, S, diagnosis(viral), 80−100)

ISWC2005 Semantic Web and Policy Workshop 7 November 2005

 138

would model the fact that patientP trusts specialistS on diagnosis of viral diseases with
an estimated confidence level belonging to the interval80− 100.

Such trust statements can be the basis for trust propagation (e.g. via rules such as “trust
X as a bike mechanic ifX is trusted as a car mechanic”), and for access control decisions
such as

allow(download(contents/pre release)) ←
user(X),
trust(self, X, download(contents/pre release), 90−100) .

Such decisions may consider a notion ofrisk, as in

trust(ProgramX, Server, storeData(Server), 80−100) ←
Server.owner:CoXYZ,
risk(fail(Server), 0−0.1) .

These examples (taken from [18]) show how trust and recomendations can be modelled
and applied through a small set of predicates. The problem is: How should the basicfacts
about trust and risk be gathered and maintained?

In some cases, such facts can be defined by standard policy rules, for example:

trust(A,B, download(file), 80−100) ←
credential(X, VISA),
X.type : credit card, X.owner : B .

However, the main current approaches are based on numerical models (see [8] for
an extensive illustration of the main approaches) and ad-hoc algorithms for gathering,
processing, and propagating historical data about past interactions and the resulting trust
measures. In perspective, it may be possible to apply probabilistic, possibilistic or anno-
tated logics to handle such numbers, but so far there is no clear indication that this is the
right direction, nor any hint on how to do it.

In many approaches, the trust relationships we used as facts (not the inferred ones) are
computed automatically based on experience and on the declarations of other users, using
a numerical model. On the contrary, in policy based trust, all trust relationship are declared
manually (e.g. an entity trusts another entity explicitly creating a statement in FOAF).

We argue that policy based decisions can be enhanced by numerical-based ones and
viceversa. For example, in a policy where we protect our credit card, we could think of a
policy like the following:

allow(visaCard) ←
credential(member(Requester), bbb),
trust(self, Requester, buying, X), X > 0.8.

specifying that we will give our credit card only to entities that are certified by the Better
Business Bureau (company that certifies that a company behaves according to the policies
it published) and only if the server has a good reputation (this value is extracted from our
personal experiences or inferred by using a reputation based algorithm on the community).

Further difficulties are: (i) data are application dependent, as well as the procedures for
obtaining them; (ii) trust is a dynamic concept, i.e., it changes over time.

The above difficulties suggest a modular approach, namely, the computation and distri-
bution of the basic facts on reputation and risk are delegated to suitable external packages.
The results of their processing can be imported viaHERMES-like [19] predicates such as

in(trust(X ,Y ,A,L), reputation pckg : eval trust()))

ISWC2005 Semantic Web and Policy Workshop 7 November 2005

 139

(more details available in [7]). In the above examples the functionseval trust() wrap
queries to the underlying reputation management algorithms, whatever they are. The wrap-
per collects and return the results of those subsystems as a set of terms matching the first
argument of thein predicate. Then non-rule-based reputation and risk models can be in-
tegrated in policies without any ad-hoc language primitives. Moreover, the semantics of
thein predicate depends on a time dependent state [7, 19], and this makes it possible to
address the dynamic aspects of reputation.

Another advantage of this approach is that a single policy may simultaneously apply
different approaches to reputation simply by invoking different packages and combining
their results with suitable rules. This kind of flexibility is particularly important in a stage
where it is not yet clear which of the competing models of reputation-based trust will
become widely accepted, and which application domains they will prove to be good for.
It is also possible to change the number and type of parameters of thetrust andrisk
predicates, if needed by a particular reputation model.

This flexible architecture is compatible both with on-demand trust computation and
with proactive propagation of trust evaluation, as reputation packages may receive asyn-
chronous messages from other peers, concerning warnings and reputation evaluations.

3.1 An Application Scenario: Electronic Business

Transaction policies must handle expenses of all magnitudes, from micropayments (e.g. a
few cents for a song downloaded to your iPod) to credit card payments of a thousand euros
(e.g. for a plane ticket) or even more. The cost of the traded goods or services typically
contributes to determining the risk associated to the transaction and hence the trust needed
for performing it. For instance, for micro-payments of a few euros or cents, a seller could
just check the reputation of the buyer within the community. If the buyer’s reputation
is high, the risk that he or she would not pay is very low, and thus the transaction can
be conducted with a simple check. On the contrary, if a buyer’s reputation is low or the
amount of money involved in the transaction is high, risk is higher and thus the seller may
require stronger guarantees, such as a verified credit card number to ensure that the buyer
can and will pay.

