
Second International Conference on Autonomous Agents and Multi-Agent
Systems

3rd Workshop on Ontologies in Agent Systems

Sofitel Melbourne

15th July 2003

Stephen Cranefield, Tim Finin, Valentina Tamma and Steven Willmott (editors)

Preface
There is a growing interest in the use of ontologies in agent systems as a means to facilitate interoperability among diverse software com-
ponents, in particular, where interoperability is achieved through the explicit modelling of the intended meaning of the concepts used in
the interaction between diverse information sources, software components and/or service-providing software. The problems arising from
the creation, maintenance, use and sharing of such semantic descriptions are perceived as critical to future commercial and non-commercial
information networks, and are being highlighted by a number of recent large-scale initiatives to create open environments that support the
interaction of many diverse systems (e.g. Agentcities, Grid computing, the Semantic Web and Web Services). A common thread across these
initiatives is the need to support the synergy between ontology and agent technology, and increasingly, the multi-agent systems and ontology
research communities are seeking to work together to solve common problems.

This workshop is the third in a series of workshops on Ontologies and Agent Systems (the previous workshops were held at the International
Conference on Autonomous Agents 2001 in Montreal, Canada and the International Conference on Autonomous Agents and Multi-Agent
Systems 2002 in Bologna, Italy). It aims to provide a forum to foster discussion on the issues involved in using ontologies to support
interactions between software agents. Emphasis will be on the discussion of ontologies with respect to the practical impact they have on
agent architecture and application design.

A new initiative this year was the introduction of a workshop challenge problem to discuss the design and (preferably) an implementation
of a multi-agent system in the domain of travel booking information and services, based on a domain description previously developed for
an ontology tool assessment exercise organised by the EU OntoWeb project’s SIG on enterprise-standard ontology environments. The details
of the challenge problem can be found on the OAS’03 workshop Web page at http://oas.otago.ac.nz/OAS2003/. Although there were only
two papers that responded to the challenge problem, we hope that the challenge will provide a focus for wider discussion throughout the
workshop of the issues of building agent systems that use ontologies.

Programme Committee
The Programme Committee was chaired by Stephen Cranefield, Tim Finin, Valentina Tamma and Steven Willmott and comprised:

Richard Benjamins

Federico Bergenti

Luis Botelho

Monique Calisti

Ulises Cortes

Ian Dickinson

Noriaki Izumi

Yannis Labrou

Frank McCabe

Marian Nodine

Natalya Noy

James Odell

Martin Purvis

Leon Sterling

Heiner Stuckenschmidt

Mike Uschold

We are grateful to the above for their help in reviewing the papers and for their support for the workshop.

July 2003 Stephen Cranefield, Tim Finin, Valentina Tamma and Steven Willmott

Table of Contents

Regular papers

Dealing with mathematical relations in Web-ontologies
Muthukkaruppan Annamalai and Leon Sterling . 1

Using OWL in a pervasive computing broker
Harry Chen, Tim Finin and Anupam Joshi . 9

Experiences with ontology development for value-added publishing
Maia Hristozova and Leon Sterling . 17

An ontology for Web service ratings and reputations
E. Michael Maximilien and Munindar P. Singh . 25

Towards HARMONIA: automatic generation of e-organisations from institution specifications
Daniel Jiménez Pastor and Julian Padget . 31

Location-mediated service coordination in ubiquitous computing
Akio Sashima, Noriaki Izumi and Koichi Kurumatani . 39

Collaborative understanding of distributed ontologies in a multiagent framework: design and experiments
Leen-Kiat Soh . 47

Challenge papers

A UML ontology and derived content language for a travel booking scenario
Stephen Cranefield, Jin Pan and Martin Purvis . 55

An initial response to the OAS’03 challenge problem
Ian Dickinson and Michael Wooldridge . 63

Short papers

Guidelines for constructing reusable domain ontologies
Muthukkaruppan Annamalai and Leon Sterling . 71

CO�L: Compact O�F language
Pedro Ramos and Luis Botelho . 75

Dealing with Mathematical Relations in Web-Ontologies

Muthukkaruppan Annamalai
Department of Computer Science & Software

Engineering
The University of Melbourne

Victoria 3010, Australia

mkppan@cs.mu.oz.au

Leon Sterling
Department of Computer Science & Software

Engineering
The University of Melbourne

Victoria 3010, Australia

leon@cs.mu.oz.au

ABSTRACT
The growing use of agent systems and the widespread pen-
etration of the Internet has opened up new possibilities for
scientific collaboration. We have been investigating the role
for agent systems to aid with collaboration among Exper-
imental High-Energy Physics (EHEP) physicists. A neces-
sary component is an agreed ontology, which must include
complex mathematical relations involving such quantities as
the energy and momentum of elementary physics particles.
We claim that the current web-ontology specification lan-
guages are not sufficiently expressive to be useful for explicit
representation of mathematical expressions. We adapt some
previous work on representing mathematical expressions to
produce a set of mathematical representational primitives
and supporting definitions that will allow knowledge shar-
ing in agent systems. The paper sketches out a scheme
for dealing with mathematical relations in scientific domain
web-ontologies, illustrated with examples arising from our
interactions with the EHEP physicists.

1. INTRODUCTION
The growing use of agent systems and the widespread pen-
etration of the Internet has opened up new possibilities and
created new challenges for scientific collaboration. On one
hand, it is possible to make large amounts of scientific anal-
yses of Experimental High-Energy Physics (EHEP) experi-
ments available to scientists around the world [3, 4, 7]. On
the other hand different scientific groups, even within a sin-
gle collaboration, utilise different calculation methods, and
it is sometimes difficult to know how to interpret particu-
lar analyses. It is assumed that practitioners in this domain
possess the necessary background knowledge to interpret the
intended meaning of the appropriated jargon in the domain
of discourse. Unfortunately, application developers, new-
comers to this field, and software agents lacking in relevant
expertise are not capable of making a similar kind of inter-
pretation. Knowledge models, or ontologies built to express
specific facts about a domain can serve as the basis for un-
derstanding the discourse in that domain [5].

The notion of ontology as specification of a partial account
of shared conceptualisation [13, 16] is adopted in this pa-
per, that is an ontology defines a set of representational
vocabulary for specific classes of objects and the describable
relationships that exist among them in the modelled world
of a shared domain.

In 2002, we were involved in a project [1, 8] supported by

the Victorian Partnership for Advanced Computing [21] to
investigate whether ontologies would be useful for EHEP col-
laboration, in particular in the Belle [4] collaboration. The
research is founded on the idea that suitable web-ontologies
be developed and reused to facilitate this scientific commu-
nity to produce and share information effectively on the se-
mantic web. While the final verdict has not been reached,
it is clear that our project extends existing capabilities of
web-ontology specification languages and tools.

One concerning issue is as to how to define ‘function-concepts’
in the EHEP ontology, that is concepts equated with math-
ematical expressions involving such quantities as the energy
and momentum of elementary physics particles. A function-
concept is a manifestation of an n-ary mathematical relation
or function binding a set of quantifiable terms defined in the
ontology. The current web-ontology specification languages,
such as DAML [17] and OIL [10] are founded on Description
Logic [2] and can only express unary and binary relations.
They offer no representational features for expressing func-
tions. We ask, “How do we facilitate the semantic recogni-
tion of function-concepts in web-ontology?” The answer to
this question led us to cognise the extensions required for ad-
ditional expressivity in web-ontology. This paper shows the
approach we have taken in order to ensure that we could de-
scribe mathematical relation underlying a function-concept
in the ontology.

This paper is organised as follows. In Section 2, we provide
a glimpse of the function-concepts in the EHEP domain. In
Section 3, we describe the principles of dealing with math-
ematical relations in web-ontology and our approach to the
problem is elaborated in Section 4. Finally, Section 5 con-
cludes the contribution of this paper.

2. EVENT-VARIABLES IN THE EHEP ON-
TOLOGY

Mathematics plays a significant role in the EHEP experi-
mental analysis – from the time sensor data is captured up
to statistical analysis and systematic error calculation. In
this paper however, we limit our scope of discussion to the
treatment of mathematics in the vital event selection phase.

The superfluous event data captured by detectors is system-
atically filtered to suppress much of the background events,
while preserving the vital signal events. Parametric restric-
tions on the event selection variables or ‘cuts’ are utilised to
sift the signal events from background events. Loose cuts (or

SCranefield
1

skimming), followed by more decisive topological, kinematic
and geometric cuts is aimed to produce a set of desired event
data, fit for justification of the empirical findings.

A category of event selection variables is defined in the
EHEP ontology. These event-variables are identified based
on their use and need to specify the event selection or back-
ground suppression cuts. A set of competency questions [15]
drawn-up while the ontology being built guides the concep-
tualisation of these required event-variables. A typical com-
petency question is: “What are the kinematic selection cri-
teria applied in an analysis?” The ensuing answer would
list the selection criteria enforced, such as: “Beam con-
strained mass Mbc > 5.2 GeV/c2, Track transverse momen-
tum PT > 100 MeV/c, Energy difference ∆E < 0.2 GeV ,
Likelihood of electron over kaon Le/K > 0.95”. The ontol-
ogy must define the necessary vocabulary to represent the
competency questions that arose and the answers that were
generated.

Some event-variables are constants, while others are func-
tions. In the above illustrative example, Le/K is a con-
stant; whereas, Mbc is a function event-variable. Mbc =√

E2
beam − P 2

3B
, where Ebeam is the energy of the beam and

P3B is the 3-Momentum of B particle. Ebeam is a constant.
The 3-Momentum P3 =

√
P 2

x + P 2
y + P 2

z is a function. In
here, Px, Py and Pz are constant event-variables that de-
note the individualised track momentum along the x, y and
z axes, respectively.

Note that a function event-variable is expressed algebraically
in terms of constant event-variables. A simple function
event-variable accepts only constants as parameters. Ex-
amples are 3-Momentum, P3 and Transverse Momentum,
PT that describe the momentum of a track. The function
P3 is given above, while PT =

√
P 2

x + P 2
y .

On the other hand, a higher-order function event-variable
also admits other functions as parameters. The Mbc is a
higher-order function. One of its parameter is P3, a func-
tion event-variable. Another example is the Fox-Wolfram
Moment-0 event-variable, H0 =

∑
j

∑
k(P3j × P3k), whose

parameter is a set of 3-Momentum of tracks. The indices j
and k enumerate the tracks in an event.

Sometimes, a function requires weighted parameters. An ex-
ample is the Fisher Discriminant event-variable F =

∑
i(αi×

Ri), which combines a set of correlated event-variables R1,
R2, etceteras to form a single variable. As in the previous
case, the index i enumerates the considered event-variables.
The coefficient αi denotes the weight for the parameter Ri.

3. THE MAIN PRINCIPLES OF OUR AP-
PROACH

We are focusing on explicating mathematical relations that
bind a set of the scientific domain concepts in web-ontology.
We seek to find a formal way to represent the mathematical
relationships among domain concepts. The idea is to make
clear this factual knowledge to humans and software agents
during event analyses.1 Our development drew heavily from

1Note that our development is quite different from the
work being pursued by the mathematical-knowledge repre-

the EngMath ontology [14], an extensive past attempt to
capture the semantics associated with mathematical expres-
sions in engineering models. EngMath is a declarative first
order KIF [11] axiomatisation, which is supported by sets
of theories for describing physical quantities, mathematical
object such as scalar, vector, tensor and, functions and op-
erations associated with them.

To a lesser degree, general-purpose ontologies like CYC [9]
and SUMO [20] also attempt to declaratively capture the
semantics of ‘evaluatable’ function. However, such function
is categorised as unary, binary, ternary, quaternary and con-
tinuous types; thereby placing a limit on the number of its
argument. Perhaps, this restrain is imposed in order to refer
to a function’s argument based on its order in the ‘argument
list’. In our case, a function argument must be able to de-
note a collection of class instances, which SUMO does not
allow. In EngMath, such collection is represented as tensor
or vector.

Although, the EngMath approach of providing rigorous de-
scriptions appears to faithfully represent mathematical ex-
pressions in instantiated models, it is difficult to understand
and apply to working systems. The theories represented
in declarative style, as axioms (KIF sentences) are hard to
read and understand, more so by physicists who are not well
versed with ontology. Furthermore, it is not feasible to port
this ontology on the web because web-ontology languages do
not provide for definitions of arbitrary n-ary relations and
functions, and axioms that make up EngMath.

Since we aim to build suitable EHEP ontologies for the se-
mantic web, we parted from the EngMath approach from the
outset. The contrast between EngMath and our modelling
principles are described below.

I. Web-ontologies are serialised in XML [22], a mark up
language intended to encode metadata concerning web
document.

II. The domain concepts are assembled in a hierarchy
and their distinguishing properties and relationships
among them are specified, using a frame-like syntax.
In light of this fact, we have conceived the concepts
using notions like class, subclass, range-relation and
cardinality. (See the examples in next section)

III. A mathematical relation is closed on a function-concept
in the ontology. It explicates the algebraic expression
used to derive the function-concept. The knowledge
associated with this derivation is representationally at-
tached to the function-concept.

IV. The quantifiable terms in the ontology are modelled
upon mathematical data types such as scalar, boolean,
record (cartesian product), set and function. The types
specify how to interpret the values of these terms and
restrict the set of operations that can be applied on
them.

sentation community. Their work is concerned about con-
tent theories of mathematics and experiment with differ-
ent formalisms for representing theories, definitions, axioms,
proofs, etceteras in the domain of mathematics.

SCranefield
2

V. We also recognise the need to extend the algebra of
primitive data type operators to constant quantities.

VI. We have introduced the notion of a parameter, which is
associated with function quantity. We have classified
the parameters of a function quantity as individual,
collection and weighted parameters to distinguish ones
role from the other.

VII. The arithmetic-logical expression denoting the inten-
sion of a function quantity will be encoded in a suitable
format (not KIF expression). A possible candidate
is OpenMath [19], an XML standard for exchanging
mathematical objects on the web.

4. EXPLICATING MATHEMATICAL RELA-
TIONS IN ONTOLOGY

The constant and function event-variables mentioned in Sec-
tion 2 are physical quantities. We need to first define suit-
able concepts for representing these quantities in the ontol-
ogy. Then, we will propound a scheme for providing an ab-
stract description of mathematical relations involving these
quantities.

4.1 Representation of Quantity
The need to deal with physical quantities in scientific ontolo-
gies is obvious. Our conceptualisation of physical quantity
is different from that in EngMath. The definition of physi-
cal quantity is based upon our viewpoint on how quantities,
dimension and units are treated in the EHEP domain.

For this, we defined a metaclass called PhysicalQuantity,
having magnitude and dimension as its attributes (or prop-
erties). The concept-oriented definition shown in Figure 1 is
an abstract idea of a physical quantity described in a Pro-
tege [12] -like representation.2 A physical quantity has a
scalar (integer or real) magnitude and its unit of measure is
associated with a particular physical dimension specified in
the ontology.

class PhysicalQuantity
Property Range Relation Cardinality
magnitude Scalar = 1
dimension DimensionUnit = 1

Figure 1: Definition of PhysicalQuantity

A constant quantity is a representation of a quantifiable ob-
ject in the domain, which holds a single constant value of
measure. The metaclass ConstantQuantity is defined as a
‘concrete’ subclass of PhysicalQuantity and a constant quan-
tity can be directly instantiated from it. The constant event-
variables defined in the ontology are constant quantities. For
example, the fundamental track momentum, Momentum-X
defined in Figure 2, is a constant quantity. A Momentum-X
object’s magnitude is a real value and its unit of measure is
given in terms of units of momentum dimension. Note how-
ever that magnitude and dimension properties are inherited
from PhysicalQuantity.

2The semi-formal ontology developed using this frame-based
ontology modelling tool, will be eventually formalised as
EHEP web-ontology.

class Momentum-X : ConstantQuantity
subClassOf Momentum
Property Range Value
magnitude Real
dimension MomentumUnit

Figure 2: Definition of Momentum-X

The function event-variables defined in the ontology are
function quantities. A function quantity is distinguished
from constant quantity by the fact that the value of mea-
sure of the denoted quantifiable object is derived from other
constant quantities. In other words, a function quantity
can be seen as a function that maps one or more constant
quantities to a constant quantity. Consequently, a grounded
function quantity can be casted into constant quantity by
anchoring it in the domain ontology. The function quantity
is elaborated in Section 4.3.

Each quantity belongs to exactly one dimension. A unit is
a measure of quantity in some dimension. There is a range
of units associated with each dimension in the EHEP ontol-
ogy. For example, the units for Energy dimension are eV,
KeV, MeV, GeV and TeV.3 Relativistic physics asserts that
Energy = Momentum × SpeedOfLight. Accordingly, the
Momentum units such as eV/c, KeV/c, MeV/c etceteras
are always derived from Energy units in this domain. Like-
wise, Momentum = Mass×SpeedOfLight. So, Mass units
such as eV/c2, KeV/c2, MeV/c2 etceteras are always de-
rived from Momentum units.4

Note that in this system of units, the symbol c, which de-
notes the speed of light is featured as part of the unit. This
rather unconventional way of describing the unit of a phys-
ical quantity in terms of abstract dimension symbol allows
the physicists to work with a limited set of dimension unit
symbols. It also facilitates the dimensional analysis of alge-
braic expressions involving related quantities. It would not
be necessary, in our case to compose the dimension of a de-
rived quantity from a larger set of fundamental dimensions
as prescribed in EngMath and SUMO sub-model on ‘Unit of
Measure’. The onus of dimensional consistency in algebra
over the quantities rests with the modeller. However, the
ontology is needed to support the unit analysis involving
those quantities.

Based on the above standpoint, we have assigned a set of
canonical units to each of the dimensions that appears in the
ontology. In order to facilitate unit analysis over a dimen-
sion, a base unit is selected for each dimension. The other
units of the dimension are then specified as conversion fac-
tor from a unit to the base unit. For example, the base
unit for Energy dimension is eV . Its succeeding units, KeV,
MeV, GeV and TeV are 103, 106, 109 and 1012 multiples
of the base unit, respectively. Quantities to be manipulated

3eV stands for electronvolt, is a non-standard unit for en-
ergy. The SI unit for energy is J (joule).
4The SI units for mass is kg (kilogram), and momentum is
Ns (newton second) or kg.m/s, depending on the dimen-
sions that are employed in its derivation. EHEP physicists
are parsimonious in the use of dimensions so as to avoid such
indeterminate situations.

SCranefield
3

must be same dimension and unit. For instance, the differ-
ence in their conversion factor can be used to reconcile the
quantities before they are operated upon.

4.2 Quantity and Data Types
Data type identifies the type of values that may be assumed
by quantifiable objects and expressions in the ontology. We
will make use of mathematical data types [6] to model these
sets of values. The primitive data types are scalar and
boolean, while the composite data types are record and set.

4.2.1 Primitive Data Type
The simplest data types are scalar and boolean types. The
scalar types are Real and Integer. The arithmetic operators
in Figure 3 are required to operate on scalar data types.5

plus minus times divide pow mod max min
uminus abs log ln cos sin tan acos
asin atan

Figure 3: Arithmetic Operators

Binary operators such as plus, minus and times have signa-
ture: Scalar × Scalar → Scalar, while a unary operators
like uminus, abs and log have signature: Scalar → Scalar.
Arithmetic expressions are constructed using these opera-
tors.

A boolean type can have False or True constant values.
The boolean operators associated with this type are and,
or and not. The and and or operators have signature:
Boolean × Boolean → Boolean. The not operator’s sig-
nature is: Boolean→ Boolean.

and or not less more equal

Figure 4: Logical Operators

We also need the relational operators less, more and equal
that maps a pair of Scalars to Boolean. Logical expressions
constructed using the boolean and relational operators listed
in Figure 4 will be used to specify conditions and constraints
involving the quantifiable terms in the ontology.

4.2.2 Composite Data Type
The composite data types are built upon other data types.
We have identified the need for two kinds of composite data
types in the ontology, namely record and set data types.
A record is a cartesian product of its constructed element
types, while a set is a mathematical abstraction of a collec-
tion of elements.

Record
A record type is composed of a fixed number of data types.
The set of values represented by a record is a cartesian prod-
uct of its data types. A record is analogous to a class con-
struct defined in ontology specification language.

5Other scalar types such as Rational and Complex would be
included, when their need arise. Likewise, the existing set
of operators for will be expanded accordingly.

class Track : RecordQuantity
Property Range Value
mom-x Momentum-X
mom-y Momentum-Y
mom-z Momentum-Z
energy Energy

class Momentum-X : ConstantQuantity
subClassOf Momentum

class Momentum-Y : ConstantQuantity
subClassOf Momentum

class Momentum-Z : ConstantQuantity
subClassOf Momentum

class Energy : ConstantQuantity
subClassOf EventVariable

Figure 5: Partial Definition of Track and its Range
Relations

We utilise record data type to model a structured set of
values associated with an aggregate of disparate quantities
such as Track (Figure 5). Track information is typically de-
noted by an n-tuple of distinct quantities, partially described
as < Px, Py, Pz, E >. We choose to refer to such grouped
quantities in ontology as record quantity (actually a record
of quantities) because we are able to provide explicit names
for the individual quantities in the structure, rather than
simply rely upon the ordinal of the quantities in an n-tuple.

An access operator called select is required to select indi-
vidual elements of a record. The property names serve as
the identifier of a record element. For example, select(T,
mom-x) accesses the mom-x component of track T.

Set
A set is a data type representing a collection of things. In
the context of our work, we restrict the use of set to repre-
sent a collection of individuals with common characteristics,
that is class instances of same type. Set operators are specif-
ically defined to be applied on an entire collection of indi-
viduals. The operators named in Figure 6 are required for
constructing a set, determining its size, checking set mem-
bership, telling the maximum and minimum individual, and
summing up all the individuals in a set.

setOf union intersect oproduct filter
size member maximum minimum summation

Figure 6: Set Operators

The operators on the first row are set constructors. No-
tably, the oproduct operator constructs the outer product
of a pair of sets. For example, the Fox-Wolfram Moment-0
event-variable H0 =

∑
j

∑
k(P3j ×P3k) can be expressed as

follows: summation(oproduct(setOf(P3), setOf(P3))). The
summation operator repeatedly applies the plus operation
on all the individuals in the constructed set of outer prod-
uct of 3-Momentum.

The filter operator applies a condition (logical expression)
on a set to filter out a subset of desired individuals, that
is individuals that fulfil the specified condition. As an ex-
ample, the following expression sums up the transverse mo-

SCranefield
4

class FunctionQuantity
subClassOf PhysicalQuantity
Property Range Relation Cardinality
parameter Parameter ≥ 1
intension ArithmeticLogicalExpression

magnitude Scalar = 1
dimension DimensionUnit = 1

Figure 7: Definition of FunctionQuantity

class Parameter
Property Range Relation Cardinality
argument ConstantQuantity ≥ 1
coefficient Scalar ≤ 1

Figure 8: Definition of Parameter

mentum of tracks (PT) that makes an angle of more than

45◦ with the Thrust axis (T̂): summation(filter(setOf(PT),

and(more(angleBetween(x, T̂), π/4), member(x, PT))).
The function angleBetween is a geometric event-variable de-
fined in the ontology. It represents the plane angle between
any two axes in a particular frame of reference.

4.3 Mathematical Relations as Function Quan-
tities

Mathematical relations in the ontology can be described ab-
stractly in the form of grounded function quantities. A func-
tion quantity represents a physical quantity that is arith-
metically derived from previously defined quantities. It is
invoked with an explicit set of constant quantity parame-
ters, which map to a constant quantity. In other words,
a function quantity describes the numerical dependencies
between its parameters, and the resulting quantity. Conse-
quently, the intension of a function quantity is specified by
an arithmetic-logical expression involving its parameters.

We give the definition of function quantity in Figure 7. It is
conceptualised as a subclass of PhysicalQuantity with a set
of properties, namely parameter, intension, magnitude and
dimension. A function quantity inherits the magnitude and
dimension properties from PhysicalQuantity, which together
denote the characteristics of the resulting constant quantity.

4.3.1 Parameter of Function Quantity
Parameters identify the types of objects that are involved
in a mathematical relation described by a function quantity.
These parameters are constant quantities, which includes
existing grounded function quantities and record quantities.
Recall that a grounded function quantity delivers a constant
quantity as result. A record quantity constitutes a struc-
tured set of disparate constant quantities.

Each parameter of a function quantity is either an individ-
ual quantity or a collection of quantities. Alternatively, a
weight is attached to a parameter that indicates its degree
of influence on the resulting value. The metaclass definition
in Figure 8 is an abstraction of the various types of param-
eters of a function quantity, whose argument and coefficient
are constrained to ConstantQuantity and Scalar type, re-
spectively.

class TransverseMomentum : FunctionQuantity
subClassOf Momentum
Property Range Value
parameter Px, Py

intension abs(pow(sum(pow(Px,2),pow(Py,2))),0.5)

magnitude Real
dimension MomentumUnit

class Px : IndividualParameter
Property Range Value
argument Momentum-X

class Py : IndividualParameter
Property Range Value
argument Momentum-Y

Figure 9: Partial Definition of Transverse Momen-
tum and its Range Relations

Individual Parameter
An individual parameter is a subclass of Parameter whose
argument cardinality is equal to 1. It denotes a specific
quantity argument of a function quantity. Scalar and re-
lational operators can be applied on the magnitude of this
argument.

Figure 9 illustrates the definition of Transverse Momentum
function quantity with two individual parameters. An in-
stantiated TransverseMomentum maps instances of Momen-
tum-X and Momentum-Y to an instance of momentum quan-
tity, according to the specified intension.

Collection Parameter
A collection parameter is a subclass of Parameter whose
argument cardinality is greater than 1. This type of argu-
ment is viewed as a collection of homogenous quantities and
is typically applied to set operators as a whole. A case in
point is the collection parameter (a set of 3-Momentum) of
the Fox-Wolfram Moment-0 function quantity.

Weighted Parameter
A weighted parameter is a subclass of Parameter whose co-
efficient has a definite value, as in the case of Fisher Dis-
criminant function quantity. This value will be dealt within
the arithmetic-logical expression that specifies the intension
of this function quantity.

4.3.2 Intension of Function Quantity
An arithmetic-logical expression (a constrained sequence of
symbols) conveys the intension of a function quantity. The
semantics is determined largely by the arithmetic, logical
and set operations applied on the parameters of the func-
tion quantity. One possible way to encode this expression
is using OpenMath [19].6 Figure 10 shows the OpenMath
encoding of the arithmetic-logical expression that describes
the intension of TransverseMomentum (see definition in Fig-
ure 9).

6Another W3C data exchange standard is MathML [18].
While OpenMath focuses on the semantics in mathematical
expression, MathML gives importance to the presentation
(rendering) of the mathematical expression.

SCranefield
5

<OMOBJ>
<OMA>

<OMS cd=”arith1” name=”abs”/>
<OMA>

<OMS cd=”arith1” name=”pow”/>
<OMA>

<OMS cd=”arith1” name=”plus”/>
<OMA>

<OMS cd=”arith1” name=”pow”/>
<OMV name=”Px”/>
<OMI> 2 </OMI>

< /OMA>
<OMA>

<OMS cd=”arith1” name=”pow”/>
<OMV name=”Py”/>
<OMI> 2 </OMI>

< /OMA>
< /OMF dec=”0.5”/>

< /OMA>
< /OMA>

< /OMA>
< /OMOBJ>

Figure 10: Intension of TransverseMomentum En-
coded in OpenMath

Expressions encoded in OpenMath are constrained by XML-
syntax with implied semantics. An OpenMath object (OM-
OBJ) is a sequence of one or more application objects (OMA).
OpenMath maintains reportative definitions of the mathema-
tical-oriented metadata in a set of content dictionaries. In
this example, the content dictionary (cd) named arith1 holds
the definition of the following symbols (OMS): abs, pow and
plus. These symbols coincide with the data type operators
identified in Section 4.2. The parameter or variable (OMV)
is associated with constant quantity, in our case.

We appeal to an interpreter for manipulating this encoded
expression. OpenMath only recognises scalar values such as
integer (OMI) and real (OMF). The design decision will also
have to consider on how to extend the scalar and boolean
algebra to cover the constant quantities in the ontology.
For instance, the interpreter could apply the operators on
the scalar magnitude of dimensionally compatible quantities
whose units have been reconciled. We do not wish to dwell
further into this implementation issue at this stage.

4.3.3 Result of Function Quantity
The result of a grounded function quantity is a constant
quantity, whose magnitude and dimension are same as that
of the function quantity. Even a pure scalar result can be
viewed as a constant quantity whose magnitude is scalar
and its physical dimension is termed as ‘dimensionless’. The
dimension of a function quantity is only defined generically.
An instance of a function quantity will however use one of
the prescribed units associated with its dimension type.

4.4 Dynamic Mathematical Relations in On-
tologies

We want to deal with both static and dynamic mathematical
relations in the ontology. A static relation is a permanent
relationship that exist between conceptual terms in all in-
stantiated model (read ‘experimental analysis description’)

of the EHEP domain. An example is the relation describing
Transverse Momentum function quantity, which is always
composed from Momentum-X and Momentum-Y constant
quantities. In other words, the parameters of function quan-
tity denoting a static relation are fixed.

On the other hand, a dynamic relationship between con-
cepts is coerced specifically for a particular use or purpose.
An example is the relation described by Fisher Discrimi-
nant function quantity, which combines a set of correlated
event-variables. Different event selection analysis entails dif-
ferent sets of correlated event-variables. Therefore, the set
of event-variables combined by Fisher Discriminant varies
from one instantiated model to another. Although the in-
tension of this function quantity is fixed, its parameters are
not.

Function quantities to find the difference or the sum of any
two quantities also fall under the category of dynamic math-
ematical relations. In here, the number of parameters is
fixed, but their types can vary. For instance, the quantity
sum of two mass quantities is not same as the quantity sum
of two momentum quantities, as they have dissimilar dimen-
sions.

This paper mainly discusses on the representation of the
static relations. We think it is possible to extend the exist-
ing framework to handle dynamic relations in the ontology.
An alternative is to define a dynamic mathematical relation
as an ‘abstract’ function quantity, still ungrounded in the
ontology. The intension of this function quantity will be
described in terms of physical quantities (that is, the type
of the argument is PhysicalQuantity, instead of Constan-
tQuantity). Subsequently, a specialised form of this function
quantity can be derived from its abstract definition, to suit
a specific need. The specialised function quantity will assign
appropriate interpretation of the mathematical relation by
specifying the exact parameters and characteristics of the
resulting quantity. This idea is still under consolidation.

