
APPROVAL SHEET

Title of Thesis: Extending Reasoning Infrastructure for Rules on the Semantic
Web: Well-founded Negation, Incremental Courteous Logic Programs, and
Interoperability Tools in SweetRules

Name of Candidate: Shashidhara Ganjugunte Master of Science, 2005

Thesis and Abstract Approved:
Dr. Anupam Joshi
Professor
Department of Computer Science and
Electrical Engineering

Date Approved:

Curriculum Vitae

Name: Shashidhara Ganjugunte.

Permanent Address: 4765, Chapel Square, Baltimore, MD 21227.

Degree and date to be conferred: Master of Science, August 2005.

Date of Birth: November 09, 1979.

Place of Birth: Bangalore, India.

Secondary Education: M.E.S College, Bangalore, 1997.

Collegiate institutions attended:
University of Maryland, Baltimore County, M.S. Computer Science, 2005.
University Visvesvaraiah College of Engg., Bangalore, India,
B.E. Computer Science, 2001.

Major: Computer Science.

Minor(s):

Professional publications:

Li Ding, Pranam Kolari, Shashidhara Ganjugunte, Tim Finin, Anupam Joshi
On Modeling and Evaluating Trust Network Inference, Seventh International
Workshop on Trust in Agent Societies, AAMAS 2004

Professional positions held:

Research Assistant, CSEE Department, UMBC. (Jun. 04 - May. 05)

Teaching Assistant, CSEE Department, UMBC. (Aug. ’03 - Jun. ’04).

Software Design Engineer, Microsoft India Private Limited, (November ’01 - Jul.
’03).

ABSTRACT

Title of Thesis:

Extending Reasoning Infrastructure for Rules on the Semantic Web:

Well-founded Negation, Incremental Courteous Logic Programs, and

Interoperability Tools in SweetRules

Author: Shashidhara Ganjugunte, Master of Science, 2005

Thesis directed by: Dr. Anupam Joshi, Associate Professor
Department of Computer Science and
Electrical Engineering

Production Rules, Description Logic(DL) and Logic Programs(LP) are the key para-

digms of knowledge representation. Production rules systems (particularly the JESS

rule engine) are based on the Rete network and primarily support forward inferenc-

ing. However, they do not have proper semantics for negation. The Web Ontology

Language (OWL) is based on description logic and cannot express rules. Several

extensions to OWL including the OWL Rules Language(ORL), Semantic Web Rule

Language(SWRL)have been proposed in order to overcome this deficiency. But, in

order to keep the reasoning decidable we have resorted to the “Description Logic

Programs(DLP)” approach, which considers the intersection of description logic and

logic programs and translates OWL constructs within the DLP subset to LP. Sys-

tems based on Logic programs, especially those supporting “Well-Founded Seman-

tics(WFS)” such as XSB have clean semantics for handling negation. However, it

is harder to author rules in such systems because of lack of higher level primitives

to specify priorities and conflict handling. All of the above systems do not have the

ability to invoke external procedures which can perform side-effectful actions such as

sensing and effecting. In this thesis, we present SweetRules which addresses all these

issues by evangelizing Well-Founded Semantics and Situated and Courteous Logic

Programs.

Extending Reasoning Infrastructure for Rules on

the Semantic Web: Well-founded Negation,

Incremental Courteous Logic Programs, and

Interoperability Tools in SweetRules

by
Shashidhara Ganjugunte

Thesis submitted to the Faculty of the Graduate School
of the University of Maryland in partial fulfillment

of the requirements for the degree of
Master of Science

2005

Dedicated to my Grandparents

i

ACKNOWLEDGMENTS
I would like to express my sincere gratitude to my graduate advisor Dr. Anupam

Joshi for his constant support and guidance. I am also grateful to Dr. Tim Finin and
Dr. Tim Oates for their pointers and guidance.

I would also like to thank Dr. Benjamin Grosof for his constant guidance and
support. Dr. Grosof was the main research supervisor for this project, and it is his
vision that has manifested itself as SweetRules.

I would also like to thank my close friend Pranam Kolari, for his valuable feedback
during and after writing the thesis.

I would also like to thank all the members of the SweetRules team, Chitro Neogy,
Said Tabet, Mike Dean, Dave Kolas, Sumit Bhansali and Dr. Benjamin Grosof for
their comments and suggestions.

I would also like to thank the SweetRules users and the community members for
their questions and feedback which have helped immensely in increasing the quality
of SweetRules.

My sincere thanks to my parents for their constant support and encouragement
during the entire course of my Master’s.

ii

Contents

1 Introduction 1
1.1 Challenges in interoperability across different knowledge representation

mechanisms . 1
1.2 Role of Well Founded Semantics . 2
1.3 Significance of incremental reasoning 3
1.4 Contributions . 3

2 Related work 4
2.1 Platform level tools . 4
2.2 Computation of the Well-Founded Model for Production Rules 4
2.3 Incremental compilation for Courteous Logic Programs 5

3 SweetRules - A Platform for Semantic Web Rules 6
3.1 Overview and vision . 6
3.2 SweetRules Platform - Architecture and Components 7

3.2.1 Translators . 7
3.2.2 Inference engines . 8
3.2.3 Courteous compilers . 8
3.2.4 Pluggability . 8

3.3 Action launcher and Web services support 8
3.4 Knowledge base merging and RuleML includes element 9
3.5 SweetXSB - Bi directional Translation from RuleML and XSB 10

3.5.1 The RuleML query and answerSet elements 10
3.5.2 Notion of a session . 12
3.5.3 Forward Reasoning with XSB 12
3.5.4 Handling the undefined truth value in XSB 13

3.6 SweetOnto - Translating the DLP subset of OWL to RuleML and SWRL 13
3.6.1 RDF Support . 14

3.7 SweetCR - Bi-directional translation from RuleML to CommonRules 3.3 16
3.7.1 SweetKIF and SweetSModels- Bi-directional Translation from

BRML to KIF or Smodels via CommonRules 3.3 16
3.8 SweetJess - Partial Bi-directional translation from RuleML to Jess . . 17

iii

3.9 RuleML Object model and associated tools 17

4 SweetJess 19
4.1 Overview of Production Rules systems 19
4.2 Well founded negation . 20

4.2.1 Well-Founded negation in Stratified Logic Programs 20
4.2.2 Well-Founded negation in general Logic Programs 21
4.2.3 A brief review of the constructive formalization of WFS 21

4.3 Well Founded Model computation in Production Rules systems 24
4.3.1 Initialization (1st iteration, k=1) 25
4.3.2 Post initialization iterations 25
4.3.3 Termination (last iteration m) 26
4.3.4 Extending to effecting . 26
4.3.5 Supporting Sensing . 26
4.3.6 Detailed Algorithm . 27

5 Overview of Courteous Logic Programs 29
5.1 Generalized Courteous Logic Programs(GCLP) 29
5.2 Static courteous transformations . 30

5.2.1 Elimination of Classical Negation 30
5.2.2 Compiling the courteous features Post ECN 30

6 Incremental Courteous Compiler 33
6.1 Scenarios for incremental compilation and reasoning 33
6.2 Incremental Courteous Transforms 33

6.2.1 Compilation-Soundness and Compilation-completeness proper-
ties of the courteous transform 33

6.3 Incremental courteous transforms . 35
6.4 Incremental algorithms . 40

6.4.1 Rule addition . 41
6.4.2 Mutex addition . 42
6.4.3 Rule deletion . 43
6.4.4 Mutex deletion . 45

7 Design of the Incremental inferencing algorithm for courteous logic
programs 47
7.1 Inferencing after incremental updating 47
7.2 Incremental forward reasoning . 48
7.3 Correspondence of SCCs and the Well-Founded Model 48
7.4 Incremental reasoning algorithms . 48

7.4.1 Incremental reasoning for Rule addition or deletion 49
7.4.2 Incremental reasoning for mutex addition or deletion 49

iv

8 Future work 50

9 Conclusion 52

v

List of Figures

vi

List of Tables

vii

Chapter 1

Introduction

1.1 Challenges in interoperability across different

knowledge representation mechanisms

Ontologies are used to model the entities and their properties in the external world.
In the semantic web, this is based on description logic(DL) paradigm. It has con-
structs that allow specification of classes of entities and their properties. These are
known as T-Box (terminology) definitions. Specific instances of the entities can also
be specified and these are known as the A-Box (assertion) definitions. The reason-
ing in these systems is based on subsumption which is derived from the class and
property hierarchies. DL reasoners can also perform classification of instances by
derving their membership from the T-Box and A-Box definitions. The popular lan-
guage for authoring ontologies is the Web Ontology Language (OWL) [22]. These
systems have an inherent difficulty in that they cannot express rules and can only
perform monotonic reasoning. Several extensions to OWL including the OWL Rules
Language(ORL) [15], Semantic Web Rule Language(SWRL)[17] have been proposed
in order to overcome this deficiency. But, in order to keep the reasoning decidable
we have resorted to the “Description Logic Programs(DLP)” approach proposed by
Grosof et. al in [2], which considers the intersection of description logic and logic
programs and translates OWL constructs within the DLP subset to LP.

Ordinary Logic Programs (OLP) have been in existence for close to three decades.
However, the semantics of logic programs in presence of negation with cyclic depen-
dency was not clear until the emergence of stable model semantics [16] and Well-
Founded Semantics (WFS) [6]. Of these, WFS is attractive as it is tractable for
datalog(i.e. function free) programs under the restriction of bounded number of vari-
ables per rule (known as the VBD restriction). WFS handles cyclic negative recursion
by using a three valued logic in which atoms might be assigned t, u or f truth values
which denote true, undefined or false truth values respectively. The notion of unde-
fined truth value is used to handle negative cycles in a logic program. OLP reasoners

1

2
typically support backward reasoning and are based on a query - answer set model.
Even though these systems have clean semantics, it is harder to author rules in them
because of lack of higher level primitives to specify priorities and conflict handling.
Both DL and OLP do not have the ability to perform side-effectfull actions such as
sensing (i.e. invoking an external procedure during inferencing in order to evaluate
a predicate’s truth value or to get variable bindings) and effecting (i.e. invoking an
external procedure after inferencing is done, based on the conclusions drawn by the
reasoner).

Production Rule systems are descendents of the OPS5 family of rule engines. In
general, they support specification of rules in the form implications and are capable
of forward reasoning. They also use the Rete network [5] which facilitates fast pattern
matching and reduces the time required to compute the conclusions. However, they
do not have proper semantics for negation and in particular, some of the conclusions
drawn from a logic program with negation could be unsound. We present an algorithm
to overcome this limitation.

The higher level notion of prioritized conflict handling, and declarative specifica-
tion of sensing and effecting is available in the powerful Situated Courteous Logic
Programs(SCLP). SCLP has another distinct advantage in that it can handle nega-
tion for any category of logic programs (i.e. acyclic, stratified and cyclic) as it is
based on Well Founded Semantics(WFS).

This thesis proposes an approach to unify these heterogenous knowledge represen-
tation mechanisms via SCLP evangelizing WFS. In the following sections, we highlight
the importance of Well Founded Semantics and incremental reasoning and conclude
by listing the primary contributions of this thesis.

1.2 Role of Well Founded Semantics

Well Founded Semantics was originally proposed by Van Gelder [6]. WFS handles all
the categories of logic programs, namely:

1. Acyclic - The LP does not have any cyclic dependencies among the predicates.

2. Stratified - The LP has cycles but the cycles are not permitted to have any
predicate within the scope of negation.

3. Cyclic - The LP is permitted to have cycles both among the negated and the
non-negated predicates.

Moreover, reasoning in WFS is non-monotonic as it is based on Negation-As- Fail-
ure(NAF) and the presence of the undefined truth value makes it conducive for dis-
tributed and incremental reasoning.

3
1.3 Significance of incremental reasoning

As the semantic web evolves, it is expected that mechanisms to support incremental
compilation and reasoning will be crucial to address scalability and support distrib-
uted inferencing. Also, support for incremental reasoning facilitates building of good
rule authoring tools. Towards this end we present a novel design of an incremental
courteous compiler and incremental courteous inferencing mechanism.

1.4 Contributions

This thesis proposes an approach to unify these heterogenous knowledge representa-
tion mechanisms via SCLP evangelizing WFS. The major contributions of this thesis
are:

1. A first of it’s kind toolset for translation, automatic composition and merging
of heterogenous knowledge representation systems

2. A novel approach for supporting Well Founded negation in Production Rules

3. A novel algorithm to support incrementalism in courteous logic programs

Chapter 2

Related work

2.1 Platform level tools

The Well-founded semantics for the World Wide Web(W 4)[4] project attempts to de-
velop WFS compatible tools for the World Wide Web, providing tools to interoperate
between RDF and Hornlog RuleML. However, in terms of expressiveness SweetRules
provides a richer platform through the following enhancements:

1. Support for RDFS and most of OWL Lite constructs.

2. Support for SCLP RuleML beyond the hornlog fragment

3. Incremental support for compiling and inferencing.

4. Enabling well founded negation in Production Rule systems.

5. Richer translator suite with supported translations to other knowledge repre-
sentation mechanisms such as KIF, Smodels etc.

2.2 Computation of the Well-Founded Model for

Production Rules

Even though the WFS was proposed by Van Gelder [6], the constructive formalization
of WFS was done by Przymusinki’s in his work on stable stationary models in [21].
The alternating fixed point formalization of WFS was first proposed by Van Gelder in
[7]. Kemp et.al study the bottom-up computation of the Well-Founded Model based
on magic sets (see [3] for a detailed introduction on magic sets) in [18, 19]. They also
provide an algorithm to compute the Well-Founded model based on alternating fixed
point formalization and observe that the computation of the Well-Founded Model
can be done using strongly connected components. We adopt a similar approach
for incremental reasoning once the courteous logic program has been translated to an

4

5
ordinary logic program. Although there is a wealth of literature on the computation of
well-founded semantics particularly for backward reasoning, we are not aware of any
related work applying computation of well-founded semantics for Production Rules
systems.

2.3 Incremental compilation for Courteous Logic

Programs

We believe that there is no work done in developing an incremental compilation
algorithm for courteous logic programs.

Chapter 3

SweetRules - A Platform for
Semantic Web Rules

3.1 Overview and vision

Traditional knowledge representation mechanisms such as description logics, logic
programs and production rules have each evolved independently to support a wide
range of scenarios. However, interoperability among these heterogeneous mechanisms
hasn’t been well understood. In order to promote interoperability, SweetRules adopts
a uniform knowledge representation mechanism based on the powerful Situated and
Courteous Logic Programs (SCLP), emphasizing clean semantics by evangelizing Well
Founded Semantics (WFS) and provides a suite of translators which attempt to cap-
ture a significant part of the most relevant parts of the legacy knowledge representa-
tion mechanisms. The key issues addressed by these semantic preserving translators
are:

• Detecting violation of expressive restrictions whenever translation of infeasible
features is requested

• Raising the capabilities of the inference engines to support courteous features
(such as XSB) by doing a pre-processing step of courteous compilation in con-
junction with translation.