The buyer’s point of view is dual. If the amount of the transaction is high, the buyer
may require strong and objective guarantees that the seller will deliver the goods and that
the credit card will not be misused. For example, the buyer may require a secure con-
nection, BBB (Better Business Bureau) certificates, blacklist checks, etc. In addition, the
buyer may consider the seller’s reputation in the community to increase the chances of
successful transaction completion and privacy protection.

4 Conclusions

In this paper we have identified the advantages and limitations of policy-based and
reputation-based trust management and described how the two approaches can improve
each other. The need for an integrated approach has been motivated with real world scenar-
ios. We proposed an integrated trust management approach that combines rule-based and
credential-based trust with numerical trust estimates based on a large number of sources
(e.g., user community). Our formalization privileges flexibility and extendibility as a de-
sign goal. The extension of the traditional crisp, boolean policies with a continuum range

ISWC2005 Semantic Web and Policy Workshop 7 November 2005

 140

of trust levels, and the extension of numerical trust models with well defined trust com-
bination and propagation rules, yield a versatile trust management framework capable of
addressing the complexity and the variety of semantic web scenarios, involving both struc-
tured organizational environments and unstructured user communities.

References

1. A. Abdul-Rahman and S. Hailes. Supporting trust in virtual communities. InProceedings of
33rd Hawaii International Conference on System Sciences, 2000.

2. K. Aberer. P-grid: A self-organizing access structure for p2p information systems. InProceed-
ings of Ninth International Conference on Cooperative Information Systems, 2001.

3. K. Aberer and Z. Despotovic. Managing trust in a peer-2-peer information system. InProc. of
10th International Conference on Information and Knowledge Management, 2001.

4. T. Beth, M. Borcherding, and B. Klein. Valuation of trust in open networks. InProc. of the 3rd
European Symposium on Research in Computer Security. Springer-Verlag, 1994.

5. M. Blaze, J. Feigenbaum, and J.Lacy. Decentralized trust management. InProceedings of IEEE
Conference on Security and Privacy, 1996.

6. P. Bonatti and P. Samarati. Regulating service access and information release on the web. In
Proc. of the 7th ACM conference on computer and communications security, 2000.

7. P. A. Bonatti and D. Olmedilla. Driving and monitoring provisional trust negotiation with
metapolicies. InIEEE 6th International Workshop on Policies for Distributed Systems and
Networks (POLICY), pages 14–23, Stockholm, Sweden, jun 2005. IEEE Computer Society.

8. P. A. Bonatti, N. Shahmehri, C. Duma, D. Olmedilla, W. Nejdl, M. Baldoni, C. Baroglio,
A. Martelli, V. Patti, P. Coraggio, G. Antoniou, J. Peer, and N. E. Fuchs. Rule-based policy
specification: State of the art and future work. Report I2:D1, EU NoE REWERSE, sep 2004.

9. G. Caronni. Walking the web of trust. InProceedings of 9th IEEE International Workshops on
Enabling Technologies (WETICE), pages 153–158, June 2000.

10. C. Duma, N. Shahmehri, and G. Caronni. Dynamic trust metrics for peer-to-peer systems. In
Proc. of 2nd IEEE Workshop on P2P Data Management, Security and Trust, August 2005.

11. R. Gavriloaie, W. Nejdl, D. Olmedilla, K. E. Seamons, and M. Winslett. No registration needed:
How to use declarative policies and negotiation to access sensitive resources on the semantic
web. In 1st European Semantic Web Symposium (ESWS 2004), pages 342–356, Heraklion,
Crete, Greece, may 2004. Springer.

12. T. Grandison.Trust Management for Internet Applications. PhD thesis, Imperial College Lon-
don, 2003.

13. T. Grandison and M. Sloman. Specifying and analysing trust for internet applications. InTo-
wards The Knowledge Society: eCommerce, eBusiness, and eGovernment, The Second IFIP
Conference on E-Commerce, E-Business, E-Government (I3E 2002), IFIP Conference Proceed-
ings, pages 145–157, Lisbon, Portugal, oct 2002. Kluwer.

14. S. D. Kamvar, M. T. Schlosser, and H. Garcia-Molina. Eigenrep: Reputation management in
p2p networks. InProc. of 12th International WWW Conference, pages 640–651, 2003.

15. N. Li and J. Mitchell. RT: A Role-based Trust-management Framework. InDARPA Information
Survivability Conference and Exposition (DISCEX), Washington, D.C., Apr. 2003.

16. N. Li and J. C. Mitchell. Datalog with Constraints: A Foundation for Trust-management Lan-
guages. InProceedings of the Fifth International Symposium on Practical Aspects of Declara-
tive Languages (PADL 2003), pages 58–73, January 2003.