5. CONCLUSION
This EHEP ontology should provide the necessary repre-
sentational vocabulary to facilitate the scientific community
to collaborate effectively on the semantic web. One concern
however is due to the limitations of web-ontology languages,
which disallow the direct representation of mathematical re-
lations in ontologies. The existing web-ontology languages
falter when the need to specify metaclasses, n-ary relations
and functions arises. They also lack the necessary episte-
mological and arithmetic primitives to explicitly represent
algebraic expressions involving domain terms.

This paper highlights the additional vocabulary and lan-
guage features required to deal with mathematical relations
in web-ontology. Future web-ontology languages may offer
a richer set of primitives to express complex relationships
among entities. Until such time, our approach recommends
the use of implicitly defined metadata to partly describe the
meaning of the mathematical relations in web-ontology.

6. ACKNOWLEDGMENTS
We are grateful to Glenn Moloney and Lyle Winton of the
Physics department for providing insights into EHEP exper-

SCranefield
6

imental analysis. We also thank the members of the Intel-
ligent Agent Laboratory at the University of Melbourne for
their helpful comments.

7. REFERENCES
[1] M. Annamalai, L. Sterling, and G. Moloney. A

collaborative framework for distributed scientific
groups. In S. Cranefield, S. Willmott, and T. Finin,
editors, Proceedings of AAMAS’02 Workshop on
Ontologies in Agent Systems, Bologna, Italy, 2002.

[2] F. Baadar and W. Nutt. Basic description logics. In
F. Baadar, D. McGuiness, D. Nardi, and
P. Patel-Schneider, editors, Description Logic
Handbook: Theory, Implementation and Applications.
Cambridge University Press, 2002.

[3] The Babar Physics Collaboration.
http://www.slac.stanford.edu/BFROOT/.

[4] The Belle Physics Collaboration.
http://belle.kek.jp/belle/.

[5] B. Chandrasekaran and J. R. Josephson. What are
ontologies, and why do we need them? IEEE
Intelligent Systems, pages 20–26, January/February
1999.

[6] J. C. Cleaveland. An Introduction to Data Types.
Addison-Wesley, 1986.

[7] The Cleo Physics Collaboration.
http://www.lns.cornell.edu/public/CLEO/.

[8] L. Cruz, M. Annamalai, and L. Sterling. Analysing
high-energy physics experiments. In B. Burg, J. Dale,
T. Finin, H. Nakashima, L. Padgham, C. Sierra, and
S. Willmott, editors, Proceedings of AAMAS’02
Workshop on AgentCities, Bologna, Italy, 2002.

[9] Cycorp. http://www.cyc.com/.

[10] D. Fensel, I. Horrocks, F. vanHarmelen,
D. McGuiness, and P. Patel-Schneider. Oil: Ontology
infrastructure to enable the semantic web. IEEE
Intelligent Systems, pages 38–45, March/April 2001.

[11] M. Genesereth and R. Fikes. Knowledge interchange
format. Technical Report Logic-92-1, Computer
Science Department, Stanford University, 1992.

[12] W. E. Grosso, H. Eriksson, R. W. Fergerson, J. H.
Gennari, S. W. Tu, and M. A. Musen. Knowledge
modeling at the millennium (the design and evolution
of Protege-2000). In Proceedings of KAW’99
Workshop on Knowledge Acquisition, Modelling and
Management, Banff, Alberta, 1999.

[13] T. Gruber. A translation approach to portable
ontologies. Knowledge Acquisition, 5(2):199–220, 1993.

[14] T. R. Gruber and G. R. Olsen. An ontology for
engineering mathematics. In J. Doyle, P. Torasso, and
E. Sandewall, editors, Proceedings of International
Conference on Principles of Knowledge Representation
and Reasoning. Morgan Kaufmann, 1994.

[15] M. Gruninger and M. S. Fox. Methodology for the
design and evaluation of ontologies. In Proceedings of
IJCAI’95 Workshop Basic Ontological Issues in
Knowledge Sharing. Montreal, Canada, 1995.

[16] N. Guarino. Ontologies and knowledge base: Towards
a terminological clarification. In N. Mars, editor,
Towards Very Large Knowledge: Knowledge Building
and Knowledge Sharing, pages 25–32. IOS Press,
Amsterdam, 1995.

[17] J. Hendler and D. McGuiness. The Darpa Agent
Mark up Language. IEEE Intelligent Systems, pages
67–73, November/December 2000.

[18] Mathematics Mark up Language.
http://www.w3.org/TR/MathML2/.

[19] Openmath Mark up Language.
http://monet.nag.co.uk/cocoon/openmath/index.html.

[20] Suggested Upper Merged Ontology.
http://ontology.teknowledge.com/.

[21] Victorian Partnership for Advanced Computing.
http://www.vpac.org/.

[22] EXtensible Mark up Language.
http://www.w3.org/XML/.

SCranefield
7

Using OWL in a Pervasive Computing Broker ∗

Harry Chen
University of Maryland
Baltimore County, USA

hchen4@cs.umbc.edu

Tim Finin
University of Maryland
Baltimore County, USA

finin@cs.umbc.edu

Anupam Joshi
University of Maryland
Baltimore County, USA

joshi@cs.umbc.edu

ABSTRACT
Computing is moving toward a pervasive context-aware en-
vironment in which agents with limited resources will re-
quire external support to help them become context-aware.
In this paper, we describe an agent based architecture called
Context Broker Architecture (CoBrA) to help these agents
to acquire, reason about and share context knowledge. A
key component in our architecture is an explicit context on-
tology defined using the Web Ontology Language (OWL).
This ontology models the basic concepts of people, agents,
places, and presentation events. We also describe a use case
scenario and prototype design of CoBrA in an intelligent
meeting room environment.

1. INTRODUCTION
Pervasive computing is a vision for the near term future in

which devices, services, and software agents will seamlessly
integrate and cooperate in support of human objectives –
anticipating our needs, negotiating for services, acting on
our behalf, and delivering services in an anywhere, any-time
fashion. To realize this vision, an important next step is
the development of an infrastructure that can help ubiq-
uitous agents, services, and devices become aware of their
contexts (including the ability to reason about and to share
this knowledge). We are developing a new pervasive context-
aware computing infrastructure called Context Broker Ar-
chitecture (CoBrA) [3] that will help agents behave in an
intelligent, context-aware manner.

By context, we mean an understanding of a location,
its environmental attributes (e.g., room temperature, noise
level, and light intensity), and the people, devices, objects,
and software agents it contains. This understanding neces-
sarily extends to modeling the activities and tasks that are
taking place in a location as well as the beliefs, desires, com-
mitments, and intentions of the human and software agents
involved.

In the past, a number of distributed systems have been
developed with a common goal to support pervasive com-
puting (e.g., Intelligent Room [5], Context Toolkit [16], and
Cooltown [12]). Although the research of these systems
have made tremendous progress in advancing pervasive com-
puting, the resulting implementations, however, have weak-
nesses in supporting knowledge sharing and context reason-
ing due to lacking an explicit representation of context on-

∗This work was partially supported by DARPA contract
F30602-97-1-0215, Hewlett Packard, NSF award 9875433,
and NSF award 0209001.

tologies [3, 4].
An explicit representation of ontology consists of a formal

model of vocabularies (i.e., classes and properties) and as-
sociated semantics (i.e., the relationships between different
classes and properties). Without a well-defined ontology,
knowledge sharing and context reasoning is often difficult in
the previous systems [3].

In the previous systems, ontologies are often defined based
on ad hoc representation schemes such as a set of program-
ming language objects or data structures. There are two
problems with this approach: (i) the use of ad hoc represen-
tation schemes lacking shared vocabularies can hinder the
ability of independently developed agents to interoperate
(i.e., to share context knowledge), and (ii) the use of ob-
jects and data structures of low expressive power provides
inadequate support for context reasoning.

In order to help agents to discover, reason about and com-
municate contextual information, we must define explicit
ontologies for context concepts and knowledge. In this pa-
per, we present a set of ontologies that we have developed
to support ubiquitous agents in the CoBrA system. Our
ontology (CoBrA ontology) is defined using the Web Ontol-
ogy Language (OWL) [18], an Semantic Web language be-
ing specified by the W3C. The current version of the CoBrA
ontology models the basic concepts of people, agents, places
and presentation events. It also describes the properties and
relationships between these basic concepts including (i) rela-
tionships between places, (ii) roles associated with people in
presentation events, and (iii) typical intentions and desires
of speakers and audience members.

The rest of this document is structured into nine sections.
In the next section, we briefly review the Semantic Web and
the OWL language. In Section 3, we describe the key fea-
tures of CoBrA and its design rationale. In Section 4, we
present a typical use case scenario of the CoBrA system and
point out how CoBrA can help agents to reason about con-
texts and share knowledge. After our discussion, in Section
5, we describe the key ontology concepts in the latest version
of our CoBrA ontology. In Section 6, a prototype system de-
sign of the Context Broker Architecture is presented. A brief
discussion of related work and some concluding comments
are given in Section 7 and Section 8, respectively.

2. THE SEMANTIC WEB AND OWL
Semantic Web is a vision of the next generation World

Wide Web in which information is given well-defined mean-
ing, better enabling computers and people to work in coop-
eration [2]. Research on the Semantic Web is driven by the

SCranefield
9

need for a new knowledge representation framework to cope
with the explosion of unstructured digital information on
the existing Web. Current Semantic Web research focuses
on the development of ontology languages and tools for con-
structing digital information that can be “understood” by
computers [2].

The origin of the Semantic Web research goes deep in
the roots of Artificial Intelligent research (e.g., knowledge
representation and ontology). However, the recent pub-
licly known Semantic Web research begins with the DAML
(DARPA Agent Markup Language) effort in the US1 and the
OIL (Ontology Inference Layer) effort in Europe2. In late
2000, the original DAML language is combined with many
of the ontology modeling features from the OIL language,
and the result is the DAML+OIL language.

In late 2001, the World Wide Web Consortium (W3C) es-
tablished the Web Ontology Working Group with the goal of
introducing Semantic Web technologies to the main stream
web community. The group has specified a language OWL
that is based on DAML+OIL and shares many of its features
(e.g., using RDF as the modeling language to define onto-
logical vocabularies and using XML as the surface syntax
for representing information [18]).

We have chosen to define our ontology for contexts for
three reasons. First, it is much more expressive than RDF
or RDF-S allowing us to build more knowledge into the on-
tology. Second, we chose to use OWL over DAML+OIL
because OWL has been designed as a standard and has the
backing of a well known and regarded standards organiza-
tion. Third, from a system implementation point of view,
the emergence of ontology inference engines in support for
the OWL language (e.g., FaCT [9], RACER [19] and Bubo
[20]) leads us to believe adopting OWL will create new op-
portunities for building more advanced intelligent systems.

3. CONTEXT BROKER ARCHITECTURE
CoBrA is an agent based architecture for supporting

context-aware computing in intelligent spaces. Intelligent
spaces are physical spaces (e.g., living rooms, vehicles, cor-
porate offices and meeting rooms) that are populated with
intelligent systems that provide pervasive computing ser-
vices to users [11].

Central to our architecture is the presence of an intelligent
context broker (or broker for short) that maintains and man-
ages a shared contextual model on the behalf of a community
of agents. These agents can be applications hosted by mo-
bile devices that a user carries or wears (e.g., cell phones,
PDAs and headphones), services that are provided by de-
vices in a room (e.g., projector service, light controller and
room temperature controller) and web services that provide
a web presence for people, places and things in the physical
world (e.g., services keeping track of people’s and objects’
whereabouts [12]).

In a large-scale intelligent space (e.g., a campus or a build-
ing), multiple brokers can form a broker federation. Indi-
vidual broker in a federation is responsible for managing
parts of the intelligent space (e.g., a room in a particular
building). Brokers are related to each other in some orga-
nizational structure (e.g., peer-to-peer or hierarchical) in a
federation, and they can periodically exchange and synchro-

1DAML web site:http://www.daml.org
2OIL web site: http://www.ontoknowledge.org/oil/

Figure 1: An intelligent context broker acquires con-
text information from devices, agents and sensors in
its environment and fuses it into a coherent model
that is then shared with the devices and their agents.

nize context knowledge, enabling fault-tolerance (similar to
the persistent broker team described in [13]).

In an intelligent space, the primary responsibilities of a
broker are to (i) acquire context information from hetero-
geneous sources and reason about this information to main-
tain a consistent context model, (ii) help distributed agents
to share context knowledge through the use of common on-
tologies, agent communication languages and protocols, and
(iii) protect the privacy of users by establishing and enforc-
ing user-defined policies while sharing sensitive personal in-
formation with agents in the community.

A context broker has four main functional components:

1. Context Knowledge Base: a persistent store for
context knowledge in an intelligent space. This knowl-
edge base provides a set of API’s for other components
to assert, delete, modify, and query stored knowledge.

2. Context Reasoning Engine: a reactive inference
engine that reasons over the knowledge base. Its main
function is to deduce additional knowledge from infor-
mation acquired from external sources and to maintain
the consistency of the knowledge base.

3. Context Acquisition Module: a collection of pre-
defined procedures for acquiring information from the
external sources. It serves as a middleware abstrac-
tion for acquiring contexts from heterogeneous sources
(e.g., physical sensors, web services, databases, devices
and agents).

4. Privacy Management Module: a set of communi-
cation protocols and behavior rules that the broker fol-
lows when performing privacy management tasks (i.e.,
negotiate privacy policies with new users and enforcing
these policies when sharing information with agents in
the community).

4. ONTOLOGIES IN COBRA
In a pervasive computing environment, individual agents

may have limited resources to acquire, reason about and
share contexts. In CoBrA, the role of a broker is to help

SCranefield
10

these resource-limited agents – e.g., to reason about contexts
and share context knowledge.

In the next two sections, we will describe a typical multi-
agent scenario of CoBrA (Section 4.1) and point out how
explicitly represented ontologies enable knowledge sharing
and context reasoning (Section 4.2).

4.1 An Intelligent Meeting Room Scenario
R210 is an intelligent meeting room with RFID sensors3

embedded in the walls and furniture for detecting the pres-
ence of the users’ devices and clothing. As Alice enters the
room, these sensors inform the R210 broker that a cell phone
belonging to her is present and the broker adds this fact in
its knowledge base.

As she sits, the agent on Alice’s Bluetooth enabled cell
phone discovers R210’s broker and engages in a “hand
shake” protocol (e.g. authenticates agent identities and es-
tablishes trust [10]) after which it informs the broker of Al-
ice’s privacy policy. This policy represents Alice’s desires
about what the broker should do and includes (i) the con-
text information about Alice that the broker is permitted
or prohibited from storing and using (e.g., yes to her lo-
cation and roles, no to the phone numbers she calls), (ii)
other agents that the broker should inform about changes
in her contextual information (e.g., keeping Alice’s personal
agent at home informed about her location contexts), and
(iii) the permissions for other agents to access Alice’s con-
text information (e.g., all agents in the meeting room can
access Alice’s contexts while she is in the room).

After receiving Alice’s privacy policy, the broker creates a
profile for Alice that defines rules and constraints the broker
will follow when handling any context knowledge related to
Alice. For example, given the above policy, the profile for
Alice would direct the broker (i) to acquire and reason about
Alice’s location and activity contexts, (ii) to inform Alice’s
personal agent at home when Alice’s contexts change, and
(iii) to share her contexts with agents in the meeting room.

Knowing Alice’s cell phone is currently in R210 and hav-
ing no evidence to the contrary, the broker concludes Alice
is also there. Additionally, because R210 is a part of the En-
gineering building, which in turn is a part of the Campus,
the broker concludes Alice is located in Engineering building
and on campus. These conclusions are asserted into broker’s
knowledge base.

Following the profile, the broker informs Alice’s personal
agent of her whereabouts. On receiving this information
about Alice, her personal agent attempts to determine why
Alice is there. Her Outlook calendar has an entry indicating
that she is to give a presentation on Campus about now, so
the personal agent concludes that Alice is in R210 to give
her talk and informs the R210 broker of it’s belief.

On receiving information about Alice’s intention, the
R210 broker shares this information with the projector agent
and the lighting control agent in the ECS 210. Few minutes
later, the projector agent downloads the slides from Alice’s
personal agent and sets up the projector, the lighting control
agent dims the room lights.

4.2 Knowledge Sharing & Context Reasoning
An explicit representation of ontologies can be used to en-

able knowledge sharing and provide a means for reasoning.

3RFID stands for Radio Frequency Identification (see also
http://www.rfid.org)

In the scenario above, three distinct but related types of con-
text information are used: (i) location contexts (“Where is
Alice?”), (ii) activity context (“What is she doing?”), and
(iii) agent contexts (“What might she want to do in this
context?”). Note that an understanding of these contexts
is only possible because of all different types of agents (in-
cluding sensors and devices) share information with each
other using common ontologies, and the broker is able de-
rive additional information about Alice’s location because it
has a model of the rooms and buildings involved and has a
rudimentary model of spatial relationships.

Context reasoning may also take place in detecting in-
consistent beliefs about certain contexts. For example, in a
pervasive computing environment, information sensed from
the physical world can be both noisy and ambiguous (e.g.,
sensors may report that the same person is present in two
different room at the same time). With ontologies, it is pos-
sible to guide the context reasoning process to detect and
resolve this inconsistent knowledge (e.g., in our CoBrA on-
tology, containment relationships between different classes
of locations can be used to detect this type of knowledge
inconsistency).

5. THE COBRA ONTOLOGY
This section describes key ontology concepts in the cur-

rent version of the CoBrA ontology (v0.2)4. This ontology
defines a vocabulary for describing people, agents, places
and presentation events for supporting an intelligent meet-
ing room system on a university campus. It also defines a
set of properties and relationships that are associated with
these basic concepts.

Figure 2 shows a complete list of the names of the classes
and properties in the CoBrA ontology. In v0.2, there are 41
classes (i.e., RDF resources that are type of owl:class) and
36 properties (i.e., RDF resources that are type of either
owl:ObjectProperty or owl:DatatypeProperty). These
ontologies are expressed using the OWL/XML syntax [17].

Our ontology is categorized into four distinctive but re-
lated themes: (i) concepts that define physical places and
their associated spatial relations (e.g., containment, social
and organizational properties)5, (ii) concepts that define
agents (i.e., both human agents and software agents) and
their associated attributes, (iii) concepts that describe the
location contexts of an agent on a university campus, and
(iv) concepts that describe the activity contexts of an agent,
including the roles of speakers and audiences and their asso-
ciated desires and intentions in a presentation event. In the
rest of this section, we discuss each of these four themes.

5.1 Places
The notion of a place in CoBrA is presently restricted to

a set of physical locations that are typically found on a uni-
versity campus. These locations include campus, building,
room, hallway, stairway, restroom, and parking lot. These
physical locations are all assumed have well-defined spatial
boundaries (e.g., all locations can be uniquely identified by
geographical coordinates – longitude and latitude). In addi-
tion, all locations on a university campus have identifiable

4A complete version of the ontology is available at http:
//daml.umbc.edu/ontologies/cobra/0.2/cobra-ont
5In v0.2, only containment relations are defined, additional
properties will be included in the next version of the ontol-
ogy.

SCranefield
11

Figure 2: A complete list of the names of the classes and properties in the CoBrA ontology (v0.2).

string names that are assigned to them by some official bod-
ies (e.g., by the university administration).

When modeling physical locations, we define a class called
Place which generalizes all type of locations on a campus.
This abstract class defines a set of properties that are com-
mon to all concrete physical location classes, which consists
of longitude, latitude and hasPrettyName.
Place classes (including subclasses) participate in con-

tainment relations. These relationships are defined by two
related object properties6 called spatiallySubsumes and
isSpatiallySubsumedBy. The former describes the subject
of this property spatially subsumes the object of this prop-
erty (e.g., a building spatially subsumes a room in the build-
ing), and the latter describes the subject of this property is
spatially subsumed by the object of this property (e.g., a
room in the building is spatially subsumed by the building).
In the context of the OWL language, these two properties
are defined as an inverse property of each other.

Note that in the current version of the ontology, the do-
main and the range of both spatiallySubsumes and is-

SpatiallySubsumedBy properties are of the class type Place.
In other word, these two properties cannot be used to make
statements about the containment of a person, agent or ob-
ject in a physical place. In Section 5.2, we will describe
alternative constructs for expressing this type of statements.

In addition to containment relationships, physical places
may also have events and activities associated with them
(e.g., a meeting may be taken place in a room, or an an-
nual festival may be taken place on a university campus).

6This refers to the owl:ObjectProperty property

In order to make statements about some events that are
currently associated with a particular place, we introduce
an additional object property called hasEventHappening-

Now. The domain and range of this property are of the class
Place and the class EventHappeningNow, respectively. The
EventHappeningNow class represents a set of all events that
are currently taking place (details of this class is discussed
in Section 5.4).

Figure 3: A partial ontology definition of the
AtomicPlace & CompoundPlace classes in OWL/XML
syntax

5.1.1 AtomicPlace
From the list of concrete physical locations that we have

SCranefield
12

mentioned (i.e., campus, building, room, hallway, stairway,
etc.), some of these locations usually do not contain (spa-
tially subsume) other physical locations. For example, hall-
ways, stairways and rooms in a building usually are not usu-
ally considered to be a type of physical place that contains
other places.

For this reason, we introduce an abstract class called
AtomicPlace to represent a set of all physical places that
do not contain other physical places. This class in-
herits all properties from its superclass Place. How-
ever, it puts restrictions on the range of the two proper-
ties spatiallySubsumes and isSpatiallySubsumedBy. In
this AtomicPlace class, the cardinality of the property
spatiallySubsumes is 0, indicating all instances of this class
do not contain any other physical places. On the other
hand, the range of the property isSpatiallySubsumedBy is
restricted to the class CompoundPlace, which is a subclass
of Place. This CompoundPlace class represents all physi-
cal places that may contain other physical places. Figure 3
shows partial representation of these classes in OWL/XML
syntax.

Some subclasses of the AtomicPlace class include Room,
Hallway, Stairway, Restroom, LadiesRoom, MensRoom and
ParkingLot.

5.1.2 CompoundPlace
The AtomicPlace class represents a set of places that con-

tains zero number of Place instances, the CompoundPlace

class represent places that contain at least one Place in-
stances. This class is also a subclass of Place.

Being a subclass of the Place class, CompoundPlace inher-
its all properties from its parent class. In order to express
all instances of the CompoundPlace class should only be spa-
tially subsumed by instances of other CompoundPlace, the
range of this class’s property isSpatiallySubsumedBy is re-
stricted to have class type CompoundPlace. This restriction
excludes all instances of the CompoundPlace class to be spa-
tially subsumed by instances of the AtomicPlace.

5.2 Agents
The agent class in CoBrA represents both humans agents

and software agents. Human agents are users in an intel-
ligent space. Software agents, on the other hand, are au-
tonomous computing entities that provide services to users
(either directly or indirectly) in an associated space.

All agents have associated properties that describes their
contact information, which includes uniquely identifiable
names, URLs for their home pages, and email addresses. In
addition, agents are assumed to have certain roles in differ-
ent events and activities (e.g., a person can have the speaker
role in a presentation event, and device agents in the close
vicinity may take on the presentation assistant role during
the presentation session). Different roles may give rise to
different desires and intentions of an agent.

In the CoBrA ontology, the notions of desire and intention
are both associated with actions7. Specifically, the notion
of desire is defined as an agent’s desire for some actions to
be achieved by other agents (e.g., a person with the speaker
role may desire some service agents to dim the lights when
his presentation starts), and the notion of intention is de-

7the semantics of an action is not formal defined in the cur-
rent version of the ontology. In v0.2, all instances of actions
are assumed to be atomic.

fined as an agent’s commitment to perform some particular
actions (e.g., a person with the audience role may intend to
download a copy of the slides after attending a presentation
event).

To begin our ontology modeling for agents, we introduce a
general class called Agent, which is a set of all human agents
and computational agents. We define the class Person to
represent human agents and the class SoftwareAgent to rep-
resent computational agents (both of which are subclasses of
the Agent class and disjoints with each other). All agents in
our ontology are associated with properties that describe
their contact information. To generalize properties that
serve as descriptions of contact information, we define an
object property called hasContactInformation. From this
property, we further define sub-properties of contact infor-
mation, which consist of hasFullName, hasEmail, hasHome-
Page and hasAgentAddress.

5.2.1 Role
In our ontology, the class Role represents a set of all roles

that can be associated with an agent. In other words, it
is an abstract class that generalizes all possible types of
agent roles in the CoBrA ontology. In v0.2 of the ontol-
ogy, pre-defined subclasses of Role consist of SpeakerRole

and AudienceRole.
To associate roles with an agent, the object properties

fillsRole and isFilledBy are defined. In the context of
the OWL language, these two properties are inverse property
of each other – fillsRole has domain Agent and range Role,
and isFilledBy has domain Role and range Agent.

Figure 4: This is a partial definition of the concepts
related to roles, intentions and desires in an intelli-
gent meeting room system.

5.2.2 Intentional Actions
All actions in CoBrA are defined as instances of the class

IntentionalAction. Informally, intentional actions are ac-
tions that an agent performs intentionally and with certain
goals in mind. In our design, we assume domain applica-
tions will extend this class to define specialized subclasses
and instances. To support the construction of intelligent
meeting room systems, we have pre-defined a set of con-
crete instances of IntentionalAction that are common in
presentation events (see Figure 4).

All instances of the IntentionalAction class (or its sub-

SCranefield
13

classes) can be associated with either an instance of the Role
class or the Agent class through object properties intends-
ToPerform or desiresSomeoneToAchieve. The domain of
these two properties are defined to be a union of the class
Role and Agent (see Figure 4).

5.3 Agent’s Location Context
In the last two sections, we have described a set of CoBrA

ontology concepts for physical locations and agents. In this
section, we will discuss additional concepts for modeling the
location context of agents.

By location context, we mean a collection of dynamic
knowledge that describes the location of an agent. In the
context of the OWL language, this knowledge is a collection
of RDF statements that describe the location property of
an agent. To model the location property of an agent, we
introduce an object property called locatedIn, which has
range Place8.

Physical locations, as we have discussed previously in Sec-
tion 5.1, are categorized into two distinctive classes namely
AtomicPlace (e.g., hallways and rooms) and CompoundPlace

(e.g., campus and building). Following the semantics of
these two classes, no agent can locate in two different atomic
places at the same time, but any agent can locate in two or
more compound places at the same time. In the context of
the OWL language, any two instances of the AtomicPlace

class are different if and only if both instances have distinc-
tive object values9 for the same class property.

To capture the notion an agent can be in an atomic and
a compound place, from the locatedIn property we de-
fine two sub-properties called locatedInAtomicPlace and
locatedInCompoundPlace. The former restricts its range to
the AtomicPlace class, and the latter restricts its range to
the CompoundPlace class. From these two properties, we
can define additional properties that further restricts the
type of physical place an agent is located in. For exam-
ple, locatedInRoom, locatedInRestroom and locatedIn-

ParkingLot are sub-properties of locatedInAtomicPlace;
locatedInCampus and locatedInBuiding are sub-properties
of locatedInCompoundPlace.

Since all agents in CoBrA are associated with different
types of location properties, we can generalize subsets of
these agents in according to their location properties. To
do so, we define PersonInBuilding and SoftwareAgentIn-

Building to represent a set of people and software agents
who are located in a building, respectively. The complement
of these classes are PersonNotInBuilding and Software-

AgentNotInBuilding.

5.4 Agent’s Activity Context
An agent’s activity context is similar to its location con-

text – a collection of dynamic knowledge about certain as-
pects of an agent’s situational condition. While location
context describes the location at which the agent is situ-
ated, activity context describes activities in which the agent
participates. In the current version of the ontology, the no-
tion of an activity is restricted to represent a set of all typical
group activity events in a meeting room (meeting, presen-

8The domain of this property is owl:Thing, indicating any
thing may be located in some physical place.
9an object value refers to the object in an N-triple statement
(i.e. (<subject>, <predicate>, <object>)

tation and discussion)10.
Activity events are assumed have schedules. For presenta-

tion events, we have defined PresentationSchedule class to
represent their schedules. Presentation schedules are defined
to have startTime, endTime and location properties, and
each of which respectively represents the start time of a pre-
sentation, the end time of a presentation and the location
of a presentation event. Each presentation event has one
or more invited speaker and an audience. These two con-
cepts are defined using the invitedSpeaker and expected-

Audience properties. In addition to start time, end time
and location, the schedule of a presentation usually includes
a title and an abstract of the presentations. To model
these two concepts, we introduce presentationTitle and
presentationAbstract properties.

An agent’s activity context is usually associated with ac-
tivity events that are currently happening. For example, the
activity context of a speaker includes the presentation event
that he/she is giving the presentation at. To model this, we
introduce the PresentationEventHappeningNow class. This
class is a subclass of the EventHappeningNow class which
models an event with the time predicate “now”.

For a presentation that is currently happening, we can
specialize the type of rooms at which the event takes
place. For example, a room that has an ongoing pre-
sentation event is defined as RoomHasPresentationEvent-

HappeningNow, which is a subclass of Room and restricts the
range of its hasEventHappeningNow property to the class
PresentationSchedule. In addition, we can also specialize
people who has various roles in an on-going event. For ex-
ample, a set of all people who have the speaker role of some
on-going presentation event is defined as the SpeakerOf-

PresentationHappeningNow class. Similarly, we define the
AudienceOfPresentationHappeningNow class to represent a
set of all people who have the audience role of some on-going
presentation event.

6. A PROTOTYPE SYSTEM DESIGN
In the last section, we have describe the key concepts in

the CoBrA ontology. In this section, we present a prototype
system design for realizing the intelligent meeting room sce-
nario that we have described in Section 4.1.

In our prototype design (see Figure 5), there are five ma-
jor system components: (i) a context broker, (ii) a personal
agent of the user, (iii) a projector agent, (iv) a Bluetooth-
enabled cell phone that the user carries, and (v) devices
and clothes tagged with RFID tags. The context broker,
the personal agent, and the projector agent will be imple-
mented using the JADE agent development framework [1],
a FIPA compliant Java agent development library. These
agents will communicate with each other using the standard
FIPA-ACL. When these agents communicate for the pur-
pose of sharing context knowledge, the OWL language will
be used as the content language for encoding context knowl-
edge. Because all agents in CoBrA are assumed to share a
common ontology (i.e., CoBrA ontology) for representing
context knowledge, both the projector agent and the per-
sonal agent can interoperate with the context broker even if
their internal implementations are independently designed

10In v0.2 of the ontology, we have only included concepts
related to presentation events. In the future version, we will
extend the ontology to includes other activity events

SCranefield
14

Figure 5: In our prototype system, the context
broker will operate on a MOCHA PC, an all-in-
one design mini book-size PC. It will be integrated
with Bluetooth wireless communication and RFID
readers for detecting people presence. The broker
will communicate with software agents via FIPA-
ACL/OWL.