• Providing mechanism to do effecting through an action launcher.

• Handling munging of names in systems that do not support URIs.

The legacy systems also have their own semantics and inferencing engines which
may not adhere to WFS. SweetRules also attempts to overcome this deficiency by
wrappering around 1 the legacy inferencing engines with additional tools which en-

1in some cases like the XSB inferencing engine, supporting sensing would require access to the
internals of the inference engine and hence is not supported by SweetRules

6

7
sure compliance with WFS. Supporting well founded negation in production rules,
which discussed at length in the chapter on SweetJess is an excellent example of this
wrappering.

SweetRules also extends the SCLP RuleML DTD in a way which ensures smooth
integration with WSDL web services

In this chapter we present a brief overview of SweetRules Components and ar-
chitecture, support for effecting via the action launcher and web services support in
SweetRules, description of the KB merging feature, followed by short descriptions of
SweetRules components such as SweetXSB, SweetOnto, SweetCR, SweetJess and a
brief survey of analysis tools that are part of SweetRules.

3.2 SweetRules Platform - Architecture and Com-

ponents

At the core of SweetRules framework is a component repository manager which man-
ages various categories of tools such as translators and inference engines. SweetRules
identifies different types of KR formalisms by descriptors. The important types of
descriptors are the KR descriptors and KB descriptors which describe the Knowl-
edge Representation mechanism and Knowledge base respectively. A KR descriptor
has fields to represent the KR encoding type (which is the format such as“RuleML”,
“OWL” etc), and the version number. A KB descriptor contains the KR descriptor
and the contents of the actual knowledge base.
The following sections describe other components of the SweetRules core infrastruc-
ture.

Relevant API documentation: Refer to interfaces org.semwebcentral.sweetrules.
infrastructure.ISweetKRDescriptor, and org.semwebcentral.sweetrules.
infrastructure.ISweetKBDescriptor.

3.2.1 Translators

The translators are responsible for conversion from one KR to another. For exam-
ple, the OWL to RuleML translator converts OWL ontologies in the DLP subset to
RuleML. There are two categories of translators, namely

1. Simple translator - These perform direct translation from one KR format to
another

2. Composite translator - These are generated automatically by composing the
simple translators.

The SweetRules version 2.1 has 21 simple translators and 72 composite translators.

8
3.2.2 Inference engines

The inference engine classes serve as wrappers to the underlying inference engines
such as XSB, JESS, CommonRules 3.3 and Jena. SweetRules also supports indirect
inferencing, in which translators are automatically invoked to convert the source data
into the native inference engine format, and the result of the inferencing are converted
back to the output format specified by the user.

Relevant API documentation: Refer to interfaces org.semwebcentral.sweetrules.
infrastructure.ISweetInferenceEngine, org.semwebcentral.
sweetrules.infrastructure.ISweetInferenceEngineTask

3.2.3 Courteous compilers

A courteous compiler can be thought of as a special kind of translator that compiles
the courteous features to an ordinary logic program. SweetRules has 3 courteous
compilers, the IBM CommonRules 3.3 compiler, SweetRules native compiler, and
SweetRules native incremental compiler. The incremental compiler, has the added
advantage that it does not recompile the entire input for small changes in the rulebase.
The details of the design of the incremental compiler and it’s algorithm will be given
in later chapters.

3.2.4 Pluggability

In addition to providing a suite of tools mentioned above, SweetRules has a pluggable
architecture which makes it easy to hook up either a translator or an inferencing
engine. For details, please refer to SweetRules documentation.

Relevant API documentation: Refer to org.semwebcentral.sweetrules.infrastructure.
ISweetCourteousCompiler, org.semwebcentral.sweetrules.
courteouscompiler.ISweetIncrementalCourteousCompiler

3.3 Action launcher and Web services support

SweetRules includes a native action launcher which can be used to perform effecting.
This is very useful in increasing the expressiveness of inference engines like XSB
which cannot perform effecting. This is done by first running the cycle of inferencing
and once the conclusions are obtained the effector statements are processed to see
if any action needs to be performed, if so the action launcher invokes the external
procedure. In addition to supporting local method calls, the action launcher can also
invoke a WSDL web service operation. In order to support specification of a web
service method, the SCLP RuleML was extended by adding the wsproc element as a
child of the aproc element. The DTD of the wsproc element is given below.

9
<!ENTITY % parameter.content "CDATA">

<!ELEMENT wsproc (serviceName, portName, operation,

targetNamespace, endPointAddress)>

<!ELEMENT serviceName (#PCDATA)>

<!ELEMENT portName (#PCDATA)>

<!ELEMENT operation (operationName, parameters)>

<!ELEMENT operationName (#PCDATA)>

<!ELEMENT parameters (parameter)*>

<!ELEMENT parameter (#PCDATA)>

<!ATTLIST parameter

parameterName %parameter.content; #IMPLIED>

<!ELEMENT targetNamespace (#PCDATA)>

<!ELEMENT endPointAddress (#PCDATA)>

<!ATTLIST endPointAddress

href %URI; #IMPLIED

>

For additional details, refer to the SweetRules documentation.

3.4 Knowledge base merging and RuleML includes

element

SweetRules supports merging of heterogeneous knowledgebases using the RuleML
“rbaseincludes” element which is a child of the top level rulebase element. The DTD
for this is given below:

<!ENTITY % rbaseincludes.content "(#PCDATA)">

<!ELEMENT rbaseincludes % rbaseincludes.content;>

<!ATTLIST rbaseincludes

href CDATA #IMPLIED

version CDATA #IMPLIED

kbtype CDATA #IMPLIED

>

Relevant API documentation: Refer to interface org.semwebcentral.sweetrules.
infrastructure.ISweetKBMergeManager and class org.semwebcentral.sweetrules.
ruleml.SweetKBMergeManager.

As an example, the following rulebase includes an RuleML rulebase, OWL on-
tology and Jess facts and can be merged into a single rulebase using the merge
command of SweetRules which automatically checks for feasibility of translation and
if feasible, merges them into a single rule base after translation.

10
Example 1 <?xml version="1.0"?>

<rulebase>

<!-- The RuleML Rules -->

<rbaseincludes href="file:///C:/DEMO/orderingleadtime/OrdLeadTime.ruleml"

version="0.8"

kbtype="ruleml"/>

<!-- The OWL ontology -->

<rbaseincludes href="file:///C:/DEMO/orderingleadtime/OrdLeadTimeOnt.owl"

version="1.0"

kbtype="owl"/>

<!-- The Jess facts -->

<rbaseincludes href="file:///C:/DEMO/orderingleadtime/OrdLeadTimeFacts.jess"

version="6.1"

kbtype="Jess"/>

</rulebase>

As explained above, the first includes declaration includes the rules, the second
declaration includes the OWL ontology and last declaration includes the jess facts.

For details about the content of the rulebase, ontology and the jess facts refer to
the appendix. The appendix also shows the result of merging the included knowledge
bases. SweetRules version 2.1 download has a “doc” folder which contains a subfolder
called “demoFiles” which hosts the above example along with many other examples.

3.5 SweetXSB - Bi directional Translation from

RuleML and XSB

SweetXSB is the part of SweetRules that wrappers the XSB engine and provides
bi-directional translation between RuleML and XSB.

3.5.1 The RuleML query and answerSet elements

XSB is a backward reasoning engine with support query and answers. We extend the
RuleML DTD, to include query and answer elements as follows.

<!ELEMENT query ((_rlab,_body) | (_body,_rlab?))>

<!ELEMENT answerSet (answer*)>

<!ELEMENT answer (binding*)>

<!ELEMENT binding ((BVar, BSubstitution)|(BSubstitution, BVar))>

<!ELEMENT BVar var>

<!ELEMENT BSubstitution cterm>

11
The query element is the child of the top level rulebase element, whereas the

answerSet element is the top level element(This is bound to change later on, perhaps
with the addition of a top level knowledge base element). The query element can
have a label and a body. The body is same as the rule body. The answerSet element
is a collection of answers, and each answer is a set of bindings. A binding is a variable
and it’s substitution. The following example, described in the RuleML presentation
syntax, illustrates the use of the query element. For the rest of the document we
present rule bases mostly in the RuleML presentation syntax or where appropriate in
the RuleML XML markup.

Example 2 Consider the following sample rulebase.

{qua}

pacifist(?X)

:- quaker(?X).

{rep}

neg pacifist(?X)

:- republican(?X).

{emptyLabel}

quaker(nixon).

{emptyLabel}

republican(nixon).

{emptyLabel}

overrides(rep, qua).

Suppose we compile and load the above into XSB, and ask the following query, to
find who is not a pacifist (notice the cneg=”yes”)

<?xml version="1.0" encoding="UTF-8"?>

<rulebase>

<_rbaselab>

<ind>SampleQuery</ind>

</_rbaselab>

<!-- Query to find who is NOT a pacifist -->

<query>

<_body>

<fclit cneg="yes" fneg="no">

<_opr>

<rel>pacifist</rel>

12
</_opr>

<var>X</var>

</fclit>

</_body>

</query>

</rulebase>

We get back the following answer, which says Nixon was not a pacifist

<?xml version="1.0"?><answerSet>

<answer>

<binding>

<BVar>

<var>X</var>

</BVar>

<BSubstitution><cterm><_opc>

<ctor>nixon</ctor>

</_opc></cterm>

</BSubstitution>

</binding>

</answer>

</answerSet>

The advantage of having the RuleML markup, is that one can specify the cneg
attribute in the query.

Relevant API documentation: Refer to org.semwebcentral.sweetrules.sweetxsb.
SweetRuleMLQueryXSBAdapterTask, org.semwebcentral.sweetrules.sweetxsb.
SweetXSBQueryXSBAdapterTask, org.semwebcentral.sweetxsb.
SweetXSBLoadTask

3.5.2 Notion of a session

In order to support backward reasoning as explained above, SweetRules has a notion of
session in which the user can load a knowledge base in any format that is translateable
to XSB format (including in SCLP RuleML which will be automatically compiled to
OLP). The user can then query either in XSB or in RuleML.

3.5.3 Forward Reasoning with XSB

XSB only supports backward reasoning by adhering to the query-answering model.
However, it can be easily made to simulate exhaustive forward inferencing by querying
for every predicate, with all arguments to the predicate as variables. In general this

13
may not be efficient, but with tabling in XSB we believe that it is not too much
overhead.

Relevant API documentation: Refer to org.semwebcentral.sweetrules.
sweetxsb.SweetXSBForwardInferencingTask

3.5.4 Handling the undefined truth value in XSB

Even though XSB is based on Well Founded Semantics it returns the true truth value
for both a true answer and an undefined answer. In order to disambiguate between
these cases, for every query Q we create a dummy predicate and a rule as follows:

1. The dummy predicate “dummyPredicate” will have the same arity as the num-
ber of variables in the query.

2. We create the following rule and load it into XSB
dummyPredicate(X) :- Q where X is a tuple of variables appearing in Q

Case of a ground query If the original query is ground, then the dummyPred-
icate will have zero arity. We query the XSB engine with dummyPredicate, if it
returns true then we issue the query dummyPredicate,tnot(dummyPredicate) if it
returns true again then the answer to original query is undefined otherwise it is true.

Case of a non-ground query For a non-ground query we first issue the query
dummyPredicate(X). If the XSB engine returns a non-empty binding set say B1, we
query the engine again with dummyPredicate(X),tnot(dummyPredicate(X)) and get
the binding set say B2. The binding set corresponding to “true” truth value is B1 -
B2.

3.6 SweetOnto - Translating the DLP subset of

OWL to RuleML and SWRL

SweetOnto is based on the DLP paper [2] by Grosof et.al. This is a very important
part of SweetRules as it provides interoperability between the popular OWL language
based on Description Logic and other parts of SweetRules. The OWL ontology has
to be in the Description Logic subset for this translation to go through.

The code originated from KAON DLP codebase from University of Karlsruhe.
This was then enhanced to include:

1. Tighter validation for OWL ontologies to ensure they are in the DLP subset.

2. Translation of Datatype properties, from OWL to RuleML and SWRL. This
is similar to the way object properties are handled, except that the range is
a datatype. We create a unary predicate corresponding to the datatype and
handle it in a way analogous to handling range in an object property. For
example if the range of a property P, was

14
http://www.w3.org/2001/XMLSchema#string,

and it had an instance whose value was “abcdef”, then we create a RuleML
atom as follows

_’’http://www.w3.org/2001/XMLSchema#string’’(abcdef).

3. Translation of RuleML facts to RDF typed literals. This is explained, in a later
section.

4. Translation of OWL within the DLP subset to SWRL. Even though SWRL rules
are an expressive subset of RuleML, they make distinction between different
types of atoms such as classAtom, datarangeAtom, individualPropertyAtom,
dataValuedPropertyAtom, sameIndividualAtom, differentIndividualsAtom and
builtinAtom. While performing the OWL to SWRL translation this meta type
information is maintained before the OWL ontology is serialized to SWRL.
During, the serialization phase this type information is used to serialize to ap-
propriate category of atoms.

Relevant API documentation: Refer to org.semwebcentral.sweetrules.
sweetonto.SweetDLPCompiler,org.semwebcentral.sweetrules. SweetDLPSerializers

3.6.1 RDF Support

SweetRules supports translation of RuleML facts to RDF typed triples and vice-versa.

RDF Facts to RuleML

Every RDF triple is converted into a set of atoms in RuleML. The conversion is done
by creating a unary predicate with same URI as the class with an argument which
indicates the ID. The type assertions are also done in a manner analogous to the
representation of the range values in a datatype property by creating a unary atom,
whose literal has the same URI as the datatype and an argument whose value denotes
the value of the predicate part of the triple. The namespace prefixes for the URIs in
RDF, which are very useful for the reverse translation from RuleML facts to RDF
are also automatically generated.

Example 3 The following RDF triple will be converted to RuleML as shown below.

<rdf_RNSW:RDF xmlns:rdf_RNSW=

"http://www.w3.org/1999/02/22-rdf-syntax-ns#"

xmlns:__RNSW="http://www.person.org#">

<__RNSW:Person rdf_RNSW:ID="http://www.person.org#JohnSmith">

<__RNSW:age

15
rdf_RNSW:datatype=

"http://www.w3.org/2001/XMLSchema#nonNegativeInteger">

30

</__RNSW:age>

</__RNSW:Person>

</rdf_RNSW:RDF>

"http://www.person.org#Person"("http://www.person.org#JohnSmith").