17. S. Marsh.Formalising Trust as a Computational Concept. PhD thesis, Uni. of Stirling, 1994.
18. S. Staab, B. K. Bhargava, L. Lilien, A. Rosenthal, M. Winslett, M. Sloman, T. S. Dillon,

E. Chang, F. K. Hussain, W. Nejdl, D. Olmedilla, and V. Kashyap. The pudding of trust.IEEE
Intelligent Systems, 19(5):74–88, 2004.

19. V. Subrahmanian, S. Adali, A. Brink, J. Lu, A. Rajput, T. Rogers, R. Ross, and C. Ward.HER-
MES: Heterogeneous reasoning and mediator system. 1995.

ISWC2005 Semantic Web and Policy Workshop 7 November 2005

 141

Semantic Policy-based Security Framework for
Business Processes

Dong Huang1,2

1Institute for Algorithms and Cognitive Systems (IAKS)
University of Karlsruhe (TH)
D-76131 Karlsruhe, Germany

dong.huang@ira.uka.de
2Siemens AG, Corporate Technology

D-81730 Munich, Germany

Abstract. Web service composition and workflow language enable the
definition and execution of business process in various application do-
mains. Security is now a major concern for us to implement business
process in the context of web service. Meanwhile policy-based approach
is becoming popular for the dynamic specification and regulation of web
service constraints. We are going to propose a security framework for
business process and use policy language enriched with semantics to rep-
resent the security concerns and requirements. Furthermore, the chal-
lenges will be listed to guide future research.

1 Introduction

Business Processes describe the interaction and collaboration between multiple
parties working towards a common objective or a special function. Each party in
the Business Process provides its service interface to be accessed and defines by
itself how this interface can be invoked. The introduction of Web Services has
provided a new way to conduct the business. For example, in the populate travel
agent scenario, a travel agency offers its service for booking a travel package by
combining several elementary web services such as flight and hotel reservation.

Web Services composition is currently defined by two largely complementary
initiatives for developing business processes. The terms orchestration and chore-
ography have been widely used to describe business interaction protocol. Orches-
tration describes the business logic and how web service can interact with each
other from the perspective of a single endpoint. Business Process Execution Lan-
guage for Web Service (BPEL or WS-BPEL 2.0)[1] is an orchestration language
that is widely used in industry to define the business process and the execution
order. Choreography is associated with globally visibly message exchange and is
more collaborative in nature than orchestration. Web Service Choreography De-
scription Language (WS-CDL)[10] is a draft document of W3C and introduces
a description language which fixes the rule of the interaction between the parts
involved in the system. In this paper we focus on the orchestration approach and
use BPEL to describe the related business processes.

ISWC2005 Semantic Web and Policy Workshop 7 November 2005

 142

Security is one of the major concerns when developing business processes.
We distinguish two levels of security requirement: Task Level and Process Level.

– Task Level Security. Business Task describes what is to be done in the
business model. In the context of web services, a business task is represented
by a web service that fulfils the specification of task. Security requirements in
this level include basic aspects such as Authentication, Authorization (Access
Control), Non-reputation, Data Integrity and Confidentiality. Web service
can protect SOAP messages sent over insecure transports by embedding
security headers. The WS-Security standard[11] defines how such headers
may include signatures, cipher texts and security tokens. There are several
emerging specification of web service security such as WS-Policy, WS-Trust,
WS-Privacy, and WS-Federation, covering various facets of security in the
context of web service. They are built on the top of WS-Security and define
enhancements to provide security protection to web service endpoints and
the data communication between them.

– Process Level Security. Business process defines how business tasks inter-
act and collaborate. Security requirements in this level are normally defined
by Business Rules. A business rule is a statement that defines or constrains
some aspects of the business. Business rules are usually expressed as con-
straints or in the form if condition then action. Business rules provide a
means to express and specify high-level security constraints in the form of
policy, which are separated logically and physically from the other compo-
nents through out business processes. Security concerns arisen from business
rules concentrate on the critical constraints in the business model and other
aspects, such as those for Six Sigma and Sarbanes-Oxley legislation compli-
ance.

WS-Security and other emerging specifications provide the basic security func-
tionalities, but they do not offer enough support for process level security in web
service composition. The initial way to solve the process level security is to inte-
grate business rules into BPEL process manually. Business rules are integrated
with process by adding activities, which are used to model the consumption and
production of messages, tasks, data or goods. But it is not easy for the devel-
oper or administrator to handle the complex rules and deal with the impact of
dynamically changing of business rules.

In this paper, we propose a semantic policy-based approach to secure the web
service composition for business processes. Section 2 includes related approaches
and Section 3 gives an overview of our proposed security framework. Section 5
describes the challenges for the work.