(i.e., the interoperability of these agents are not completely
pre-defined but rather achieved through ontology sharing).

In addition to the agents, our design also includes the
use of a SonyEricsson T68i cell phone, which is component
(iv). On this Bluetooth-enabled cell phone, users will store
their personal policies (e.g., similar to the policy described
in Section 4.1). As users enter the meeting room, they
will submit their personal policies to the broker through
Bluetooth networks. These policies will be expressed us-
ing the XML/OWL language syntax following the CoBrA
ontology11.

In order to detect the presence of users, we will label
user devices and clothing with RFID tags, similar to the
approach used in the CoolAgent RS [4] system. We are
planning to deploy a number of RFID readers in our pro-
totype environment, for example, placing readers next to
the meeting room’s door and underneath the tables in the
meeting room.

7. RELATED WORK
Our work is closely related to other pervasive and context-

aware computing research such as Intelligent Room, Context
Toolkit, Cooltown, One.World [8] and Centaurus [11]. In
comparison to the previous systems, our design of the Con-
text Broker Architecture takes a knowledge representation
approach to build ontologies of contexts and attempts to use
Semantic Web language (i.e., OWL) as the content language
in agent communication.

An explicit representation of context ontologies distin-
guishes CoBrA from other context-aware systems. While
the previous systems rely on ad hoc representations of con-
texts to exchange information, CoBrA takes a knowledge
representation approach allowing context knowledge to be
reasoned and shared through a well-defined ontology model.

As in other systems (e.g., Context Toolkit and Cooltown),
the CoBrA ontology models concepts for describing user lo-

11In the next version of the CoBrA ontology (v0.3), we will
use concepts from the policy language REI [10]

cations. These concepts are useful for guiding the decision
making of context-aware applications [16, 5, 11]. Neverthe-
less, none of the previous systems have explored the space
and spatial relationship aspects of the location contexts (i.e.,
information that describes the whole physical space that sur-
rounds a particular location and its relationship to other
locations). Modeling space and spatial relationships are im-
portant in CoBrA. We currently have a simple model of
space and spatial relationships (see Section 5.1). In the
DAML+OIL community, recent discussions on the daml-
spatial mailing list have initiated the work to develop a Se-
mantic Web version of the spatial ontology based the SUO
[14] and Cyc [6]. In the future, we plan on using, if possible,
or at least mapping to, if feasible, one of these consensus
ontologies for space.

In addition to using OWL as an ontology language for
modeling contexts, we also attempt to use OWL as the con-
tent language in agent communication. Our approach is
similar to the use of OWL in the TAGA system (Travel
Agent Game in Agentcities) [22]. In TAGA, collections of
agent communication primitives (e.g., action, result, query,
sender, and receiver) are defined using OWL, forming on-
tologies for agent communications12. Using these ontolo-
gies, agents can express their reasons for communicating
with other agents (i.e., making propositions and querying
for information).

Using OWL as the content language in agent communica-
tion will allow the underlying agent implementations to be
better integrated with Semantic Web technologies (e.g., on-
tology inference engines and Semantic Web query languages
[7]). In contrast to the use of other content languages such
FIPA-SL, KIF and XML, the use of OWL as a content lan-
guage helps to simplify the underlying implementations for
composing communication messages (e.g., avoiding multi-
level parsing implementations for translating contents into
internal knowledge representation).

8. CONCLUSION AND FUTURE WORK
Computing is moving towards pervasive, context-aware,

environments in which resource-limited agents will require
external supports to help them to become aware of their con-
texts. The Context Broker Architecture described in this pa-
per will help these agents to acquire, reason, and share con-
textual knowledge. A key component of this infrastructure is
an explicit representation of context ontologies expressed in
the OWL language. Without this ontology, inconsistent and
ambiguous context knowledge cannot be easily detected and
resolved, and acquired context knowledge cannot be shared
with independently developed agents.

We are developing an OWL reasoning engine called F-
OWL13 to support the use case described in Section 4.1.
This reasoning engine is implemented using Flora-2 in XSB
[15], an object-oriented knowledge base language and appli-
cation development platform that translates a unified lan-
guage of F-logic, HiLog, and Transaction Logic into the XSB
deductive engine [21].

We plan to prototype an intelligent context broker and
integrate this broker with the Centaurus systems (a frame-
work for building pervasive computing services developed

12FIPA OWL content language ontology is available at http:
//taga.umbc.edu/taga2/owl/fipaowl.owl

13F-OWL web site: http://umbc.edu/~hchen4/fowl/

SCranefield
15

at UMBC) [11]. The objective is to create a pervasive
context-aware meeting room in the newly constructed In-
formation Technology and Engineering Building on UMBC’s
main campus14.

9. REFERENCES
[1] F. Bellifemine, A. Poggi, and G. Rimassa. Developing

multi agent systems with a fipa-compliant agent
framework. Software - Practice And Experience,
31(2):103–128, 2001.

[2] T. Berners-Lee, J. Hendler, and O. Lassila. The
semantic web. Scientific American, may 2001.

[3] H. Chen. An intelligent broker architecture for
context-aware systems. PhD. dissertation proposal.
http://umbc.edu/~hchen4/, 2003.

[4] H. Chen, S. Tolia, C. Sayers, T. Finin, and A. Joshi.
Creating context-aware software agents. In
Proceedings of the First GSFC/JPL Workshop on
Radical Agent Concepts, 2001.

[5] M. H. Coen. Design principles for intelligent
environments. In AAAI/IAAI, pages 547–554, 1998.

[6] Cyccorp Inc. The Upper Cyc Ontology, 1997.
http://www.cyc.com/cyc-2-1/cover.htm.

[7] R. Fikes, P. Hayes, and I. Horrocks. DAML Query
Language (DQL), 2002.

[8] R. Grimm, T. Anderson, B. Bershad, and
D. Wetherall. A system architecture for pervasive
computing. In Proceedings of the 9th ACM SIGOPS
European Workshop, pages 177–182, 2000.

[9] I. Horrocks, U. Sattler, and S. Tobies. Practical
reasoning for expressive description logics. In
H. Ganzinger, D. McAllester, and A. Voronkov,
editors, Proceedings of the 6th International
Conference on Logic for Programming and Automated
Reasoning (LPAR’99), number 1705 in Lecture Notes
in Artificial Intelligence, pages 161–180.
Springer-Verlag, 1999.

[10] L. Kagal, T. Finin, and A. Joshi. A policy language
for a pervasive computing environment. In IEEE 4th
International Workshop on Policies for Distributed
Systems and Networks, 2003.

[11] L. Kagal, V. Korolev, H. Chen, A. Joshi, and
T. Finin. Centaurus : A framework for intelligent
services in a mobile environment. In Proceedings of the
International Workshop on Smart Appliances and
Wearable Computing (IWSAWC), 2001.

[12] T. Kindberg and J. Barton. A Web-based nomadic
computing system. Computer Networks (Amsterdam,
Netherlands: 1999), 35(4):443–456, 2001.

[13] S. Kumar, P. R. Cohen, and H. J. Levesque. The
adaptive agent architecture: Achieving fault-tolerance
using persistent broker teams. In Proceedings of the
Fourth International Conference on Multi-Agent
Systems, pages 159–166, 2000.

[14] I. Niles and A. Pease. Towards a standard upper
ontology. In Proceedings of the 2nd International
Conference on Formal Ontology in Information
Systems (FOIS-2001), 2001.

14ITE building construction live feed: http://www.cs.umbc.
edu/ITE/ITE.html

[15] K. Sagonas, T. Swift, D. S. Warren, J. Freire, P. Rao,
B. Cui, and E. Johnson. The XSB Programmers’
Manual, 2002.

[16] D. Salber, A. K. Dey, and G. D. Abowd. The context
toolkit: Aiding the development of context-enabled
applications. In CHI, pages 434–441, 1999.

[17] M. K. Smith, C. Welty, and D. McGuinness. Owl web
ontology language guide.
http://www.w3.org/TR/owl-guide/, 2003.

[18] F. van Harmelen, J. Hendler, I. Horrocks, D. L.
McGuinness, P. F. Patel-Schneider, and L. A. Stein.
Owl web ontology language reference.
http://www.w3.org/TR/owl-ref/), 2002.

[19] R. M. Volker Haarslev. Description of the racer system
and its applications. In Proceedubgs International
Workshop on Description Logics (DL-2001), 2001.

[20] R. Volz, S. Decker, and D. Oberle. Bubo -
implementing owl in rule-based systems. 2003.

[21] G. Yang and M. Kifer. Flora-2: User’s Manual.
Department of Computer Science, Stony Brook
University, Stony Brook, 2002.

[22] Y. Zou, T. Finin, L. Ding, H. Chen, and R. Pan.
Taga: Trading agent competition in agentcities. In
IJCAI-2003 Trading Agent Conmpetition Workshop,
2003.

SCranefield
16

Experiences with Ontology Development
for Value-Added Publishing

Maia Hristozova

Department of Computer Science and Software
Engineering,

The University of Melbourne,
Australia

majah@cs.mu.oz.au

Leon Sterling
Department of Computer Science and Software

Engineering,
The University of Melbourne,

Australia

leon@cs.mu.oz.au

ABSTRACT
This paper presents our practical experience of developing an
ontology using the EXPLODE method for Value-Added
Publishing. Value-Added Publishing is a relatively new area of
electronic information distribution that extends beyond the
established simple modes of online publishing. VAP considers
the needs of the user as a primary measure of effectiveness of an
online document by evaluating various metrics such as author
reputation and number of citations. At implementation level the
features of VAP can be achieved by customised information
extraction agents. The domain of VAP raises many challenges.
VAP is being developed by different groups of researchers, the
requirements for the ontology come from many different places,
not necessarily consistent with each other. Since VAP is still not
a strongly established field, its borders and the issues that it
addresses often change. EXPLODE is a method which is
suitable for a dynamic environment. In this paper we give an
overview of EXPLODE and describe the issues that we
encountered and the decisions we had to make regarding the
ontology design, structure and content.

1. Introduction
Since 1997 ontology-based information extraction agents have
advanced significantly, maturing in width and breadth of
capabilities [6, 24, 25]. No longer is the state of the art a lone
information agent treading a one-dimensional path through a
field of data. Growing interest in multi-agent systems is
providing a platform for realizing much more sophisticated
outcomes through the interactions of numbers of information
agents, as the outputs of individual agents can now be combined
and manipulated. The grouping of multiple agents into a single
system implies interaction between the individuals, in effect the
construction of a community of software programs. It is widely
acknowledged [15, 16] that without some shared or common
knowledge, the member agents of such group systems have little
hope of effective communication. The shared knowledge
required could be common experiences, public information or
an agreed set of definitions and meanings of basic
communicable concepts. The term ontology is borrowed from
philosophy to describe the latter, but the usage of ontologies has

become common in the AI community. Particularly in the
Semantic Web [8] and agent communities, the most common
way to enable software agents to communicate is to give each of
them the same specified conceptualization, or ontology, of the
domains they are expected to work in.
A number of attempts have been made to lay guidelines for the
development of ontologies in much the same vein as the
traditional approaches to large software application
development; these are discussed in Section 3. However, as this
paper describes, these methods are generally unsuited to the
development of the kinds of ontology generally required by
multi-agent systems. Within the Intelligent Agent Lab at The
University of Melbourne, we have designed a lighter approach
to ontology development for multi-agent systems called
EXPLODE, which is described briefly in Section 4. We then
detail our experiences from applying EXPLODE to the task of
developing an ontology to be used by agents in a multi-agent
system that implements the recent theory of Value-Added
Publishing.

2. Value-Added Publishing in Theory and
Practice

One of the most important and challenging problems in
computer science is the development of effective technologies
that support access to online information. With the expansion of
the Internet useful tools for finding relevant published data are
needed. In [7] Vannevar Bush proposed what became the area of
information access and information extraction/retrieval. This
area was concerned with modelling, designing and
implementing systems able to provide fast and effective content-
based access to a large amount of information. Later the aims of
these systems were re-defined. The need to estimate the
relevance of documents to the user's information needs was
realised. This is a very difficult and complex task, since it is
flavoured by subjectivity and must cope with vagueness and
uncertainty. Further, the traditional after-publication activities
such as the publication of revisions, corrections, updates and
new editions need to be managed within the automated online
process.

SCranefield
17

To face these challenges Hal Berghel has identified a new area
of e-publishing called Value-Added Publishing [2] which is
addressed in this paper. In similar way to traditional e-
publishing Value-Added Publishing (VAP) acknowledges the
need for distributing static and dynamic publications via the
Internet. Additionally it often includes elements such as
sophisticated multimedia and hypermedia technologies, secure
transactions and communications and billing and charging
systems (though common standards are still lacking). VAP steps
beyond that and tries to recognize the specific extensions,
techniques and methods that increase the usefulness of a
publication and help publishers to meet their specific reader’s
needs.

To assist their readers in finding what they need, publishers
must consider where their publications fit in the overall picture
of online documents. By associating publications with subjects
and topics, the sea of online documents becomes easier to
navigate. Users move from one cluster of documents to another,
finding documents that cover similar topics in one virtual place
and so greatly reducing the time taken to find what they want.
Digital documents can be firmly integrated into a cluster of
related documents - a significant benefit that couldn't be
achieved by the mechanisms available to traditional publishing.
The central issue in such an approach is the capability of
publishing to not only provide the documents, but to represent
and supply their connections to other data sources, as well as
other valuable information. For more information and examples
of VAP please refer to [2, 3].

In the following section some of the techniques to achieve the
goal of adding value to publications will be briefly introduced.

2.1 VAP Techniques
In the context of VAP, where the information carriers and
venues accept from and react to additional factors, the
challenges are likely to be found in areas such as content
enhancement, meta-data, confidence indicators and some others,
all of which are described in the following section. They all
contribute to some extent to the value of a publication and when
combined together can significantly ease the difficult task of
assessing a particular publication or comparing different
publications. For brevity in this paper only few of them will be
described.

2.1.1 Content enhancement
Content enhancement involves "enrichment of the semantic and
syntactic content of a document" [2]. The theory that lies behind
this is that the value of the content is dependent on people's
ability to read it, view it, use it and reference it. From the
information retrieval point of view, data which cannot be found
or used is worthless. Enhancement leads to attempts to extract
more meaning from the documents, i.e. the semantic content
could be summarized, reported or abstracted by intelligent
agents, natural language processing machines, translation
systems and other mechanisms. When a document is cited, an
appropriate reference entry can be automatically generated or
looked up.

2.1.2 Meta-data
In the context of value-added publishing effective meta-data
facilitates for example resource description and discovery, the
management of information resources and their long-term

maintenance. In the context of digital resources, there is a wide
variety of metadata formats. These range from the basic records
used by robot-based Internet search services, through relatively
simple formats like the Dublin Core Metadata Element Set
(www.dublincore.org) and the more detailed Text Encoding
Initiative (www.tei-c.org) header to highly specific formats like
the FGDC Content Standard for Digital Geospatial Metadata,
the Encoded Archival Description (EAD) and the Data
Documentation Initiative (Codebook
http://www.icpsr.umich.edu/DDI) that continually increase in
complexity.

2.1.3 Confidence Indicators
A practical way to provide useful information about a document
or resource is to employ 'confidence indicators'. The purpose of
a confidence indicator is to increase the assurance a reader can
have that a particular document will be useful for them. The
value of a document to a particular person may seem more a
subjective issue than a technical one, but a lot of research has
been done (especially by the commercial and advertising
companies) in this area and it would be remiss not to describe
the essential elements.

Confidence indicators work on the principle that if someone
with similar interests to the user found a particular publication
helpful, then it is likely to be helpful to the user as well.
Generally, the size and nature of the audience of a publication is
an indicator of the publication's quality or appeal.

An efficient way to guarantee to the reader that the document
he/she is reading is a widely recognized one and has a value is
to provide them with comments and notes from reviewers and
leading authorities on the subject. Among all their other aims a
function often performed by special interest groups and
communities is to evaluate and recommend publications to their
members.

The role of intelligent agents in providing confidence indicators
is as an embodiment of the reader’s preferences. Personalised
agents are capable of and well-suited to providing these
services.

Other techniques to achieve VAP include information
customisation, perceived quality of the imprimatur, word
profiles, digital libraries and others, which for brevity are not
described in details in this paper (see [2] for more details).

The domain of VAP raises many challenges. One such arises
from the fact that VAP is being developed by different groups of
researchers, not necessarily consistent with each other. Some of
its characteristics have already been implemented, for example
automatic summary and word profile creation (Figure 1).

Other features of VAP are still struggling with the complexity of
the process. Despite this the majority of the VAP techniques are
ideally suited to implementation using intelligent agents,
typically personalized, mobile or information extraction. As
explained in the introduction of this paper, for a group of agents
to communicate effectively, an ontology is needed. It is an
established practice in agent-systems research that agents need
an explicit shared specification of the concepts that can be
communicated within the system. For example, one agent will
extract the keywords from a particular document and send them
to a second agent that will perform a search on CiteSeer

SCranefield
18

(http://citeseer.nj.nec.com) for other papers that match the same
keywords. In order to communicate both agents need to know
what a 'keyword' is and additionally its relation to 'topic' for
example (since some digital libraries categorize documents by
topics).

Figure 1:Keyword-oriented document extraction in

Cyberbrowser [3]

VAP is a slightly different domain than publishing and it brings
some requirements for ontological commitments that are not
covered in the existing ontologies for publishing, such as
‘approved by’ or ‘rated’, which significantly influence the value
of a particular document.

3. Choosing a methodology for ontology
development
VAP is still not a strongly established field; its borders and the
issues that it addresses often change. Thus the requirements for
the ontology come from many different places, not necessarily
consistent with each other - they are dynamic. This brings a
need for a flexible methodology to develop the ontology, that
allows change in the requirements after the initial elicitation and
ensures that consistency between the requirements is maintained
(through often testing) after each change. Additionally VAP is
being developed by different groups of researchers and covers
many different areas, sometimes not closely related to each
other. The methodology must cater for the need to work on
small fragments of the ontology independently as individual
characteristics of VAP take shape. In these cases in order to
preserve the unity of the domain frequent integration is
important and so the chosen methodology must support this
feature. In such a dynamic multi-agent environment as VAP, the
final form of the ontology must be open for extension and
change, thus the methodology chosen for its development
should facilitate continuous modification of the ontology
structure.
Some of the currently existing methodologies for ontology
development that we have reviewed are described here.

3.1 Enterprise Model Approach
In 1995 Uschold and King formulated a methodology for
building ontologies by recording their experiences from
developing the Enterprise Ontology [23]. The Enterprise
Ontology is a collection of terms and definitions relevant to
business enterprises and includes knowledge about activities and
processes, organizations, strategies, marketing and more [9].
According to this methodology the phases in ontology
development are:
1. Identify purpose and scope - on the basis of the available
knowledge the level of formality is described.
2. Ontology capture and identification of the scope - identify the
key concepts and relationships that the ontology must
characterize; produce unambiguous text definitions and identify
terms to refer to such concepts and relations.
3. Ontology coding - commit to a meta-ontology; choose a
representation language and write the formal ontology code;
integrating existing ontologies.
4. Evaluation
5. Documentation
The techniques applied during stage 2 produce a list of potential
relevant concepts and erase the irrelevant afterwards. The
problem that arises when creating ontologies in this way is
finding the balance between extracting a large number of entries
and then deleting redundant terms on the one hand, and on the
other initially proposing an insufficient number of concepts and
subsequently needing to extend the ontology.

3.2 TOVE (Toronto Virtual Enterprise)
Developed in 1994 by [10] as a result of the experience of
building an enterprise modeling ontology, the TOVE
methodology involves constructing a logical model of the
knowledge that is to be specified in the ontology, although the
model is not built directly. Instead, competency questions are
written in a formal language based on first-order predicate logic,
and this formalization becomes the basis for a specification of
the problem.

3.3 Bernaras et alia
This methodology is described in details in [19], here only the
three key steps are summarized:
1. Specification of the application.
2. Preliminary design, based on relevant top-level ontological
categories.
3. Ontology refinements and structuring.

3.4 KBSI IDEF5
Created by Knowledge Based Systems Inc. in 1994 the main
purpose of this approach is to facilitate the design, development,
modification and maintenance of ontologies [14]. This is one of
the few methodologies that take into account the whole system
and protocols and the main phases are:
1. Organizing and scoping: establishes the purpose, framework
and the viewpoint of the ontology creation.
2. Data collection
3. Data analysis.
4. Initial ontology development

SCranefield
19

5. Ontology refinement and validation.
The validation tests according to this method are performed as a
last stage and an essential part of the cycle is the iterative
refinement and redevelopment of the structure.

3.5 Methontology
The METHONTOLOGY framework, as described in [4], aims
to facilitate the construction of ontologies at the knowledge
level. By considering three separate activities, namely the
ontology development process, a proposed lifecycle and the
methodology itself, the framework identifies which tasks should
be performed when building ontologies, the steps to be taken to
perform each task, and finally the products to be output and the
means by which they are to be evaluated.
While suitable for the systems they have originally been
developed for, we have identified these methodologies as
inappropriate for our domain. As mentioned above VAP
requires certain features of the methodology to be used, such as
dynamism, the ability to change requirements during the
development, frequent integration and validation. On the other
hand, although specific features of VAP may evolve over time,
a number of core characteristics are fundamental for the domain.
Thus the methodology used to develop an ontology for VAP
must facilitate establishing a constant baseline.
In view of the requirements, it is obvious that none of the above-
described methodologies fully addresses these issues. Instead,
we have decided to use the EXPLODE method [11] for the
development of the ontology. In the following section a brief
description of the EXPLODE method is presented.

3.6 EXPLODE
Lately much attention has been given to Agent Oriented
Software Engineering [12]. Even with the emphasis on internal
state and level of intelligence, agents are software modules that
work autonomously in a given environment. They are pieces of
software and applying principles from Software Engineering
significantly contributes to the process of development,
maintenance and management of multi-agent systems (MAS).
While developing ontologies, it is important to keep in mind that
the final product will be a software component, a complex data
structure that is to interact with the other components in the
software system. Ontologies in this context they are software
artifacts and they need to be treated accordingly. They are prone
to the same fragility and maintenance needs that complicate
software engineering, and it is entirely appropriate to apply
software engineering approaches to the development of
ontologies.
With all this in mind, EXPLODE was created as a method for
ontology development by transferring key ideas from the
eXtreme Programming methodology [1]. It is particularly
suitable for dynamic and open environments thanks to its focus
on immediate feedback and evaluation. Additionally the
approach not only allows but favors change in the requirements
at any stage of the development lifecycle. An overview of the
EXPLODE method is presented in the next paragraphs.
Requirements
In the EXPLODE method requirements are determined as
follows: the requirements for ontology development are
extracted from both the competency questions and the system

constraints that match the specific use and application of the
ontology. Competency questions are the requirements that the
users of the ontology specify. They indicate the scope and
content of the ontology [13].
Planning
After the competency questions and the requirements of the
system are specified the process of planning is initiated. The
purpose of planning is to lay out the overall ontology lifecycle
including development, integration and usage. At this stage
important tasks are to identify the scope and problem, to identify
the concepts and relations and to consider functional as well as
quality requirements. The competency questions are prioritized
and decisions are made such as which question to implement at
a particular iteration and what happens if two or more questions
contain the same concepts.

Baseline
The baseline is a simple ontology that focuses on architectural
and usage requirements. At this stage answers to difficult
technical or design problems are considered.

Iterations
Iteration is the process of repeating the same development
activities multiple times, generally at increasing levels of detail
or accuracy. Each iteration consists of three steps – testing the
competency question, iteration planning and implementation.

Development
Development is part of each iteration and consists of actual
implementation of a concept or relationship and refactoring.
Refactoring is an important step in the implementation process
the main purpose of which is to simplify the structure of the
ontology, remove redundancy, eliminate unused functionality
and increase quality.
Iteration Tests
The purpose of this phase is to test if the product satisfies the
requirements, in the intended environment.
Acceptance tests
Continuous integration ensures that the ontology is integrated
smoothly in the system and that there are no discrepancies
between the ontology structure and the agents. The purpose of
the acceptance tests is to minimize these discrepancies.
Maintenance
The maintenance concept in EXPLODE is primary and the
important rules to follow are the same as in eXtreme
Programming, i.e. to release 'early and often'. In effect, after the
first test case the rest of the process can be classified as
maintenance.

4. Developing the Ontology
The EXPLODE method, presented in the previous section, was
deployed in order to develop the ontology for the domain of
VAP. The procedure that was followed and some of the major
decisions made are described in the following section.
Requirements
The first step according to the EXPLODE method is to fetch the
requirements both from the customers in the form of

SCranefield
20

competency questions and from the system. In our particular
case the majority of the questions have been extracted from an
interview with Hal Berghel during his visit at The University of
Melbourne in 2002. A partial list of the competency questions is
given below:
1. How many other papers on a similar topic have cited this
paper in their introduction?
2. What is the ranking of the author of this publication in the
most-published people website?
3. Which of these two papers is more closely related to a
particular topic?
4. What is the overall confidence indicators level of this paper?
5. What is the percentage difference between two published
versions written by the same set of authors?
It is important to mention that during the process of elicitation
of the competency questions, the ontological engineer did not
play the ‘standard’ role of interface between requirements and
development (as in software engineering for example), but acted
rather as facilitator to the customer. In this sense only partial
freedom was given to the user - they provided the initial set of
questions, but after some planning and discussions had occurred
the user had to chose between a number of options provided by
the ontological engineer.
After the competency questions had been collected and
preliminary analysis was performed the requirements of the
system were determined. These were extracted from the VAP
features, some of which were presented earlier in this paper. A
list had to be generated with all the module’s input and output,
corresponding to each agent achieving a particular VAP goal.
The process of system requirements extraction was performed
manually, and in this case the result had to be expressed in a
primitive enough and simple way. In the case of a well
organized MAS the system requirements can be extracted by
using middle agents that serve to collect the agent's capabilities.
Middle agents have been used mainly to interact between end
agents [22] and they suit very well the XP principle to extract
the requirements from some form of system by one module and
further process them by other module. In the case of VAP the
agents are mainly personalized, mobile or information retrieval.
Their capabilities are specified, for example finding the awards
of a paper, rating of the author, creating a paper summary,
words profiles or other. The existing agents can also be
providers or requesters of information (where one agent could
be a provider and a requester at different times). The middle
agent needs to classify the other existing agents in regards of
whether they are information providers or information
requesters. The task becomes even more complex if the agent
receives the parameters from another agent, not from a standard
input.
Planning
For brevity, here we merge the details of the overall ontology
planning and iteration planning. Two types of competency
questions exist: core and non-core. For the domain of VAP the
list of core competency questions was provided earlier. During
the process of planning it was analysed in the perspective of
their contribution to the ontology structure and the potential
candidates for elements of the ontology were underlined. Non-
core questions were provided later during the second and third

iterations of the development and thus dynamism and change of
the environment were introduced and handled. An abstract of
the planning process is presented below:
1. How many other papers on the similar topic have cited this
paper in their introduction? - this question considers that citing a
paper in the introduction brings more value to the cited paper,
than if it is cited in the main body text. To answer this question,
firstly the topics of the collection of papers need to be identified
and then filtered to only those on the similar or the same topic.
2. What is the ranking of the author of this publication in the
most-published people website? - to answer this question the
author of the paper needs to be extracted and then searched on
the website for the most-published people in that particular area.
An extension of the question would be to ask about specific
topic are, instead of searching all the published papers in all the
different fields. In this case the first step is to open the website
and filter the authors by category. This question almost
straightforward lead to the definition of a relation or property
(which one is it was identified later): author has rank.
3. Which of these two papers is more tightly related to a
particular topic? - this can easily identified by extracting the
word frequencies and comparing the occurrence of the main
topic words. This question also leads to identifying a statement
‘paper has topic’.
4. What is the overall confidence indicators level of this paper? -
to answer this question the following information must be
collected: awards from special interest groups and communities;
awards received from professional organisations and bodies. It
is clear that a ‘paper has a confidence indicator’ but since so far
these feature of VAP has not yet been implemented the type of
the confidence indicator is unknown. For the purpose of the
ontology development it will be assigned as text.
5. How much is the percentage difference between two
published versions written by the same set of authors? - this
question identifies the difference between two papers published
by the same authors but in different journals or conferences for
example. The significant contribution of this question is that it
identifies the level of novelty in each paper - i.e. if the same
people have published very similar or identical papers at
different conference, this reduces the contribution of the overall
collection of publications by the same authors. For example two
published papers by the same authors that have higher than 60%
similarities bring less credibility than two papers published by
the same authors in a completely different topics (and thus the
percentage of similarity is lower than 60%). Even though this
agent has been deployed in other fields (for example The
University of Melbourne has a system to compare the
similarities between student assignments) it has not yet been
widely used by publishers. For this reason the description of the
algorithm for comparison will be skipped here. The only
relevant information from this question is that the expression 'set
of authors' implies that the cardinality of 'author' has to be larger
than 1. It also can be assumed that a ‘document has version’ and
this version can be ‘published’. Additional types of versions are
extracted from the description of the capabilities of agent 3.
System requirements

SCranefield
21

Some of the system requirements were mentioned in the
analysis of the competency questions. Here some additional
notes are included.
The use of the concept ‘introduction’ automatically lead to the
question - what other parts can a document have? From the
same question it was identified that each document contains a
section where the citations are, i.e. a ‘reference’ section. During
the first iteration the remaining parts of a document were not
addressed.
The number of citations of an author was identified as an
integer, which brought light how to encode ‘author has number
of citations’- i.e. a property of the concept ‘author’ rather than
binary relationship between two classes.
Additionally to the third question from the information about the
keyword extraction agent's capabilities it was identified that the
keywords are in the form of a list, there are exactly 5, and they
are strings. Also the topic of a document is one single string,
usually between 1 and 5 words.
During the process of iterations it was possible to modify the
existing requirements or discover and additionally include new
ones.
Baseline
The baseline ontology for the domain of VAP is presented in
Figure 2.

o Content (of a publication)

� Abstract (automatic summary up to 200 words)

� Introduction (cites other papers)

� References (cites other papers)
o Publication (has version in a string format) (=document))
(has topic) (has author at least 1 [>=1 to many]) (has
confidence indicator-text)

� Paper
o Person (has name which is a string; can have a title: Prof.,
PhD.)