"http://www.person.org#age"("http://www.person.org#JohnSmith", 30).

_"http://www.w3.org/2001/XMLSchema#nonNegativeInteger"(30).

RuleML Facts to RDF

Conceptually, this translation is a many to one mapping for which we make the
following assumptions:

1. A unary predicate having “XMLSchema” represents a datatype.

2. A unary predicate not having “XMLSchema” represents a class.

3. A binary predicate and it’s two arguments map into a triple. That is the
predicate becomes the propery, the first argument becomes the subject and the
second argument becomes the fact.

4. RuleML facts of arity greater than 2 are ignored.

5. In RuleML the URIs are represented as href attributes which are not in the for-
mat namespace-prefix:suffix, but store the full URI. When converting to RDF if
we have a URI like http://www.person.org#Person we cannot create an XML
element using this full URI in the output RDF as it would be an invalid XML
element because of presence of characters like ’/’,’#’. So we need a way to
separate the prefix (http://www.person.org#) from the suffix (Person). This
separation is non-trivial, because the # character as a separator is not manda-
tory. Therefore we make the assumption that all such relevant declarations are
in the RuleML file to be translated to RDF.

As an example consider the following set of RuleML facts

"http://www.person.org#Person"("http://www.person.org#JohnSmith").

"http://www.person.org#age"("http://www.person.org#JohnSmith", 30).

_"http://www.w3.org/2001/XMLSchema#nonNegativeInteger"(30).

is converted to a single RDF triple shown below.

16
<rdf_RNSW:RDF xmlns:rdf_RNSW=

"http://www.w3.org/1999/02/22-rdf-syntax-ns#"

xmlns:__RNSW="http://www.person.org#">

<__RNSW:Person rdf_RNSW:ID="http://www.person.org#JohnSmith">

<__RNSW:age

rdf_RNSW:datatype=

"http://www.w3.org/2001/XMLSchema#nonNegativeInteger">

30

</__RNSW:age>

</__RNSW:Person>

</rdf_RNSW:RDF>

In the above, the URI prefix

‘‘http://www.person.org#’’

must be declared as a namespace prefix, otherwise the RDF elements cannot be
created.

3.7 SweetCR - Bi-directional translation from RuleML

to CommonRules 3.3

SweetCR is a wrapper on top of IBM CommonRules 3.3. In order to interoperate
other rule systems with it we wrote bi-directional XSLT translators to translate from
RuleML to a format native to CommonRules known as “Business Rules Markup
Language (BRML)”. One limitation of this translation has been that BRML supports
a notion of typing in terms of it’s elements IntegerTerm, StringTerm, DoubleTerm
etc. Since RuleML has no notion of types, there will be loss of information during
the BRML to RuleML translation.

3.7.1 SweetKIF and SweetSModels- Bi-directional Transla-
tion from BRML to KIF or Smodels via CommonRules
3.3

CommonRules 3.3 provides translators from BRML to KIF and Smodels. SweetRules
provides a wrapper on top these translators. This enables bi-directional translation
from RuleML to KIF or Smodels.

17
3.8 SweetJess - Partial Bi-directional translation

from RuleML to Jess

Jess is a representative of the production rule family of rule engines and is capable of
extremely fast forward inferencing. However, semantically there are problems with
the way Jess handles negation. This aspect along with expressive improvements from
the previous version is dealt with in detail in a later chapter.

3.9 RuleML Object model and associated tools

SweetRules includes other tools which are very useful for analyzing Rulebases. These
tools are all based on the RuleML object model, which is generated from JAXB. The
important ones are:

1. Predicate dependency graph builder: This component can take a RuleML rule-
base and construct a predicate dependency graph from the Rules in the RuleML
rulebase.
Relevant API documentation: Refer to org.semwebcentral.sweetrules.
analyzer.SweetPDGBuilder

2. Predicate Stratifier: This component tries to compute the stratification of a
RuleML rulebase, based on Ullman’s algorithm [23]. If the rulebase is not
stratifiable it throws an error.
Relevant API documentation: Refer to org.semwebcentral.sweetrules.
analyzer.SweetPredicateStratifier

3. Element Equality checker: This utility can compare two RuleML elements in
the object model and detect if they are equal. This is useful because the RuleML
object model was autogenerated from JAXB and .equals method was not over-
ridden.
Relevant API documentation: Refer to org.semwebcentral.sweetrules.
ruleml.SweetEqualityChecker

4. Diff Facts: This is utility that can take a diff of two fact bases in RuleML and
is built on top of equality checker. This is implemented in the routines of the
class SweetDiffFacts.
Relevant API documentation: Refer to org.semwebcentral.sweetrules.
ruleml.SweetDiffFacts

5. Duplicate Filter: This another utility built on top of Equality checker and filters
duplicate elements from a rule base.
Relevant API documentation: Refer to org.semwebcentral.sweetrules.
ruleml.SweetDuplicateFilter

18
6. LloydTopor transformer, class SweetLloydToporTransformer: This tool per-

forms the head conjunction elimination from the rules of a rule base.
Relevant API documentation: Refer to org.semwebcentral.sweetrules.
courteouscompiler.SweetLloydToporTransformer

7. Unifier, Substitutor and Unifier composer: The unification and unification com-
position are based on the corresponding Lloyd’s algorithms in [20]. The substi-
tutor substitues the variables in the elements of a rule base with their bindings.
Relevant API documentation: Refer to org.semwebcentral.sweetrules.
courteouscompiler.ISweetUnifier, org.semwebcentral.sweetrules.
courteouscompiler.SweetSubstitutor

8. RuleML Presentation Syntax generator: This utility generates RuleML Presen-
tation syntax from the RuleML object model.
Relevant API documentation: Refer to org.semwebcentral.sweetrules.
ruleml.SweetRuleML2RuleMLPSTranslator

Chapter 4

SweetJess

4.1 Overview of Production Rules systems

JESS (Java Expert System Shell) is a descendant of OPS5 family of production rules
systems. It is built on top of the RETE network [5] to support extremely fast forward
inferencing. JESS supports rules in a fashion similar to that of Prolog, but also comes
with a lot of agenda and control features which tend to make it procedural and less
declarative. The interoperability between SCLP (RuleML) and Production Rules
(Jess) was studied as part of the initial SweetJess release by Grosof et. al in [13]. The
primary changes 1 in this version include:

• Architecture and integration

1. Integration with the courteous compiler

2. RuleML to Jess rewritten with RuleML Object model

3. Jess to RuleML, rewritten using Jess object model, to avoid parsing.

• Situated support Support for multiple sensors and effector statements per pred-
icate

• Negation and courteous support

1. Limited support for the NOT element of JESS (Jess to RuleML transla-
tion)

2. Invocation of the inverse ECN transform in the Jess to RuleML translation
to reverse translate classical negation.

3. Support for well-founded negation both for stratified and cyclic cases.

1The implementation of the previous version was also revamped to support the new RuleML
object model, and to parse the jess code in a more generic setting

19

20
4.2 Well founded negation

JESS does not handle negation properly as illustrated by the example below.

Example 4 A sample rule base in which negation semantics are not
proper (assert (f c))
(defrule rk1 (and (f ?x) (not (h ?x))) => (assert (k ?x)))
(defrule rh2 (and (f ?x) (not (g ?x)) => (assert (h ?x)))

The expected conclusions are
(f c) and (h c) .
But JESS also gives (k c) .
This can be attributed to the fact that the rule rk1 was fired too early, without waiting
for the result of the rule rh2. If we run the same rule base with ordering of rk1 and
rh2 reversed, we get the correct conclusions.

4.2.1 Well-Founded negation in Stratified Logic Programs

Intuitively, if we reorder the rules in the rulebase so that the rules are fired in the
correct order, then the conclusions drawn will be sound. For the stratified case this is
possible, because stratification defines an predicates of rules in which the predicates
in the higher strata depend on the rules in the lower strata. In order to compute
stratification we use Ullman’s algorithm [23].

JESS has a notion of rule salience, which represents the priority of a rule. The
rules are fired in the decreasing order of the salience (i.e. rule with the highest salience
is fired first). Once the stratification of the rule base is computed, we assign salience
to the rules as explained below.

Let the total number of strata be T

1. If the head of a rule is not conjunctive and it belongs to stratum S then we
compute salience as
salience ← (T + 1− S) ∗ ω
where ω is a suitable scaling factor(default is 1000 in SweetRules) chosen for
the purpose of robustness.

2. If the head of a rule is conjunctive, we compute the salience for each of the con-
juncts as explained above and choose the maximum among them as the salience
of the rule.

SweetRules implicitly uses the above approach of setting the salience whenever
exhaustive forward inferencing with SweetJess as the inference engine is invoked on
a rulebase which is stratified.

21
4.2.2 Well-Founded negation in general Logic Programs

In general for a logic program, stratification may not be defined. In such cases the
JESS engine has to be guided externally in order to ensure correctness of the conclu-
sions drawn. We adopt a slight variation of the alternating fixed point formalization
of Well Founded Semantics to compute the conclusions. Before describing the ac-
tual algorithm, we briefly review the constructive formalization of WFS in the next
section.

4.2.3 A brief review of the constructive formalization of WFS

In this section we briefly review the constructive formalization of WFS by Przymusin-
ski in [21]. At a very high level, WFS defines a three valued logic model comprising
of truth values t, f and u which denote true, false and undefined respectively.

The interpretation I of a logic program, is defined in terms of it’s ground instance
as the set of atoms which have been assigned true and those that have been assigned
false (in terms of negation as failure). Those atoms in the Herbrand base that are not
assigned either true or false are assigned the undefined truth value. The set of atoms
assigned the “t” truth value are denoted by Pos(I) and the set of atoms assigned the
“f” truth value are denoted by Neg(I).

Definition 1 NAF: is defined as an operator to denote negation-as-failure.

Definition 2 Positive LP: A positive LP is one in which NAF and u do not appear
in the body.

Definition 3 Non-negative LP: A non-negative LP is one in which NAF does not
appear in the body, but u may appear in the body (i.e., as a body atom).

The most straight forward way to implement forward chaining, is to execute the
following steps, after starting with an empty interpretation in which all atoms assigned
false i.e. the literals under the scope of NAF are true.

1. Derive the next set of immediate conclusions

2. Use these conclusions as premises and repeat the above steps until no new
conclusions are drawn

The need for the undefined truth value, can be understood if we use the above
algorithm to a logic program with cycles. The following examples illustrate the exe-
cution of this algorithm to different logic programs

Example 5 A positive logic program.

22
p(a) :- q(a).
q(a) :- r(a).
r(a) :- p(a).
p(a).

If we execute the above steps we will get a trace similar to the one below.

I0 = { naf p(a), naf q(a), naf r(a) }
I1 = { p(a), naf q(a), naf r(a) }
I2 = { p(a), naf q(a), r(a) }
I3 = { p(a), q(a), r(a) }
I4 = { p(a), q(a), r(a) }

It is clear that the fixed point is reached in iteration I3. This approach also works if
there are no cycles involving NAF as shown below.

Example 6 A negative logic program without cycles.

p(a) :- q(a).
q(a) :- naf r(a).
I0 = { naf p(a), naf q(a), naf r(a) }
I1 = { naf p(a), q(a), naf r(a) }
I2 = { p(a), q(a), naf r(a) }
I3 = { p(a), q(a), naf r(a) }

It is again clear that quiescence (i.e. fixed point) is reached in I2.
The examples given above illustrate that if a given logic program does not have

cycles, then it has a two-valued model i.e. each of the atoms are either assigned a true
or a false value. Such a model is called a total model, since every atom is assigned
either true or false.

Example 7 A negative logic program with cycles.

p(a) :- q(a).
q(a) :- naf p(a).
I0 = { naf p(a), naf q(a) }
I1 = { naf p(a), q(a) }
I2 = { p(a), q(a) }
I3 = { p(a), naf q(a) }
I4 = { naf p(a), naf q(a) }

23
It is clear from the example given above that the computation will not terminate,

as I4 is same as I0 and the whole process of inferencing is done repeatedly. In such
cases, WFS makes the value of both p(a) and q(a) undefined and the computation
stops and we have a partial model, i.e. a model in which some of the atoms are not
assigned either true or false truth value.

The simple algorithm for forward chaining given above is formalized as an operator
below.

Definition 4 Immediate consequence operator (T̂(P(I))): is the immediate
transform operator on an “input” partial interpretation I, taking it to an “output”
partial interpretation in which all immediate positive conclusions, and all “immediate”
negative conclusions are generated.

Two interpretations can be compared using the truth ordering operator ¹ as
follows.

Definition 5 If I and J are two interpretations then I ¹ J if Pos(I) ⊆ Pos(J) and
Neg(I) ⊇ Neg(J).

Models which are least with respect to ¹ will be called as least models. A model
is total if all the literals in the rule base are assigned either t or f truth values, and it
is partial if atleast one literal is assigned the u truth value. A least model which is
total will be referred to as a least model, whereas a least model which is partial will
be referred to as a least partial model (LPM).

According to ([21]; Theorem 8) the least fixed point of T̂ coincides with the LPM
for a non-negative program P.

Also by ([21]; Proposition 9), we have If P is a non-negative program:

Pos(LPM(P)) = Pos(LM(Pu←f)) (4.1)

Neg(LPM(P)) = Neg(LM(Pu←t)) (4.2)

where Pu←f is defined as logic program obtained by replacing every undefined
truth value in P by false and Pu←t is defined as thee logic program obtained by
replacing the undefined truth value by true.

The characterization of WFS is given in terms of the Quotient operator and the
ψ transform which are reproduced here.

Definition 6 The quotient of a logic program P with respect to a partial interpreta-
tion I, is denoted by P

I
is defined as the program obtained by replacing every negative

body literal with it’s truth value.

Definition 7 The ψ transform of a logic program P with respect to an interpretation
I, is defined as

ψP (I) = LPM(
P

I
) (4.3)

24
The well founded model of a logic program is defined in ([21]; Theorem 13) as the

iterated least fixed point of the ψ transform, given by the equation below:

Jk = ψP (Jk) = LPM(
P

Jk

) (4.4)

We denote the well-founded model of a logic program P, by WFM(P).

4.3 Well Founded Model computation in Produc-

tion Rules systems

We use equations 4.1, 4.2 and 4.4 to derive an algorithm to compute the well founded
model.