2 Related Work

In the project SECTINO[3]1, a system architecture for local and global workflow
system is proposed based on the XACML and SAML. Security concerns are

1 http://qe-informatik.uibk.ac.at

ISWC2005 Semantic Web and Policy Workshop 7 November 2005

 143

defined in OCL(Object Constraint Language) with model-driven UML tools.
SECTINO employs a static specification and enforement of security policies in
web services composition. XACML is good for specifying policy in a specified
domain. But it is not semantic rich enough for cross-organitaional orchestration
and high-level security requirments.

AO4BPEL[4]2 proposes an aspect-oriented extension to BPEL. It uses aspects-
oriented concept to modularize cross-cutting concerns like security and perfor-
mance in business processes. Although the AO4BPEL framework offers the mod-
ularity and dynamic adaptability to the web service composition, it lacks seman-
tic description of security aspects, business processes and business rules. This
make conflicts detection and policy negotiation infeasible for securing the web
service composition. The adoption of a semantic web language can overcome this
limitation with the help of a common ontology basis.

There are a lot of research works and industry standards on using semantic
and non-semantic policy for security. Ponder[5], XACML[15] and WS-Policy3

are typically non-semantic policy framework. KAoS[2], Rei[9] and SWRL[8] are
approaches that enriched with semantics using RDF[13] and OWL[14] as stan-
dards for policy specification. A comparative analysis between semantic and
non-semantic language is made by [7] to show the advantages of semantic policy
approach. After comparing these semantic policy languages [7], Rei and SWRL
seems to have sufficient capability to represent the security requirements in the
context of business process.

All semantic description should base on the same knowledge base. Security
restrictions have to be expressed in underlying knowledge representation formal-
ism for an ontological description of policies. A generic policy description frame-
work based on three ontology layer is defined in [12]. The three ontology layers
are: a domain-independent upper-level ontology, a Core Legal Ontology and a
Core Policy Ontology. The first two components are off-the-shelf ontologies that
are used as modeling basis for the construction of domain specific ontologies. In
[6], security ontologies are defined in DAML+OWL4 that allow the annotation
of web service with respect to various security related notions such as access
control, data integrity and others.

3 Design of the Framework

A service platform to deploy web service composition whose interaction and
security are specified and governed by policy need to address the following chal-
lenges:

– Policy languages used in the system should be well-defined, flexible enough
to allow new policy information to be expressed and extensible enough to add
new policy type. Different policy languages from different domains should
also be able to interoperate [7].

2 http://www.st.informatik.tu-darmstadt.de/static/pages/projects/AO4BPEL
3 http://www-128.ibm.com/developerworks/library/specification/ws-polfram/
4 http://www.daml.org

ISWC2005 Semantic Web and Policy Workshop 7 November 2005

 144

– Effective policy combined and created from policies should be able to nego-
tiate during runtime. Changes in a policy should be reflected in the runtime
logic[16] and conflicts arisen should be to be detected and resolved on the
fly.

For the task level security we tend to use the WS-Policy framework, because
WS-Policy has already been well developed and addressed all the necessary se-
curity aspects on the task level. For the process level security Rei and SWRL are
suitable, because the business rules usually represented as constraints or if-then
form can be efficiently expressed by logical functions of these semantic policy
languages. Business rules are usually defined by different parties and distributed
through out the network, so a policy langugage with rich semantics can also help
the interoperation and combination of these business rules. Even though differ-
ent semantic/non-semantic policies can be used to represent security concerns
at both task and process level, policies with semantics built on common security
ontology are more general and flexible.

Fig. 1. Architecture of the security framework

Fig. 1 shows the architecture of the semantic policy-based framework for
business process. The output of the business process modelling and model-driven
security requirements analysis on the top layer are a set of security policies
and the meta business process, which describes abstract process with functional
tasks. All security concerns arisen from different domains and reasons, such
as legal problems, privacy and changes of business rules, will be covered in the

ISWC2005 Semantic Web and Policy Workshop 7 November 2005

 145

security policies. These policies would be specified and annotated with semantics
based on the Ontology Repository. Two kinds of ontology in the repository
are:

– Business Ontology describes the concepts and relations related to the current
business process.

– Security Ontology illustrates the relations among security concepts like au-
thorization and authentication.

The Policy Manager gets the meta process definition and policies as input.
Formally described policies can be checked for compatibility via matching. De-
scription Logic will be used to conduct the matching phase and make the policy
negotiation and conflicts detection possible. Then the Policy Manager creates as
output the BPEL process definition, in which semantic policies that represent
the business rules and other security requirements are integrated. New tasks or
activities, which access the Security Service to get the necessary security token
for SOAP message or invoke encryption and signature methods, are inserted into
the meta BPEL to create the new BPEL file. Policy changes can be deployed
and take effect on the fly without stopping the process by using aspect-oriented
extension to BPEL like AO4BPEL.