� Author (writes papers) (has number of citations)

Figure 2: Baseline of the VAP ontology

So far all the existing methodologies suggest that the ontology
engineers create the baseline ontology manually. Our baseline
ontology was also created manually. In a MAS though by
deploying middle agents this process can be performed semi-
automatically - the middle agent provides the concepts and the
attributes, but the engineers define the structure. For example,
based on the description of agent’s capabilities, a middle agent
will suggest concepts such as ‘author’ and ‘paper’, the type of
the output, i.e. ‘list of keywords’ and maybe other information,
depending on what is provided by the information extraction
agent, but the relationship between them - ‘writes’ or ‘has’ - will
be defined manually.

Validation Tests
The validation tests ensure the gradual development of the
ontology in a step-wise refinement fashion. In the case of VAP a
competency question might be: "What is the topic of this
paper?". For this example, the ontology developed so far is
shown in Figure 2. Clearly, at this iteration the ontology already
contains sufficient concepts to fully answer the competency
question. This can be determined by searching the existing
ontology for the words in the competency question. At this stage
the comparison was mainly syntactic, based on pattern
matching, but further it could be extended to semantic mapping
[18, 21] (for example by calculating the distance between the
concepts according to Wordnet). As the question can be
answered using the current ontology the ontological
commitments are valid and the next question is tested. Pattern
matching for adding concepts to ontologies has already been
used by a number of other researchers and we do not consider
this as an obstacle when applying it to our case.
If some words in the competency question are not found in the
current ontology, it is not yet safe to assume that the entire
question must be implemented. The ontology may still contain
some words that are already in the ontology, and to reimplement
them would cause an inconsistency. During the development of
the ontology for VAP, there has not been a single core question
that was found to be already answerable by the existing
ontology. The only concepts that appeared constantly were
'paper', and in two of the questions, 'author' and 'topic'. For
'paper' and 'author' the plurals were identified, i.e. when the next
question asked referred to 'papers', it was identified that 'paper'
already exists; similarly for 'author'.
Development and refactoring
During the development of the ontology there has not been a
need of significant modifications of the already existing
structure. During the implementation of the second question the
concept ‘person’ was included and after that ‘people’.
In practice, there are two different approaches to ontology
modification. The first one is to allow the user to identify
inconsistencies in the model and change them. Modifying
ontologies is covered in [17]. This sounds very easy, however
from our experience we have discovered that removing classes
or changing the structure (relationships) is a complex process
that even intelligent agents lack capabilities to perform
perfectly. In [5] is proposed a semi-automated approach for
modifying ontologies, using management assistants. For the
different modifications of the ontology corresponding assistants
analyze the model to identify the consequences of the planned
actions. The assistant then works in cooperation with the user to
select and perform operations without violating the consistency
of the knowledge base in order to achieve user's goal. An
intelligent agent can predict the consequences of an ontology
structure, thus the evaluation will be performed before the actual
change. In this scenario the development of the knowledge-
based agents is based on ontology reuse and development.
Iteration Tests
EXPLODE covers some of the major types of tests and
following the guidelines was a straightforward process. During
the development of the ontology for VAP, because of the
simplicity of the ontology structure, the iteration tests were

SCranefield
22

mainly performed manually. Additionally the current version of
Protégé (protege.stanford.edu) supports some redundancy tests
while adding new classes.

Second Iteration
It was decided that during the second iteration non-core
questions will be added to the structure. For example, one such
question is: "What is the topic of this thesis?". During the
implementation of this question the developer is alerted to the
fact that the concept 'topic' is already in the ontology, and they
can then add the concept 'thesis' with the relationship 'has topic'.
Additionally, because the ontology already contains a concept
'paper' with a relationship 'has topic', the developer is asked if
the new concept 'thesis' is related to the concept 'paper'. In this
case the relations ‘paper’-‘topic’ and ‘thesis’-‘topic’ gives
grounds for assuming a relation between ‘paper’ and ‘thesis’. If
two things are related to a common third thing, then it is quite
reasonable to investigate the possibility that they have even
more in common that just the third thing. If, as was the case
described here, the two relationships are the same, the potential
for commonality between the two things is even higher. By
simple realizations such as these the produced ontology was as
efficient as possible with very little redundancy.

Third Iteration
During the third iteration it was decided that the ontology will
be extended to include synonyms. For this purpose the already
implemented core and non-core questions were reviewed and
reformulated with different words. During this iteration one of
the problematic issues was the decision of whether to include
‘document’ as the same as ‘paper’ simply with a different name;
to include it as the same as ‘publication’. Subsequently
‘document’ was identified as the same as ‘publication’.

Maintenance
As the domain of VAP is dynamic and researchers continually
reconsider its important aspects, the hierarchical structure of the
ontology is still being modified. The maintenance of the
ontology consists of adding new concepts to the ontology,
modification of existing concepts and deletion of concepts.
A partial list of the concepts (for readability limited to level of
depth 3) of the final version is presented:

o Content (of a publication)
� Abstract (automatic summary up to 200 words)
� Introduction (cites other papers)
� Main body
� References (cites other papers)

o Library
o Publication (has Version in a Number format)
� Paper

• Technical Report
• Short conference paper
• Conference paper
� Thesis
� Master's
� PhD

o Organization (quality of imprimatur in %)
� Professional

• ACM
• IEEE
• ACS
� SIG

o Person (can have a title: Prof., PhD.
 (could be a member of an organisation)
 (has rating in the top 10 000 authors list
 http://citeseer.nj.nec.com/allcited.html).
� Employee
� Columnist
� Editor
� Reporter
� Author

o Confidence Indicator
� Readers (number of readers so far)
� Review (could be by a SIG, an individual or a

Professional Organisation) (reviews have dates)
� Award (could be by a SIG or a Professional Organisation)

(awards have dates)
� Rating

• Cited in Introduction by
• Cited in References by
• Rating of the author

5. Lessons Learnt and Conclusion
The lessons that we learnt during the development of the
ontology were very similar to those described in [20]. We will
list some additional findings:

5.1 Choice of methodology
As noted in Section 3 the methodology to follow when
developing the ontology can have effect on the productivity and
future integration. When choosing especially in multi-agent
systems, features such as dynamism, flexibility, feedback,
component-based development and others are very important
and should influence the choice of the methodology. In our case
VAP provided most of these features: with its constant
development often by different groups of people (dynamic and
component-based development) and need of a user feedback
(confidence indicators and information customization are
particularly personal and subjective measures for a value of a
document).

5.2 Emphasis on planning
Planning might be easily overlooked, but in our case it was the
stage when decisions for the whole development had to be
made. For example, choosing to implement non-core questions
during the second iteration and synonyms during the 3rd
iteration.

5.3 Test different hierarchies
Different ontology engineers have different tendencies when it
comes to choosing between a shallow or deep hierarchy. Since
the structure can affect the speed of parsing and extracting
information it is good for example to exploit different
possibilities. Continuous integration and constant testing allows
this to be performed without significant effort.

5.4 The role of Ontological Engineer
The role of OE could jump from developing the whole ontology
without much user’s input to the other extreme of not
considering specific issues (for example choice of tools,
language, depth of hierarchy and others) but simply following
the user’s requirements. In our case the role of the OE was

SCranefield
23

somewhere in the middle – the competency questions were
reformulated by the user after some suggestions from the OE.

We also strongly felt that the suggestion to not include all the
information [20] was a useful one and particularly supported by
our choice of methodology.

In this paper we have described the process of developing an
ontology for the domain of value-added publishing. We argued
that none of the existing methodologies was applicable for our
case that required dynamism, flexibility and development in
stages. The chosen methodology EXPLODE was briefly
introduced and applied for the development of the ontology. We
have confirmed some of the lessons learnt from previous
researchers when developing a lightweight ontology for a multi-
agent system. We have also given some additional consideration
when developing a purposive ontology.

6. References
[1] Beck, K. extreme programming eXplained: embrace
change. Addison-Wesley, Reading (2000)
[2] Berghel, H. Value-Added Publishing Communications of
the ACM (1999)
[3] Berghel, H., Berleant, D., Foy, T. and McGuire, M.
Cyberbrowsing: Information Customization on the Web. Journal
of the American Society for Information Science, 50 (6). 505-
511, (1999)
[4] Blázquez, M., Fernández, M., García-Pinar, J.M. and
Gómez-Pérez, A., Building Ontologies at the Knowledge Level
using the Ontology Design Environment. In 11th Workshop on
Knowledge Acquisition, Modeling and Management (KAW
'98), (Banff, Canada, 1998).
[5] Boicu, M. and Tecuci, G., Ontologies and the Knowledge
Acquisition Bottleneck. In 17th International Joint Conference
on Artificial Intelligence (IJCAI 01), (Seattle, America, 2001).
[6] Borgo, S., Guarino, N., Masolo, C. and Vetere, G., Using
a Large Linguistic Ontology for Internet-Based Retrieval of
Object-Oriented Components. In Conference on Software
Engineering and Knowledge Engineering, Knowledge Systems
Institute, 528-534, (Madrid, Spain, 1997)
[7] Bush, V. As We May Think. The Atlantic Monthly, 176
(1), (1945)
[8] Ding, Y., Fensel, D. and Stork, H.-G. The Semantic Web:
from Concept to Percept, eBusinessLeadership.net, (2001)
[9] Gomez-Perez, A. Ontological Engineering: A State of the
Art Expert Update - The British Computer Society Specialist
Group on Artificial Intelligence, 33-43 (1999)
[10] Grüninger, M. and Fox, M.S., The Design and Evaluation
of Ontologies for Enterprise Engineering. In Workshop on
Implemented Ontologies, European Workshop on Artificial
Intelligence, (Amsterdam, Netherlands, 1994).
[11] Hristozova, M. and Sterling, L., An eXtreme method for
developing lightweight ontologies. In Workshop on Ontologies
in Agent Systems, 1st International Joint Conference on
Autonomous Agents and Multi-Agent Systems, (Bologna, Italy,
2002).

[12] Tveit, A.: A survey of Agent-Oriented Software
Engineering. NTNU Computer Science Graduate Student
Conference. Norwegian University of Science and Technology,
May (2001).
[13] Kim, H.M., Fox, M.S. and Grüninger, M. An ontology for
quality management — enabling quality problem identification
and tracing. BT Technology, 17 (4). 131-140, (1999)
[14] Knowledge Based Systems Inc. (KBSI). IDEF5 Ontology
Description Capture Overview, (Knowledge Based Systems
Inc., 2000)
[15] Lister, K. and Sterling, L., Agents in a Multi-Cultural
World: Towards Ontological Reconciliation. In 14th Australian
Joint Conference on Artificial Intelligence, (Adelaide, Australia,
2001).
[16] Lister, K. and Sterling, L. Reconciling Ontological
Differences for Intelligent Agents. in Bouquet, P. ed. Meaning
Negotiation, AAAI Press (Menlo Park, America, 2002)
[17] McGuinness, D., Fikes, R., Rice, J. and Wilder, S., An
Environment for Merging and Testing Large Ontologies. In 7th
International Conference on Principles of Knowledge
Representation and Reasoning (KR2000), (Breckenridge,
America, 2000).
[18] McGuinness, D.L., Conceptual Modeling for Distributed
Ontology Environments. In 8th International Conference on
Conceptual Structures Logical, Linguistic and Computational
Issues (ICCS 2000), (Darmstadt, Germany, 2000).
[19] Ostermayer, R., Meis, E., Bernaras, A. and Laresgoiti, I.
Guidelines on Domain Ontology Building, Deliverable DO1c.2,
KACTUS ESPRIT Project 8145 (1996)
[20] Sayers, C. and Letsinger, R., An ontology for publishing
and scheduling events and the lessons learned in developing it.
In Workshop on Ontologies in Agent Systems, 1st International
Joint Conference on Autonomous Agents and Multi-Agent
Systems (AAMAS 2002), (Bologna, Italy, 2002).
[21] Stoffel, K., Taylor, M. and Hendler, J., Efficient
Management of Very Large Ontologies. In American
Association for Artificial Intelligence Conference (AAAI-97),
AAAI/MIT Press, (1997)
[22] Sycara, K., Multi-Agent Infrastructure, Agent Discovery,
Middle Agents for Web Services and Interoperation. In 3rd
European Agent Systems Summer School (ACAI-01), (Prague,
Czech Republic, 2001)
[23] Uschold, M. and King, M., Towards a methodology for
building ontologies. In Workshop on Basic Ontological Issues in
Knowledge Sharing, IJCAI-95, (Montreal, Canada, 1995)
[24] van Heist, G., Schreiber, A.T. and Wielinga, B.J. Using
explicit ontologies in KBS development. International Journal of
Human-Computer Studies, 45 (1997)
[25] Weinstein, P. and Birmingham, W., Service classification
in a proto-organic society of agents. In Workshop on Artificial
Intelligence in Digital Libraries, 15th International Joint
Conference on Artificial Intelligence (IJCAI 97), (Nagoya,
Japan, 1997)

SCranefield
24

An Ontology for Web Service Ratings and Reputations �

E. Michael Maximilien
IBM Corporation and NCSU

maxim@us.ibm.com

Munindar P. Singh
North Carolina State University

mpsingh@csc.ncsu.edu

ABSTRACT
Current Web services standards enable publishing service descrip-
tions and finding services by matching requested and published
descriptions based on syntactic criteria such as method signatures
or service category. Emerging approaches such as DAML-S use
DAML to formalize richer models for expressing capabilities of
services. DAML-S would go beyond WSDL in terms of the rich-
ness of service descriptions. However, neither current Web services
standards nor DAML-S provide a basis for selecting a good service
or for comparing services that implement the same interface.

In our view, service selection is the key problem to enable application-
to-application integration, which is the essential vision behind Web
services. Existing approaches don’t address service selection, be-
cause service selection inherently involves trust and must consider
criteria that are external to any published description of a service,
whether in WSDL or DAML-S. Accordingly, this paper develops
an ontology in which ratings of services (aggregated into reputa-
tions) can be organized and shared so as to facilitate service se-
lection. This model is expressed in DAML and includes domain-
independent as well as domain-specific attributes.

1. MOTIVATION
Web services promise the dynamic creation of loosely coupled

information systems. However, current approaches are logically
centralized and lack key functionality, especially to locate, select,
and bind services meeting certain criteria of quality. We are de-
veloping an architecture wherein software agents serve as proxies
for clients and interact with one or more agencies. The agencies
help gather and disseminate service reputations and endorsements.
However, this and other service architectures leave open some key
semantic questions. Specifically, a proxy agent should be able to
discover and understand new service attributes from their descrip-
tions, especially as they evolve over time. At the same time, an
agency should be able to aggregate the right information about ser-
vice quality and present it suitably formally described that they can
be understood by proxies.

We address these semantic questions by developing a concep-
tual model of a service provider’s reputation for delivering quality
services. The conceptual model has a generic component (e.g., at-
tribute types and common attributes such as price, on-time deliv-
ery, and so on) and can be enhanced with domain-specific com-
ponents (e.g., closeness of itinerary to desired times, which makes
most sense for services in the travel domain). By combining ser-
vice considerations with semantic web representations, this work
fits into the recent activity on semantic Web services.

�This paper is based on [Maximilien and Singh, 2002a].

2. BRIEF OVERVIEW OF ARCHITECTURE
Any conceptual model must rely upon an execution architecture.

For concreteness, we describe our recently introduced proxy-based
architecture [Maximilien and Singh, 2002b]. Our conceptual model
is compatible with other architectures as well, but we lack the space
to describe additional candidates here.

We propose the addition of a Web Service Agent Proxy (WSAP)
to access each service. For our purposes, an agent is a software
component that automates some tasks for its principal. Agents
communicate with other agents, accept requests from their users,
and are typically autonomous. A WSAP is an agent that acts as a
proxy for clients of Web services. That is, a client would have a
proxy agent for each service that it needs. The agents are knowl-
edgeable about the various service standards. All activities of the
client pertaining to the given service—including requests and re-
sponses, and communications with UDDI [UDDI, 2002] registries
and bindings—occur via the proxy agent for that service. In this
manner, when the client needs to bind to a service, it instantiates
a proxy agent, which consults outside registries as well as repu-
tation and endorsement agencies, helps find appropriate providers,
records any feedback from the client, learns from the experience,
potentially shares its knowledge with the external agencies and
other agents, and hopefully helps find better providers the next time
around. Figure 1 provides an overview of how clients typically use
these proxy agents.

3. REPUTATION DATA MODEL
A distributed trust system consists of a set of principals, i.e.,

the parties involved either as service provider or requester. The
principals interact with each other over a set of services. A rating
of a service is a vector of attribute values. The reputation of a
service is a general opinion i.e., it aggregates the ratings of the
given service by other principals. Typically, a reputation would be
built from a history of ratings by various parties. An endorsement
of a service by a principal is modeled as a boolean scalar and a time
limit on the validity of the endorsement.

Although we concentrate primarily on reputation, the underlying
conceptual model is quite similar for endorsements as well. This is
because an endorsement effectively states that the service being en-
dorsed offers high quality with respect to some selected attributes:
price, reliability, and so on.

In our proposed approach, agents maintain and contribute ratings
to others and discover reputations. However, the ratings are based
ultimately on feedback received from their clients. Some service
qualities such as price and delay may be calculated automatically,
whereas others may require human participation. Even the latter
kind, although clearly harder to automate, can be accommodated by
our architecture. For such cases, the application should be designed

SCranefield
25

Client

WSAP Service 1

WSAP Service 2

Config 1

Config 2

Service Providers

Service 1
Implementation B

Service 2
Implementation B

Service 1
Implementation A

Service 2
Implementation A

Clients typically have one

WSAP per Web service

uses

selects

UDDI Registry

Service 1
Interface

Service 2
Interface

Selection is done

consulting agencies

Figure 1: WSAP operation summary

so that it is possible to receive feedback from the human user after
usage of the service. In this case, the agent will exploit this human
feedback to learn the user’s preferences.

4. CONCEPTUAL MODEL
A Web service represents a set of functions addressing a partic-

ular domain. For instance, a travel service might include functions
to return a list of trips for a particular airline on a specified date,
time, origin and destination airport. For each service we can ex-
tract a series of generic attributes and domain-specific attributes
that apply to the service. For instance, for our travel service, a
generic attribute could be the speed at which a search produces its
results and a domain-specific attribute could be the accuracy of the
return results—e.g., whether it includes up-to-the-minute trip in-
formation. From this example and what we discussed before, it is
clear that a conceptual model for the reputation of a service must
include the different categories of attributes that apply to a service.

Figure 2 summarizes our reputation model. The reputation of
the service is a function of the various attributes that matter to a
specific agent. For instance, an agent that cares more about ac-
curacy of the trips returned would take into account this attribute
more than the relative price attribute, which may be of greater con-
cern to another user. In essence, the relative weight given to an
attribute affects the overall reputation of the service and depends
on the user of the service. This is analogous to how the ratings of
human real-world services depend on the end user who is providing
the rating. A car rental service that charges more but is flexible by
giving convenient access at major airport may be of higher value to
a business user than a person looking for a rental car for vacation
purposes. So within a specific domain the reputation of the service
depends on the subjective view of the user of the service on the var-
ious attributes that matters to the current agent that is proxying this
service. Other factors that affect the reputation of a service include
the following.

� The relative weights given to the attributes. Each agent will
have preferences that biases it towards certain attributes and
therefore make these attributes weigh more than others for a
specific domain.

� The attribute aggregation algorithm. A simple weighted ma-
jority can be the normed algorithm but using different algo-
rithms will affect the resulting reputation value.

� The set of endorsers of the service as well as the list of trusted
endorsers for the agent. Again, matching endorsers will bias
the reputation value.

� The history of the service. The reputation of older services
will be affected more by previous usages.

� Any type of damping for the ratings as in [Zacharia and Maes,
2000] will affect the reputation value. Such damping is nec-
essary to allow for a service’s reputation to change easily
based on its recent performance. For example, a service
that acquired a bad reputation but then become better (and
started receiving good ratings) can have its reputation im-
proved since older ratings matter less than the newer ones.

Figure 3 shows a UML representation of our conceptual model,
which describes the different components that make up the reputa-
tion of a service. First, a Service associates with one Reputation,
which can have many Ratings. The reputation value is determined
with a ReputationAlgorithm that aggregates the various Attributes
that the agent determining the reputation chooses to consider. The
reputation is also affected by a History that keeps previous ratings
for the particular service. The rating for a service is determined by
the Principal in question and calculated using the RatingAlgorithm.
Any number of principals can endorse a service which might affect
the calculation of the reputation since, for instance, an endorsement
by a trusted third party can be considered of higher value than cer-
tain attribute values. As mentioned above, each attribute has a value
and range, and associates with one or more Domains. Domains act
as collections of attributes for specific types of services.

4.1 Attributes model
For each domain, the attributes in that domain are important in-

puts to the overall rating and therefore the reputation of a service.
Some attributes are common across domains and some are specific
to domains. Each attribute has the following aspects.

� The value set for that attribute (and its allowed range or enu-
meration). For instance, an attribute such as failure rate or
availability for a service can be expressed as a percentage.
The speed of service function execution could instead be a
simple bounded integer.

SCranefield
26

Reputation

Service
Reference

Attribute
Aggregation

Algorithm
B0

C2

A1

Rating

Damping
Factor

User Preferences

History

Endorsement Principal 1

Endorsement Principal 2

Endorsement Principal 3

Collected as part of

agent configuration

Applicable service
domains and

their attributes

B1Service
Categories

Domains

Figure 2: Generic framework model of a service reputation

+wsdlInterface
+wsdlImpl
+uddiList

Service

1

1

1

*

«
cr

e
a

te
s»

+execute()

«interface»
ReputationAlgorithm

+execute()

«interface»
RatingAlgorithm

1

*

...

1 *

«uses»

1 1

...

+timeValid

Endorsement

-privateKey
-publicKey

Principal

+value
+range
+name

Attribute

Reputation

+value

Rating

OtherDomain TravelDomain RetailDomain

Domain

+rate

MonotonicAttr

+function

DecayingAttr

+beginTime

History

1

1 1

*

CrossDomain

Conceptual
components
for attributes
and domains

+value

Weight

Figure 3: UML conceptual model for service reputation

SCranefield
27

� The domains that this attribute belongs to. For instance, is
this a cross-domain attribute or an attribute specific for a do-
main? And within each domain, some attributes will be of
greater importance than others—this can depend on a stan-
dard definition of attributes for a domain.

� The weight of the given attribute relative to its domain and
the user preferences. This would determine the impact of this
attribute on the final decision regarding a provider.

� The characteristic of the function from attribute values to rat-
ings. For instance, some attributes such as price are mono-
tonic, at least in typical business scenarios. That is, the more
the price decreases the better. Generally all agents will con-
sider price in the reputation calculation and have a preference
for lower prices. Of course, if the price were to decrease in
conjunction with reductions in the values for other attributes,
the overall reputation might not improve. For instance, for
the trip service we considered, if the price attributes of trips
were to decrease while the promptness (on arrival and de-
parture times) attribute were to become worse, then this de-
crease in price might not help the overall reputation of the
trip service.

The characteristics of attributes can be quite rich and need to
be further categorized. Initially, we consider monotonically
increasing and decreasing, S-shaped characteristics (where
there is a substantial benefit to ratings when the given at-
tribute improves, but only if it is above a tolerance threshold
and not above a saturation threshold).

� The temporal characteristic of the attribute value. A possi-
ble temporal characteristic for attributes is decaying values
where the decay function can vary from exponential to a step
function. For instance, an attribute such as accuracy in the
travel domain might be acceptable to allow a range of min-
utes up to a certain point. That is, the trip that is scheduled
for 3:00 PM does not cause major harm if the actual depar-
ture time is 3:20 PM. However, a departure of 4:00 PM might
become unacceptable for a user who depends on an on-time
arrival with a layover of 30 minutes to catch a connecting
flight. Other attributes might have values that decay more
progressively rather than in a step-wise fashion.

4.2 Generic and domain-specific attributes
In general each domain that a service belongs to will have its own

set of attributes that apply to all services of that domain. However,
certain attributes will be cross-domain attributes.

As a specific example, a service such as car rental service will
involve attributes belonging to multiple domains, such as the travel
and retail domains. Attributes such as price belong to both do-
mains, but an attribute such as flexibility of reservation changes
has a specific meaning in the travel domain—clearly, allowing flex-
ible changes to a travel reservation is a particular characteristic of a
travel service that might allow important service differentiation for
a particular client and the client’s WSAP.

Determining the attributes that apply to a particular domain is
nontrivial, but needs be decided by the community of users and
providers as they settle upon ways to distinguish and evaluate dif-
ferent offerings. This typically occurs when markets form, where
different parties position their offerings according to what they be-
lieve are their key qualities: speed, price, taste, and so on. A tech-
nical challenge here is to distribute the attributes among various
domains so that an agency does not necessarily have to capture
all possible attributes and a WSAP can search for services without
consulting an excessive number of agencies.

4.3 Adding and disseminating attributes
Another important aspect that the proposed conceptual model

allows is the creation and dissemination of new attributes for spe-
cific domains. A consequence of the attributes having a common
model and the specific attributes being subclasses of the abstract
attribute model is that new attributes with unknown characteristics
can be added to the system. New attributes are disseminated via
a domain definition that could contain references to common at-
tributes as well as to domain-specific attributes. Our conceptual
model can be readily mapped into a common schema in a stan-
dard notational framework such as the DARPA Agent Markup Lan-
guage (DAML) [Horrocks, 2002]. The existence of such a schema
would enable the description and widespread dissemination of at-
tributes. Notice that the interesting component would be the con-
ceptual model itself, not the notation, although agreeing on the no-
tation is also essential.

4.4 Example
As a comprehensive example showing how the agent proxying a

service can use the conceptual model we describe, imagine a travel
reservation Web application. This application is used by agents to
set up business and personal travel arrangements. Part of this appli-
cation is a facility to search, select, and reserve a car rental that will
be included as part of the overall travel arrangement. Since there
exist many car rental companies, each advertising its services on
the Web, it is easy to imagine that a common car rental Web service
interface could be created. Each car rental company would provide
an implementation of the service thus allowing its business to col-
laborate with others and thus integrate into coarse-grained services,
such as a travel planning service. How is the WSAP proxying the
car rental service able to pick the best service for a particular client?

Using our conceptual model, the WSAP could pick a suitable
service implementation by looking at the reputation of the vari-
ous implementations. The WSAP is configured with (1) the at-
tributes that apply to the domain that the service belongs to and
(2) the relative preferences that the WSAP’s principal has for var-
ious attributes. According to our model, reputation is a function
of the historical ratings provided by previous users filtered to take
into account the attributes that matter most to the current WSAP’s
principal. So, for instance, if the current user weighs price as an
important cross-domain attribute then services giving lower prices
might be selected over those giving higher prices. Of course, the
reputation for the service will depend on several attributes. For in-
stance, some attributes such as comfort and reliability of the cars
rented might matter more to a traveler who intends to use the vehi-
cle for long subtrips than a business person on a tight budget. As
another example, though the car rental service domain attributes
overlap with a car selling service, certain attributes such as color
choice will clearly have more significance for a buyer as opposed
to a renter. Our model takes these subtleties into account, because
of how the WSAPs are configured. Of course, the choice of which
domain a service belongs to is an important precondition that must
be satisfied prior to agent configuration. However, we are assum-
ing that this is done as part of classifying the services prior to them
being introduced for wide availability.

Our model is generic enough to allow the introduction of new
attributes. For instance, if the domain definition for car rental was
updated to include a new attribute such as safety, then any new
agent that was configured with this attribute could take that attribute
into account for its ratings calculations. The attribute’s values could
possibly be captured as part of a user survey or automatically by
collecting information on accidents from the car types that the car
rental company rented for certain periods and the relative safety

SCranefield
28

Attribute

<<DAMLproperty>>
attrEnum

daml:domain

daml:range

Domain
<<DAMLproperty>>

attrDomain

daml:domain
daml:range

DiscreteAttribute ValuedAttributeDomainAttribute

MonotonicAttribute

xsd:nonNegativeInteger

<<DAMLdatatype>>
attrValue

+ minCardinality = 1

Restriction

daml:onProperty

daml:subClassOf

+ minCardinality = 1

Restriction

daml:onProperty

daml:subClassOf
Generic Travel

onProperty #domainAttr
hasValue #Generic

PriceAttr

onProperty #domainAttr
hasValue #Generic

TravelPriceAttr

cheap

expensive

affordable

TravelPriceAttrEnum

R
e

s
tr

ic
ti

o
n

daml:oneOf

daml:subClassOf

Travel domain Price
attribute

Generic domain
Price attribute

Figure 4: Part of DAML ontology for attributes showing two domain definition of price in UML [Baclawski et al., 2001]

SCranefield
29

outcome of the rentals.
A lot of engineering work goes into making a large application.

The above example is no exception. The contribution of our ap-
proach is in streamlining the attributes so that their treatment is
standardized up to a point and, where it is not standardized, placed
explicitly under the control of individual WSAPs and their prin-
cipals. New attributes can added on the fly. More importantly,
the different agencies can upgrade to the new attributes or add an
existing attribute that they had previously ignored. Likewise, the
conceptual model enables the WSAPs to share information directly
with each other, which extends their power further.

5. DISCUSSION
Our architecture opens up some interesting challenges, of which

the following are germane to the topic of this paper.

Conceptual model of service attributes
Can we define a generic conceptual model for attributes reusable
across domains?

Our agents are configured to capture the wishes of the applica-
tion user. The agent uses this configuration information to maxi-
mize the utility of the user. However, in order for the agent to make
intelligent decisions it will need more than just the reputation and
endorsement agencies. It will need knowledge of attributes the user
cares about, such as the following:

� The threshold of the values for attributes that the user is will-
ing to accept.

� The risk tolerance of the user. For instance, the WSAP could
find a reputable service matching the user’s preferences but
because it is relatively new, selecting that service could be
regarded as higher risk than a known more mature service.

Answering the above question will enable our WSAP agents to
efficiently and thoroughly capture the preferences of their WSAP
users. Further, the service selection will often need to be fast be-
cause the user may be waiting for a service to be found. There-
fore, the agent must be able to make quick decisions, comparing
the user’s preferences with information provided by the agencies.

Semantics of service attributes
How can we add semantics to service attributes, thereby allowing
a WSAP to dynamically discover new attributes without having to
be reconfigured or reprogrammed?