We can compute the WFM(P) via a depth-2-nesting iteration (we use k to denote
the outer loop iteration count), where the outer is an iteration on ψP , with iterates
Jk, and the inner iteration computes LPM(P/Jk), where that is generated via two
parallel iterations: Pos(LM((P/Jk)u←f)) and Neg(LM((P/Jk)u←t)), Also note that
we don’t directly compute P/Jk since P is non-ground but Jk is ground, rather test
P’s negative literals against Jk as a positive and negative “fact” store.

We define OLR to be Old Lower-bounding Rulebase used for generating t con-
clusions in the previous k’s (outer loop) iterate. In terms of Przymusinski, OLR is
(P

Jk−1
)u←f .

OHR is the Old Higher-bounding Rulebase used for generating f conclusions (via its
complement) in the previous k’s (outer loop) iterate. OHR is (P

Jk−1
)u←t.

CLR is the Current Lower-bounding Rulebase used for generating t conclusions in
the current k’s (outer loop) iterate. CLR is (P

Jk
)u←f .

CHR is the Current Higher-bounding rulebase used for generating f conclusions (via
its complement) in the current k’s (outer loop) iterate. CHR is (P

Jk
)u←t.

Note that each of these rulebases above is a positive LP. OLA, OHA, CLA, and CHA
are each the set of true ground Atoms concluded, respectively, from OLR, OHR, CLR,
and CHR. I.e., the final working fact sets generated in each of those rulebases after
each rulebase has been executed until quiescence.

OLA is Pos(LPM(P
Jk−1

)). OHA is Complement(Neg(LPM(P
Jk−1

))). CLA is

Pos(LPM(P
Jk

)). CHA is Complement(Neg(LPM(P
Jk

))).
We will treat OLA, OHA, CL, and CH as modules. Each module contains premise

rules and also conclusions. Note that in our terminology, some of the premise rules
have the form of facts.

In CLR, a NAF literal should succeed when the NAF’d atom is not in OHA, i.e.,
when the atom is in Complement(OHA), i.e., when the atom is in Neg(LPM(P

Jk−1
)).

In CHR, a NAF literal should succeed when the NAF’d atom is not in
OLA, i.e., when the atom is in Complement(OLA), i.e., when the atom is in

25
Complement(Pos(LPM(P

Jk−1
))). Complement(Pos(LPM(P

Jk−1
))) - Neg(LPM(P

Jk−1
))

Note that Complement(Pos(LPM(P
Jk−1

))) - Neg(LPM(P
Jk−1

)) is the set of atoms that

have undefined truth value in LPM(P
Jk−1

).

In sections that follow, we describe how to accomplish the computations described
above. We also assume that modules can be assigned from one to another, by a
statement of the form modulei := modulej which copies all the facts and rules in
modulej to modulei, and they can be compared for equality, i.e. modulei == modulej

is true if rules or facts in modulei are same as those in modulej. In the comparison
for equality the module prefixes are ignored.

4.3.1 Initialization (1st iteration, k=1)

We use the suffix to 1 denote the fact that k = 1. In CLR1, every NAF literal should
fail. OHA1 is thus in effect the set of all ground atoms. But this is not practical to
represent as a fact set. It’s simpler instead to do the following rewriting to create
CLR1. We take the original rulebase P and rewrite it by dropping every rule that
contains a NAF literal.

In CHR1, every NAF literal should succeed. OLA1 is thus in effect the empty
set. i.e. OLA1 := ∅

4.3.2 Post initialization iterations

1. The previous outer loop iterate’s (k-1’s) CLR, CLA, CHR, and CHA are
overwrite-copied to become, respectively, the current outer loop iterate’s (k’s)
OLR, OLA, OHR, and OHA. Actually, we only need to keep OLA and OHA,
not OLR and OHR.

2. To create CLR (for k>1), we take the original rulebase P and rewrite it as
follows:

• Replace every NAF’d atom q(T) by OHA::q(T).

• Copy OLA into CLR as an additional set of premise facts. (performance
tweak)

Here, T is a tuple of argument terms of appropriate arity/slots for q.

3. To create CHR, we take the original rulebase P and rewrite it as follows:

• Replace every NAF’d atom q(T) by OLA::q(T).

• Copy OLA into CLR as an additional set of premise facts. (performance
tweak)

26
4. To compute CLA, execute exhaustive forward inferencing on CLR. I.e., put

module focus on CL, and execute it till quiescence

5. To compute CHA, execute exhaustive forward inferencing on CHR. I.e., put
module focus on CL, and execute it til quiescence (e.g., until detect an empty
execution agenda)

4.3.3 Termination (last iteration m)

When the outer loop is quiescent, we say that the final iteration has been reached.
Let’s call that iteration k=m. This quiescence can be detected as follows.

If ((CLA == OLA) and (CHA == OHA)) then outer loop has quiesced.
Notationally, let FLA and FHA stand for the final iteration’s CLA and CHA,

respectively: FLA is CLAm and FHA is CHAm.
Note that Complement(FHA) are the atoms that have f truth value, and that

(FHA - FLA) are the atoms that have u truth value.

4.3.4 Extending to effecting

We need to defer effecting until the outer loop iteration is done. We could do this
effecting by calling an ”action launcher” set of rules at the end. ”Deferring” here
means that no effecting should happen during the inner loop CLRk and CHRk exe-
cutions. If effecting were to occur during the inner loop executions, it might happen
repeatedly, which would be unintended and also unsoundly (in the case of CHRk).
We can do the deferring by rewriting the rules to have separate effecting rules, essen-
tially corresponding to effector statements in the manner of Situated LP as explained
in the SweetJess working paper [14]. The pure rules (possibly with sensors) would
be executed, determining the final FLA and FHA. Then effector rules would be exe-
cuted, generating actions. This rewriting would only be necessary if we started with
Jess/CLIPS form rules. If starting from Situated OLP (SOLP), i.e. OLP with sensor
and effector statements, we would not need to rewrite. For simplicity, we will assume
we are starting with SOLP, e.g., RuleML.

4.3.5 Supporting Sensing

The key semantic issue is that the sensor predicates/expressions may appear within
the scope of naf . In CLR and CHR, the NAF’d atoms should get rewritten only if
they are not sensor atoms, and in the initialization of CLR a rule should be eliminated
only if there is a non-sensor NAF literal.

27
4.3.6 Detailed Algorithm

Algorithm 1 Computation of the Well Founded Model of a logic program P

1: SP := the set of sensor predicates that is those that appear in a sensor statement
2: NAFP := the set of NAF’d predicates.
{The set of NAF’d non-sensor predicates}

3: NP := NAFP - SP.
{declare modules CL, CH, OLA, OHA, EF}

4: k := 1. {k is the counter of outer loop iterations}
5: quiesced outerloop := false.
6: CLR init := (the rules in P, rewritten to drop every rule containing a NAF’d

non-sensor atom).
7: CLR basic := (the rules in P, rewritten to replace every NAF’d non-sensor atom

q(t) by OHA::q(t)).
8: CHR basic := (the rules in P, rewritten to replace every NAF’d non-sensor atom

q(t) by OLA::q(t)).
9: EFR basic := (the effector statements in P, rewritten in Jess/CLIPS style as

action-head rules).
10: CLR := CLR init.
11: CHR := CHR basic.
12: OLA := emptyset.

{Execute CLR in module CL, until its quiescence.}
13: CLA := the resulting set of conclusions.

{Execute CHR in module CH, until its quiescence. OK to compute this concur-
rently with previous step }

14: CHA := the resulting set of conclusions.
15: CLR := CLR basic. { in prep for k=2 }

{Main outer loop}
16: if k greaterthanorequalto 1 then
17: while quiesced outerloop == false do
18: k := k+1.
19: OLAN := (CLA - OLA).
20: OLA := CLA.
21: OHA := CHA.
22: CLR := (CLR union OLAN).
23: CHR := (CHR union OLAN).

{Execute CLR in module CL, until its quiescence. I.e., put module focus
on CL, and execute it til quiescence (e.g., until detect an empty execution
agenda).}

24: CLA := the resulting set of conclusions.

28
{Execute CHR in module CH, until its quiescence. OK to compute this
concurrently with previous step}

25: CHA := the resulting set of conclusions.
26: quiesced outerloop := ((CLA == OLA) and (CHA == OHA)). {NB: to

implement efficiently, perhaps could compare counts of conclusions}
27: end while
28: end if
29: if quiesced outerloop == true then
30: FLA := CLA
31: FHA := CHA
32: EFR := (EFR basic

⋃
CLA).

33: Execute EFR in module EF, until its quiescence. {run the effecting rules on
the WFM’s true conclusion facts} {I.e., put module focus on CL, and execute
it til quiescence } {e.g., until detect an empty execution agenda}

34: end if

Chapter 5

Overview of Courteous Logic
Programs

Ordinary Logic Programs(OLP) particularly those based on Well Founded Semantics
offer an attractive platform for specification of policies as they are tractable1 and
offer clean semantics for negation. However, in terms rule authoring they are highly
unintuitive because of lack of primitives for specification of high level concepts such as
rule priority, opposition and classical negation. Courteous logic proposed by Grosof
[8–11] offers an attractive platform for Rule authoring as it has highly expressive
primitives for rule authoring, with added support for situated features such as sensing
and effecting.

5.1 Generalized Courteous Logic Programs(GCLP)

The extensions that courteous logic programs define over ordinary logic programs are
defined in [11] and are reviewed below.

Definition 8 Labelled Rule: Courteous logic Programs extend the notion of a rule
in an OLP, by adding a label as shown below.
{LABEL} L0 :- L1 and L2 and . . . naf Li and . . . Ln

where “naf” stands for negation-as-failure. The Li are literals which can be either
positive or be under the scope of classical negation operator “neg”.

Definition 9 Mutual Exclusion Constraint or Mutex: A general mutex, spec-
ifies scope of opposition among literals. This can conditional or unconditional. The
number of the opposers is restricted to be 2.
A mutex is specified as:
!- L1 and L2 | G1 and G2 . . .Gk

where Li are literals which can be in the scope of “neg”, Gi are literals which can be

1under the Datalog and Variable Bound restrictions

29

30
in the scope of “neg” or “naf”.
There is also an implicit mutex (also known as classical mutex) between every atom
and the classical negation of the atom, which indicates unconditional oppostion be-
tween an atom and it’s classical negation.

Definition 10 Overrides predicate: The reserved overrides predicate, specifies
strict prioritization between it’s arguments. For example, overrides(Li, Lj) specifies
that rules with label Li have strictly higher priority over rules with label Lj.

The situated features such as sensing and effecting perform side effectful operations
and are described in detail in [12].

5.2 Static courteous transformations

Here we briefly review the courteous transformations defined in [11] to translate a
GCLP to OLP. The transformation proceeds in two phases, first phase eliminates
classical negation and the second one performs courteous transformations taking into
account the prioritization predicate (i.e. overrides) and the mutexes.

5.2.1 Elimination of Classical Negation

In this phase, if any literal appears within the scope of classical negation it is re-
placed by an adorned literal with the classical negation removed. A mutex between
the adorned literal and unadorned literal is also added to the output of the transform,
signifying oppostion between the two literals. Such a mutex is called as implict or
classical mutex. For example, if the predicate P appears within the scope of “neg”
then it is replaced by “n P” (which is assumed not occur any where else in the rule
base), and a mutex of the form shown below is added to the output.

!- P(X) and n P(X)
where X is a tuple of variables of same arity as P.

A mutex between a literal and it’s classically negated version is called as an implict
or classical mutex.

5.2.2 Compiling the courteous features Post ECN

For any predicate q, let the RuleLocale(q) denote the set of rules that mention q in
the head.

31
Let Mi be a mutex defined as:

!− P1(u1) and P2(u2) |Ei[zi]
where P1, P2 are predicates and u1, u2 are term tuples, Ei[zi] represents the condition
under which opposition holds.

We introduce the notions of a RelOppTriple, Semi-RelOppTriple, ordered mutexes
and mutex duals below.

Definition 11 Relevant Opposition Triple(RelOppTriple) Let r1 be a rule
with head P1(t1) and r2 be a rule with head P2(t2), where t1, t2 are term tuples
and let Mi be a mutex as define above.
< r1, θ, r2 > is a relevant opposition triple or RelOppTriple iff there is a maximum
general unifier θ such that < t1, t2 >=< u1, u2 > Notationally, it is convenient to
consider < r1,Mi, r2 > as a RelOppTriple and ignore the unifier. We make use of
both the notations in the description of incremental compilation.

Definition 12 Semi Relevant Opposition Triple(Semi-RelOppTriple) This
is similar to the RelOppTriple defined above, except that now we consider a single rule
Rk and it’s unification with one of the opposer literals of a mutex Mi. We denote
this as < Rk, Mi >, if a unifier exists. These are pre-computed in order to make the
incremental compilation fast.

Definition 13 Ordered Mutexes: An ordered mutex is one in which the permuta-
tion of the opposers is not allowed, i.e. even if the only difference between two opposers
is in the ordering of their opposers then those mutexes are considered different.

Definition 14 Mutex dual: For an ordered Mutex Mi = !- P1(t1) and P2(t2) | B
i.e. is P1 is the first opposer predicate, P2 is second opposer predicate, t1 and t2 are
term tuples, and B is the given condition, the dual Mduali is constructed as Mduali
= !- P2(t2) and P1(t1) | B.

For the purposes of discussion of the incremental algorithms, we consider only
ordered mutexes, by applying the proposed algorithms first to the mutex and then to
it’s dual. But this is transparent from an end-user perspective.

The courteous transforms are defined for each predicate q, in terms of it’s rule
locale. If a rule does not have any opposers then it is copied to the output without any
change. For every rule rulej in the locale of q that has opposers, the rules produced
by the courteous transforms explained below are included in the output. For the
purposes of these transforms some adorned predicates are created which are assumed
not to exist anywhere else in the rulebase. The transforms are described below.

The first transform states that the head of q(tj) is true whenever there is an
unrefuted candidate for it, and it is not skeptically defeated.

q(tj) : −qu(tj) and naf qs(tj) (5.1)

32
where qu and qs are newly introduced predicates of same arity as q, and
tj is term tuple of q in the head of the rule rulej.

The second transform creates a place holder candidate which fires whenever the
body of the original rule (before compilation) is satisfied.

qcj(tj) : −Bj[yj]. (5.2)

where qcj is also a newly introduced predicate, Bj[yj] denotes the body of the rule
rulej.

The third transform defines the notion of an unrefuted predicate, which is defined
to be true whenever the candidate fires and it is not refuted by a higher priority
predicate.

qu(tj) : −qcj(tj) and naf qrj(tj) (5.3)

The concept of a refuted literal and that of a skeptically defeated literal are defined
on a per relevant opposition triple basis. For each relevant opposition triple jikTriple
< rulej, θjik, rulek >, in which rulej is involved, the following rules are included in
the output.