4 Conclusion and Future Work

In this paper we addressed our ongoing research about a semantic policy-based
security framework for business processes. We have distinguished all security
concerns and requirements into two levels: Task and Process Level. The archi-
tecture of security framework is designed to support runtime policy management
and enforcement. Security policies are built on the top of ontology to enrich rep-
resentation of security concerns and enable reasoning for conflict detection and
policy negotiations. The challenges and issues, which deserve future research,
will be the following:

– Model-Driven Security Modelling. There are ongoing standardization effort
for business process modelling from both OMG5 and BPMI6. Security as an
important concern is still not well specified to incorporate with the business
process modelling standards from OMG and BPMI.

– How to define and translate security concerns to semantic policies? Ontology
and rule language, such as SWRL, should be used to represent declarative
policy in the future work.

– How to enforce policies on the business process during the runtime? The
aspect-oriented approaches can modularize the crosscutting concerns like se-
curity and should be implemented on the process level to enforce the policies
dynamically.

5 http://www.omg.org
6 http://www.bpmi.org

ISWC2005 Semantic Web and Policy Workshop 7 November 2005

 146

5 Acknowledgment

The authors would like to thank the team at Siemens CT IC 3 for their guid-
ance and support whilst conducting this research. In particular, we thank Jorge
Cuellar for his valuable contributions towards this work.

References

1. Arkin, A., Askary, S., Bloch, B., and Curbera, F. Web services business
process execution language version 2.0. Tech. rep., OASIS, December 2004.

2. Bradshaw, J., and Uszok, A. Representation and reasoning for daml-based
policy and domain services in kaos and nomads. In AAMAS ’03: Proceedings of
the second international joint conference on Autonomous agents and multiagent
systems (New York, NY, USA, 2003), ACM Press, pp. 835–842.

3. Breu, R., and Hafner, M. Sectino:inter-organizational workflow security in
e-government, 2004.

4. Charfi, A., and Mezini, M. Aspect-oriented web service composition with
ao4bpel. In ECOWS (2004), vol. 3250 of LNCS, Springer, pp. 168–182.

5. Damianou, N., Dulay, N., Lupu, E., and Sloman, M. Ponder:a language for
specifying security and management policies for distributed systems. Tech. rep.,
Imperial College, October 2000.

6. Denker, G., Kagal, L., Finin, T., Sycara, K., and Paoucci, M. Security
for daml web services: Annotation and matchmaking. In Second International
Semantic Web Conference (September 2003).

7. Felix Clemente, G. P. Representing security policies in web information sys-
tems. In Proceedings of WWW 2005 (May 2005).

8. Horrocks, I., and Patel-Schneider, P. F. Swrl: A semantic web rule language
combining owl and ruleml. Tech. rep., The Rule Markup Initiative, May 2004.

9. Kagal, L., Finin, T., and Joshi, A. A policy language for a pervasive computing
environment. In IEEE 4th International Workshop on Policies for Distributed
Systems and Networks (2003).

10. Kavantzas, N., Burdett, D., and Ritzinger, G. Web services choreography
description language version 1.0. Tech. rep., December 2004.

11. Kelvin Lawrence, Chris Kaler, S. A. Web services security. Tech. rep., OASIS,
2004.

12. Lamparter, S., Eberhart, A., and Oberle, D. Approximating service utility
from policies and value function patterns. In Proc. of the 6th IEEE Workshop
on Policies for Distributed Systems and Networks (JUN 2005), IEEE Computer
Society.

13. Manola, F., and Miller, E. Rdf primer. Tech. rep., W3C Recommendation,
February 2004.

14. McGuinness, D. L., and van Harmelen, F. Owl web ontology language
overview. Tech. rep., W3C Recommendation, February 2004.

15. Moses, T. extensible access control markup language (xacml) version 2.0 3. OASIS
Standard, Feb 2005.

16. Mukhi, N. K., and Plebani, P. Supporting policy-driven behaviors in web
services: experiences and issues. In ICSOC ’04: Proceedings of the 2nd international
conference on Service oriented computing (New York, NY, USA, 2004), ACM Press,
pp. 322–328.

ISWC2005 Semantic Web and Policy Workshop 7 November 2005

 147

RBAC Policy Engineering with Patterns

Taufiq Rochaeli? and Claudia Eckert

Departement of Computer Science
Darmstadt University of Technology

{rochaeli,eckert}@sec.informatik.tu-darmstadt.de

Abstract. We present a RBAC policy engineering approach that sup-
ports administrators to specify RBAC policies with the help of experts’
knowledge, which is documented using the pattern paradigm. These
patterns are formalised in Web Ontology Language (OWL) that en-
ables machine interpretation of experts’ knowledge and reasoning about
the RBAC policy. Thus, administrators could specify RBAC policies by
choosing the patterns matching their scenario and asserting instances
without knowing the complex RBAC policy specification.