How can the agent acquire the knowledge of new attributes that
were not specified by its client? That is, how can the agent relate the
attributes specified by its client with attributes from other agents?
The W3C’s Semantic Web initiative [W3C, 2000] is a promising
direction in capturing the semantics of service attributes.

Effects of attribute type on reputation
How should reputation be related to history of previous interac-
tions? Should the effect of an interaction decay over time?

The notion of reputation is tightly bound to history and time.
The reputations of human services tend to vary with time and rec-
ollection. In the digital world, history and memory can be col-
lected easily. Because of this, the notion of reputation for humans
and for agents have important differences. Some reputation sys-
tems [Zacharia and Maes, 2000] build in this decay effect. One
approach to include time in our proposed architecture would be to,
for instance, associate timestamps with attribute values, thereby al-
lowing the reputation rating to weight attributes depending on their

age. Further, since service quality will tend to change over time,
decaying the reputation helps by reducing the effect of interactions
over time, effectively increasing the currency of the evaluations.

A similar situation arises with endorsements. The goal is that it
should be as easy as how people now look into the local newspaper
and select a movie by looking at the number of stars it was awarded.
Of course, a movie-goer may be biased towards a movie because
of his knowledge of its actors, director, or producers—these in-
tangibles will have conscious and subconscious implications to the
movie-goer’s decision. This is not completely the case for the soft-
ware agents. However, endorsements do affect the agent’s final de-
cision. An endorsed service can similarly bias an agent towards a
particular service regardless of its rating. How should agents weigh
reputation ratings with respect to endorsements? What we need is
a scheme by which attributes and endorsements can be systemati-
cally combined.

References
Kenneth Baclawski, Mieczyslaw K. Kokar, Paul A. Kogut, Lewis

Hart, Jeffrey Smith, William S. Holmes, Jerzy Letkowski, and
Michael L. Aronson. Extending UML to support ontology en-
gineering for the semantic web. In Martin Gogolla and Cris
Kobryn, editors, UML 2001 - The Unified Modeling Language.
Modeling Languages, Concepts, and Tools. 4th International
Conference, Toronto, Canada, October 2001, Proceedings, vol-
ume 2185 of LNCS, pages 342–360. Springer, 2001.

Ian Horrocks. DAML+OIL: a description logic for the Semantic
Web. Bulletin of the Technical Committee on Data Engineering,
25:4–9, 2002.

E. Michael Maximilien and Munindar P. Singh. Conceptual model
of Web service reputation. ACM SIGMOD Record, 31(4), De-
cember 2002a.

E. Michael Maximilien and Munindar P. Singh. Reputation and
endorsement for Web services. ACM SIGEcom Exchanges, 3(1):
24–31, 2002b.

UDDI. Universal Description Discovery and Integration, 2002.
http://www.uddi.org.

W3C. Semantic Web, 2000. http://www.w3.org/2001/sw/.

Giorgos Zacharia and Pattie Maes. Trust management through rep-
utation mechanisms. Applied Artificial Intelligence, 14:881–907,
2000.

SCranefield
30

Towards HARMONIA: automatic generation of
e-organisations from institution specifications

Daniel Jiménez Pastor
Department of Computer Science

University of Bath
BATH BA2 7AY, United Kingdom

dani@pitaweb.com

Julian Padget
Department of Computer Science

University of Bath
BATH BA2 7AY, United Kingdom

jap@cs.bath.ac.uk

ABSTRACT
There is a large gap between the emerging theory of institutions, or
to be more accurate the norms that characterize them, how agents
might reason about a symbolic representation of those norms and
software tools to realize agent-trading platforms from high level
specifications. We present an initial representation for institutions
written in XML and their ontologies written in DAML+OIL and
show how it has been used to specify aspects of simple auction
house (the FishMarket [12]) from which we are able to generate
automatically the components of the performative structure and the
agent skeletons for an implementation on top of the JADE plat-
form.

Keywords
Agents, ontology, multi-agent systems, institutions, norms, agent-
trading platforms, institution definition language, performative struc-
ture, dialogical framework.

1. INTRODUCTION
The work presented here is a continuation of the ideas first reported
in [22], in which a view was put forward of how implementations
of agent organizations1 could be generated from high-level descrip-
tions of the structure and their norms. The content of [22] was pre-
liminary in nature, in that the institution specification language was
used as a guide for the manual development of the skeletal JADE
[2] components, starting from the a description of the FishMarket
[19, 12, 18] written in the Islander language [5, 4]. The aim of that
paper was to extract parameterizable skeletal software components
which might then be re-used in the construction of new institutions,
and thus making a first step towards a tool for the rapid prototyp-
ing of institutions from their specifications. Since the main goal
of the software tools featured here is the automatic generation of
any kind of institution, we begin by completing the parameteriz-
able components extracted from the FishMarket implementation,
and then move on to describe progress towards creating a generic
tool for the generation of e-organizations.

There are few tools in this area at the moment. One is the Islander
agent institution graphical specification tool [7], which addresses
1Although it has become conventional to write of agent institutions,
both for kinds of institutions and their implementations, we feel it
is important to make the distinction between institutions as classes
and organizations as instances (see [5] for a diagrammatic presen-
tation of this argument), which is consistent with the defining work
on the subject from an economic perspective by Douglass North
[13]

aspects of organizational structure and dynamics. At a more techni-
cal level, there is the Bean Generator [17] plug-in for Protégé [16],
which is used to obtain the Java files for the JADE platform [8] from
an ontology specification. A more comprehensive solution, similar
in scope to ours is the frame-based ontology language developed
by Poggi et al [15], where a distinct ontology language inspired
by KIF has been defined for use in the context of JADE and from
which the implementation of agent systems in JADE has been gen-
erated. This is the closest in vision to what is described here. The
most notable difference is their use of a bespoke, and somewhat
simpler, ontology language in contrast to our use of DAML+OIL.
The gap we are attempting to fill is the provision of an integrated
tool for the automatic generation of an agent organization with its
associated ontologies from its specification while aiming to utilize
and to comply with current and emerging Semantic Web Group
standards [24].

There are three aspects to the tools we are developing: (i) the over-
all HARMONIA framework which unifies notions of norm, rule,
procedure and policy [5, 10, 21] and within this (ii) the specifi-
cation of ontologies for concepts related to the organization, for
example auction house, and for concepts related to the domain or
domains about which agents may discourse, for example fish (!)
(iii) the generation of agents to populate the organization and act
as proxies for external agents wishing to interact with the organi-
zation. Thus we are motivated to attempt to create a complete tool
for generating both the ontologies and the agents of the organiza-
tion, so that the generated agents could be designed to use only the
desired ontology, among other advantages. In the context of HAR-
MONIA we foresee the chance to generate e-organizations for dif-
ferent agent platforms, but at this stage we are using our own IDL
(Institution Definition Language) rather than Islander, JADE as the
target platform and DAML+OIL [3] as the ontology language.

For the medium term, we are considering how we may target a
range of agent platforms 2 and therefore a richer IDL will be re-
quired to accommodate these demands. Also, we are preparing for
migration to OWL [23], shortly expected to be approved by W3C.
In the longer term, a GUI tool for the graphical creation of the in-
stitution specification is planned as part of the HARMONIA frame-
work (currently under development).
2Despite the fact we have chosen JADE as agent platform, due to
the large user community, the scope for wide deployment of gener-
ated organizations and compliance with FIPA standards [6], there
is an large list of agent platforms as seen at [1], and among them
we highlight the following: FIPA-OS, AAP and Zeus.

SCranefield
31

Figure 1: Elements of the HARMONIA architecture for the
JADE platform

2. SYSTEM ARCHITECTURE
We begin with a description of the overall architecture of the tool-
set we are constructing – see figure 1 for an overview of the com-
ponents. The organizational structure is firmly based on the work
previously reported in Noriega’s thesis [12] and subsequently ex-
panded by Rodriguez Aguilar [18]. The final HARMONIA platform
will contain much more than is shown here, since it will encompass
norm specification and verification tools covering the range from
norm through rule to protocol and appropriate theorem provers and
model checkers as required.

2.1 Generic Institution Design
The idea norms that characterize institutions and the view of or-
ganisations as instantiations of institutions satisfying those norms
are both increasingly accepted as important aspects in the engineer-
ing of agent-based systems. The particular approach we take began
with the exposition by Noriega [12], and later Rodriguez Aguilar
[18], of a dialogical specification of agent interaction via sets of il-
locutions (speech acts), the identification of interaction sequences
(protocols) as so-called scenes and the linking of scenes to make a
graph called the performative structure. Subsequently these ideas
have been captured in the ISLANDER institution description lan-
guage [5] and a graphical toolkit [4]. At the same time, the original
ideas first put forward in the ISLANDER language have been re-
fined to focus more on norms as guides and constraints on agent
behaviour [14, 10] in contrast to the somewhat rigid conversation
structures conceived originally. What we are presenting here are
some of the preliminary thoughts on a second generation institu-
tion description language in which we are moving from the ad-hoc
syntax of ISLANDER to a widely recognized representation and

from the monolithic structure of ISLANDER specifications to one
of composable components in conjunction with the development of
the translation schemes from specification to implementation that
were first sketched by Vickers [22].

The construction of an electronic organization begins with a de-
scription written according to the XML schema we have developed
for the purpose. The corresponding ontology to ground the ele-
ments in this description is currently under construction.

Each institution has one or more dialogical frameworks, which de-
termine the illocutions that can be exchanged between the agents in
each scene. In order to do so, an ontology written in DAML+OIL
and a list of the possible roles that agents may play are defined for
each dialogic framework, which fixes what are the possible values
for the concepts in a given domain. This DAML+OIL ontology will
be parsed using the Jena toolkit [11].

Each agent role(see later), can have one or more behaviours, each
one able to contain multiple sub-behaviours, corresponding to the
functionality of JADE platform agents.

2.2 System Overview and Dependencies
Before sketching the key phases in this part of the HARMONIA ar-
chitecture, we will briefly mention two important third party APIs
we use in our tool: (i) Jena [11] is used to read the DAML+OIL
ontology and hence process the information to create all the files
related to the ontologies, used in the JADE environment. (ii) Jalopy
[9] is a source code formatter for Java and that is responsible for the
layout of all the code presented later in this paper.

2.3 Inputs
There are three inputs to this basic instantiation of the HARMONIA
framework:

• The name of the directory where the generated organization
files will be written.

• The institution description – written in the XML-based IDL.
• One or more ontology files.

The institution description is derived from the ISLANDER lan-
guage first described in [5], which develops the features described
in [18] and which has forms part of the institution editor reported in
[4]. Various shortcomings with the ISLANDER approach and rep-
resentation have lead us to develop a second generation IDL based
on DAML+OIL – with the intention to migrate to OWL [23] in the
very near future. In addition, for the purpose of this first exercise,
we have incorporated JADE platform specific features, see the ex-
ample in Figure 2, because in the short term we are focusing on
delivery on one platform. For the longer term, we are considering
how the XML schema may be parameterized to support a range of
platforms.

As seen in Figure 2, we follow the design set out in Section 2.1.
We use this file to create the data structure of the institution for
the JADE platform. Each dialogic framework, with the tag of the
same name, has one ontology, and as we see in the code, the tag
Ontology indicates where to find the ontology, the type of which
is defined in the specificationLanguage attribute (this ex-
ample uses a DAML+OIL ontology), so the system knows how to
parse it.

SCranefield
32

<?xml version="1.0" encoding="UTF-8" ?>
<Institution id="FM2003">

<DialogicFramework id="FishDialFrw"
contentLanguage="PROLOG">
<Ontology id="FishONTO"

specificationLanguage="DAML"
file="file:///C:/oasPaper/fish.daml" />

<Role id="Boss"
type="InternalRole">

<Behaviour id="Open"
type ="SimpleBehaviour"/>

<Behaviour id="Discuss"
type ="CompositeBehaviour">

<Behaviour id="InitialResolution"
type ="OneShotBehaviour"/>

<Behaviour id="FinalResolution"
type ="OneShotBehaviour"/>

</Behaviour>
</Role>
<Role id="Admitter"

type="InternalRole">
<Behaviour id="Admit"

type ="CyclicBehaviour"/>
</Role>

</DialogicFramework>
</Institution>

Figure 2: XML based IDL file for the JADE platform

A word of clarification is in order about the term “role”. Super-
ficially, this can be thought of as a synonym for type, but what it
actually captures is both deeper and more flexible. The principle
of role is borrowed from a line of research in security – both in
software and in physical organizations – called Role Based Access
Control (RBAC) [20] which associates ideas of responsibility, con-
straint and obligation with a given role and captures relationships
between roles, such as whether one subsumes another and whether
one role is incompatible with another, such as because it is either
impossible to fulfil the requirements of each role simultaneously
or because their combination may create a security hole. From the
norm perspective, where we recall that a norm is an expression of
a guide or constraint on behaviour, it becomes clear that a role is
a coherent subset of the norms of an institution that taken together
prescribe the limits of action when playing a particular role. Thus
it is that in describing an institution, a key part of the modelling
process also identifies roles that agents may play within that insti-
tution (e.g. buyer, seller, admitter, accountant, auctioneer, etc., see
Esteva et al [5] for more detail and Vazquez [10] for a comprehen-
sive treatment).

Hence we use the word “role” to refer to the constraints on an
agent’s behaviour. From past practice, we have found it conve-
nient to classify roles as one of two kinds: InternalRole if is
a staff agent, responsible for aspects of running the institution, like
the Boss or the Admitter agent in an auction or ExternalRole
for a client-agent written by a third party that visits the institution,
like the Buyer or Seller agents.

Finally, in the Behaviour tag, we have two attributes: the id
and the type, which identifies the Behaviour class of the JADE
platform from which we are inheriting.

As it stands, the IDL file contains enough information to describe
the gross behaviour of the agent, but not how it communicates, for
which we need the illocutions to be used in the conversation pro-
tocols of the scenes of the performative structure. These aspects

are currently under development and will be reported on separately
later.

To illustrate how the framework we have operates, instead of pro-
viding a long DAML+OIL ontology file, we will show the com-
plete UML diagram representation of the DAML+OIL file in the
Figure 3. Then, to show each aspect of the translation in detail,
some DAML+OIL code will be posted.

Finally, we provide solutions for the problems or constraints found
while dealing with the translation of a DAML+OIL ontology into a
Jade ontology, due to the particularities of the Jade platform and
model incompatibilities between DAML+OIL and Java, such as
multiple inheritance, multiple ranges, anonymous classes and some
aspects that will be discussed in the following subsections.

2.3.1 Multiple inheritance
MI is a key aspect of DAML+OIL, but is not a feature of Java,
because a class can only inherit from one class and from multi-
ple interfaces, and therefore only the methods inherited from the
superclass and not those from the interfaces may have an imple-
mentation.

But as an ontology is basically data, not operations, we just need
Java classes with their attributes and only accessor methods to rep-
resent it in the Jade platform. So, we can translate all the classes
of the DAML+OIL ontology into interfaces to obtain the multiple
inheritance capability, and then, for each interface, generate a wrap-
per class with the accessor methods to get and set their attributes.
The only issue we have to control is to rename attributes from dif-
ferent parents if they have the same name. This solution will be
fully working before summer 2003, but at present, if a class in the
input has more than one parent, we will only consider the first and
ignore the rest (with a suitable warning). Example:

<daml:Class rdf:ID="BabySquid">
<rdfs:subClassOf rdf:resource="#Squid"/>
<rdfs:subClassOf rdf:resource="#SmallFish"/>

</daml:Class>

Class BabySquid as specified above has two parents: Squid and
SmallFish. In the translation, only Squid class will appear as the
parent.

Some other solutions based on design patterns, as the Bridge, State
and Strategy design pattern have been studied, but they provide
solutions basically for different method implementations that work
in a plain environment, but not embedded in a framework like Jade,
because Jade can only know the accessor methods of the classes,
but no others.

Another solution that requires the collaboration of the ontology de-
signer would be using a delegation – “black-box” inheritance – ap-
proach, where BabySquid would have two attributes, one of class
Squid and one of class SmallFish, but we discarded it because we
want automatic generated solutions. We note that the ontology lan-
guage of Poggi et al [15] provides single inheritance making the job
of translation to Java/JADE somewhat less difficult than the task we
have here in working from DAML+OIL.

2.3.2 Multiple ranges
In Java, each variable can be only of one type. This contrasts
with the permitted multi-range properties in DAML+OIL. A way

SCranefield
33

Figure 3: UML class diagram corresponding to the DAML+OIL ontology

to work around this in Java is to have many properties each with
a different type instead of one property with many types. As with
multiple inheritance, if this constraint is not observed, we only con-
sider the first type given for that property and ignore the rest. Con-
sider the following object property declaration:

<daml:ObjectProperty rdf:ID="Weight">
<daml:domain rdf:resource="#FishSize"/>
<daml:range rdf:resource="#Grams"/>
<daml:range rdf:resource="#Pounds"/>
<rdf:type rdf:resource =

"http://www.w3.org/2001/10/daml+oil#UniqueProperty"/>
</daml:ObjectProperty>

Here, only Grams will be recognized as the possible range class
(and therefore type) for the Weight object property. The conflict can
be resolved by creating two different object properties for the Fish-
Size class, named WeightGrams and WeightPounds respectively, as
follows:

<daml:ObjectProperty rdf:ID="WeightGrams">
<daml:domain rdf:resource="#FishSize"/>
<daml:range rdf:resource="#Grams"/>
<rdf:type rdf:resource =

"http://www.w3.org/2001/10/daml+oil#UniqueProperty"/>
</daml:ObjectProperty>

<daml:ObjectProperty rdf:ID="WeightPounds">
<daml:domain rdf:resource="#FishSize"/>
<daml:range rdf:resource="#Pounds"/>
<rdf:type rdf:resource =

"http://www.w3.org/2001/10/daml+oil#UniqueProperty"/>
</daml:ObjectProperty>

Although the solution of splitting automatically a multiple range
can be done easily, in the OWL specifications they explain that a
multiple range has to be treated as the intersection of ranges, and
as we explain later (see section 2.3.5) with respect to class union,
intersection and negation, we do not generate any solutions for
logic/set operators.

2.3.3 Identifier syntax
This is a perennial problem in any language translation task when
the source language has a less restrictive identifier syntax than the
target language. Thus, the input:

<daml:Class rdf:ID="Mediterranean-Mackerel">
<rdfs:subClassOf rdf:resource="#Mackerel"/>

</daml:Class>

contains a variable which is not a valid as a Java variable because
it contains a hyphen. The variable will be renamed to Mediter-
ranean Mackerel and a warning will be echoed with the new
variable name. Also, variables cannot be reserved Java keywords,
cannot have a hyphen as in the example, or start with a number.
For all this cases, HARMONIA will rename the variable and print a
warning.

SCranefield
34

Agent Boss imports the ontologies the agent uses

package FM2003;
import FM2003.Behaviours.*;
import FM2003.Ontologies.FishONTO.*;

Standard agent header, followed by initialization of properties and
getting an instance of the ontology the agent uses.

public class Boss extends Agent {
private ServiceDescription sd;
private Codec codec;
private Ontology ontology;
private ContentManager manager;
private DFAgentDescription dfd;
private MessageTemplate mt;

public Boss() {
sd = new ServiceDescription();
codec = new SLCodec();
manager = (ContentManager) getContentManager();
dfd = new DFAgentDescription();
ontology = FishONTO.getInstance();

}

Here we see the setup method, where the agent registers with the
Service Descriptor as an internal agent and with the Directory Fa-
cilitator with FishONTO as ontology and FM2003 as ownership.
After registering in the DF, creates and adds the behaviours Open
and Discuss.

protected void setup() {
sd.setName(getName());
sd.setType("InternalRole");
sd.setOwnership("FM2003");
dfd.setName(getAID());
dfd.addServices(sd);
dfd.addOntologies("FishONTO");
try {

DFService.register(this, dfd);
} catch (FIPAException e) {

System.err.println(getLocalName() +
" registration with the DF failed because - "

+ e.getMessage());
doDelete();

}
manager.registerLanguage(codec, "PROLOG");
manager.registerOntology(ontology, "FishONTO");
Open behaviour_0 = new Open(this);
addBehaviour(behaviour_0);
Discuss behaviour_1 = new Discuss(this);
addBehaviour(behaviour_1);

}
...
}

Figure 4: Boss agent imports, initialization and setup

2.3.4 Root classes
As we want to generate automatically an ontology for the JADE
platform, each class must inherit from one of the following classes:
AID, AgentAction, Concept or Predicate, which must also be de-
fined in the ontology as we see below. We note that we have only
as yet worked with a few simple ontologies and this will have far
from demonstrated the full range of inputs – and problems – that
we will need to be able to handle.

<daml:Class rdf:ID="AgentAction">
</daml:Class>

<daml:Class rdf:ID="AID">
</daml:Class>

<daml:Class rdf:ID="Concept">

package FM2003.Behaviours;
import FM2003.*;
import FM2003.Ontologies.FishONTO.*;

As in the agent imports, we import their own ontology. And we
create the behaviour inside the package Behaviours.

public class Discuss extends CompositeBehaviour {
private InitialResolution subBehaviour_0;
private FinalResolution subBehaviour_1;

public Discuss(Agent a) {
super(a);

}

As is work for the programmer which order a behaviour uses their
subBehaviours, we only add as many properties as subBehaviours
the behaviour has, in this case one for InitialResolution and other
for FinalResolution.

public boolean checkTermination(
boolean currentDone,
int currentResult) {

//This method must be implemented
return false;

}
public Collection getChildren() {

//This method must be implemented
return null;

}
public Behaviour getCurrent() {

//This method must be implemented
return null;

}
public void scheduleFirst() {

//This method must be implemented
}
public void scheduleNext(

boolean currentDone,
int currentResult) {

//This method must be implemented
}

}

Figure 5: Behaviour Discuss methods

</daml:Class>

<daml:Class rdf:ID="Predicate">
</daml:Class>

<daml:Class rdf:ID="Fish">
<rdfs:subClassOf rdf:resource="#Concept"/>

</daml:Class>

<daml:Class rdf:ID="Mackerel">
<rdfs:subClassOf rdf:resource="#Fish"/>

</daml:Class>

From the perspective of Java generation, AID, AgentAction, Con-
cept and Predicate are interfaces. So, class Fish will extend the
Concept interface, and class Mackerel will inherit from Fish class.

2.3.5 Union, intersection and negation classes
This is one feature of DAML+OIL that is far too powerful to be
used at present with programming language such Java, so we can-
not provide a solution for this capability, but we will continue re-
searching all the possibilities to benefit from this richer expressive-
ness of DAML+OIL or OWL.

SCranefield
35

We create a new package for every ontology, inside the Ontologies package. Then we write the imports, although we do not show them.
Finally, we create many constants for the vocabulary, useful for the understanding of the code, although it is also possible not to create them,
but the code would be much more untidy and less clear.

package FM2003.Ontologies.FishONTO;
...
public class FishONTO extends jade.content.onto.Ontology {

protected static Ontology theInstance = new FishONTO();

// Vocabulary
public static final java.lang.String FISH = "Fish";
public static final java.lang.String FISH_FISHABLEREGIONS = "FishableRegions";
public static final java.lang.String FISH_PRICE = "Price";

We create all the primitive schemas at the beginning to make the code nicer, like the vocabulary. Then, we add the concepts classes to the
ontology. We only show how to add the concepts, but the AID, AgentAction and Predicates can be added the same way.

protected FishONTO() {
super("FishONTO", BasicOntology.getInstance(),

new ReflectiveIntrospector());

try {
PrimitiveSchema stringSchema = (PrimitiveSchema) getSchema(BasicOntology.STRING);
PrimitiveSchema integerSchema = (PrimitiveSchema) getSchema(BasicOntology.INTEGER);
PrimitiveSchema floatSchema = (PrimitiveSchema) getSchema(BasicOntology.FLOAT);
PrimitiveSchema dateSchema = (PrimitiveSchema) getSchema(BasicOntology.DATE);
PrimitiveSchema booleanSchema = (PrimitiveSchema) getSchema(BasicOntology.BOOLEAN);

// adding Concept(s)
ConceptSchema FishSchema = new ConceptSchema(FISH);
add(FishSchema, Fish.class);
ConceptSchema MackerelSchema = new ConceptSchema(MACKEREL);
add(MackerelSchema, Mackerel.class);

After creating all the schemas for every class of the ontology, we add to them all their fields. We only show how to add fields to the Fish
concept, to be brief.

// adding Fields
FishSchema.add(FISH_FISHABLEREGIONS, FishingRegionSchema, ObjectSchema.MANDATORY);
FishSchema.add(FISH_PRICE, integerSchema, ObjectSchema.MANDATORY);

For all the schemas, we add the inheritance expressed in the model. With this, the creation of the ontology is done. We also add the
getInstance method to get an instance of the ontology, used in the Agents files.

// adding Inheritance
MackerelSchema.addSuperSchema(FishSchema);

} catch (java.lang.Exception e) {
e.printStackTrace();

}
}

public static Ontology getInstance() {
return theInstance;

}
}

Figure 6: Translation of the FishONTO ontology

2.3.6 Anonymous classes
Although it is fairly easy to implement this DAML+OIL function-
ality in Java by using the old Lisp GENSYM technique, at present
we do not support DAML+OIL anonymous classes due to time con-
straints. These classes do not have meaning by themselves, rather
they are used to capture abstractions embedded in other classes,
and we are also mindful of the fact that OWL-Lite does not sup-
port anonymous classes, and depending on which version of OWL
becomes the preferred means of expression, the problem could po-
tentially go away.

2.3.7 Datatypes as types

Due to actual technical limitations of the Jena toolkit, and and bear-
ing in mind future compatibility with OWL, the ontology input
does not support the use of datatypes as types. In the next Datatype-
Property, we see that the range specifies a datatype, without refer-
encing the integer schema. Thus, the following is incorrect:

<daml:DatatypeProperty rdf:ID="Length">
<daml:domain rdf:resource="#FishSize"/>
<rdfs:range>

<xsd:integer />
</rdfs:range>
<rdf:type rdf:resource =

"http://www.w3.org/2001/10/daml+oil#UniqueProperty"/>
</daml:DatatypeProperty>

SCranefield
36

The range part has to be rewritten with a reference to the integer
schema:

<daml:DatatypeProperty rdf:ID="Length">
<daml:domain rdf:resource="#FishSize"/>
<daml:range rdf:resource =

"http://www.w3.org/2000/10/XMLSchema#integer"/>
<rdf:type rdf:resource =

"http://www.w3.org/2001/10/daml+oil#UniqueProperty"/>
</daml:DatatypeProperty>

2.3.8 Split properties
Again, due to current technical limitations, we require the multi-
plicity information of the property to be supplied in the type at-
tribute of the class tag, instead of having two tags: ObjectProp-
erty/DatatypeProperty and UniqueProperty. So, all the information
related to a property must be embedded in their tags, without split-
ting the information between siblings. For example:

<daml:DatatypeProperty rdf:ID="Price">
<daml:domain rdf:resource="#Fish"/>
<daml:range rdf:resource =

"http://www.w3.org/2000/10/XMLSchema#integer"/>
</daml:DatatypeProperty>
<daml:UniqueProperty rdf:about =

"file:/C:/oasPaper/fish.daml#Price"/>

Has to be expressed this way:

<daml:DatatypeProperty rdf:ID="Price">
<daml:domain rdf:resource="#Fish"/>
<daml:range rdf:resource =

"http://www.w3.org/2000/10/XMLSchema#integer"/>
<rdf:type rdf:resource =

"http://www.w3.org/2001/10/daml+oil#UniqueProperty"/>
</daml:DatatypeProperty>

2.4 Outputs
The outputs of the system are the Java skeleton files of the organiza-
tion for the JADE platform. All the files are created in the specified
destination directory, while within the files, all the objects are in
a package named by the institution ID. So, if the institution ID is
FM2003, and we have as destination directory the root directory,
and the code from Figure 2 as the IDL input file, we will get four
kinds of files:

1. Agents – found in the root destination directory, belonging
to the package FM2003:
FM2003/Boss.java
FM2003/Admitter.java

2. Behaviours – found in the Behaviours directory and belong-
ing to the package FM2003.Behaviours:
FM2003/Behaviours/Open.java

FM2003/Behaviours/Discuss.java
FM2003/Behaviours/InitialResolution.java
...

3. An ontology file. In this case, is located inside package
FM2003.Ontologies.FishOnto, and in a directory equal to the
package name:
FM2003/Ontologies/FishONTO/FishONTO.java

4. Ontology classes, located in the same package and directory
as their own ontology file:
FM2003/Ontologies/FishONTO/BabySquid.java
FM2003/Ontologies/FishONTO/Mackerel.java
FM2003/Ontologies/FishONTO/Fish.java

...

We add this class to the same package as the ontology file. Again,
we have omitted all the imports. As we see in the DAML+OIL
examples, class Fish implements the Concept interface.

package FM2003.Ontologies.FishONTO;
...
public class Fish implements Concept {

protected int Price;
protected List FishableRegions = new ArrayList();

public void setPrice(int value) {
this.Price = value;

}
public int getPrice() {

return this.Price;
}
public void addFishableRegions(FishingRegion elem) {

List oldList = this.FishableRegions;
FishableRegions.add(elem);

}
public boolean removeFishableRegions(

FishingRegion elem) {
List oldList = this.FishableRegions;
boolean result = FishableRegions.remove(elem);
return result;

}
public void clearAllFishableRegions() {

List oldList = this.FishableRegions;
FishableRegions.clear();

}
public Iterator getAllFishableRegions() {

return FishableRegions.iterator();
}
public List getFishableRegions() {

return FishableRegions;
}
public void setFishableRegions(List l) {

FishableRegions = l;
}

}

Class Fish has two attributes: Price (single cardinality) and Fish-
ableRegions (multiple cardinality). Depending of the cardinality,
we well create accessor methods to access a list or to a single type.

Figure 7: Ontology class Fish

We will now take a closer look at the contents of these files. We
will start with the Boss agent file, although for brevity we omit
the code that is common to every agent (takeDown method, JADE
imports...). See Figure 4 and also the comments between the gener-
ated code fragments. Drilling down further we examine in more de-
tail the behaviour Discuss, where again, for brevity, we have omit-
ted the common code – see Figure 5 and the interpolated comments.

Depending on the JADE behaviour type we are inheriting, we must
implement one or more additional methods. As this class inherits
from CompositeBehaviour, me must implement the methods shown
in Figure 5.