The fourth transform states that a literal is refuted if it has a candidate, and it’s
opposer has a candidate and the priority of the opposer strictly greater than that of
the candidate and condition of opposition specified in the mutex is true.

qrj(tj.θjik) : −qcj(tj.θjik) and pi
ck(wk.θjik) and overrides(labk, labj) and Ei[(Zi.θjik)].

(5.4)
The fifth transform states that a literal is skeptically defeated if it is unrefuted

and the opposer is also refuted and the condition for opposition holds.

qsj(tj.θjik) : −qu(tj.θjik) and pi
u(wk.θjik) and Ei[(Zi.θjik)]. (5.5)

The transforms given above 5.1, 5.2, 5.3, 5.4, 5.5 will be referred to as courteous
transforms 1j, 2j, 3j, 4j, 5j respectively. For detailed explanation of these transforms
refer to [11].

Chapter 6

Incremental Courteous Compiler

6.1 Scenarios for incremental compilation and rea-

soning

In an open and dynamic environment like the web, we can envision scenarios in
which small updates in the form of rule (including facts) or mutex addition or dele-
tion happening frequently. Under these circumstances, it will be very helpful to have
a tool which incrementally compiles and derives conclusions based on the new up-
date, instead of recompiling the whole rulebase and deriving all conclusions from it.
The presence of an incremental compiler also facilitates development of good rule
authoring tools, which enable the rule author to incrementally view the impact of
small changes. In order to support these scenarios we have developed an incremental
courteous compiler to perform the courteous transforms described above.

6.2 Incremental Courteous Transforms

Let CR (R) represent the result of courteous transformation on a GCLP rulebase R,
and CR 123 represent the result applying the transforms 1j, 2j, 3j and CR 45 represent
the result of applying the transforms 4j, 5j. We denote any change to the rulebase by
δR. For an add update the resulting GCLP rulebase will be denoted by R + δR, and
for a delete update it will be denoted by R− δR. For sake of simplicity, in describing
the transforms we assume that each update is on either a single rule or single mutex.

6.2.1 Compilation-Soundness and Compilation-completeness
properties of the courteous transform

In order to prove the correctness of the incremental algorithm, we need define the
compilation-soundness and compilation-completeness of courteous compilation below.

33

34
Definition 15 Compilation-Soundness: The result of the courteous transform
CR is compilation-sound if

1. Every rule in the output OLP which is the result of transforms 1j or 2j or 3j is
dervied from a rule which has opposers

2. Every rule in the output OLP which is the result of transforms 4j or 5j is derived
from a valid RelOppTriple, i.e. a triple < Rulej, θjik, Rulek > where θjik unifies
the head of Rulej with first opposer literal of Mutexi and simultaneously unifies
head of Rulej with second opposer literal of Mutexi

3. Every rule in the output OLP that is but a replica of a corresponding rule in
GCLP does not have any opposers.

Definition 16 Compilation-Completeness: The result of the courteous trans-
form CR is compilation-complete if every rule that has no opposers is replicated just
replicated without adornment in the output OLP, and every rule that has opposers is
subject to transforms

1. 1j, 2j, 3j once

2. 4j, 5j once for each RelOppTriple in which the rule is a part of.

We characterize the incremental compilation with the following lemmas.

Lemma 1 The set of relevant opposition triples of a courteous rulebase is non-
decreasing for a sequence of add updates. This also means that the number of opposers
for any rule and the number of opposers produced by a mutex is non-decreasing.

Lemma 2 On a rule add, there can be no new RelOppTriple in which the newly
added rule is not a part of.

Lemma 3 On a mutex add, the new RelOppTriples must involve the rules only from
the locales of the two opposer literals’ predicates

Lemma 4 On a rule delete, the rules that have to be retracted are:
case (1): The rule had no opposers
Only the rule itself.
case (2): The rule had opposers
(a) those produced from transforms 1j, 2j, 3j on the deleted rule, and any other rule
which becomes newly unopposed.
(b) those produced from any RelOppTriples in which the rule is a member of as a
result of transforms 4j,5j.

Lemma 5 On a mutex delete, the rules that have to be retracted are those produced
via transforms 4j, 5j from the RelOppTriples in which the mutex was a member of.
Also, if mutex deletion creates new unopposed rules then the rules produced by applying
transforms 1j, 2j, 3j on these unopposed rules must be retracted.

35
6.3 Incremental courteous transforms

In the transforms described below we do not consider simultaneous addition or re-
moval of the classical mutexes, as it makes the description of the transforms more
complicated. The addition or removal of classical mutexes can be modelled as sepa-
rate steps performed serially with the actual rule or mutex update, without affecting
the correctness of the transforms. This is described in detail in the algorithms which
implement the courteous transforms. The courteous transforms are illustrated with a
fictitious scenario in which a rule base and an inference engine are used for prescription
of medicine.

Example 8 Assume a patient can not take aspirin and thyomine together if the pa-
tient is female who is pregnant, here is the rule set that excludes the prescription of
both aspirin and thyomine (drug names are hypothetical).
Prescription Rule base

{rule_minorpain}

prescription(aspirin, ?Patient)

:- symptom(minorpain, ?Patient).

{rule_ulcer}

prescription(thyomine, ?Patient)

:- symptom(ulcer, ?Patient).

!- prescription(aspirin, ?Patient) and

prescription(thyomine, ?Patient)

| pregnant(?Patient).

symptom(minorpain, sue).

symptom(ulcer, sue).

pregnant(sue).

In the description below, we assume that a part of the above rule base is compiled and
incrementally add the remaining parts and demonstrate how incremental compilation
is performed. The mutex of this rule base will be referred to as prescriptionMutex

Transform 1 Courteous transform for an add rule update Let the new rule
being added be subject to ECN.
Let Rk stand for the result of ECN applied to that new rule.
Case 1. The Rule does not have any opposers

CR(R + δR) = CR(R)
⋃

Rk (6.1)

36
Case 2. The Rule has opposers The following equations describe the transform if the
new Rule being added has opposers.

T123Rk = CR 123(Rk) (6.2)

T45Rk =
⋃

rt ∈ RelOppTriples(Rk)

CR 45(rt) (6.3)

TNewOppoAdd =
⋃

Rl ∈NewlyOpposedRuleSet

CR 123(Rl) (6.4)

NewOppoDel = NewlyOpposedRuleSet (6.5)

CR (R + δR) =
(
CR (R)

⋃
T123Rk

⋃
T45Rk

⋃
TNewOppoAdd

)
−NewOppoDel

(6.6)
T123Rk is the result of applying courteous transforms 1j,2j,3j to rule Rk

T45Rk is the result of applying courteous transforms to RelOppTriples generated by
Rk. This includes the RelOppTriples generated both from the mutexes for which the
head of Rk unifies with second opposer literal and the dual of each of these mutexes.
NewlyOpposedRuleSet is the set of rules that previously did not have any opposers,
but now have an opposer in the form of Rk

TNewOppoAdd is the result of applying courteous transforms 1j,2j,3j to rules in the
NewlyOpposedRuleSet.
NewOppoDel is the NewlyOpposedRuleSet itself.

Sketch of proof of correctness of transform 1 If the rule does not have any
opposers, by lemma 2 no additional RelOppTriple will be created and we just need to
replicate the rule in the output without running transforms 1j, 2j, 3j. Intuitively, if
the rule has opposers we need to apply transforms 1j, 2j, 3j, this is done by T123Rk.
For every new RelOppTriple generated we need to apply transforms 4j,5j. By lemma
1 and lemma 2 the RelOppTriples are increasing and the new ones come only from
the Rule added. This is done by T45Rk.
T123Rk and T45Rk alone do not ensure compilation-completeness however as we also
need to ensure that we run transforms 1j, 2j, 3j on any previously unopposed rules
which now have Rk, as the opposer. This is done by TNewOppoAdd. To ensure
compilation-soundness, we need to remove the previously unopposed rules from the
output, so we remove the rules in the set NewOppoDel.

Therefore the transform 1 is compilation-sound and compilation-complete.

37
Example 9 Suppose we started from the rulebase in example 8, but without the
rule “rule ulcer”, then there would be no opposers and the rule base would be repli-
cated in the output OLP. But if we add the rule “rule ulcer”, then it will op-
pose the rule “rule minorPain”. This leads to the generation of RelOppTriples
<rule minorpain, prescriptionMutex, rule ulcer> and <rule ulcer, prescriptionMu-
tex, rule minorpain>. The unopposed facts are replicated as they do not have op-
posers. Since the added rule rule ulcer has opposers, transforms in case 2 of the add
rule incremental compilation are applied, T123Rk, TNewOppoAdd are generated by
applying courteous transforms 1j, 2j, 3j to the rules rule ulcer and rule minorPain
respectively. T45Rk is generated by applying the courteous transforms to each of the
RelOppTriples generated above. The previously replicated rule minorPain becomes
NewOppoDel and is deleted from the OLP(replaced by the result of applying trans-
forms 1j,2j,3j on it). The resulting OLP is shown below:

{1_1j}

prescription(thyomine, ?Patient)

:- prescription_u(thyomine, ?Patient) and

naf prescription_s(thyomine, ?Patient).

{2_2j}

prescription_c_2(thyomine, ?Patient)

:- symptom(ulcer, ?Patient).

{3_3j}

prescription_u(thyomine, ?Patient)

:- prescription_c_2(thyomine, ?Patient) and

naf prescription_r_2(thyomine, ?Patient).

{4_4j}

prescription_r_2(thyomine, ?Patient)

:- prescription_c_2(thyomine, ?Patient) and

prescription_c_1(aspirin, ?Patient) and

overrides(rule_minorpain, rule_ulcer) and

pregnant(?Patient).

{5_5j}

prescription_s(thyomine, ?Patient)

:- prescription_u(thyomine, ?Patient) and

prescription_u(aspirin, ?Patient) and

pregnant(?Patient).

{6_1j}

38
prescription(aspirin, ?Patient)

:- prescription_u(aspirin, ?Patient) and

naf prescription_s(aspirin, ?Patient).

{7_2j}

prescription_c_1(aspirin, ?Patient)

:- symptom(minorpain, ?Patient).

{8_3j}

prescription_u(aspirin, ?Patient)

:- prescription_c_1(aspirin, ?Patient) and

naf prescription_r_1(aspirin, ?Patient).

{9_4j}

prescription_r_1(aspirin, ?Patient)

:- prescription_c_1(aspirin, ?Patient) and

prescription_c_2(thyomine, ?Patient) and

overrides(rule_ulcer, rule_minorpain) and

pregnant(?Patient).

{10_5j}

prescription_s(aspirin, ?Patient)

:- prescription_u(aspirin, ?Patient) and

prescription_u(thyomine, ?Patient) and

pregnant(?Patient).

pregnant(sue).

symptom(ulcer, sue).

symptom(minorpain, sue).

In the above OLP, the rules are labelled only for illustrative purposes. Every label
is of the form <serial number> <courteous transform applied>. The unopposed facts
are just replicated in the OLP.

Transform 2 Courteous transform for an add mutex update Let the new
mutex being added be Mi.

CR (R + δR) =

(
CR (R)

⋃
rt∈RTGenMi

CR 45(rt)
⋃

TNewOppoAdd

)
−NewOppoDel

(6.7)

39
RTGenMi represents the relevant opposition triples generated by the mutex being

added.
TNewOppoAdd and NewOppoDel are defined as above except that they are generated
from rules for which opposers were created due to mutex addition.

Sketch of proof of correctness of the transform 2 The proof is similar to
the case of add rule, and lemma 1 still applies. The only difference being the new
RelOppTriples generated are due to the new mutex only (from lemma 2). So, we
need to run courteous transforms 4j, 5j on each of the RelOppTriples generated by
the mutex. In order to ensure compilation-completeness we need to run transforms
on previously unopposed rules which now have opposers, and to ensure compilation-
soundness we need to remove the unopposed rules from the output. If the mutex does
not result in any new opposers, then RTGenMi, TNewOppoAdd, NewOppoDel will
be empty and as expected nothing in the output changes. These make the transform
compilation-sound and compilation-complete.

Example 10 As illustrated for the add rule update if we load the prescription
rule base in example 8 without the mutex and then add the mutex for incremen-
tal compilation, the new RelOppTriples will be <rule minorpain, prescriptionMutex,
rule ulcer> and <rule ulcer, prescriptionMutex, rule minorpain>. These are stored
in RTGenMi, and TNewOppoAdd and NewOppoDel are analogous to the add rule
case.

Transform 3 Courteous transform for a delete rule update Let the Rule
being deleted be Rk

Case 1: The rule being deleted was unopposed

CR(R− δR) = CR (R)−Rk (6.8)

Case 2: The rule being deleted had opposers

CR (R−δR) = CR (R)
⋃

NewNoOppoAdd−
(
T123Rk

⋃
T45Rk

⋃
TNewNoOppoAdd

)

(6.9)
where
NewNoOppoAdd represents the set of rules whose sole opposer was Rk

TNewNoOppoAdd represents the rules obtained by applying the courteous transforms
1j,2j,3j to rules in NewNoOppoAdd

Sketch of proof of correctness for transform 3 Lemma 4 characterizes the delete
rule update and the proof is similar to the add rule case, as delete is the inverse of
add.

40
Example 11 If we start with the full rule base as in example 8 and remove either of
the rules “rule minorPain” or “rule ulcer” the other rule becomes unopposed, i.e. the
other rule becomes part of NewNoOppoAdd and the rules generated using transforms
1j,2j,3j,4j,5j must be deleted. The result will be that all the rules of the CLP will be
replicated in the OLP.

Transform 4 Courteous transform for a delete mutex update Denoting the
mutex update by δR the result of CR (R + δR) can be expressed as

CR (R−δR) = CR (R)
⋃

NewNoOppoAdd−
(⋃

rt∈RTGenMi

CR 45(rt)
⋃

TNewNoOppoAdd

)

(6.10)

Sketch of proof of correctness for transform 4 From lemma 5, the deletion of
a mutex will result in removal of only those RelOppTriples in which the mutex was a
member of. If there were no such RelOppTriples, then RTGenMi, TNewNoOppoAdd,
NewNoOppoAdd would be empty. The rest of the proof follows from the proof of the
add mutex case.

Example 12 Removal of mutex from example 8 will result in no opposers and the
output as in the case of rule removal will just be the set of all rules in the CLP.