1 Introduction

Role-Based Access Control (RBAC) [1] offers a better manageability than tradi-
tional Mandatory Access Control (MAC) or Discretionary Access Control (DAC)
to fulfil organisational security policies. However, in an organisation with com-
plex scenarios, the specification of access control policies using role based model
may also be overwhelming for security administrators. They need domain as well
as security experts’ knowledge to accomplish this task. This knowledge provides
security administrators with well-proven empirical solutions to access control
policies specification within a certain domain (i.e. hospital, government, etc.),
which is strongly affected by social and/or economical factors. Furthermore, in-
creasing complexity of the scenario also poses another inconsistency problem,
which is caused by the manual specification of RBAC policies. For this reason,
a tool support to generate RBAC policies specification is required.

We developed a role engineering approach, which follows the scenario-oriented
requirements engineering approach [2] that assists security administrators to
specify the RBAC policies with the help of experts’ knowledge. As argued above,
the experts’ knowledge on specifying RBAC policies with consideration on sev-
eral factors in a certain domain will greatly helps security administrators to
specify RBAC policies.

To document the experts’ knowledge, we follow the structure proposed in
pattern paradigm originated from the architecture field [3]. This paradigm has
been widely used in several fields in computer science [4, 5]. Despite of the im-
provement in their engineering processes, pattern paradigm still has a major

? partially supported by the German Ministry of Education and Research (BMBF)
under SicAri Project.

ISWC2005 Semantic Web and Policy Workshop 7 November 2005

 148

drawback: novice users find it difficult to interpret and to apply the patterns.
By encoding experts’ knowledge in specifying RBAC policies in semantic lan-
guage, i.e. OWL, we explore the possibilities of automatic generation of RBAC
policies by using reasoning services provided by description logic-based knowl-
edge representation system. With this framework, security administrators only
need to interpret their scenario, search for patterns that match the scenario
and assert instances in the scenario into the knowledge representation system.
Hence, the complexity of RBAC policies specification could be concealed by the
abstraction of more understandable concepts of the scenario.

This paper is organised as follows. Section 2 begins with the background of
this work and subsequently presents the definition of RBAC policy patterns in
description logic notation[6]. Section 3 outlines the generation process of RBAC
policies by using the reasoning services of knowledge representation system. Sec-
tion 4 discusses some related works in pattern paradigm and role engineering.
Finally, section 5 presents the conclusion.

2 Definition of RBAC Policy Pattern

This section briefly describes the background of pattern paradigm and continues
with the motivation that drives the adaptation of pattern paradigm in RBAC
policies specification process. It explains the similarities between construction
design and RBAC policies specification and continues with the definition of
RBAC policies pattern.

To design a building, architects should consider many non-technical human-
related factors, for example, social and/or psychology factors. This is necessary,
due to the fact that people live and interact in the building and have their own
needs. Therefore, architects should design constructions, which fulfil the needs
emerging from these factors.

Christopher Alexander proposed pattern method in his work [3], which struc-
turally captures experts’ knowledge. Each pattern has three general parts, a
context, a problem and a solution. The context describes the environment,
in which the pattern shall apply. It covers both temporal and spatial aspects of
the environment that represent a scenario. In this context, there exist forces1

that need to be resolved. These forces characterise the problem in the context.
Finally, the solution proposes a configuration or a design which should resolves
the existing forces in the context. Collected patterns do not exist independently;
they have one or more relationships with other patterns. These relationships
reflect the conflicts, compatibilities and dependencies between patterns applied
within a context.

The pattern approach in software engineering [4] and security engineering
[5], which captures the solutions considering different non-technical factors, mo-
tivates this work to adapt the pattern approach in RBAC policy specification.
Thus, RBAC policy pattern shall capture this expertise knowledge, which has

1 In our work, we interpret forces as requirements and problems.

ISWC2005 Semantic Web and Policy Workshop 7 November 2005

 149

the solution to specify access control policies in a certain situation by considering
various non-technical factors, even the subtle one.

A pattern consists of a context with problem and a solution: Pattern ≡
∃hasCtx .Context u ∃hasSln.Solution. In the next two subsections we define the
main parts of RBAC policy pattern, which are described using description logic
notation.