At present, we only create skeletons of the behaviour, depending on
each behaviour type, but we shortly will complete the code for mes-
sage passing between agents, extracted from the illocutions given
in the institution description and then the bodies of these methods
will also be created automatically.

Next, it is the turn of the ontology file, the details of which along
with some commentary appear in Figure 6 and finally we have one
of the classes of the ontology in Figure 7.

SCranefield
37

3. CONCLUSIONS AND FUTURE WORK
We have described the translation into Java (JADE) of the specifica-
tion of aspects of an institution description written in DAML+OIL,
noting at the same time various generic issues with respect to trans-
lation from DAML+OIL to Java. Because of the very active and
changing nature of this area at the moment, a number of issues
remain open, in particular, we expect very soon to move the IDL
from DAML+OIL to OWL, more or less as soon as the support in
the Jena API is released. We have also listed a number of aspects
of DAML+OIL that could be, but are not translated yet, simply
for lack of time, such as facets, anonymous classes or multiple in-
heritance. What we have presented here is the translation of the
ontological aspects of electronic organizations: other aspects, such
as the performative structure, scenes, transitions and conversation
graphs are being finalized. Indeed, the completion of behaviour
generation for the JADE platform is intended to be fully working
before summer 2003, for which we will generate automatically the
code of message passing between agents from the information ex-
tracted from the illocutions.

For the longer term, we are considering how we might support mul-
tiple target agent platforms. A new GUI tool is also under devel-
opment which could be used to front end this, generating the OWL
representation of the institution, which combined with schema ver-
ification tools opens up a path to round-trip engineering of institu-
tional specifications.

4. ACKNOWLEDGEMENTS
Daniel Jiménez Pastor is a student of Computer Science Engineer-
ing at Facultat d’Informàtica de Barcelona, Universitat Politècnica
de Catalunya (Spain). His work has been partially supported by an
Agenticities scholarship while an Erasmus student at the Depart-
ment of Computer Science, University of Bath (United Kingdom).

5. REFERENCES
[1] AgentLink – European Network of Excellence for

Agent-Based Computing.
http://www.agentlink.org, March 2003.

[2] F. Bellifemine, A. Poggi, and G. Rimassa. JADE — A
FIPA-compliant agent framework. In Proceedings of the 4th
International Conference on the Practical Applications of
Agents and Multi-Agent Systems (PAAM-99), pages 97–108,
London, UK, 1999. The Practical Application Company Ltd.

[3] DAML+OIL – DARPA Agent Markup Language + Ontology
Inference Layer.
http://www.w3.org/TR/daml+oil-reference,
March 2003.

[4] M. Esteva, D. de la Cruz, and C. Sierra. Islander an
electronic institutions editor. In Proceedings of The First
International Joint Conference on Autonomous Agents and
Multiagent Systems (AAMAS 2002), 2002. to appear.

[5] M. Esteva, J. Padget, and C. Sierra. Formalizing a language
for institutions and norms. In J.-J. Meyer and M. Tambe,
editors, Intelligent Agents VIII, volume 2333 of Lecture
Notes in Artificial Intelligence, pages 348–366. Springer
Verlag, 2001. ISBN 3-540-43858-0.

[6] FIPA – The Foundation for Intelligent Physical Agents.
http://www.fipa.org, March 2003.

[7] Islander, a graphical editor for institution specifications
(software package).
http://e-institutor.iiia.csic.es/
e-institutor/software/islander.html (April
2002).

[8] Java agent development environment.
http://jade.cselt.it, March 2003.

[9] Jalopy. http://jalopy.sourceforge.net, March
2003.

[10] Javier Vázquez-Salceda. The role of Norms and Electronic
Institutionsin Multi-Agent Systems applied to complex
domains. The HARMONIA framework. PhD thesis,
Universitat Politècnica de Catalunya, 2003.

[11] Jena Semantic Web toolkit.
http://www.hpl.hp.com/semweb, March 2003.

[12] P. Noriega. Agent mediated auctions: The Fishmarket
Metaphor. PhD thesis, Universitat Autonoma de Barcelona,
1997.

[13] D. C. North. Institutions, Institutional Change and Economic
Performance. Cambridge University Press, 1991.

[14] J. Padget. Modelling simple market structures in process
algebras with locations. In L. Moreau, editor, AISB’01
Symposium on Software Mobility and Adaptive Behaviour,
pages 1–9. The Society for the Study of Artificial
Intelligence and the Simulation of Behaviour, AISB, 2001.
ISBN 1 902956 22 1.

[15] A. Poggi, F. Bergenti, and F. Bellifemine. An ontology
description language for FIPA agent systems. Technical
Report DII-CE-TR001-99, University of Parma, 1999.

[16] Protege, an editor for ontologies (software package).
http://protege.stanford.edu/ (April 2002).

[17] Bean generator plug/in for protégé.
http://gaper.wi.psy.uva.nl/beangenerator,
March 2003.

[18] J.-A. Rodrı́guez. On the Design and Construction of
Agent-mediated Institutions. PhD thesis, Universitat
Autonoma de Barcelona, July 2001.

[19] J.-A. Rodrı́guez, P. Noriega, C. Sierra, and J. Padget. FM96.5
A Java-based Electronic Auction House. In Proceedings of
2nd Conference on Practical Applications of Intelligent
Agents and MultiAgent Technology (PAAM’97), pages
207–224, London, UK, Apr. 1997. ISBN 0-9525554-6-8.

[20] R. Sandhu, D. Ferraiolo, and R. Kuhn. The NIST model for
role-based access control: Towards a unified standard. In
Proceedings of the 5th ACM Workshop on Role-Based
Access Control (RBAC-00), pages 47–64, N.Y., July 26–27
2000. ACM Press.

[21] J. Vázquez-Salceda and F. Dignum. Modelling electronic
organizations. accepted for the The 3rd International/Central
and Eastern European Conference on Multi-Agent Systems
-CEEMAS’03-, Prague, Czech Republic, June 2003, June
2003.

[22] O. Vickers and J. Padget. Skeletal JADE Components for the
Construction of Institutions. In J. Padget, D. Parkes,
N. Sadeh, O. Shehory, and W. Walsh, editors, Agent
Mediated Electronic Commerce IV, volume 2531 of Lecture
Notes in Artificial Intelligence, pages 174–192. Springer
Verlag, December 2002.

[23] Word Wide Web Consortium (W3C). OWL – Web Ontology
Language. http://www.w3.org/TR/owl-ref, March
2003.

[24] World Wide Web Consortium (W3C). Semantic web
(daml+oil and owl working drafts).
http://www.w3.org/2001/sw, March 2003.

SCranefield
38

Location-Mediated Service Coordination
in Ubiquitous Computing

Akio Sashima
CARC, AIST / CREST, JST

2-41-6 Aomi, Koto-ku, Tokyo,
 135-0064, Japan
+81-3-3599-8227

sashima@carc.aist.go.jp

Noriaki Izumi
CARC, AIST / CREST, JST

2-41-6 Aomi, Koto-ku, Tokyo,
 135-0064, Japan
+81-3-3599-8297

niz@ni.aist.go.jp

Koichi Kurumatani
CARC, AIST / CREST, JST

2-41-6 Aomi, Koto-ku, Tokyo,
 135-0064, Japan
+81-3-3599-8223

kurumatani@socsys.org

ABSTRACT
We propose location-mediated service coordination in ubiquitous
computing. In the coordination, middle agents determine best-
matched services for a user by considering the user’s location
based on location-ontology for ubiquitous computing. Introducing
such location-aware middle agents and location-ontology into
ubiquitous computing, we can extend application areas of
software agents from the Internet to the real world. In this paper,
we first illustrate the idea of location-aware middle agents and
location-ontology. Second, we describe a multiagent architecture,
called CONSORTS, as an implementation of the agents. In order
to bridge the gap between device-oriented physical information in
the real world and web-based conceptual information in the
digital world, CONSORTS agents can translate sensor-based raw
representation of the locations into conceptual one. Finally, we
describe two applications of CONSORTS, an intelligent
information assist system at a museum and wireless-LAN based
location system.

Keywords
Web Agents, Semantic Web, Ubiquitous Computing, Service
Coordination

1. INTRODUCTION
Two intelligent service frameworks, Ubiquitous (or Pervasive)
computing [25] and Semantic Web[2], received much interest in
both research and application in the past years. In order to
improve the current web-based service frameworks, the
Ubiquitous computing handles device-oriented physical
information; the Semantic Web handles ontological information.

Ubiquitous computing enables computers to be aware of the
context of users in the real world. The ubiquitous computing
environment has numerous sensor devices and computers
connecting to the networks. In the framework, the computers
manage not only explicit information of the user interaction but
also physical information from sensors in the real world. For
example, the intelligent guide systems in a museum should
manage both location and commands of the users in order to
interactively offer information about the exhibitions there.

On the other hand, the Semantic Web enables computers to read
the web contents by adding meta-data to the documents. The
meta-data are developed on XML. One of such meta-data
frameworks is RDF (Resource Description Framework) [18] and

RDFS (RDF Schema) [19]. In this framework, the computers
manage not only information explicitly described in the content
but also ontological information of the content, which are shared
with the computers on the Internet. For example, the computers
handle the meta-data and the domain ontologies to understand the
contents meanings, such as identifying “my father’s father” with
“my grand father” in a document.

Although there are many researches involved in the Semantic
Web and the Ubiquitous computing, still few researches [8] [20]
try to bridge the gap between device-oriented physical
information in the Ubiquitous computing and web-based
ontological information in the Semantic Web. In order to realize
intelligent information services for our daily activities (e.g.
shopping assistants, museum guide, etc.), we need a service
framework that can seamlessly manage both of the information
because our activities are comprehensible within the physical and
ontological context.

For such seamless service framework, we have been developing a
multiagent architecture named CONSORTS (Architecture for
cognitive resource management with physically-grounding
agents) [5]. In the architecture, middle agents, location-aware
middle agents, can handle physical and conceptual information of
environments, and determine the best-matched service according
to the user’s location. Bridging the gap between device-oriented
physical information in the real world and web-based conceptual
information in the digital world, CONSORTS agents can translate
sensor-based raw representation of the locations into conceptual
one.

In this paper, we describe a framework of service coordination
mechanism in Ubiquitous computing. We first illustrate the idea
of location-aware middle agents and location-ontology. Second,
we describe an implementation of CONSORTS architecture.
Finally, we describe two applications of CONSORTS, an
intelligent information assist system at a museum and wireless-
LAN based location system.

2. LOCATION-MEDIATED SERVICE
COORDINATION
Although the ubiquitous computing is a promising framework of
the intelligent services, it is still premature and has many
problems. One of the problems is about coordination among

SCranefield
39

services. In a ubiquitous computing environment, a lot of services
are usually co-located (e.g. navigation, guide, advertising,
information retrieval, controlling devices, etc.). When numerous
services can be simultaneously provided to a user, a service
coordination is required to provide proper services then and there.
How can we realize such a service coordination in ubiquitous
computing?

One possible answer is to introduce middle agents [21]. Middle
agents are matchmaker agents that match service agents with
service requester agents. The middle agents mediate the
communication between the agents to achieve the good
performance on the Internet. For example, Paolucci et al. [17]
show the potential of the middle agents by the orchestration of
Web Services [24].

This middle agents work efficiently on the Internet, but it is not
sufficient for the middle agents in the Ubiquitous Computing.
Most researches focus on the problem how the software agents
properly serve the user who operates a computer terminal
connected to the Internet [13][16]. However, the middle agents in
the Ubiquitous Computing must handle the information of the
location where service providers and service requesters
communicate with each other. If a service is semantically
matched to a request but the service resource is far removed from
the requesting user, the service should not be provided in the
context of Ubiquitous computing; the nearer service resource to
the user is often better than any other services.

2.1 Location-Aware Middle Agents
In order to realize the service coordination suitable for ubiquitous
computing, we propose location-mediated service coordination,
and introduce new type of agent, spatio-temporal reasoner. The
spatio-temporal reasoner manages sensor-based raw information
and conceptual information of the environment, such as physical
locations of objects, and reasons of their spatial relations1. Using
the spatio-temporal reasoner, we extend the conventional middle
agent framework to realize the location-mediated coordination in
the Ubiquitous computing.

The location-mediated coordination process consists of following
agents:

Service
Provider

Location-Aware
Middle Agent

Spatio-Temporal Reasoner

Service
Provider

Service
Provider

Requester

request advertis
e

Query about
Spatio-Temporal Relation

Service Content

Matchmaking

Requester

Requester

Figure 1. Location-mediated service coordination

1 To track the object’s location, we assume using sensor devices (e.g. RF-

ID tags, GPS, etc.) and their information are available.

• Service Provider Agent: the agent that provides some types
of service, such as problem solving, mediating Semantic
Web services;

• Service Requester Agent: the agent that needs provider
agents to perform some services for them;

• Location-Aware Middle Agent: the agent that helps locate
other agents along with Spatio-Temporal Reasoner;

• Spatio-Temporal Reasoner: the agent that manages
physical locations of Service Providers and Service
Requesters, and reason about their spatial relation in
cognitive way.

The coordination is as follows:

1) provider agents advertise their capabilities and physical
service areas to middle agents;

2) middle agents store these advertisements, and inform their
service areas to spatio-temporal reasoners;

3) spatio-temporal reasoners store these service areas;

4) a requester asks some middle agents whether they know
providers with desired capabilities;

5) the middle agents ask some spatio-temporal reasoners
whether the stored service areas cover the requester’s
location or not, and get the results, a subset of the stored
service areas;

6) taking account of the results, the middle agent matches the
request with the stored advertisements, and returns the result,
a subset of the stored advertisements (see Figure 1.).

In this framework, the descriptions of location are separately
managed in the spatio-temporal reasoners, so service contents
modification is not required even if the service areas are changed.
For example, the content for an information service in a museum
can be used in exhibitions in other museums, by only adjusting
the location information to the museum.

 Additionally, this process is a natural extension of matching
process proposed by Sycara et al.[21]. By integrating above
agents with ordinal web agents on the Internet, we can extend
application areas of Web agents (and Web Services) to ubiquitous
computing environment.

3. MODELING SPACE IN COGNITIVE
WAY

3.1 Conceptual Representation of Locations
To realize the location-mediated service coordination, the agents
must share representations of locations (e.g. service area, the
requester’s location, etc.). Moreover, the representation must be
human-friendly, conceptual ones. For example, to inform the
user’s location to others, the agents should understand “the user
was in a museum on the morning”, rather than “the user was at
Longitude: 140.38.54 E, Latitude: 35.77.44 N at Mon Jan 13
07:47:06 2003 JST”. Such human understanding of spatial

SCranefield
40

concept is generally called mereological thinking [23], reasoning
about part-of relation. To realize this kind of spatial reasoning as
a basic function of our agent architecture, especially of Spatio-
temporal reasoner, we model ubiquitous computing environment
with a mereological, tree representation. The representation
consists of part-of relations among 4-dimentional spatio-temporal
regions in the real world.

3.1.1 Location and Region
First, we formularized locations of objects with the spatio-
temporal regions using the formalization by Bittner [3]. The
formalization is as follows.

The symbol o (Oo∈) denotes an object, and the domain of
objects, o . The symbol x (Xx∈) denotes a spatio-temporal
region, and the domain of the regions, X . The domain of the
regions consists of 3-dimentional (spatial) regions, sx , and 1-
dimenational (temporal) region tx . An object o is exactly located
at the region x is formalized as follows;

),(:: ss xoLXxOo τ∈∃∈∀

where the symbol τ denotes an instance of time. Weaker
definition of object’s location is as follows:

st

st

xxxoLxxxx':x'
),xL(o,x

≤∧∃∈∀∧≤∃

≡

),(::' ττ

where the symbol ≤ denotes the part-of relation of the domains.

Hence, L (John, his room, this morning) means “John was in his
room in this morning”.

3.1.2 Tree Representation
We formularize the ubiquitous computing environments as a tree-
structure of spatio-temporal regions based on Bittner [3]. A tree
structure of spatio-temporal regions is denoted by G :

),(⊆= RG where)(: RrR ∈ denotes a set of spatio-temporal
regions, ⊆ denotes a part-of relation between two regions. The
regions in G have following natures.

kikjjikji

ijijjiji

iii

rrrrrrrrr

rrrrrrrr
rrr

⊆→⊆∧⊆∃

=→⊆∧⊆∃
⊆∃

:,,)3

:,)2
: 1)

where kji rrr ,, is a region.

3.2 Mereological Reasoning
Now, we can infer and query the object’s location using this
notation. For example, given two statements: “John was in his
room in this morning”, and “His room is part of this building”, we
can infer “John was in this building in this morning”, we can infer
the “Jhon’s location” as follows.

rning)g, this mois buildinL(John, th
ding this builroom his

)is mornings room, thL(John, hi

→
⊆
∧

Similarly, we can define the users that can receive the service in
ubiquitous computing environment, denoted by C , as:

)}(:{ iodArea, aPerPerson, anLPerson
C

∃
=
U

By using this kind of logical inference, Spatio-Temporal Reasoner
can reason about their spatio-temporal relation. Replying results,
a subset of the stored service areas, denoted by SR , Spatio-
Temporal Reasoner can reason as

)},(:{ , aPeriodrpersonLr
SR

serviceservice∃
=

U

where serviceserviceservice Rrr ∈: denotes a service area of a set
of service areas in the environment.

Figure 2 A part of location ontology

3.3 Location Ontology
Based on the above formalization, we define a location ontology
for the ubiquitous computing. Figure 2 shows the location
ontology for describing spatial region. We define similar type of
ontology for describing temporal region. We define the relation of
spatial regions, and their property in the ontology. Part-of relation
in the figure is the relation denoted by⊆ in before section. The
agents can describe object’s location, and reason about spatial-
relation based on the ontology.

3.4 Spatio-Temporal Reasoner
Spatio-Temporal Reasoner manages “spatio-temporal inference
engine” and “spatial information repository”. The repository
manages the device-oriented physical information of the
ubiquitous computing environments, such as location of users and

Building

Entrance

Floor Room

Object

Ontology of Spatial Region (An example)

Part - of

Part - of Includes

Entrance

Floor

Room

a-kind-of
Spatial Region

Part-of

Property
GUID:<Global Unique ID>
Part -of:<Spatial Region>
A-kind -of:<Type of Region>
Includes: <Object>

Building

a - kind - of
Bed Room

Class Room

SCranefield
41

surrounding sensor devices. Location data are constantly updated,
given by “device wrapper agents”.

Spatio-temporal reasoner also manages conceptual representation
of the environment, tree-structure (G in Section 3.1.2). The
middle agent and various service agents, such as navigation
planning, searching the nearest device to the user, use the tree-
representation of environment, and do not use the device-oriented
raw representation. It means that the reasoner hides such complex
representations from other agents and humans.

Hence, one of important function of spatio-temporal reasoner is
bridging the gap between sensor-based information in the real
world and cognitively comprehensive annotated information in
the digital world (see Figure 3.). For the translation between two
representations, we define static mapping functions beforehand.

Figure 3 Data representations of spatio-temporal reasoner

4. LOCATION-AWARE MIDDLE AGENT
Location-aware middle agent is an agent that help locate other
agents along with Spatio-Temporal Reasoner The middle agent
orchestrates the various services of agents that manage sensor
information of the physical environment and ontological
information of the web services. Although the middle agents
control the matchmaking process, the spatio-temporal reasoning is
outsourced to Spatio-Temporal Reasoner.

4.1 Matchmaking
The location-aware middle agent matches the request against the
stored advertisements with taking account of the results from
Spatio-Temporal Reasoner. In our prototype system, we
tentatively define the matchmaking process as following
expression.

)0.1
)()0.1()()(

)}({

≤≤
−+=

= =

λ
λλ

(0.0
SRgSCfSu

SuargMaxS

iii

i1,2..nii

Where iS denotes one of available services in current situation.

)(iSu represents a utility function of the service iS . λ denotes
a constant value for a normalized weight to matching degree of
contents for utility function)(iSu .)(iSCf represents a

matching degree of a service content iSC .)(iSRg represents

a matching degree of service area iSR . The middle agent selects
the most suitable service which has the maximum utility value
among the services. This coordination scheme is a basic function
in We can implement complex services, such as service
composition, as facilities of the middle agents.
Because the matchmaking process that we proposed is an
extension of the ordinal matchmaking process among agents on
the Internet, the process model of DAML-S[7] can be apply to
the description of service content. Therefore, we omit the
descriptions for service contents, and their matchmaking
process)(iSCf in this paper. We concentrate to describe the

location based matchmaking process)(iSRg .

4.2 Location-based Matchmaking
Location-based matchmaking process has two methods: the
method that calculates matching degree by part-of relations, and
by a-kind-of relations. Each of two functions calculates the
matching degrees between services and a user.

4.2.1 Matching Degrees by Part-of Relations
Each of services has a service area that corresponds to a node of
the tree representation of the environment. This matching method
calculates the matching degrees based on part-of relations of
spatio-temporal regions, which include the service areas, or the
requester are located at. At first, the agent filters the service areas
where the requester is located, then, calculates matching degrees
of each service areas.
The matching degrees of the service areas are discrete values
corresponding to the path lengths from root node to the nodes of
the service areas on a part-of relation tree. In the tree
representation in Figure 2, if the user is located at “Entrance”, the
matching degree is 2. In other words matching degree of narrower
region has high value (e.g. g(Room A) >g(1st Floor) in Figure 3).

4.2.2 Matching Degrees by a-kind-of Relations
This matching method enables the requester to access the
information generally related to facilities of the place. For
example, when a user is located at a library, the user would like to
access sorts of book guidance services. This service is not related
to the physical location of the library but related to the cognitive
facilities of the library. This kind of location-mediated
coordination is suitable for assist services in a lot of places where
human activities take place (e.g. station, library, museum, etc.).
The matching degrees are calculated based on a-kind-of relations.
When the service providers and the requester are located at the
different place, a-kind-of relations are used. At first, the agent
looks at the a-kind-of property of the region where requester is
located, and pick up the services that have the same a-kind-of
property. Then, the agent calculates the matching degree of each
service provider.

Translation

Tracking User Location
with Sensor Device (e.g. RF - ID Tag, etc.)

Device-oriented Raw Representation

Museum

1 st Floor

Entrance

3 rd Floor 2 nd Floor

Room CRoom A Room B

Painting B Painting A Painting C

Conceptual Representation

SCranefield
42

The matching degrees of the service areas are discrete values
corresponding to the path lengths from root node to the nodes of
the service areas on a a-kind-of relation tree. In the tree
representation in Figure 2, if the user is located at “Bedroom”, the
matching degree is 2. Matching degree of narrower regions have
high values (e.g. g(Bedroom) >g(Room) in Figure 2).So the user
receives the information services related to bedrooms rather than
rooms.

CONSORTS Architecture

Inference
Engine

Personal
Agent

Service
AgentsMobile

User 1
Mobile
User n

Communication
and Sensing
Devices

Physical World
Content
Server

Device
Wrapper
Agents

Agent Communication
API
Physical Link

Spatial Information RepositorySpatial Information Repository
• Location-Ontology-based

Semantic Information
• Device-oriented Physical

Information

Spatio-Temporal Reasoner

Camera,
Wireless LAN

RFID, etc.

Location Aware
Middle Agent

Physically Grounding Mechanism

Figure 4 Outline of CONSORTS architecture

5. IMPLEMENTATION
In order to realize human-centered intelligent information services
in ubiquitous computing, we have been developing CONSORTS
(Architecture for cognitive resource management with physically-
grounding agents), an agent-based software architecture that
mediates the real world and a digital world, for assisting human in
accessing intelligent information services. In this section, we
describe the CONSORTS architecture as an implementation of the
location-aware middle agents, and confirm the functionality of the
middle agents in context-aware information assist service in a
museum.

5.1 CONSORTS Architecture
The key concepts of CONSORTS are “physically-grounding” and
“cognitive resources”[15]. By using sensory information brought
by ubiquitous environment, agents have a grounding in physical
world, and manage physical resources (especially spatio-temporal
resources) in a cognitive way, i.e., they can recognize, reorganize,
and operate raw physical resources as conceptual resources.

Figure 4 shows an outline of CONSORTS Architecture, which
consists of following type of agents.

• Services Agents (Service Provider Agent) provide services,
such as tour guide, navigation, and information presentation.
Services agents realize the flexible service by using
semantic information through the content servers. The
content servers are resources on the Internet, especially
Semantic Web and Web Services.

• Personal Agents (Service Requester Agent) request service
behalf of a user. The agents communicate with Device
wrapper agents, and manage them as user interface devices.

• Location-aware Middle Agents manage to interaction to
mediate between agents and a user. The agent sends the
request to the middle agents, and controls the interaction
between service agents and the user. In current version,
“Matching by a-kind-of Relation” is not implemented.

• Spatio-Temporal Reasoners manage physical locations of
Service Providers and Service Requesters, and reason about
their spatial relation in cognitive way. The agents manage
both device-oriented physical information in the real world
and cognitively comprehensive information in the digital
world

• Device Wrapper Agents hide the diversity of physical
device and legacy application. Device Wrapper Agents
realize device-independent applications by wrapping the
raw information, which is derived from legacy devices and
applications, with the standardized agent communication
language.

5.2 Context-Aware Information Assist Service
in a Museum
Based on the CONSORTS architecture, we have implemented
context-aware information assist service in a museum. In this
system, the agents are aware of the distance between a user and
paintings in the museum. The service system is that when the user
approaches a painting, the agents automatically provide
information of the painting via the user's portable display device.

In the museum, user can access general museum information
based on the procedure of matching degrees by a-kind-of
Relations. In addition, when a user is located near a painting, the
user can receive the information of the painting via the user’s
portable display device from the agents. This service is based on
the procedure of matching degrees by part-of Relation. Since, the
information of the painting is derived from the Internet resources
(e.g. Web services, Search Engine, etc.).For example, if the user
needs more information of the painting, the user should push the
“tell me” button of the portable device. The CONSORTS agents
notice the user's request, make a search query about the painting
with the necessary information they've already had, e.g. the
painting's name and user’s preference, and access the internet
search engine, e.g. Google Web Services [10], behalf of the user.

 Figure 5 shows a snapshot of the monitor display of the system.
You can see a museum map in a main window, two information
windows with some pictures, and a message window displaying
agent communication. In the map, human icons represent current
locations of the users; the yellow zones represent service zones of
the museum service agents; the blue lines represent users’
trajectories. The information windows correspond to the screen of
users' portable devices. In this demonstration program, the users
randomly roam in the museum. If a user enters the yellow zone,
an information window pops up in the screen to display the
picture information.

Currently, users, users’ behavior, and a museum in this system are
simulated ones. However, we have designed the device wrapper
agent to hide the diversity of the devices API, we can integrate the
physical devices into the system on the CONSORTS.

SCranefield
43

Figure 5 Snapshot of the assistance system at the museum

Personal
Agent with
User ID

Museum Service
Agents

Mobile
User 1

Interface
and Sensing
Devices

Physical
World

Content Database

Device
Wrapper
Agents Spatio-Temporal Reasoner

Matched
Service

User ID + Location

Request Rule-based Action:
If (Person on the Region) then
Inform Person of Service Name.

Service Request

Content InformationC
ontentInform

ation

1

23 4

5

6

Location-Aware Middle Agent

78

Figure 6 Message flows in the assistance system at the
museum

Figure 6 outlines the agent communication in the museum system.
First, the service agent requests the middle agent to continuously
infer whether users are located on a service region associated with
a service name ([1] in Figure 6). The middle agent requests the
Spatio-Temporal Reasoner to request to inform when users are
located on a service region ([2] in Figure 6). On the other hand,
the device wrapper agent informs the spatio-temporal reasoner
where a user with unique id is located ([3] in Figure 6). When the
spatio-temporal reasoner notice a user is located on a service
region, the reasoner informs the middle agent of the user id ([4] in
Figure 6). The middle agents tell the personal agents of the user
available service name ([5] in Figure 6). Then, the personal agent
requests a service based on the service name ([6] [7] in Figure 6).
Finally, the personal agent requests the device wrapper agent to
show the service content on a user’s portable display device ([8]
in Figure 6).

Table 1 A message in the assistance system at the museum

All messages of the agent communication are described with
FIPA-ACL (Foundation for Intelligent Physical Agents Agent
Communication Language)[9]. The message content is described
with FIPA-SL. Table 1 shows a message which represents
“Personal Agent request to Museum Service Agent to provide the
service named Mona Lisa (showing information about the
painting of the Mona Lisa).” This message flows at arrow-line [6]
in Figure 6. Although we have already implemented RDF-based
descriptions as a content part of the message, we adopt FIPA-SL
as the content language for interoperability with other agent
platform in this system. We are also planning to adopt DAML
families [11][6] in the near future. We have implemented the
CONSORTS agents using JADE [12], a software framework to
develop the agent system that conforms to FIPA specifications.
Using standardized ACL like FIPA-ACL, the system can connect
to open agent systems, such as AgentCities [1]. Hence, using the
CONSORTS architecture, FIPA-agents can share the physical
information and devices in the museum, and open the possibility
of new services which use the physical resources over the world.

In this demonstration system, we have shown the potential of the
distributed open agent systems that can bridge device-oriented
physical information in the real world and web-based conceptual
information in the digital world.

5.3 Wireless-LAN based Location System
Based on the CONSORTS architecture, we have implemented
Wireless-LAN (IEEE 802.11b) based Location System. In this
system, the agents are aware of user location by watching the
status of the wireless-LAN stations. The service system is that
when the PC or PDA with a user connects with one of the stations,
the system detects the connection, and store a MAC address of the
network card of the PDA with physical location of the station.
Because a MAC addresses is a globally unique, the system can
track the location of the card (with the user) globally.

Figure 7 shows an outline of the location system. In the system,
Web services, which provide location information like sensor

(REQUEST

:sender PersonalAgent

:receiver MuseumAgent

:content "((action

 (agent-identifier

:name MuseumAgent)

(provide

(person :name PersonalAgent)

(service :name Monalisa

:provider MuseumAgent)))"

:language fipa-sl

:ontology location-ontology

)

SCranefield
44

devices, are integrated with a FIPA-agent platform, and the
location information is shared with FIPA-agents.

UsersUsers

Wifi Card Wifi CardWifi Card

WirelessWireless--LANLAN

Web Service

Wifi Card

Web Service

HTTPHTTP

SOAP SOAP

CONSORTSCONSORTS

FIPA Agent NetworksFIPA Agent Networks

Monitor Wrapper Agent

Spatio-Temporal Reasoner

FIPA-ACL

Wireless-LAN Wrapper Agent

FIPA-ACL

Access Point Access Point

Web BrowserWeb Browser

Wireless-LAN based Location System

FirewallFirewallReal Real
WorldWorld

Figure 7 Outline of wireless-LAN based location system

We have experimentally confirmed the functionality with real
wireless-LAN stations that located on various cities, (e.g.
Barcelona, Tokyo, etc.) in the world. Figure 8 shows a snapshot
of the monitor window of the location system in that experiment.