6.4 Incremental algorithms

The incremental algorithms based on the incremental courteous transforms are
described below. In general, these algorithms make use of the notion of semi-
RelOppTriples by computing the semi-RelOppTriples for every Mutex and Rule pair.
On a mutex or rule addition, the new RelOppTriples are computed by composing
the semi-RelOppTriples. These algorithms use ordered mutexes, i.e. both a mutex
and it’s dual when computing the RelOppTriples. All these algorithms also rely on
maintaining certain additional data structures between updates and that information
includes a list of current RelOppTriples, a table of semiRelOppTriples indexed by
Mutexes, a table of meta information about the predicates such as a count of the
number of times it appears within the scope of cneg, a map of RelOppTriples to
the output rules, a table of semiRelOppTriples organized and indexed by mutexes.
These data structures are assumed to be global to the algorithms. In the descrip-
tion of these algorithms the phrase “SCLP Rulebase” will depending on the context,
mean the SCLP Rulebase obtained after applying the transform to eliminate classical
negation(ECN).

The algorithms are summarized, for details refer to the SweetRules V2.1 source
code.

41
6.4.1 Rule addition

The incremental algorithm for compiling a newly rule is given in algorithm 2. It
first runs the ECN transform on this new rule Rnew to obtain Rk, and checks if an
implicit mutex needs to be added for any of the predicates in the new rule. If required
it adds them and compiles the new mutexes using the algorithm 3. The algorithm
proceeds by incrementally computing the semi-RelOppTriples and using the semi-
RelOppTriples computes the relOppTriples. If no opposers exist for the new rule, it
is just replicated, else the courteous transforms are applied. In this process if any
previously unopposed rule now has an opposer in the form of the rule being added,
it is retracted from the output and courteous transforms 1j,2j,3j are performed on it.

Algorithm 2 Algorithm for incrementally compiling a new rule Rnew={Rlab}
PH[th] :- B[tY], where Rlab is the rule label PH is the head predicate, B is the
body and tY is the tuple of all variables in B and th is the argument tuple.

1: Run ECN on Rnew to obtain Rk

2: Add the Rule Rk to the SCLP rulebase
3: for all Predicates q part of Rk do
4: if q is in scope of CNEG for the first time then
5: Create an implicit mutex compile it with Algorithm 3
6: end if
7: end for
8: if Implicit mutex for PH was added then
9: Add results courteous transforms 1j,2j,3j on Rk to the output.

10: Maintain a map of Rk and the resulting rules in the output
11: Return
12: end if
13: semiRelOppTripleList ← ∅
14: for all Mutexes Mi whose second opposer literal unifies with head of Rk do
15: Create a semi-RelOppTriple st from mutex Mi with rule Rk, and the unifier θik

16: Add st to semiRelOppTripleList
17: Update the global Semi-RelOppTriple table
18: end for
19: relOppTripleList ← ∅
20: for all Semi-RelOppTriples st in semiRelOppTripleList do
21: Get the mutex Mi of the semi-relOppTriple st
22: Get the dual of the mutex i.e. Mduali
23: for all Semi-relOppTriple stDual corresponding to the mutex dual do
24: Get the rule Rj in stDual
25: if Can unify < Rj,Mi, Rk > then
26: Add the above RelOppTriple to relOppTripleList

42
27: Also add < Rk,Mduali, Rj > to relOppTripleList
28: Update the global RelOppTripleList with above.
29: end if
30: end for
31: end for
32: if No opposers exist for Rk then
33: replicate the rule in the output and mark it as unopposed
34: end if
35: if Opposers exist for Rk then
36: Add results courteous transforms applied to Rk 1j,2j,3j to the output.
37: Maintain a map of Rk and the resulting rules in the output
38: for all RelOppTriple rt in relOppTripleList do
39: Add results courteous transforms 4j,5j to the output
40: Maintain a map of rt and the rules produced in the output
41: if The other rule Rj in rt is not equal to Rk, and was previously unopposed

then
42: Remove the rule from the output, add result of courteous transforms

1j,2j,3j on Rj to the output.
43: Maintain a map of Rj and the resulting rules in the output
44: end if
45: end for
46: end if

6.4.2 Mutex addition

For a mutex addition, we compute the RelOppTriples by iterating over Rule locales
of the opposer literals. The algorithm given below first performs the ECN transform,
and adds any required implicit mutexes. It then iterates over the rule locales of
the opposers to compute the new relevant opposition triples. Once the new relevant
opposition triples are computed transforms 4j, 5j are applied to each of them. If any
previously unopposed rule now has an opposer it is unmarked and transforms 1j, 2j,
3j are applied to it.

Algorithm 3 Algorithm for incrementally compiling a new mutex Mnew=!- P1(u1)

and P2(u2) | Ei[Zi], where P1 is the first opposer literal, P2 is the second opposer
literal, u1, u2 are arguments of opposers, Ei is the condition under which the oppostion
holds, Zi is argument of the body of the condition

1: Run ECN on Mnew to get Mi

2: Add the mutex Mi to the SCLP rulebase
3: for all Predicates q part of Rk do

43
4: if q is in scope of CNEG for the first time then
5: Create an implicit mutex, compile it with this algorithm
6: end if
7: end for
8: relOppTripleList = ∅
9: for all Rule Rk in the locale of second opposer of Mi do

10: Try to unify the second opposer with any rule head of Rk

11: if unifierFound then
12: Compute semi-relopptriple involving the mutex being added and the rule Rk

13: Update the global semi-RelOppTriple table
14: for all Rules Rj in the first opposer′s locale, try to find rules which fully

unify with Rk do
15: if unifierFound then
16: Create the rel opp triple rt ←< Rj,Mi, Rk >
17: Add rt to relOppTripleList
18: Update global RelOppTripleList with rt
19: end if
20: end for
21: end if
22: end for
23: for all RelOppTriple rt in relOppTripleList do
24: perform courteous transforms 4j,5j
25: Maintain a map of rt and the rules generated
26: end for

{Mutex addition might create new opposed rules}
27: for all Rules Rl part of some RelOppTriple in relOppTripleList and previously

unopposed do
28: Unmark Rl

29: Remove Rl from the output
30: Apply transforms 1j, 2j, 3j
31: Maintain a map Rl and the results of 1j,2j,3j
32: end for

6.4.3 Rule deletion

The rule deletion algorithm reverses the steps of Rule addition. As a first step it
checks to see if the rule is unopposed, if it is unopposed, it is just removed and the
algorithm terminates.
Otherwise, it proceeds by removing the rules generated by transforms 1j, 2j, 3j. For
every RelOppTriple in which this rule is a member of, rules generated by transforms
4j, 5j are removed. Each opposer rule, is then checked to see if it has any other

44
opposers, if not results of running 1j, 2j, 3j on these opposers is reversed by deleting
the generated rules from the output. This algorithm also handles removal of classical
mutexes for predicates whose only occurence in the scope of classical negation after
rule removal happens to be only in classical mutexes.

Algorithm 4 Algorithm for incrementally compiling a rule delete. Let the rule being
deleted be Rk and be of the form {Rlab} PH[th] :- B[tY], where Rlab is the rule
label PH is the head predicate, B is the body and tY is the tuple of all variables in B
and th is the argument tuple.

1: if Rk is unopposed then
2: remove it from the SCLP rulebase and the output OLP rulebase
3: Return
4: end if
5: Remove the rules generated from Rk using transforms 1j,2j,3j
6: Update the map of Rk and the rules generated from transforms 1j,2j,3j
7: impMutexRemovalList ← ∅
8: for all p predicate in Rk do
9: if The only occurence of p within the scope of cneg, other than in Rk, is in

classical mutexes then
10: Add p to impMutexRemovalList
11: end if
12: end for
13: for all p in impMutexRemovaList do
14: Get the classical mutex Mclas corresponding to p
15: Apply the mutex removal algorithm to remove Mclas

16: end for
17: candidateUnOpposedRules ← ∅
18: for all RelOppTriples rt in global RelOppTripleList, in which Rk is present do
19: if Other opposer in rt say Rj is not same as Rk then
20: Add Rj to candidateUnOpposedRules
21: end if
22: Remove the rules generated by rt using transforms 4j,5j
23: Update the Map of RelOppTriples and rules generated from transforms 4j,5j
24: Update the global semi-RelOppTriple table corresponding to the mutex in rt
25: Delete rt from the global RelOppTripleList
26: end for
27: for all Rl in candidateUnOpposedRules do
28: if Rl does not have any opposers other than Rk then
29: Remove the rules generated from Rl using transforms 1j,2j,3j
30: Update the map of Rl and the rules generated from transforms 1j,2j,3j

45
31: Mark Rl as unopposed
32: Replicate Rl in the output rulebase
33: end if
34: end for
35: Remove Rk from the SCLP rulebase

In the above algorithm the line 15 could be modified to just remove the mutex,
instead of invoking the mutex deletion algorithm. If this is done the lines 7-16 should
be moved after line 35 to ensure correctness.

6.4.4 Mutex deletion

The mutex deletion algorithm iterates over all the RelOppTriples in which the mutex
is a member of and removes the result of transforms 4j and 5j. If the removal of the
mutex makes some of the rules unopposed, the rules generated by applying transforms
1j, 2j, 3j on such rules are removed, and the rule is replicated in the output. The
algorithm is then repeated for the dual of the mutex.

Algorithm 5 Algorithm for incremental compilation for a deleting a mutex Mi, which
is of the form !- P1(u1) and P2(u2) | Ei[Zi], where P1 is the first opposer literal,
P2 is the second opposer literal, u1, u2 are arguments of opposers, Ei is the condition
under which the oppostion holds, Zi is argument of the body of the condition

1: candidateUnOpposedRules ← ∅
2: for all rt such that rt is a relopptriple in which the mutex Mi is a member of do
3: remove the rules generated by rt by transforms 4j,5j from the compiled OLP
4: Update the map of rt and the rules generated by transforms 4j,5j
5: for all Rules r that are part of rt do
6: candidateUnOpposedRules ← candidateUnOpposedRules ∪ r
7: end for
8: Update the global RelOppTriple List by removing the entry corresponding to

rt
9: end for

10: Update the global semi-RelOppTriple table, by removing all semi-RelOppTriples
in which Mi appears.

11: for all rc in candidateUnOpposedRules do
12: if rc is not part of any relopptriple then
13: remove the rules generated from rc using transforms 1j, 2j and 3j
14: Update the Map of rc and the rules generated from 1j,2j,3j
15: Replicate rule rc in the output
16: Mark the rule as unopposed
17: end if

46
18: end for
19: repeat the above steps of the algorithm for the dual of the mutex
20: remove the mutex and it’s dual from the SCLP rulebase

Chapter 7

Design of the Incremental
inferencing algorithm for courteous
logic programs

7.1 Inferencing after incremental updating

An incremental update such as a rule add (or mutex add) or rule delete (or mutex
delete), will be subject to incremental compilation as explained in chapter 6 to pro-
duce an OLP. Once an OLP rulebase is produced it must be input to an inferencing
engine which can then derive the conclusions entailed by the rulebase. There are
several well-known alternatives for reasoning including:

1. Backward reasoning

2. Forward reasoning

3. Mixed reasoning

In each of these cases we can incrementally compile the update and do inferencing on
the complete OLP. But, for the forward or mixed reasoning scenarios, the inference
engines typically store the conclusions drawn from the previous OLP (i.e. the OLP
compiled from the SCLP before the incremental update was processed). Therefore it
is advantageous to compute only the modified conclusions. This is more challenging
because a given update affects only a few of the old conclusions. In the rest of the
chapter we address how to perform this task of incremental inferencing on an incre-
mental update. We present a set of algorithms to narrow down the set of conclusions
that need to be reconsidered and then recompute the ‘ ‘region” that needs to be
modified.

47

48
7.2 Incremental forward reasoning

In order to support incremental reasoning, we first compile the incremental premises
update using the techniques of chapter 6, especially the algorithms from section 6.4.
This compilation determines the modifications to the output OLP. We add/delete
each OLP rule as apppropriate and perform incremental forward inferencing on the
OLP rulebase. In order to do this, we need maintain the predicate dependency graph
(PDG) of the OLP and strongly connected components (SCC) of the PDG.

7.3 Correspondence of SCCs and the Well-Founded

Model

If the rule base is predicate stratified, then the we can compute the Well-Founded
model by iterating from the lowest stratum and proceeding towards higher strata.
Similarly, for a general rule base we can build it’s predicate dependency graph and
determine the strongly connected components of the graph. Consider the graph in
which every SCC is collapsed into a single node. The dependency graph for those
nodes is acyclic. This means that we can compute the well-founded model one SCC at
a time starting with SCCs that are not dependent on any other and then proceeding
to other SCCs in the direction of dependency. On an incremental “add” update, we
first build the new SCC graph from the rulebase which has the added premises and
then recompute the conclusions starting from the SCC to which the update belongs
and proceed to the other SCCs dependent on the affected SCC. A delete update is
similar, except that we use the dependency information from the rulebase prior to
performing the delete update.

7.4 Incremental reasoning algorithms

Each update to GCLP might cause multiple rules to be added or deleted from the
OLP. Therefore we define a generic high level algorithm to perform incremental rea-
soning on a set of rule updates.

Algorithm 6 Incremental inferencing via SCC for a set of rules being added and a
set of rules being deleted to the OLP post compilation

1: Radd ← Set of rules being added to the OLP
2: Rdel ← Set of rules being deleted from the OLP
3: Add the rules in Radd to the OLP
4: Compute the new PDG and SCC taking into account rules in Radd (but without

yet deleting the rules in Rdel

49
5: RULHEAD ← set of all head predicates of rules in Radd

6: RULHEAD ← RULHEAD
⋃

set of all head predicates of rules in Rdel

7: Remove the rules in Rdel from the OLP
{Incrementally compute the new conclusions, using the SCCs}

8: Remove the old conclusions from locales of predicates in RULHEAD and those
that depend on these predicates

9: Determine the SCCs corresponding to each of the predicates in the RULHEAD
10: Recompute the new conclusions starting from the SCCs which do not depend on

any other SCC and proceed in the direction of dependency.
{Update the PDG and the SCC}

11: Compute the new PDG and SCCs considering the fact that rules in Rdel have
now been deleted

7.4.1 Incremental reasoning for Rule addition or deletion

First compile the rule being added/deleted and determine the set of rules to be added
to the output OLP and the set of rules that have to be deleted from the OLP. Then
apply algorithm 7.4 to get the new set of conclusions.

7.4.2 Incremental reasoning for mutex addition or deletion

Similar to Rule addition, first compile and then determine the set of rules to be added
to output OLP and the set of rules being deleted from the OLP and apply algorithm
7.4.

Chapter 8

Future work

SweetRules can be made more expressive and powerful by enhancing it as described
below.

1. Distributed inferencing: SweetRules currently runs on a standalone machine
working with a single instance of inference engines. It will be interesting both
theoretically and from an implmentation perspective to explore the issues in
distributed inferencing.