2.1 Context and Problem

The context of RBAC policy pattern represents a novel description of business
process scenario. It has SubjectInTaskClass and ObjectClass as main concepts,
which are interpreted as a class of subject performing a certain task, and as a
class of resources, respectively. Optionally, the context may also have concepts
and concepts relationships of the Event-controlled Process Chain [7] such as
Event and controlFlow , which links Event with SubjectInTaskClass.

The critical aspect of context of business process is the information that
flows from subjects to objects and vice versa. Information flow is needed in or-
der to perform the business process. On the other hand, a possible unintended
information flow could also pose a security threat to the business process. We
identify two main classes of problem, which arise in this context. They are work-
flow requirements and security threats. These problems are denoted by concept
relationships between SubjectInTaskClass and ObjectClass. A workflow require-
ment relationship means that a subject needs an access to objects in order to
perform the business process. The workflow relationship is further classified into
hasWflowReqInput and hasWflowReqOutput, which represent the input and out-
put information flow needed in business process between the subjects in a task
and the objects. A security threat relationship means that a subject could per-
form an attack to objects, which can cause any harm to the business process. The
security attack relationship is also classified into two classes, hasSecThreatInput
and hasSecThreatOutput, which represent the input and output information flow
between the subjects in a task and the objects posing security threats.

Fig. 1 shows an excerpt of transaction pattern context adapted from the ref-
erence model of an industrial business process in [8] with its problem. In this
context, a malicious worker in WarehouseManagement task could issue a fictive
transaction, so that he can steal some goods in the warehouse. This threat is
represented by createFictiveTransactionIn. Note that, we do not define problem
as separate concept, because the problem is already represented by concept re-
lationships.

It is also possible to define a context having conflicting forces, i.e., a task
class requires a write access to a database, but it also poses a security threat
when it write to the database. To prevent this definition, both axioms
¬(∃hasTask.∃hasSecThreatInput.ObjectClass) w ∃hasTask.∃hasWflowReqInput.ObjectClass

and
¬(∃hasTask.∃hasSecThreatOutput.ObjectClass) w ∃hasTask.∃hasWflowReqOutput.ObjectClass

should be defined.

ISWC2005 Semantic Web and Policy Workshop 7 November 2005

 150

TransactionCtx ≡ ∃hasTask.TransactionMonitoring u ∃hasTask.WarehouseManagement u . . .

∃hasObject.Transaction u ∃hasObject.DunningLetter u
∃hasObject.DeliveryNote u ∃hasObject.Inventory u . . .

createFictiveTransactionIn v hasSecThreatOutput

WarehouseManagement ≡ ∃createFictiveTransactionIn.Transaction u ∃hasWflowReqInput.Transaction u . . .

TransactionMonitoring ≡ ∃hasWflowReqInput.Transaction u ∃hasWflowReqInput.DunningLetter u . . .

Fig. 1. Context and problem of Transaction pattern

2.2 Solution

The solution part of a RBAC policy pattern specifies authorisation policies of a
context that fulfil the requirements within this context. Currently, the solution
only proposes the core RBAC and hierarchical RBAC specification of the RBAC
INCITS standard [1].

A solution defines permission and role concepts, which have different in-
terpretation than the concepts introduced in RBAC model. We interpret per-
mission as a class of subjects which have a certain permission. For example,
P1 ≡ ∃read .DatabaseX is a class of subjects which are permitted to read data-
base X. A role is interpreted as a class of subjects which have required permis-
sions to perform a task. A role concept is constructed by intersection of different
permissions. With our definition, R2 v R1 is interpreted by DL reasoning service
as: (1) all permissions of R2 are included in R1, (2) all users in R2 are also mem-
bers of R1. Thus, role hierarchy relationship R2 � R1 could be represented by
inclusion R2 v R1. In case of redundant definition of permissions among roles,
role hierarchy could be automatically detected and built by using classification
service provided by reasoning engine.

From the context, the administrator already knows the membership of sub-
jects in task classes. We extend the interpretation of SubjectInTaskClass to a class
of subjects performing a certain task and having the necessary role(s). There-
fore, the solution defines SubjectInTaskClass as intersection of roles. This kind
of definition implicitely defines SubjectInTaskClass v Role, which ensures that
every subjects having task membership are always assigned to roles.

Fig. 2 shows an excerpt of transaction pattern solution.

TransactionSln ≡ ∃defines.ManufacturingRole u ∃defines.ShippingDeptRole u . . .