Figure 8 Snapshot of the location repository

In this experiment, we have shown the potential of the distributed
open agent systems that can access and unify the real world
information covering all over the world.

6. RELATED WORK
CoolAgent [4] is a context-aware software agent system. The
agents can share the context information described by RDF that
can be an ontology description framework for the Semantic Web.
However, CoolAgent system does not provide the design
framework of ubiquitous agents, such as location-aware middle
agent. In this paper, we formally describe the design pattern of the
coordination of ubiquitous agents.

There are some researches for middle agents[21][22][17]. As we
described before, the work in this paper is extension of their
works in ubiquitous computing. Hence, their results, such as
integration of DAML-S, must be useful for our future research.

7. FUTURE WORK
As future work, we are planning to introduce the concept of
“Mass User Support”[15]. Existing context-aware applications
provide information for a single user. However, if the applications
provide some users with the same information at the same time,
serious conflict with users’ behavior, such as a long queue formed
in front of a tourist attraction, may be aroused. In that situation,
the total performance to assist users’ activities will decrease. Thus,
we are planning to realize the service which has facility to resolve
the conflict with multi users’ requirements and to implicitly
modify the providing information for each user in order to
maintain the performance of the whole system. We are
implementing the facility using market mechanism, called “user
intention market.”[14]

8. CONCLUSION
In this paper, we described a framework of service coordination
mechanism in Ubiquitous computing. We first illustrated the idea
of location-aware middle agents and location-ontology. Second,
we described an implementation of CONSORTS architecture.
Finally, we described two applications of CONSORTS, an
intelligent information assist system at a museum and wireless-
LAN based location system.

In our demonstration systems, we have shown the potential of the
distributed open agents in the real world. In the Semantic Web[2],
an “agent” is defined as ‘the program that collects information
from diverse sources, processes the information and exchanges
the results with other programs.’ We have realized such agents in
the context of the Ubiquitous computing, and extended
application areas of the agents from the Internet to the real world.

9. REFERENCES
[1] AgentCities Web, http://www.agentcities.org/, 2003

[2] Berners-Lee, T., Hendler, J. and Lassila, O., the Semantic
Web. Scientific American, 2001.

[3] Bittner, T., Reasoning about qualitative spatio-temporal
relations at multiple levels of granularity. In F. van Harmelen
(ed.): ECAI 2002. Proceedings of the 15th European
Conference on Artificial Intelligence, IOS Press, Amsterdam,
2002

[4] Chen, H. and Tolia, S., Steps towards creating a context-
aware agent system. TR-HPL-2001-231, HP Labs, 2001.

[5] CONSORTS Architecture Web, http://consorts.carc.jp/, 2003

[6] DAML+OIL (March 2001) Reference Description,
http://www.w3.org/TR/daml+oil-reference, 2002

[7] DAML Service, http://www.daml.org/services/, 2002

[8] Finin, T. and Perich, F., editor. Proc. of the AAMAS
Workshop on Ubiquitous Agents on embedded, wearable,
and mobile devices, 2002

SCranefield
45

[9] The Foundation for Intelligent Physical Agents (FIPA),
http://www.fipa.org/, 2002.

[10] Google Web APIs, http://www.google.com/apis/, 2003

[11] Hendler, J. and McGuinness, D. L., DARPA Agent Markup
Language (DAML). IEEE Intelligent Systems, 15 (6), 72–73,
2001.

[12] Java Agent DEvelopment Framework (JADE),
http://sharon.cselt.it/projects/jade/, 2002

[13] Jennings. N., An agent-based approach for building complex
software systems. Communications of the ACM, 44 (4): 35-
41, 2001.

[14] Kurumatani. K., User Intention Market for Multi-Agent
Navigation - An Artificial Intelligent Problem in Engineering
and Economic Context; Kurumatani, K., Chen, S.-H.,Ohuchi,
A. (eds.), Proceedings of The AAAI-02 Workshop on Multi-
Agent Modeling and Simulation of Economic Systems,
Technical Report WS-02-10, pp.1-4, AAAI Press, 2002.

[15] Kurumatani. K., Social Coordination in Physically-Grounded
Agent Architecture, to appear in Proceedings of Landscape
Frontier International Symposium, 2002.

[16] Maes, P., Agents that Reduce Work and Information
Overload. Communications of the ACM, 37(7): pp.31-40,
ACM Press, July 1994.

[17] Paolucci, M., Kawamura, T., Payne, T. R., and Sycara, K.,
Semantic Matching of Web Services Capabilities. In

Proceedings of the 1st International Semantic Web
Conference (ISWC2002), 2002

[18] Resource Description Framework (RDF),
http://www.w3.org/RDF/, 2002

[19] RDF Vocabulary Description Language 1.0: RDF Schema,
http://www.w3.org/TR/rdf-schema/, 2002

[20] Sashima, A., Kurumatani, K., and Izumi, N., Physically-
Grounding Agents in Ubiquitous Computing, Proc. of Joint
Agent Workshop (JAWS2002) , pp.196- 203, 2002.

[21] Sycara, K., Decker, K., and Williamson, M., Middle-Agents
for the Internet, Proceedings of IJCAI-97, January 1997.

[22] Sycara, K., Klusch, M., Widoff. S., and Lu, J., Dynamic
Service Matchmaking among Agents in Open Information
Environments, SIGMOD Record (ACM Special Interests
Group on Management of Data), Vol. 28, No. 1, 47-53. ,
March, 1999

[23] Varzi, A., C. and Casati, R., Parts and Places. The Structures
of Spatial Representation, Cambridge, MA, and London:
MIT Press, 1999.

[24] Web Services Activity, http://www.w3.org/2002/ws/, 2002.

[25] Weiser, M., The computer for the 21st century. Scientific
American, 94-104, Sep 1991.

SCranefield
46

Collaborative Understanding of Distributed Ontologies in a
Multiagent Framework: Design and Experiments

Leen-Kiat Soh
Computer Science and Engineering

University of Nebraska
115 Ferguson Hall

Lincoln, NE
(402) 472-6738

lksoh@cse.unl.edu

ABSTRACT
In this paper, we describe our work-in-progress with collaborative
understanding of distributed ontologies in a multiagent frame-
work. As reported earlier, the objective of this framework is to
improve communication and understanding among the agents
while preserving agent autonomy. Each agent maintains a dic-
tionary for its own ontology and a translation table. Our current
work has focused on how neighborhood profiling, the translation
tables, and query experience influence the collaborative activities
among the agents. We have built an infrastructure prototype and
conducted a series of comprehensive experiments from the view-
point of agent executions, query scenarios, and translation credi-
bility values. The specific goals of our analyses are to investigate
(a) the learning of useful neighbors for sharing queries, (b) the
efficiency of query handling in different real-time scenarios and
with different resource constraints (such as the number of threads
and available translations), and (c) the effects of different concepts
and query demands on collaborative understanding. This paper
reports on the results that we have collected so far.

Keywords
Multiagent systems, distributed ontology learning, dynamic profil-
ing

1. INTRODUCTION
In our previous work, we described a distributed ontology learning
framework in a multiagent environment [1]. There are two ways
that an agent can learn to improve its ontology. First, users can
teach them—by supplying a list of words and what the classifying
concepts are for that list of words. Second, an agent can learn
through its interactions with its neighbors. As a result, each agent
learns its own concepts based on its experiences and specialties.
When a new concept arrives, the agent needs to incorporate it into
its dictionary and its translation table. This is supported by three
important components: conceptual learning, translation, and inter-
pretation, with a Dempster-Shafer belief system [2].

Our research focuses on developing and analyzing the operational
components of our framework, applied to a document retrieval
problem. Each agent interacts with a user who submits queries
based on keywords. These keywords are known as concepts in the
agents. The goal of this problem is satisfy as many queries as
possible and as well as possible. An agent may turn to its

neighbors for help. Thus, this collaboration facilitates the distrib-
uted ontology learning.

To improve communication, these agents must be able to under-
stand each other. Thus, our research goals are to (1) promote
understanding among agents of a community, thus reducing com-
munication costs and inter-agent traffic, (2) improve cooperation
among neighbors of a community, thus enhancing the strength
(productivity, effectiveness, efficiency) of a neighborhood and
supporting the distributed effort of the community, (3) encourage
pluralism and decentralization within a multi-agent community—
specialization of agents of a community since each agent can rely
on its neighbors for tasks not covered by its capabilities, and (4)
enable collaborative learning to improve the throughput of the
community, the intelligence in communication and task allocation,
the self-organization within the community, and integrity of the
community.

At the current phase of our research, the objective is to understand
how collaborative understanding of distributed ontologies is im-
pacted by operational issues such as queries, the number of com-
munication threads, the variability within the translation tables
and so on. Therefore, in this paper, we focus on the operational
design of our infrastructure and the investigations on how
neighborhood profiling, translation tables, and query experience
influence the relationship among collaborative agents. Our ex-
periments are aimed at studying (a) the learning of useful
neighbors for sharing queries, (b) the efficiency of query handling
in different real-time scenarios and with different resource con-
straints, and (c) the effects of different ontological concepts and
query demands on collaborative understanding. In Section 2, we
briefly outline the methodology of our framework. Then we de-
scribe our implementation. Subsequently, we discuss our experi-
ments and results. Finally, we conclude.

2. FRAMEWORK
In our framework, the multiagent system is one in which agents
can exchange queries and messages to learn about each other’s
ontology. To improve the communication and collaboration effi-
ciency, agents determine whether some translation is worth learn-
ing, which neighbors to communicate to, how to handle and dis-
tribute queries, and how to plan for agent activities. The frame-
work consists of two sets of components. The operational com-
ponents allow the agents to work together in a multiagent system.
The ontological components allow the agents to communicate and

SCranefield
47

understand each other. In this paper, we focus on the operational
components of our framework.

When an agent receives a query, it checks the query against its
ontology knowledge base. A query comes with a concept name
and the number of documents or links desired. If the agent cannot
satisfy the query, it will contact its neighbors. If the agent recog-
nizes the concept name but does not have enough documents or
links to fulfill the requirement, then it will approach its neighbors
to obtain more links. If the agent does not recognize the concept
name, then it passes the query to its neighbors. Every agent is
equipped with N number of negotiation threads. For each contact,
an agent has to activate one of these threads. So, if an agent does
not have available inactive negotiation threads, it will not be able
to collaborate with other agents. Hence, even if the agents do
understand each other’s ontologies, it is possible that due to the
query frequency and the resource constraints, the agents may not
be able to utilize that understanding to help solve a query problem.
Since this collaborative activity requires Please refer to [3] and
[1] for details on our original design of operational and ontologi-
cal components, respectively.

2.1. Operational Components
There are three important operational components: query process-
ing, action planning, and query composition. Note that in our
framework, an agent sends out a query to its neighbor when it
needs to find some additional links for that some classifying con-
cepts. Agents are required to compose queries as well as they also
need to relay or distribute queries to other agents by modifying the
queries in their own words. Finally, for the system to be effective,
the query distribution and the ontology learning behavior are sup-
ported by an action planning component that makes decision
based on the agent’s environment such as message traffic and
neighborhood profile.

2.2. Ontological Components
There are three important ontological components in our frame-
work: conceptual learning, translation, and interpretation. We
represent an ontology item as a vector. Each vector consists of the
classifying concept and then a list of words describing that con-
cept. A concept may have many different supporting documents.
Different concepts may be used to classify the same list of words,
resulting in different supporting items. Moreover, for each con-
cept, the agent also learns the description vector, combining all
relevant experience cases together. This allows the system to
incrementally learn and evolve existing ontologies. Currently, we
are still implementing the ontological components and thus will
not report further on them in this paper.

3. METHODOLOGY & DESIGN
An agent performs two types of learning. It learns incrementally,
refining its concepts whenever there is a new submission. It also
learns collaboratively, refining its translation table whenever there
is a query that prompts the agent to ask for help from its
neighbors. Figure 1 depicts the current status of operational com-
ponents of an agent in our framework.

As shown in Figure 1, there are nine important modules:

(1) Interface: This module interacts with the user to obtain que-
ries and to provide queried results. Currently, we have (simu-
lated) software users that automatically generate timed queries for

our experiments. Each software user submits its queries through a
socket connection with the interface.

Figure 1 The current design of the operational components of an

agent in our framework.
(2) Query Processor: This module receives a query from the In-
terface module and processes it. It first checks the agent’s ontol-
ogy base. If the query matches one of the concepts in the ontol-
ogy, the module retrieves the number of links available. If the
query does not find a match in the ontology, the module examines
its translation table. If there are available translations, that means
a collaboration is possible.

(3) Action Planner: This module serves as the main reasoning
component of the agent: (a) If the number of internal links satis-
fies the query, then the action planner simply provides those links
to through the Interface module to the user; (b) otherwise, if the
agent understands the query and finds available translations, it
initiates its collaborative activities; (c) if the agent does not under-
stand the query, it will relay the query to another agent; and (d)
finally, if there are no available translations, the link retrieval
process stops and the agent reports back to the user. Whether a
collaboration is feasible depends on the current status of the agent,
as recorded by the Activity Monitor and Thread Manager mod-
ules. If the agent does not have enough resources for a collabora-
tion, the link retrieval process terminates.

(4) Collaboration Manager: When the action planner calls for a
collaboration, this module takes over. The objective of this mod-
ule is to form an appropriate group of neighboring agents to ap-
proach and distribute the query demands (link allocations) accord-
ingly among them. To design such a collaboration plan, this
module relies on the Neighborhood Profiler module, and the
translation table. Each neighbor is given a utility measure based
on the translation credibility value, the past relationship and the
current relationship. Note that in our original thesis [1], each
translation has a credibility value: two concepts are similar to only
a certain degree. The past relationship is the viewpoint of the
agent of its neighbor of their interactions (or negotiations in our
framework) monitored and stored by the Profiler module. The
current relationship is captured by the Activity Monitor module to
indicate whether the agent is currently engaged in any negotia-
tions with the particular neighbor. A neighbor has a high utility if
the translation credibility of the query in question is high, if the

SCranefield
48

lation credibility of the query in question is high, if the past rela-
tionship is strong, and if there is not any current interaction. The
collaboration manager ranks these neighbors based on the utility
measure and then assigns the query demands accordingly, with the
help of the Query Composer. The manager assigns more links to
neighbors with higher utility proportionally to maximize the
chance of retrieval success. It also collects the negotiation results,
sorts the received links based on the credibility, and filters out
low-credibility links when it has more links than desired.

(5) Query Composer: Based on the allocation of query demands,
this modules composes a specific query for each neighbor to be
approached. As previously mentioned, each query is associated
with a link requirement that specifies the number of links desired.
A query will also include the name of the originator and a time
stamp when it is first generated. If the query is based on a transla-
tion, then the translated concept name is used. If the agent does
not recognize a concept and needs to relay a query it has received
to a neighbor, it simply uses the queried concept directly.

(6) Neighborhood Profiler: The design of this module is based on
our work in coalition formation. As we will later in Section 4, we
keep track of the past relationship between the agent and each
neighbor. The relationship is a composition of four basic num-
bers: _numHelp (the number of times the agent provides help to
the neighbor), _numSuccess (the number of times the agent suc-
cessfully solicits help from the neighbor), _numRequestFrom (the
number of times the agent receives a request from the neighbor),
and _numRequestTo (the number of times the agent initiates a
request to the neighbor) [4]. Based on these numbers, we can
derive helpfulness, usefulness, importance, and reliance of each
neighbor, from the viewpoint of the agent.

(7) Activity Monitor: This modules keeps track of the activities
in a job vector—whether the agent is processing a query on its
own, or negotiating with other neighbors for more links, or enter-
taining a request by a neighbor. Each job is described with a list
of attributes such as the originator, the executor, the task descrip-
tion, the current status, and so on.

(8) Thread Manager: This module housekeeps the threads of the
agent. It is a low-level module that activates the threads, updates
and monitors the thread activity.

(9) Negotiation Manager: This module manages the negotiation
tasks. In our current design, the interaction between two agents
does not involve negotiations as the two simply exchange infor-
mation. However, our long-term plan views negotiation as an
important part of ontology interpretation in a distributed environ-
ment. Negotiations that are too time consuming, stagnant, or no
longer useful will be modified or aborted; negotiations that are
successful will be learned; and so on. We will adapt our previous
work in reflective negotiations [5] to distributed ontology in this
framework.

Together with these nine operational components are three dy-
namic knowledge or data bases: ontology, translation table, and
profiles. The profiles keep track of the relationships between the
agent and its neighbors, updating the neighborhood parameters.
The ontology is a dictionary listing the concepts that the agent
knows. Each concept has a list of supporting documents or links.
The translation table consists of translations between each concept
that the agent knows and its neighbors. Each translation is ac-
companied with a credibility value. Some neighbors may not
have concepts that are similar to a concept that the agent knows

and the credibility value for those entries in the translation table is
NIL. Table 1 shows an example of a translation table for agent
A1. In the example, A1 has four neighbors. It knows of concepts
such as “basketball” and “car”. For “basketball”, it is similar to
N1’s “NBA” with a credibility of 2.1, N2’s “Bball” with a credi-
bility of 1.0, and N4’s “Basketball” with a credibility of 3.4.
However, it does not have a translation for “basketball” between
itself and N3.

Concepts N1 N2 N3 N4
basketball NBA 2.1 Bball 1.0 NIL Basketball 3.4
car NIL Auto 2.1 Car 1.0 Move 1.0
…

Table 1 A translation table example.

4. IMPLEMENTATION
We have implemented all the nine modules of our agent as de-
picted in Figure 1 in C++. Each agent receives its user queries
from a software user through a socket connection, and communi-
cates with other agents through a central relay server module
through socket connections as well. Each agent generates and
maintains its neighborhood profile during runtime dynamically.

For our experiments, each agent is equipped with a translation
table right from the start. Note that in our original distributed
ontology framework [1], the entries in a translation table is
learned over time based on the experience of each agent. In this
paper, we focus on the operational design of collaborative under-
standing of distributed ontologies and assume that each agent has
a translation table to begin with.

In addition, each agent is equipped with an ontology database.
This database lists all the concept terms that an agent knows. For
each concept, there is a list of links (or documents) that are exam-
ples that illustrate the concept. Indeed, when interpreting two
concepts, we simply compare the similarities of the two lists of
links supporting the two concepts. Currently, we are building this
interpretation module.

5. DISCUSSION OF RESULTS
We have performed a comprehensive set of experiments. In this
Section, we will describe our experimental setup and then discuss
the results.

5.1. Experimental Setup
Here is the setup of our experiments:

There are five agents supporting a software user each. All agents
are neighbors and can communicate among themselves. All five
agents and their threads are run on the same CPU.

Every agent has a unique set of nine concepts in its ontology.
Each concept has five supporting links.

Each agent has a translation table where each cell of the table
indicates the translation between a local concept and a foreign
concept in a neighbor and the translation’s credibility value. If a
translation is not available, we use the symbol NIL.

Each software user has a query configuration file. Thus, instead of
manually submitting these queries, the software user simply reads
them from the file and sends them to the corresponding agent. For
each query in a configuration file there are (a) a cycle number, (b)

SCranefield
49

the queried concept name, and (c) the number of link desired. The
cycle number indicates when the query will be submitted to the
agent. (A cycle’s time varies as this measures a loop of activities
of an agent.) Each configuration file has about 300 cycles, and
two batches of exactly the same query scenarios. We want to
investigate whether the agents are able to improve in their re-
sponse time in the second batch after learning how to form col-
laborations better through neighborhood profiling.

In the first batch of query scenarios,

(1) Cycles 0-10: Every user queries about all different concepts
its agent has in the ontology. Each agent is also able to satisfy the
query demand on its own. During this segment, each agent does
not need to collaborate. All queries across the users are submitted
at the same cycles.

(2) Cycles 11-40: Every user queries about all different concepts
its agent has in the ontology. However, each agent is not able to
fulfill all queries on its own. During this segment, each agent
needs to collaborate. All queries across the users are submitted in
a staggered manner. User 1 submits all its nine queries first; user
2 submits its queries after 3 cycles; and so on.

(3) Cycles 41-70: Every user queries about all different concepts
its agent has in the ontology and each agent is not able to satisfy
the queries on its own. Also, the number of links desired for
every query is twice that in the second segment. Extensive col-
laborations are needed. Queries are also staggered in this seg-
ment.

(4) Cycles 71-80: Every user queries about different concepts its
agent does not have in its ontology. This forces the agent to relay
the queries to other neighboring agents. Queries are packed and
not staggered in this segment.

(5) Cycles 81-110: The setup of this segment is similar to that
during cycles 11-40, but with concepts that each agent does not
have in its ontology. Queries are staggered.

(6) Cycles 111-120: During this segment, two users query about
concepts that their agents do not have in their respective ontolo-
gies, two users query about only some concepts that their agents
do not have in their respective ontologies, and one user queries
about concepts that its agent has in its ontology. The queried
number of links is small and no negotiations are needed.

The second batch starts around Cycle 150, and repeats the above
query scenarios. Figure 2 gives a brief overview of our query
scenarios.

Our query scenarios are staggered and packed to investigate the
response behaviors of the agents. Since the number of negotiation
threads is limited for each agent, packed queries with high link
demands may lead to only partial link retrievals. Our query sce-
narios also come with low and high link demands. Low link de-
mands do not require or require fewer collaborations, while high
link demands prompt the agents to plan for collaborative actions.
Finally, an agent may or may not know some of the queried con-
cepts. The agent’s ontology specifies this knowledge. When an
agent knows the queried concept, it has more options, approaching
different neighbors for help. When it does not know the queried
concept, then it shifts the responsibility to one of the neighbors,
essentially making itself a relay station.

The number of links desired for query vs.
cycle numbers

0

5

10

15

20

25

30

1 24 47 70 93 11
6

13
9

16
2

18
5

20
8

23
1

25
4

27
7

Cycles

User 1
User 2
User 3
User 4
User 5

Figure 2 The number of links for the queries submitted by the

software users to the agents for each cycle.
Given the above query scenarios, we further vary two sets of pa-
rameters: the number of negotiation threads and the credibility
values in the translation tables. We vary the number of negotia-
tion threads between 0 and 5. When the number is 0, the agents
do not have collaborative capabilities since they can contact other
agents. When the number is 5, an agent can simultaneously con-
duct 5 negotiations. Thus, this number directly impacts the re-
sources that the agents have to collaborate to satisfy queries. This
is relevant to operational constraints. There are also six sets of
translation tables. In the first set, all credibility values of all trans-
lations are above zero. In this situation, every concept that one
agent knows has four translations. In the second set, one of the
agents has what term as a “narrow ontology”. That is, its transla-
tion table contains many NIL translations, above 50%. (See Table
1.) In the third set, two agents have narrow ontologies. In the
fourth set, three agents do; in the fifth set, four agents do; finally,
all agents do. With these sets, we want to see how successful the
agents are in satisfying high-demand queries. This is relevant to
ontological constraints.

Given the six different numbers of negotiation threads and six sets
of translation tables, we carry out a total of 36 runs using the same
set of query scenarios.

5.2. Parameters Collected
Our long term effort is to study the learning of distributed ontolo-
gies, including the self-modification of the translation credibility
values, and the exchange of ontological knowledge among the
agents. However, at the time of the writing of this paper, we have
not conducted a focused analysis on that.

Instead, our current experiments concentrate on two sets of pa-
rameters:

(1) Neighborhood Profile Parameters: For each neighbor, an
agent collects parameters documenting the outcomes of their past

SCranefield
50

interactions. These parameters are also used in the computation of
a neighbor’s utility measure, as described in Section 3. Table 2
documents the definitions of these parameters.

(2) Query Result Parameters: For each query, an agent collects
parameters documenting the characteristics of the query and the
query outcome. Table 3 documents the definitions of these pa-
rameters.

Parameters Definitions
_numSuccess The number of successful negotiations that

the agent has initiated to neighbor i
_numHelp The number of successful negotiations that

the agent has received from the neighbor i
_numRequestTo The total number of negotiations that the

agent has initiated to the neighbor i
_numRequestFrom The total number of negotiation requests

that the agent has received from neighbor i
_successRate _numSuccess/_numRequestTo
_helpRate _numHelp/_numRequestFrom
_requestToRate _numRequestTo/_totalRequestTo where

_totalRequestTo is the sum of all negotia-
tions that the agent has initiated

_requestFromRate Presently this number is not updated, as
our negotiation design does not incorpo-
rate the argumentative reasoning in [5].
However, we plan to re-visit this number
in the future once the interpretation mod-
ule is completed. This number tells the
agent how much neighbor i relies on the
agent

Table 2 Neighborhood profile parameters.

Parameters Definitions
_originator The originator of the query, either from a

software user (ID) or another agent
_cycle The cycle ID when the query is first gen-

erated
_numLinksDesired The number of links desired by the query
_numLinksRetrieve
d

The number of links retrieved at the end of
the retrieval process and presented to the
user, always smaller than
_numLinksDesired

_conceptName The query keyword
_successQuality numLinksRetrieved/numLinksDesired
_duration The actual elapsed time between the re-

ceipt of a query and the presentation of the
query results to the user

_listLinks The list of links retrieved and presented to
the user at the end of the retrieval process

Table 3 Query result parameters.

5.3. Results
Our overall, longterm plan of analysis aims at analyzing the re-
sults at eight different levels. At level 0, we derive an overview of
the correctness and assessment of the results. At level 1, we want
to analyze the agents’ retrieval quality in the two similar batches
of queries. At level 2, we aim to compare across the agents and
see whether there are significant patterns. At level 3, we want to
look into the retrieval results of each segment. Note that each

segment has its unique set of characteristics (Section 5.1). At
level 4, we want to investigate the role of the concepts. Some
concepts may have few supporting links and some have many. At
level 5, we will analyze the impact of different queries on the
quality of the retrieved results. A query with a high-link demand
may not necessary result in poorer results than one with a low-link
demand. At level 6, we plan to examine closely the impact of the
translation tables with narrow and wide ontologies, and how dis-
tributed ontology learning may help improve the tables for better
query effectiveness. Finally, at level 7, we will study the opera-
tional impact of the threads as a constrained resource.

In this paper, we report on some preliminary level-0 analyses.
Figures 3-7 show the graphs of _successQuality vs. the number of
threads for each software user. Here are some observations:

(1) The average _successQuality of a user’s queries increases as
expected when the number of threads increases. This is because
for high-demand queries that call for collaborations, the agent has
more resources (i.e., negotiation threads) to use.

(2) The average _successQuality of a user’s queries drops signifi-
cantly whenever the corresponding agent has a narrow ontology.
However, the drops are more significant when the number of
threads is smaller. This indicates that link retrieval, in our appli-
cation, benefits from the collaborative distributed ontology design.
When agents are able to collaborate more often, the
_successQuality of a query is higher.

_successQuality vs. number of threads

0

0.2
0.4

0.6
0.8

1

0 1 2 3 4 5

Number of threads

User 1
User 2
User 3
User 4
User 5

Figure 3 The average _successQuality value of each user’s que-
ries vs. the number of threads where no agents have narrow on-

tologies.

_successQuality vs. number of threads

0

0.2

0.4

0.6

0.8

1

0 1 2 3 4 5

Number of threads

User 1
User 2
User 3
User 4
User 5

Figure 4 The average _successQuality value of each user’s que-
ries vs. the number of threads where agent 1 has narrow ontology.

SCranefield
51

_successQuality vs. number of threads

0

0.2

0.4

0.6

0.8

1

0 1 2 3 4 5

Number of threads

User 1
User 2
User 3
User 4
User 5

Figure 5 The average _successQuality value of each user’s que-
ries vs. the number of threads where agents 1 and 2 have narrow

ontologies.

_successQuality vs. number of threads

0

0.2

0.4

0.6

0.8

1

0 1 2 3 4 5

Number of threads

User 1
User 2
User 3
User 4
User 5

Figure 6 The average _successQuality value of each user’s que-
ries vs. the number of threads where agents 1, 2, and 3 have nar-

row ontologies.

_successQuality vs. number of threads

0

0.2

0.4

0.6

0.8

1

0 1 2 3 4 5

Number of threads

User 1
User 2
User 3
User 4
User 5

Figure 7 The average _successQuality value of each user’s que-
ries vs. the number of threads where agents 1, 2, and 3 have nar-

row ontologies.

(3) Figure 8 shows the average _successQuality and standard
deviation of all queries for each number of threads. As we can
see, with a higher number of negotiation threads, queries are satis-
fied more successfully (high average values), and also more con-
sistently (low standard deviation values).

(4) Figure 9 shows the average _successQuality for agents with
narrow ontologies and those with non-narrow ones. Note that if
agent A1 does not have a translation for mapping its concept name
C1 to any of agent A2’s, that does not necessarily mean that A2
does not have a translation mapping one of its concepts to A1’s
concept name C1. This is by design as we ultimately aim to show
how collaborative agents can learn new translations or refine old
ones as they help each other in satisfying queries. As observed,
the number of narrow ontologies does not impact the success qual-
ity. From the operational point of view, this is unexpected. When
the number of narrow ontologies within the multiagent system
increases, we expect that more agents would relay queries to their
neighbor, and that would cause the negotiation threads to be used
more frequently.

 (5) Figure 10 shows the average _duration (in seconds) for each
query to be processed and presented back to software user 1 (by
only agent 1), for different numbers of negotiation threads. As
observed, when the number of threads increases, it takes longer
for a query to be responded to. This observation was not antici-
pated. However, upon further analysis, we realize the following.
When an agent has more threads, not only it can approach more
neighbors for help, but it also receives more requests for help from
other agents. As a result, the agent manages more tasks and slows
down its processes for retrieving and supplying results to the soft-
ware users. This indicates an oversight in our design with regards
to the efficiency of our implementation. We are currently review-
ing our program code to pinpoint the places where we could opti-
mize the multi-threaded programming portion. We will also
perform the same analysis on all other software users and agents
to see whether the same patterns are observed as well.

_successQuality vs. number of threads

0

0.2

0.4

0.6

0.8

1

0 1 2 3 4 5

Number of threads

stdev

average

Figure 8 The average and standard deviation of the
_successQuality for all users vs. the number of threads.