2. Support for conflictful sensing: SweetRules assumes that sensing is always con-
flict free. But, there will be real world scenarios in which there are multiple
sources for sensing and we need a protocol to resolve any conflicts that might
arise.

3. Handling Equality in DLP: Handling equality will enable translation of DL
constructs such as functional property and inverse functional property.

4. Support for Hi-Log and F-Logic: Supporting Hi-Log and F-Logic would enable
interoperability with Flora [1].

5. General Lloyd Topor: The current implementation performs head conjunction
elimination only. It will be useful to generalize to other cases such as elimination
of body disjunction.

6. Generalized Mutexes: The current SCLP semantics is defined for mutexes with
only two opposers. In general, we need to develop theory for more than two
opposers.

7. Generalizing the incremental courteous compilation and inferencing to batch
updates: For a batch update, the incremental compilation is supported by ap-
plying the courteous transforms as though a sequence of single rule/mutex up-
dates were presented.

50

51
But if inferencing is also involved, we can save a lot of work if we perform the
compilation of the entire batch and run incremental inferencing only once.

Chapter 9

Conclusion

In this thesis we outlined an approach to perform knowledge integration, evange-
lizing Well Founded Semantics and Situated and Courteous Logic Programs. We
presented the architecture and technical details of the SweetRules platform which is
capable merging heterogeneous knowledge bases, by performing appropriate transla-
tions emphasizing clean and uniform semantics. The primary contributions in terms
of preserving semantics include handling of negation in Production Rules, and dis-
ambiguating the undefined truth value in XSB. We also showed how OWL ontologies
within the DLP subset can be translated to RuleML, and then be merged with rules
which refer to ontological entities. This elevates the static ontologies to be used in
conjunction with rules.

In terms of extensibility, we showed how the SCLP RuleML can be enhanced to
support web services and backward reasoning via the query and answer elements.
We also proposed the design of an incremental courteous compiler and reasoner to
facilitate development of applications for rule authoring and distributed inferencing.

52

Appendix

The Orderingleadtime example demonstrating KB

merging

In this section the contents of the included files in example 1 are shown along with
the result of the merge.

The RuleML rulebase has the following rules:

<?xml version="1.0" encoding="UTF-8"?>

<rulebase>

<_rbaselab>

<cterm>

<_opc>

<ctor>OrderingLeadTimeRules</ctor>

</_opc>

</cterm>

</_rbaselab>

<imp>

<_head>

<cslit cneg="no">

<_opr>

<rel>orderModificationNotice</rel>

</_opr>

<var>Order</var>

<cterm>

<_opc>

<ctor>days14</ctor>

</_opc>

</cterm>

</cslit>

</_head>

<_body>

<andb>

<fclit cneg="no" fneg="no">

<_opr>

<rel href="http://www.ordermanagement.org/

OrderingLeadTimeOnt.owl#preferredCustomerOf"/>

</_opr>

<var>Buyer</var>

<var>Seller</var>

</fclit>

<fclit cneg="no" fneg="no">

<_opr>

<rel>purchaseOrder</rel>

</_opr>

<var>Order</var>

<var>Buyer</var>

<var>Seller</var>

</fclit>

</andb>

</_body>

<_rlab>

<cterm>

<_opc>

<ctor>leadTimeRule1</ctor>

</_opc>

</cterm>

</_rlab>

</imp>

<imp>

<_head>

<cslit cneg="no">

<_opr>

<rel>orderModificationNotice</rel>

</_opr>

<var>Order</var>

<cterm>

<_opc>

<ctor>days30</ctor>

</_opc>

</cterm>

</cslit>

</_head>

<_body>

<andb>

<fclit cneg="no" fneg="no">

<_opr>

<rel href="http://www.ordermanagement.org/

OrderingLeadTimeOnt.owl#MinorPart"/>

</_opr>

<var>Order</var>

</fclit>

<fclit cneg="no" fneg="no">

<_opr>

<rel>purchaseOrder</rel>

</_opr>

<var>Order</var>

<var>Buyer</var>

<var>Seller</var>

</fclit>

</andb>

</_body>

<_rlab>

<cterm>

<_opc>

<ctor>leadTimeRule2</ctor>

</_opc>

</cterm>

</_rlab>

</imp>

<imp>

<_head>

<cslit cneg="no">

<_opr>

<rel>orderModificationNotice</rel>

</_opr>

<var>Order</var>

<cterm>

<_opc>

<ctor>days2</ctor>

</_opc>

</cterm>

</cslit>

</_head>

<_body>

<andb>

<fclit cneg="no" fneg="no">

<_opr>

<rel href="http://www.ordermanagement.org/

OrderingLeadTimeOnt.owl#preferredCustomerOf"/>

</_opr>

<var>Buyer</var>

<var>Seller</var>

</fclit>

<fclit cneg="no" fneg="no">

<_opr>

<rel>orderModificationType</rel>

</_opr>

<var>Order</var>

<cterm>

<_opc>

<ctor>reduce</ctor>

</_opc>

</cterm>

</fclit>

<fclit cneg="no" fneg="no">

<_opr>

<rel>orderItemIsInBacklog</rel>

</_opr>

<var>Order</var>

</fclit>

<fclit cneg="no" fneg="no">

<_opr>

<rel>purchaseOrder</rel>

</_opr>

<var>Order</var>

<var>Buyer</var>

<var>Seller</var>

</fclit>

</andb>

</_body>

<_rlab>

<cterm>

<_opc>

<ctor>leadTimeRule3</ctor>

</_opc>

</cterm>

</_rlab>

</imp>

<imp>

<_head>

<cslit cneg="no">

<_opr>

<rel>overrides</rel>

</_opr>

<cterm>

<_opc>

<ctor>leadTimeRule3</ctor>

</_opc>

</cterm>

<cterm>

<_opc>

<ctor>leadTimeRule1</ctor>

</_opc>

</cterm>

</cslit>

</_head>

<_rlab>

<cterm>

<_opc>

<ctor>emptyLabel</ctor>

</_opc>

</cterm>

</_rlab>

</imp>

<mutex>

<_oppo>

<ando>

<cslit cneg="no">

<_opr>

<rel>orderModificationNotice</rel>

</_opr>

<var>Order</var>

<var>X</var>

</cslit>

<cslit cneg="no">

<_opr>

<rel>orderModificationNotice</rel>

</_opr>

<var>Order</var>

<var>Y</var>

</cslit>

</ando>

</_oppo>

<_mgiv>

<fclit cneg="no" fneg="no">

<_opr>

<rel>notEquals</rel>

</_opr>

<var>X</var>

<var>Y</var>

</fclit>

</_mgiv>

</mutex>

</rulebase>

The OWL ontology for the example is shown below:

<?xml version="1.0"?>

<rdf:RDF

xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#"

xmlns:rdfs="http://www.w3.org/2000/01/rdf-schema#"

xmlns:owl="http://www.w3.org/2002/07/owl#"

xmlns="http://www.ordermanagement.org/OrderingLeadTimeOnt.owl#"

xml:base="http://www.ordermanagement.org/OrderingLeadTimeOnt.owl">

<owl:Ontology rdf:about=""/>

<owl:class rdf:ID="Buyer"/>

<owl:class rdf:ID="Seller"/>

<owl:class rdf:ID="Product"/>

<owl:class rdf:ID="MinorPart">

<rdfs:subClassOf rdf:resource="#Product"/>

</owl:class>

<owl:ObjectProperty rdf:ID="preferredCustomerOf">

<rdfs:domain rdf:resource="#Buyer"/>

<rdfs:range rdf:resource="#Seller"/>

</owl:ObjectProperty>

<!--TODO: preferredCustomerOf should be preferredCustomer

property stored in the seller -->

<Seller rdf:ID="FrysElectronics"/>

<Seller rdf:ID="CompUSA"/>

<Buyer rdf:ID="IBM">

<preferredCustomerOf rdf:resource="#FrysElectronics"/>

<preferredCustomerOf rdf:resource="#CompUSA"/>

</Buyer>

<Buyer rdf:ID="ReqOrg">

<preferredCustomerOf rdf:resource="#FrysElectronics"/>

<preferredCustomerOf rdf:resource="#CompUSA"/>

</Buyer>

<Product rdf:ID="po1234567"/>

<MinorPart rdf:ID="po3456789"/>

<MinorPart rdf:ID="po7890123"/>

<Product rdf:ID="po5678901"/>

</rdf:RDF>

The JESS facts are:

; purchaseOrder (productName, Buyer, Seller)

(assert (purchaseOrder

http://www.ordermanagement.org/OrderingLeadTimeOnt.owl#po1234567

http://www.ordermanagement.org/OrderingLeadTimeOnt.owl#ReqOrg

http://www.ordermanagement.org/OrderingLeadTimeOnt.owl#CompUSA))

(assert (purchaseOrder

http://www.ordermanagement.org/OrderingLeadTimeOnt.owl#po7890123

http://www.ordermanagement.org/OrderingLeadTimeOnt.owl#IBM

http://www.ordermanagement.org/OrderingLeadTimeOnt.owl#CompUSA))

(assert (purchaseOrder

http://www.ordermanagement.org/OrderingLeadTimeOnt.owl#po3456789

http://www.ordermanagement.org/OrderingLeadTimeOnt.owl#ReqOrg

http://www.ordermanagement.org/OrderingLeadTimeOnt.owl#CompUSA))

(assert (purchaseOrder

http://www.ordermanagement.org/OrderingLeadTimeOnt.owl#po5678901

http://www.ordermanagement.org/OrderingLeadTimeOnt.owl#IBM

http://www.ordermanagement.org/OrderingLeadTimeOnt.owl#CompUSA))

(assert (purchaseOrder

http://www.ordermanagement.org/OrderingLeadTimeOnt.owl#po1234567

http://www.ordermanagement.org/OrderingLeadTimeOnt.owl#ReqOrg

http://www.ordermanagement.org/OrderingLeadTimeOnt.owl#CompUSA))

; orderItemIsInBacklog (product)

(assert (orderItemIsInBacklog

http://www.ordermanagement.org/OrderingLeadTimeOnt.owl#po3456789))

(assert (orderItemIsInBacklog

http://www.ordermanagement.org/OrderingLeadTimeOnt.owl#po5678901))

(assert (orderModificationType

http://www.ordermanagement.org/OrderingLeadTimeOnt.owl#po3456789

reduce))

(assert (orderModificationType

http://www.ordermanagement.org/OrderingLeadTimeOnt.owl#po5678901

reduce))

After executing KB Merging on the above KBs, by processing the “rbaseincludes”
statements, we get the following combined KB:

<?xml version="1.0" encoding="UTF-8" standalone="yes"?>

<rulebase>

<_rbaselab>

<ind/>

</_rbaselab>

<imp>

<_head>

<cslit cneg="no">

<_opr>

<rel>orderModificationNotice</rel>

</_opr>

<var>Order</var>

<cterm>

<_opc>

<ctor>days14</ctor>

</_opc>

</cterm>

</cslit>

</_head>

<_body>

<andb>

<fclit cneg="no" fneg="no">

<_opr>

<rel href="http://www.ordermanagement.org/

OrderingLeadTimeOnt.owl#preferredCustomerOf"/>

</_opr>

<var>Buyer</var>

<var>Seller</var>

</fclit>

<fclit cneg="no" fneg="no">

<_opr>

<rel>purchaseOrder</rel>

</_opr>

<var>Order</var>

<var>Buyer</var>

<var>Seller</var>

</fclit>

</andb>

</_body>

<_rlab>

<cterm>

<_opc>

<ctor>leadTimeRule1</ctor>

</_opc>

</cterm>

</_rlab>

</imp>

<imp>

<_head>

<cslit cneg="no">

<_opr>

<rel>orderModificationNotice</rel>

</_opr>

<var>Order</var>

<cterm>

<_opc>

<ctor>days30</ctor>

</_opc>

</cterm>

</cslit>

</_head>

<_body>

<andb>

<fclit cneg="no" fneg="no">

<_opr>

<rel href="http://www.ordermanagement.org/

OrderingLeadTimeOnt.owl#MinorPart"/>

</_opr>

<var>Order</var>

</fclit>

<fclit cneg="no" fneg="no">

<_opr>

<rel>purchaseOrder</rel>

</_opr>

<var>Order</var>

<var>Buyer</var>

<var>Seller</var>

</fclit>

</andb>

</_body>

<_rlab>

<cterm>

<_opc>

<ctor>leadTimeRule2</ctor>

</_opc>

</cterm>

</_rlab>

</imp>

<imp>

<_head>

<cslit cneg="no">

<_opr>

<rel>orderModificationNotice</rel>

</_opr>

<var>Order</var>

<cterm>

<_opc>

<ctor>days2</ctor>

</_opc>

</cterm>

</cslit>

</_head>

<_body>

<andb>

<fclit cneg="no" fneg="no">

<_opr>

<rel href="http://www.ordermanagement.org/

OrderingLeadTimeOnt.owl#preferredCustomerOf"/>

</_opr>

<var>Buyer</var>

<var>Seller</var>

</fclit>

<fclit cneg="no" fneg="no">

<_opr>

<rel>orderModificationType</rel>

</_opr>

<var>Order</var>

<cterm>

<_opc>

<ctor>reduce</ctor>

</_opc>

</cterm>

</fclit>

<fclit cneg="no" fneg="no">

<_opr>

<rel>orderItemIsInBacklog</rel>

</_opr>

<var>Order</var>

</fclit>

<fclit cneg="no" fneg="no">

<_opr>

<rel>purchaseOrder</rel>

</_opr>

<var>Order</var>

<var>Buyer</var>

<var>Seller</var>

</fclit>

</andb>

</_body>

<_rlab>

<cterm>

<_opc>

<ctor>leadTimeRule3</ctor>

</_opc>

</cterm>

</_rlab>

</imp>

<imp>

<_head>

<cslit cneg="no">

<_opr>

<rel>overrides</rel>

</_opr>

<cterm>

<_opc>

<ctor>leadTimeRule3</ctor>

</_opc>

</cterm>

<cterm>

<_opc>

<ctor>leadTimeRule1</ctor>

</_opc>

</cterm>

</cslit>

</_head>

<_rlab>

<cterm>

<_opc>

<ctor>emptyLabel</ctor>

</_opc>

</cterm>

</_rlab>

</imp>

<mutex>

<_oppo>

<ando>

<cslit cneg="no">

<_opr>

<rel>orderModificationNotice</rel>

</_opr>

<var>Order</var>

<var>X</var>

</cslit>

<cslit cneg="no">

<_opr>

<rel>orderModificationNotice</rel>

</_opr>

<var>Order</var>

<var>Y</var>

</cslit>

</ando>

</_oppo>

<_mgiv>

<fclit cneg="no" fneg="no">

<_opr>

<rel>notEquals</rel>

</_opr>

<var>X</var>

<var>Y</var>

</fclit>

</_mgiv>

</mutex>

<imp>

<_head>

<atom>

<_opr>

<rel href="http://www.ordermanagement.org/

OrderingLeadTimeOnt.owl#Buyer"/>

</_opr>

<var>X</var>

</atom>

</_head>

<_body>

<atom>

<_opr>

<rel href="http://www.ordermanagement.org/

OrderingLeadTimeOnt.owl#preferredCustomerOf"/>

</_opr>

<var>X</var>

<var>Y</var>

</atom>

</_body>

</imp>

<imp>

<_head>

<atom>

<_opr>

<rel href="http://www.ordermanagement.org/

OrderingLeadTimeOnt.owl#Seller"/>

</_opr>

<var>Y</var>

</atom>

</_head>

<_body>

<atom>

<_opr>

<rel href="http://www.ordermanagement.org/

OrderingLeadTimeOnt.owl#preferredCustomerOf"/>

</_opr>

<var>X</var>

<var>Y</var>

</atom>

</_body>

</imp>

<imp>

<_head>

<atom>

<_opr>

<rel href="http://www.ordermanagement.org/

OrderingLeadTimeOnt.owl#Product"/>

</_opr>

<var>X</var>

</atom>

</_head>

<_body>

<atom>

<_opr>

<rel href="http://www.ordermanagement.org/

OrderingLeadTimeOnt.owl#MinorPart"/>

</_opr>

<var>X</var>

</atom>

</_body>

</imp>

<fact>

<_head>

<atom>

<_opr>

<rel href="http://www.ordermanagement.org/

OrderingLeadTimeOnt.owl#Product"/>

</_opr>

<ind href="http://www.ordermanagement.org/

OrderingLeadTimeOnt.owl#po5678901"/>

</atom>

</_head>

</fact>

<fact>

<_head>

<atom>

<_opr>

<rel href="http://www.ordermanagement.org/

OrderingLeadTimeOnt.owl#Product"/>

</_opr>

<ind href="http://www.ordermanagement.org/

OrderingLeadTimeOnt.owl#po1234567"/>

</atom>

</_head>

</fact>

<fact>

<_head>

<atom>

<_opr>

<rel href="http://www.ordermanagement.org/

OrderingLeadTimeOnt.owl#Seller"/>

</_opr>

<ind href="http://www.ordermanagement.org/

OrderingLeadTimeOnt.owl#FrysElectronics"/>

</atom>

</_head>

</fact>

<fact>

<_head>

<atom>

<_opr>

<rel href="http://www.ordermanagement.org/

OrderingLeadTimeOnt.owl#Seller"/>

</_opr>

<ind href="http://www.ordermanagement.org/

OrderingLeadTimeOnt.owl#CompUSA"/>

</atom>

</_head>

</fact>

<fact>

<_head>

<atom>

<_opr>

<rel href="http://www.ordermanagement.org/

OrderingLeadTimeOnt.owl#Buyer"/>

</_opr>

<ind href="http://www.ordermanagement.org/

OrderingLeadTimeOnt.owl#ReqOrg"/>

</atom>

</_head>

</fact>

<fact>

<_head>

<atom>

<_opr>

<rel href="http://www.ordermanagement.org/

OrderingLeadTimeOnt.owl#Buyer"/>

</_opr>

<ind href="http://www.ordermanagement.org/

OrderingLeadTimeOnt.owl#IBM"/>

</atom>

</_head>

</fact>

<fact>

<_head>

<atom>

<_opr>

<rel href="http://www.ordermanagement.org/

OrderingLeadTimeOnt.owl#MinorPart"/>

</_opr>

<ind href="http://www.ordermanagement.org/

OrderingLeadTimeOnt.owl#po3456789"/>

</atom>

</_head>

</fact>

<fact>

<_head>

<atom>

<_opr>

<rel href="http://www.ordermanagement.org/

OrderingLeadTimeOnt.owl#MinorPart"/>

</_opr>

<ind href="http://www.ordermanagement.org/

OrderingLeadTimeOnt.owl#po7890123"/>

</atom>

</_head>

</fact>

<fact>

<_head>

<atom>

<_opr>

<rel href="http://www.ordermanagement.org/

OrderingLeadTimeOnt.owl#preferredCustomerOf"/>

</_opr>

<ind href="http://www.ordermanagement.org/

OrderingLeadTimeOnt.owl#IBM"/>

<ind href="http://www.ordermanagement.org/

OrderingLeadTimeOnt.owl#CompUSA"/>

</atom>

</_head>

</fact>

<fact>

<_head>

<atom>

<_opr>

<rel href="http://www.ordermanagement.org/

OrderingLeadTimeOnt.owl#preferredCustomerOf"/>

</_opr>

<ind href="http://www.ordermanagement.org/

OrderingLeadTimeOnt.owl#ReqOrg"/>

<ind href="http://www.ordermanagement.org/

OrderingLeadTimeOnt.owl#FrysElectronics"/>

</atom>

</_head>

</fact>

<fact>

<_head>

<atom>

<_opr>

<rel href="http://www.ordermanagement.org/

OrderingLeadTimeOnt.owl#preferredCustomerOf"/>

</_opr>

<ind href="http://www.ordermanagement.org/

OrderingLeadTimeOnt.owl#IBM"/>

<ind href="http://www.ordermanagement.org/

OrderingLeadTimeOnt.owl#FrysElectronics"/>

</atom>

</_head>

</fact>

<fact>

<_head>

<atom>

<_opr>

<rel href="http://www.ordermanagement.org/

OrderingLeadTimeOnt.owl#preferredCustomerOf"/>

</_opr>

<ind href="http://www.ordermanagement.org/

OrderingLeadTimeOnt.owl#ReqOrg"/>

<ind href="http://www.ordermanagement.org/

OrderingLeadTimeOnt.owl#CompUSA"/>

</atom>

</_head>

</fact>

<fact>

<_head>

<atom>

<_opr>

<rel href="http://www.w3.org/2002/07/owl#class"/>

</_opr>

<ind href="http://www.ordermanagement.org/

OrderingLeadTimeOnt.owl#MinorPart"/>

</atom>

</_head>

</fact>

<fact>

<_head>

<atom>

<_opr>

<rel href="http://www.w3.org/2002/07/owl#class"/>

</_opr>

<ind href="http://www.ordermanagement.org/

OrderingLeadTimeOnt.owl#Seller"/>

</atom>

</_head>

</fact>

<fact>

<_head>

<atom>

<_opr>

<rel href="http://www.w3.org/2002/07/owl#class"/>

</_opr>

<ind href="http://www.ordermanagement.org/

OrderingLeadTimeOnt.owl#Product"/>

</atom>

</_head>

</fact>

<fact>

<_head>

<atom>

<_opr>

<rel href="http://www.w3.org/2002/07/owl#class"/>

</_opr>

<ind href="http://www.ordermanagement.org/

OrderingLeadTimeOnt.owl#Buyer"/>

</atom>

</_head>

</fact>

<fact>

<_head>

<cslit cneg="no">

<_opr>

<rel>purchaseOrder</rel>

</_opr>

<ind href="http://www.ordermanagement.org/

OrderingLeadTimeOnt.owl#po1234567"/>

<ind href="http://www.ordermanagement.org/

OrderingLeadTimeOnt.owl#ReqOrg"/>

<ind href="http://www.ordermanagement.org/

OrderingLeadTimeOnt.owl#CompUSA"/>

</cslit>

</_head>

</fact>

<fact>

<_head>

<cslit cneg="no">

<_opr>

<rel>purchaseOrder</rel>

</_opr>

<ind href="http://www.ordermanagement.org/

OrderingLeadTimeOnt.owl#po7890123"/>

<ind href="http://www.ordermanagement.org/

OrderingLeadTimeOnt.owl#IBM"/>

<ind href="http://www.ordermanagement.org/

OrderingLeadTimeOnt.owl#CompUSA"/>

</cslit>

</_head>

</fact>

<fact>

<_head>

<cslit cneg="no">

<_opr>

<rel>purchaseOrder</rel>

</_opr>

<ind href="http://www.ordermanagement.org/

OrderingLeadTimeOnt.owl#po3456789"/>

<ind href="http://www.ordermanagement.org/

OrderingLeadTimeOnt.owl#ReqOrg"/>

<ind href="http://www.ordermanagement.org/

OrderingLeadTimeOnt.owl#CompUSA"/>

</cslit>

</_head>

</fact>

<fact>

<_head>

<cslit cneg="no">

<_opr>

<rel>purchaseOrder</rel>

</_opr>

<ind href="http://www.ordermanagement.org/

OrderingLeadTimeOnt.owl#po5678901"/>

<ind href="http://www.ordermanagement.org/

OrderingLeadTimeOnt.owl#IBM"/>

<ind href="http://www.ordermanagement.org/

OrderingLeadTimeOnt.owl#CompUSA"/>

</cslit>

</_head>

</fact>

<fact>

<_head>

<cslit cneg="no">

<_opr>

<rel>orderItemIsInBacklog</rel>

</_opr>

<ind href="http://www.ordermanagement.org/

OrderingLeadTimeOnt.owl#po3456789"/>

</cslit>

</_head>

</fact>

<fact>

<_head>

<cslit cneg="no">

<_opr>

<rel>orderItemIsInBacklog</rel>

</_opr>

<ind href="http://www.ordermanagement.org/

OrderingLeadTimeOnt.owl#po5678901"/>

</cslit>

</_head>

</fact>

<fact>

<_head>

<cslit cneg="no">

<_opr>

<rel>orderModificationType</rel>

</_opr>

<ind href="http://www.ordermanagement.org/

OrderingLeadTimeOnt.owl#po3456789"/>

<ind>reduce</ind>

</cslit>

</_head>

</fact>

<fact>

<_head>

<cslit cneg="no">

<_opr>

<rel>orderModificationType</rel>

</_opr>

<ind href="http://www.ordermanagement.org/

OrderingLeadTimeOnt.owl#po5678901"/>

<ind>reduce</ind>

</cslit>

</_head>

</fact>

</rulebase>

Bibliography

[1] Flora - an object-oriented knowledge base language.
http://flora.sourceforge.net/.

[2] Benjamin N. Grosof an Ian Horrocks, Raphael Volz, and Stefan Decker. Descrip-
tion logic programs: combining logic programs with description logic. In WWW
’03: Proceedings of the 12th international conference on World Wide Web, pages
48–57, New York, NY, USA, 2003. ACM Press.

[3] Catriel Beeri and Raghu Ramakrishnan. On the power of magic. J. Log. Pro-
gram., 10(3-4):255–299, 1991.

[4] Carlos Viegas Damsio. The w4 project well-founded semantics for the world wide
web. http://centria.di.fct.unl.pt/ cd/projectos/w4/.

[5] Charles L. Forgy. Rete: A fast algorithm for the many pattern/ many object
pattern match problem. Journal of Artificial Intelligence, 19:17–37, 1982.

[6] A. V. Gelder, K. A. Ross, and J. S. Schlipf. The well-founded semantics for
general logic programs. Journal of the ACM, 38:620–650, 1991.

[7] A. Van Gelder. The alternating fixpoint of logic programs with negation. In
PODS ’89: Proceedings of the eighth ACM SIGACT-SIGMOD-SIGART sympo-
sium on Principles of database systems, pages 1–10, New York, NY, USA, 1989.
ACM Press.

[8] Benjamin N. Grosof. Courteous logic programs: Prioritized conflict han-
dling for rules. Technical report, IBM T.J. Watson Research Center,
http://www.research.ibm.com , search for Research Reports; P.O. Box 704, York-
town Heights, NY 10598, Dec. 1997. IBM Research Report RC 20836., 1997.

[9] Benjamin N. Grosof. Prioritized conflict handling for logic programs. In
Logic Programming: Proceedings of the International Symposium (ILPS-97),
(Also, an extended version is available as IBM Research Report RC 20836 at
http://www.research.ibm.com), pages 197–211, 1997.

74

[10] Benjamin N. Grosof. Compiling prioritized default rules into ordinary logic pro-
grams, 1999.

[11] Benjamin N. Grosof. A courteous compiler from generalized courteous logic
programs to ordinary logic programs, 1999.

[12] Benjamin N. Grosof. Representing e-commerce rules via situated courteous logic
programs in ruleml. Electronic Commerce Research and Applications, 3(1):2–20,
2004.

[13] Benjamin N. Grosof, Mahesh D. Gandhe, and Timothy W. Finin. Sweetjess:
Translating damlruleml to jess. In RuleML, 2002.

[14] Benjamin N. Grosof, Mahesh D. Gandhe, and Timothy W. Finin. Sweetjess:
Inferencing in situated courteous ruleml via translation to and from jess rules.
2003.

[15] Ian Horrocks and Peter F. Patel-Schneider. A proposal for an owl rules language.
In WWW ’04: Proceedings of the 13th international conference on World Wide
Web, pages 723–731, New York, NY, USA, 2004. ACM Press.

[16] Ian Horrocks and Peter F. Patel-Schneider. A proposal for an owl rules language.
In WWW ’04: Proceedings of the 13th international conference on World Wide
Web, pages 723–731, New York, NY, USA, 2004. ACM Press.

[17] Ian Horrocks, Peter F. Patel-Schneider, Harold Boley, Said Tabet, Benjamin
Grosof, and Mike Dean. Swrl: A semantic web rule language combining owl and
ruleml. http://www.daml.org/2003/11/swrl/, 2003.

[18] David B. Kemp, Divesh Srivastava, and Peter J. Stuckey. Magic sets and bottom-
up evaluation of well-founded models. In ISLP, pages 337–351, 1991.

[19] David B. Kemp, Divesh Srivastava, and Peter J. Stuckey. Bottom-up evaluation
and query optimization of well-founded models. Theor. Comput. Sci., 146(1-
2):145–184, 1995.

[20] J. W. Lloyd. Foundations of logic programming; (2nd extended ed.). Springer-
Verlag New York, Inc., New York, NY, USA, 1987.

[21] Teodor C. Przymusinski. Well-founded and stationary models of logic programs.
Ann. Math. Artif. Intell., 12(3-4):141–187, 1994.

[22] Michael K. Smith, Chris Welty, and Deborah L. McGuinness. Owl web ontology
language guide. http://www.w3.org/TR/2004/REC-owl-guide-20040210/, 2004.

[23] Jeffrey D. Ullman. Principles of database and knowledge-base systems, Vol. I.
Computer Science Press, Inc., New York, NY, USA, 1988.