ManufacturingRole ≡ ∃get.DunningLetter u ∃put.DunningLetter u ∃get.Transaction

ShippingDeptRole ≡ ∃get.Transaction u ∃put.DeliveryNote u ∃put.Inventory

TransactionMonitoring ≡ ManufacturingRole

WarehouseManagement ≡ ShippingDeptRole

Fig. 2. Solution of Transaction pattern

ISWC2005 Semantic Web and Policy Workshop 7 November 2005

 151

2.3 Relationship between RBAC Policy Patterns

The relationships between patterns distinguish pattern from template. They rep-
resent compatibility between patterns and guide the pattern application process.
The compatibility between patterns is represented by refinement and dependency
relationships. The conflict relationship should guide the pattern user to avoid
simultaneous use of these patterns, which have conflicting requirements between
pattern contexts. In this paper, we only focus on conflict relationship. A pattern
can conflict with another pattern, if and only if, the contexts of these patterns
have any task class, which has a security threat relationship in one context, and
also has a workflow requirement relationship in another context to the same
object class. This relationship is formally defined in fig. 3.

confl ≡ hasCtx ◦
((hasTask ◦ hasSecThreatInput ◦ hasObject− u hasObject ◦ hasWorkflowReqInput− ◦ hasTask−) t

(hasTask ◦ hasSecThreatOutput ◦ hasObject− u hasObject ◦ hasWorkflowReqOutput− ◦ hasTask−)) ◦

hasCtx−

Fig. 3. Conflict relationship

3 Generating RBAC policies

In order to generate RBAC policies, security administrator should first interpret
his scenario. Next, he chooses patterns starting from the most general one to
the detailed one. The selection criterion is that the context of patterns should
(partially) match the concrete scenario and (partially) fulfil the requirements of
scenario. For each selected pattern, concept instances of pattern, concept and
solution and concept relationships should be asserted.

After all requirements of scenario have been met by the patterns, he asserts
the instances of scenario matching the context concepts into the knowledge rep-
resentation system. Subject and role assignments are be defined by retrieving
instances of roles. Role and permission assignments are defined by retrieving
concept descendants of role.

4 Related Works

Previous work on formalisation of patterns [9, 5] propose formalisation of pat-
terns based on first-order predicate logic and frame-logic, respectively. The first
work only defines the formalisation of pattern solution without its related context
and problem. It also lacks of definition of pattern relationship. The latter work
only defines the formalisation of pattern structure and its relationships. In com-
parison of previous works to our case, we encode the context, problem and the
solution in semantic language based on description logic. Therefore, machine in-
terpretation of context, problem and solution is possible. However, in our current

ISWC2005 Semantic Web and Policy Workshop 7 November 2005

 152

work, searching and selecting suitable patterns is still done by involving human
intelligence, which interprets the context of pattern. Since the description logic
notation of context is still hard to understand, each pattern also provides the
description of its context as plain text. In the role engineering area, Neumann
et. al. present in [10] a method to derive role from scenario. Our approach differs
in a way that the expertise knowledge in a certain domain is documented using
pattern paradigm instead of catalog.

5 Conclusion

In our approach, the involvement of the policy designer in the RBAC policies
specification task is reduced only to scenario identification, patterns selection
and instances assertion. Thus, the possibility of human error in RBAC policy
specification that could lead into inconsistent and redundant specification could
be avoided.

Acknowledgements

The authors thank anonymous reviewers for helpful comments.

References

1. American National Standards Institute: ANSI Standard 359-2004: Role Based
Access Control (2004)

2. Alistair G. Sutcliffe, Neil A.M. Maiden, Shailey Minocha, Darrel Manuel: Sup-
porting scenario-based requirements engineering. IEEE Transactions on Software
Engineering 24 (1998) 1072 – 1088

3. Alexander, C.: The Timeless Way of Building. Oxford University Press (1979)
4. Gamma, E., Helm, R., Johnson, R., Vlissides, J.: Design Patterns. Addison Wesley

(1995)
5. Schumacher, M.: Security Engineering with Patterns - Origins, Theoretical Model,

and New Applications. Volume 2754 of LNCS. Springer (2003)
6. Baader, F., Calvanese, D., McGuinness, D., Nardi, D., Patel-Schneider, P., eds.:

The Description Logic Handbook. Cambridge University Press (2004)
7. (G. Keller, M. Nüttgens, A.-W. Scheer)
8. A. -W. Scheer: Wirtschaftsinformatik: Referenzmodelle für industrielle

Geschäftsprozesse(in German). Springer (1998)
9. Alencar, P., Cowan, D., Dong, J., Lucena, C.: A pattern-based approach to struc-

tural design composition. In: Twenty-Third Annual International Computer Soft-
ware and Applications Conference, IEEE Press (1999)

10. Neumann, G., Strembeck, M.: A scenario-driven role engineering process for func-
tional rbac roles. In: SACMAT ’02: Proceedings of the seventh ACM symposium on
Access control models and technologies, New York, NY, USA, ACM Press (2002)
33–42

ISWC2005 Semantic Web and Policy Workshop 7 November 2005

 153