SCranefield
52

_successQuality vs. # of narrow ontologies

0
0.2
0.4
0.6
0.8

1

0 1 2 3 4
Number of narrow ontologies

_sQnarrow

_sQwide

Figure 9 The average _successQuality for agents with narrow

ontologies and agents with non-narrow ontologies. The
_sQnarrow value for the 0 narrow ontologies is not applicable.

_duration vs. number of narrow ontologies

0

2

4

6

8

10

12

14

16

18

0 1 2 3 4 5

Number of narrow ontologies

se
co

nd
s

0 threads
1 threads
2 threads
3 threads
4 threads
5 threads
ave

Figure 10 The average _duration for agent 1, for different num-

bers of threads, vs. the number of narrow ontologies.

(6) From Figure 10, the average _duration values for the different
numbers of narrow ontologies are 9.96, 7.66, 7.41, 7.73, 8.15, and
8.24 seconds, respectively. The multiagent system where the
agents do not narrow ontologies, unexpectedly, have the highest
average _duration value. This value drops, has a minimum when
the number of narrow ontologies is two, and then climbs up con-
sistently for the next three sets. We are currently investigating the
reasons behind this curve, to at least explain the data of the 0-
narrow ontology case. Coupling the above observation with that
in from Figure 9, we see that when the number of narrow ontolo-
gies increases (starting from number = 2), even though the
_successQuality value remains mostly the same, the _duration
value starts to dip. This clarifies somewhat our study.

(7) Figure 11 shows the average neighbor profile of agent 1 of its
neighbors: _numSuccess, _numHelp, _numRequestTo, and
_numRequestFrom. The values of _numHelp and

_numRequestFrom are the same; that is, the _helpRate is 100%.
For this agent 1, the number of times it has requested for help is
smaller than the number of times it has entertained other agents’
requests. This indicates that the query scenarios tend to invoke
collaborations, causing the originating agents to ask for help from
many different neighbors. From the graph, we see that the agent
approaches more neighbors for help as it has more negotiation
threads. However, when the number of threads is 5, the rate levels
off just a little, indicating that a convergence may occur when the
number of threads is larger than 5. This means that in our current
experimental setup, our link demand is still more than what the
agents can handle.

Average neighbor profile vs. # of threads

0
20
40
60
80

100
120
140
160
180
200

1 2 3 4 5
Number of threads

_numSuccess
_numHelp
_numRequestTo
_numRequestFrom

Figure 11 The average neighbor profile for agent 1 of its

neighbors vs. the number of threads

(8) Figure 12 shows the average _successRate vs. the number of
threads available. As observed, the agent is able to negotiate more
successfully when the number of threads increases. This is ex-
pected since with more threads available, an agent is able to enter-
tain more requests. Coupling this with Figure 11, we see that
agent 1 is able to conduct more negotiations more successfully
when the number of threads increases—more effectively and more
efficiently. This is a good indicator that would help guide the
design of distributed ontology learning in our work.

Average _successRate vs. # of threads

0.7
0.75
0.8

0.85
0.9

0.95
1

1 2 3 4 5
Number of threads

Figure 12 The average neighbor profile for agent 1 of its
neighbors vs. the number of threads

(9) Figure 13 shows the _requestToRate vs. the number of threads
available. As observed, when the number of threads is 1, agent 1
relies on agent 2 (or N1) almost heavily. This is due to the fact
that in the beginning of an agent, all neighbors are weighted very

SCranefield
53

similarly; as a result, the agent will approach the first neighbor
that it knows. However, as the number of threads increases, the
agent is able to collaborate more with other neighbors. As a re-
sult, the reliance on N1 greatly decreases. Meanwhile, the reli-
ance on the other three neighbors steadily increases. This is a
good lesson, as we now know that in order for the system to ex-
hibit un-intended bias favoring one neighbor over next, we need to
have enough number of threads, laying the groundwork for the
distributed ontology learning design of our work.

_requestToRate vs. number of threads

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

1 2 3 4 5
Number of threads

N1

N2

N3

N4

Figure 13 The _requestToRate from agent 1 to its neighbors, N1

(agent 2), N2 (agent 3), N3 (agent 4), and N4 (agent 5) vs. the
number of threads.

6. CONCLUSIONS
In this paper, we have described our work-in-progress with col-
laborative understanding of distributed ontologies in a multiagent
framework, focusing on the operational components. We have
outlined the methodology and design of our framework. The
methodology involves building agents with key operational com-
ponents to support ontological functions such as query processing,
query composition, negotiation, and collaboration. We have also
briefly discussed our implementation. We have focused mainly
on our on-going experiments. We have described our query sce-
narios, translation tables, and ontologies, as well as two key sets
of parameters colleted from our experiments: neighborhood pro-
file and query result parameters. Our experiments have generated
a lot of data that we are currently reviewing and investigating.
We have reported on some preliminary, low-level analyses to give
an overall assessment of our system’s feasibility and correctness.
In general, we see that the number of negotiation threads available

to each agent in the system has a key role in determining the
_successQuality of a query task, the average _successRate of a
negotiation, and the degree of collaboration among agents. We
also see that the number of “narrow” ontologies influences the
agents’ behaviors negligibly. We plan to look into this finding
further.

Our immediate future work includes (1) completing the 7 levels of
analyses identified in this paper to analyze our infrastructure, (2)
finishing the interpretation module to add complexity into the
negotiation protocols, (3) activating the learning mechanism so
that the translation credibility values can be revised dynamically,
and (4) investigating the usefulness of the utility measure and its
impact on the accuracy of translation. For the last item, remember
that the utility measure of a neighbor is based on the credibility of
the particular translation as well as the agents’ relationships. That
means, even if a neighbor is very knowledgeable (with high credi-
bility), an agent may not approach that neighbor for help if the
_successRate is low. As a result, our distributed ontology learning
may be biased towards how close two agents have collaborated,
and factor in less importantly the actual accuracy of the transla-
tion. Thus, in a way, we are addressing a type of operational
distributed ontology: agents learn ontologies that are useful and
credible to them, instead of only learning ontologies that are
highly credible to them.

7. ACKNOWLEDGMENT
The author would like to thank JingFei Xu for her programming
and running the experiments for this project.

8. REFERENCES
[1] Soh, L.-K. 2002. Multiagent, Distributed Ontology Learn-

ing, Working Notes of the 2nd AAMAS OAS Workshop, July,
Bologna, Italy.

[2] Shafer, G. 1976. A Mathematical Theory of Evidence,
Princeton, NJ: Princeton University Press.

[3] Soh, L.-K. 2002. A Mutliagent Framework for Collaborative
Conceptual Learning Using a Dempster-Shafer Belief Sys-
tem, Working Notes of AAAI Spring Symposium on Collabo-
rative Learning Agents, Stanford, CA, Mar 25-27, pp. 9-16.

[4] Soh, L.-K. and Tsatsoulis, C. 2002. Satisficing Coalition
Formation among Agents, Proceedings of AAMAAS’02, July,
Bologna, Italy.

[5] Soh, L.-K. and Tsatsoulis, C. 2002. Reflective Negotiating
Agents for Real-Time Multisensor Target Tracking, in Pro-
ceedings of IJCAI’01, Seattle, WA, Aug 6-11, pp. 1121-
1127.

SCranefield
54

A UML ontology and derived content language for a travel
booking scenario

Stephen Cranefield, Jin Pan and Martin Purvis
Department of Information Science

University of Otago
PO Box 56, Dunedin, New Zealand

scranefield@infoscience.otago.ac.nz

ABSTRACT
This paper illustrates an approach to combining the benefits of a
multi-agent system architecture with the use of industry-standard
modelling techniques using the Unified Modeling Language (UML).
Using a UML profile for ontology modelling, an ontology for travel
booking services is presented and the automatic derivation of an
object-oriented content language for this domain is described. This
content language is then used to encode example messages for a
simple travel booking scenario, and it is shown how this approach
to agent messaging allows messages to be created and analysed
using a convenient object-oriented application-specific application
programmer interface.

1. INTRODUCTION
This paper is a response to the challenge problem for the AAMAS
2003 Workshop on Ontologies in Agent Systems. The challenge
problem [1] was based on the description of a travel agent domain
previously developed for an ontology tool assessment exercise or-
ganised by the Special Interest Group on Enterprise-Standard On-
tology Environments within the European Union’s OntoWeb re-
search network [2]. The OAS’03 challenge was to “describe the
design and (preferably) an implementation of a multi-agent system
in that domain” with emphasis on “the ways in which ontological
information is referenced, accessed and used by agents”.

In this paper we illustrate the application of our previous work on
the use of the Unified Modeling Language (UML) for ontology
and content language modelling [3] and the automatic generation
of Java classes from these models [4]. This work rests on four ob-
servations:

� The Unified Modeling Language is a widely known and stan-
dardised modelling language with a compact graphical nota-
tion, an XML-based serialisation format, and a lot of existing
tool support. We believe that the use of UML for ontology
modelling has great benefits in terms of industry acceptance
of agent technology. Its principal weakness is the lack of (of-
ficial) formal semantics, but we believe that ongoing efforts
in this direction will remove this shortcoming.

� Much current software development is done using the Java
programming language, and the majority of widely used agent
development tools are based on Java. Programmers using
these tools are most familiar with the use of object-oriented
representations and application programmer interfaces (APIs).

Internet
Serialized knowledge

Domain

knowledge

Instance

knowledge

Schema

in terms of

in UML in UML

.. {

 ...(.) {

 }

}

Java classes Java objects

<....>

 <....>

 <...>

 <.>

<..>

RDF

Figure 1: Overview of our approach

� The use of object-oriented structures to refer to domain ob-
jects within messages is convenient, but must be restricted
to precise well understood usages in order to avoid semantic
problems. [5].

� Multi-agent systems must coexist and interact with other dis-
tributed systems (both technological and human). These other
systems have existing techniques for referring to domain ob-
jects using reference schemes such as World Wide Web Uni-
form Resource Identifiers (URIs). This style of reference
goes beyond the notion of “standard names” (logical con-
stants that denote each domain object) that lie behind the se-
mantics of FIPA ACL’s ��������� communicative act, and
it is desirable to allow agents to use a more general notion of
object reference when answering queries.

These observations have led us to develop our UML-based model-
driven approach to implementing multi-agent systems. In Section 2
we give a brief overview of this approach, before presenting a sim-
ple UML travel booking ontology in Section 3, a discussion of the
automatically generated ontology-specific content language in Sec-
tion 4 and an illustration of its use in an agent application in Sec-
tion 5. The paper closes with some comments on the applicability
of this techique and some areas for future work.

2. OVERVIEW OF OUR APPROACH
Figure 1 presents a schematic overview of our approach to design-
ing and implementing the message-handling component of agent
systems.

SCranefield
55

The designer of an agent must have a mental model of the con-
ceptual structure of the domain (the ontology) as well as an un-
derstanding of the structure of information describing instances of
these concepts and their relationships. We believe the graphical
nature of UML makes it a powerful tool for visualising these mod-
els: an ontology can be represented by a UML class diagram and
instance information can be conveyed as a UML object diagram
that shows the values of object attributes and the links (instances of
associations) that exist between objects.

When creating the agent application, the programmer must trans-
late these mental models into structures that can be manipulated
within a programming language. When using Java, the natural
counterpart to a concept in an ontology is a Java class. Although
other representations can be used, such as string-based encodings
of languages defined by grammars, the most convenient represen-
tation for a Java programmer is to have Java classes corresponding
directly to the concepts that the agent will need to refer to when
manipulating information about the world. To make this possible,
we have defined XSLT [6] stylesheets that produce Java class def-
initions from an XMI [7] serialisation of a UML model (currently
we support XMI 1.0 for UML 1.3) [4].

As agents need to communicate information about the world, it is
beneficial to provide a straightforward mapping from the progam-
mer’s model of the domain (inter-related Java objects in our case)
and the content language used to encode information within mes-
sages. However, standard agent content languages such as FIPA
SL and KIF use a string-based logical representation. These are
also generic and weakly typed languages in which domain con-
cepts can only be referred to by name, rather than by more stongly
typed mechanisms such as instantiation, and thus messages that do
not conform to the agent’s known ontologies can only be detected
by run-time analysis. As an alternative to this approach, our Java
classes generated from the ontology have a built-in serialisation
mechanism that allows networks of inter-related objects describing
domain objects to be included within messages. The serialisation
uses the XML encoding of the Resource Description Framework
(RDF) [8], which makes reference to concepts defined in an RDF
schema that is also generated automatically from the ontology in
UML [9].

This mechanism can also be used to serialise entire messages, in-
cluding the outer agent communication language (ACL) layer. By
defining the ACL in UML as well, and defining a set of UML
‘marker’ interfaces representing the concepts (such as predicate
and action description) that comprise the required argument types
for the ACL’s various communicative acts, it is possible to concep-
tualise messages with arbitrary content languages (if modelled in
UML) as object diagrams (see Figures 5 and 6 later in the paper).

Figure 2 illustrates how this technology can be integrated with a
Java-based agent platform, and highlights a crucial aspect that ad-
dresses the third observation from the introduction: the need for
careful use of object-oriented representations within messages. The
figure shows a number of UML models: an ontology (top left),
ACL and generic (i.e. SL-like) content language definitions, and
an ontology-specific content language (top right). The ACL and
the content languages are given as input to the XMI-to-Java trans-
formation, and this results in Java classes that provide an object-
oriented application programming interface that sits on top of the
platform’s built-in messaging system classes. However, the ontol-
ogy is not directly translated to Java classes. We regard an ontology

ACL

Ontology in UML Ontology-specific
content language

in UML

ACL in UML

Generic
content language

in UML

Agent Messaging System

Generic
CL

Ontology-
specific CL

Agent application

. . .

Java-based agent
platform

XSLT

XSLTXSLT

XSLT

(XMI to XMI)

(XMI to Java)(XMI to Java)

(XMI to Java)

Messages
serialized via

RDF/XML

Figure 2: Integration with an agent platform

as a model of the problem domain, not as a model of the language
used to encode information about the domain. In other words, an
instance of an ontological class �	
 would be an actual dog, not
a description of a dog. When a structured expression correspond-
ing to the structure of the �	
 class appears within a message, this
cannot be taken to be playing the role of a logical term (which al-
ways has a unique denotation), but instead might (depending on the
context) play the role of a proposition (stating that an object with
the specified properties exists) or an identifying reference expres-
sion (a reference to a possibly non-existent or non-unique object
by describing its attribute values) [5, 3].

To avoid any confusion between the notions of ontology and con-
tent language, we provide the facility to use domain-specific object-
oriented expressions within messages by generating from the on-
tology a UML model representing a specialised ontology-specific
content language. From this, Java classes can be generated as for
the ACL and generic content languages models. The generated
ontology-specific content language for the travel booking domain
is described in Section 4 and its use to create messages is illustrated
in Section 5.

3. A TRAVEL BOOKING ONTOLOGY IN
UML

Figure 3 shows a simple ontology in UML for the travel booking
scenario. This uses two stereotypes, �resourceType� and �value-
Type� from a UML profile for ontology modelling that has been
presented previously [3]. A resource type is a type of class for
which the instances have an intrinsic identity, i.e. two instances
with the same attribute values can be distinguished from each other.
There is a possibility that an object of that class might be referred
to using an identifier such as a unique name in some naming sys-
tem, a UUID, or a World Wide Web Uniform Resource Identifier
(URI). The semantics of the stereotype declare that the class has an
additional optional association with a class representing some type
of reference (e.g. the concept of a URI). This type is declared using
a tagged value in the resource type class declaration, but this fea-
ture will not be used in this paper. The resource types in the travel
booking ontology are ���	���, �	������	�, and ����� and
its subclasses �	��, ��� and ����	�.

SCranefield
56

<<valueType>>

Journey

<<valueType>>

TravelComponent

startDate : Date

endDate : Date

description : String

<<valueType>>

Stay

<<valueType>>

AirJourney

<<resourceType>>

Place

name : String

subPlace-superPlace

relationship is transitive

Only one of the associations

or the description attribute

can be instantiated at once

<<valueType>>

FlightSegment

airline : String

flightCode : String

depTime : DateTime

arrTime : DateTime

<<resourceType>>

Airport

code : String

'from' and 'to' have the same

values (respectively) as 'from'

of the first segment and 'to' of

the last segment.

Also, the 'depTime' and

'arrTime' attributes of the

segments respect the ordering

of the segments

Only one of the associations

or the description attribute

can be instantiated at once

All attributes have

multiplicity 0..1

<<resourceType>>

Hotel

address : String

<<resourceType>>

Customer

name : String

<<resourceType>>

Consultation

startDate : Date

status : String

<<resourceType>>

City

<<valueType>>

Itinerary

0..*

0..1

from

0..*

0..1

0..*

0..1

to

0..*

subPlace

0..*

superPlace

0..*

0..1

0..*

to

0..*

from

1..*

{ordered}

0..*

1..*

requirement

{ordered}

1..*

0..1

Figure 3: A travel booking ontology

SCranefield
57

A value type is a class with the opposite property: two instances
with the same attribute values cannot be distingushed. Essentially
it defines a type for (potentially complex) structured values that can
be treated as logical terms within messages. Although there may be
concepts included in an ontology which intrinsically seem to have
this property, in many other cases the labelling of a class as a value
type is a pragmatic decision about how instances of that type will
be treated during inter-agent communication. It is a declaration
that the Semantic Web principle that anything can be referred to
using a URI will not be applied to instances of this class. Agents
can expect to receive values of these types explicitly within mes-
sages, rather than have them referenced using URIs or other refer-
ence types. Also, they do not need to include mechanisms to keep
track of references for those types. For example, in the ontology
shown, the �������� class is declared to be a value type. Neither
party in a travel booking conversation needs to be prepared to store
references associated with itineraries, whereas it is expected that
customers and consultations may be referred to by ID codes. This
does not mean that an agent cannot make a query about an existing
itinerary, but it must be done indirectly, e.g. by using an identifying
reference expression that means “the itinerary associated with the
consultation beginning on 15 July 2003 for the customer with code
C05321”.

The ontology defines a class �������	��	��� which represents
both customer requirements and the proposed components of an
itinerary returned by the travel agent. This dual use is achieved by
defining the attributes of the �������	��	��� class and the as-
sociations of its subclasses ���, �	����� and ����	����� to be
optional. A requirement can then be vaguely specified by providing
only some of the possible information about a travel component.
In an extreme case, only a value for the ��������	� string at-
tribute might be provided (although this paper does not attempt to
explain how a software agent might understand a textual descrip-
tion of the customer’s requirements). For a travel component that
is associated with an itinerary, it is expected that all information
is provided, with the possible exception of the ��������	� at-
tribute (this constraint could be included in the ontology, but is not
modelled at present). Note that a consultation object may be linked
directly with travel components representing the customer require-
ments as well as indirectly with other, different, travel component
objects via an itinerary. The latter represent the final bookings.

The ontology includes a number of constraints presented as notes
in dog-eared rectangles. These could be defined in more detail us-
ing the UML’s Object Constraint Language, but are shown here
in English for clarity. It is not intended that these constraints be
used for inference in the current design—rather they serve as part
of the specification for the correct implementation of agents using
this ontology.

The ontology is not intended to be a complete model of the travel
booking domain. It does not include many concepts needed for a
realistic account (including the cost for a given itinerary). Also,
to keep the model simple it does not use some features of UML
that could provide a better model, such as the definition of an enu-
merated type defining a set of allowed values for the �	������	�
class’s ���� attribute. For simplicity we regard the types ����
,
��� and ������� as being ‘built in’ primitive types in our UML
profile which are handled specially during the generation of Java
classes.

Ontology-
Specific CL

«valueType»
AirJourney

«resourceType»
City

Ontology

AirJourney

City

CityPattern

CL::ValueTerm

CL::Proposition

«derive»

«derive»

«derive»

ACL
SL

OOCL

 boundVarName : String

OODefDescription

CL::DefDescription

 varName : String [0..1]
 constraint : String [0..1]

PatternNode root

1 1

AirJourneyPattern«derive»

AirJourneyDescription CL::IRE

CityDescription CL::IRE

«derive»

«derive»

CL

Figure 4: Derived classes in an ontology-specific content lan-
guage

4. THE ONTOLOGY-SPECIFIC CONTENT
LANGUAGE

Figure 4 presents an overview of the classes that are generated from
the ontology to form the ontology-specific content language. The
UML package in the middle of the diagram (“Ontology-Specific
CL”) contains the generated classes. This also includes classes
from two other packages: SL (a UML model of a generic content
language based on FIPA SL) and ACL (a UML model of a FIPA-
style agent communication language). The inclusion of these addi-
tional classes allows complex statements to be formed using con-
nectives from the SL language and also the use of ACL expressions
to represent communicative actions (the details of this are beyond
the scope of this paper). The CL package contains the set of marker
interfaces that represent the generic types of expression that content
languages are designed to describe (such as propositions and action
descriptions). There is also a package OOCL shown. This defines
some support classes used to create identifying reference expres-
sions as networks of inter-connected “pattern nodes”. These pat-
tern node networks are used to describe an object by its properties
and (possibly complex) inter-relationships with other objects.

To illustrate the nature of the derived classes in the ontology-specific
content language we show the classes that correspond to two partic-
ular classes in the ontology: one that is a value type (����	�����)
and one that is a resource type (���). Each of these classes re-
sults in three generated classes in the ontology-specific content lan-
guage. (Note that the dashed arrows labelled �derive� are UML
dependencies, so they are directed from each derived class back to
the one it depends on.)

As discussed in Section 3, an instance of a valuetype can be treated
as a logical term within a content language, and so a correspond-
ing class with the same name and structure (e.g. ����	�����) is
generated and declared to implement the ���� �������� inter-
face. Some associations between ����	����� and other classes
may need to be modified when translated to the new content lan-

SCranefield
58

guage, e.g. a reference to a resource type must be replaced by a
reference to a derived . . .��������	� class for that resource type
(this type of class is discussed below). However, the details of the
mapping rules for value types and for resource types are beyond the
scope of this paper.

An agent might also want to refer to a value type instance using
an identifying reference expression. Therefore, for each value type
class there are two corresponding generated classes that can be used
for this purpose: a simple . . .��������	� class and a more com-
plex . . .����� class. The description class (e.g. ����	�����
��������	�) implements the interface �����!" to show that that
this can be used as an identifying reference expression (in particu-
lar, as a definite description—the only type of IRE currently sup-
ported). Under the mapping, all attributes and associations become
optional because (for example) although an air journey in real life
must necessarily have at least one flight segment, it is possible to
refer to an air journey simply by specifying its date or departure
and arrival cities.

The . . .����� class is the same as the . . .��������	� class,
except it also extends the class ##���������$	�� and any as-
sociation with another class must be changed to be an association
with the appropriate . . .����� class. The use of this type of class
is illustrated in Figure 5 (which is discussed later in the paper).

For resource type classes, there can be no derived class that im-
plements the ���� �������� interface as it is not semantically
meaningful to embed instances of that type within a message1.
Instead, corresponding . . .��������	� and . . .����� classes
are generated, as for value types. In addition, a class implement-
ing ������	�	���	� is generated in order to allow a convenient
object-oriented form of proposition about objects to be used within
messages. For this generated class, all attributes and associations
become optional.

Further details of this approach to generating ontology-specific con-
tent languages can be found elsewhere [3], although the presenta-
tion here takes account of some subsequent minor updates to that
previous work.

5. USING THE GENERATED CONTENT
LANGUAGE

In this section we illustrate the use of an ontology-specific con-
tent language generated from the travel booking ontology. Fig-
ures 5 and 6 show UML object diagrams representing (respectively)
query and response messages in a conversation between a customer
and a travel booking agent. The query is an instance of the class
%����!�� (predefined in the ACL package). This corresponds to
the FIPA ��������� message type which represents a question
asking another agent to identify an entity that satisfies particular
properties. The content part of the message (represented by a link
from the %����!�� object in Figure 5) is a instance of the class
##�����������	� shown at the bottom of Figure 4. This class
represents an object-oriented version of the �	� binding operator
from FIPA SL. It has an attribute &	��� ��$��� representing a
variable name to be used to refer to the subject of the ���������.
This object is then linked to a network of typed pattern nodes, each
of which describes some object in terms of its attributes and rela-

�We would argue that even electronic entities such as instances of
electronic currency are best regarded as external objects that agents
refer to using references.

tionships with other objects. One of these pattern nodes is expected
to have a ���$��� attribute value matching the &	��� ��$���

value of the ##�����������	� object. The other nodes may also
have variable names specified, and these may be referred to within
Object Constraint Language expressions appearing as the values of
the optional �	������ attribute of other nodes (this feature is
not used in Figure 4). The message in the figure represents the
following query:

Given a customer named Stephen Cranefield having a consultation
with the requirements of flying from Dunedin to Melbourne on 14
July 2003 and needing accommodation there from the 14th until the
19th, what is the associated itinerary? (For simplicity, we assume
our hero wishes to remain uncommitted after the 19th).

Figure 6 shows a UML object diagram representing a possible reply
to this request. The message is an instance of the ���	��!�� class
from the ACL package. This is a structured version of FIPA ACL’s
���	������ message type with two content expressions: a definite
description (generally this will be the one that was included in the
preceding ���������) and an expression that identifies the entity
that satisfies the query—this may be a value of a primitive type or
a value type, a reference to an object (e.g. a URI), or another, hope-
fully more detailed, definite description. In the case of Figure 6, the
definite description (not depicted in full) is the same as the one con-
tained in the query message, with two additional links that provide
references for the customer and the consultation objects.

The bottom part of Figure 6 represents the answer to the query
and contains an instance of the �������� value type that com-
prises fully detailed value type instances for the air journey and the
stay. The details about the hotel, airports and cities are encoded by
links to . . .��������	� objects, which describe those external in-
stances of resource types in terms of their attribute values and some
required relationships between the objects.

Note that these diagrams conceptualise the messages as UML ob-
ject diagrams. As shown in Figure 1, the messages are physi-
cally realised as Java objects within the agent at run time and as
RDF documents when being transported between agents. The Java
classes are generated using an XSLT stylesheet [4] and they include
code that handles the marshalling and unmarshalling of messages
between the in-memory Java representation and the RDF serialisa-
tion format [9].

Figure 7 shows an example of how the query message can be cre-
ated and sent from Java code, using the generated classes for the
ACL and the content language (this is based on a simplication of
the ACL model presented previously [3]).

There is no doubt that using this object-oriented API to construct
messages is far more cumbersome for the programmer than writ-
ing a string in FIPA SL. However, it is likely that most messages
will be constructed dynamically within code rather than by a static
sequence of Java statements as shown in the figure. This approach
also has the benefits of being strongly typed and model-driven: sup-
port for new ACLs and content languages can quickly be provided
once they have been defined using UML. Furthermore, any disad-
vantages for the creation of messages are balanced by advantages
in the analysis of incoming messages: it is much easier to exam-
ine a message using its object structure than by performing string
matching operations.

SCranefield
59

varName = <no value>
constraint = <no value>

 : CustomerPattern
root

value = "Stephen Cranefield"
varName = <no value>
constraint = <no value>

 : StringPattern
name

boundVarName = "i"

 : OODefDescription

varName = <no value>
constraint = <no value>

 : ConsultationPattern

varName = "i"
constraint = <no value>

 : ItineraryPattern

startDate = 2003-07-14
endDate = 2003-07-14
description = ...
varName = <no value>
constraint = <no value>

 : AirJourneyPattern

startDate = 2003-07-14
endDate = 2003-07-19
description = ...
varName = <no value>
constraint = <no value>

 : StayPattern

requirement

requirement

name = "Dunedin"
varName = <no value>
constraint = <no value>

 : PlacePattern

name = "Melbourne"
varName = <no value>
constraint = <no value>

 : PlacePattern

from

to

place

 : QueryRef
Links representing other ACL message
components (e.g. sender and receiver)

have been omitted.

Figure 5: A travel booking request message

6. CONCLUSION
This paper has addressed the OAS’03 workshop challenge prob-
lem by illustrating the application of our UML-based model-driven
approach to defining ontologies and then automatically generating
related ontology-specific content languages along with correspond-
ing Java classes and an RDF-based serialisation mechanism. We
believe this approach has strong benefits for the software engineer-
ing task of designing and implementing agents to peform particular
tasks in a given domain. Our work does not currently provide sup-
port for the construction of agents that are expected to have more
general abilities, where inference may be required in order to deter-
mine how to respond to messages (although inference mechanisms
based on object networks could be developed).

This technique is being incorporated into the Opal FIPA-compliant
agent platform developed at the University of Otago.

An important avenue for future work is the enhancement of the API
offered to programmers for constructing messages by providing a
larger range of constructors in the generated classes. It would also
be highly desirable to develop a technique for annotating the UML
definition of ACLs and content languages with information that de-
scribes a concrete string-based syntax in such a way that parsers
for this language can be generated automatically. This will allow
interoperation with traditional FIPA agent platforms and will also
give programmers the option of using the string-based syntax for
creating messages within agent application code.

7. REFERENCES
[1] OAS 2003 Committee. OAS’03 challenge problem.

http://oas.otago.ac.nz/OAS2003/Challenge/challenge.html,
2003.

[2] OntoWeb project. Project Web pages.
http://www.ontoweb.org, 2003.

[3] S. Cranefield and M. Purvis. A UML profile and mapping for
the generation of ontology-specific content languages.
Knowledge Engineering Review, 17(1):21–39, 2002.

[4] S. Cranefield, M. Nowostawski, and M. Purvis. Implementing
agent communication languages directly from UML
specifications. In Proceedings of the 1st International Joint
Conference on Autonomous Agents and Multi-Agent Systems
(AAMAS 2002), volume 2, pages 553–554. ACM Press, 2002.

[5] Stephen Cranefield and Martin Purvis. Referencing objects in
FIPA SL: An analysis and proposal. In Proceedings of the
Workshop on Agentcities: Challenges in open agent
environments, 2nd International Joint Conference on
Autonomous Agents and Multi-Agent Systems (AAMAS 2003),
2003.

[6] XSL transformations (XSLT) version 1.0. World Wide Web
Consortium Web page, 2003. http://www.w3.org/TR/xslt.

[7] XML metadata interchange specifications. Object
Management Group, 2003. http://www.omg.org/technology/
documents/modeling spec catalog.htm#XMI.

[8] Resource Description Framework. World Wide Web
Consortium Web page, 2003. http://www.w3.org/RDF/.

[9] S. Cranefield. UML and the Semantic Web. In I. Cruz,
S. Decker, J. Euzenat, and D. McGuiness, editors, The
emerging Semantic Web, pages 3–20. IOS Press, Amsterdam,
2002.

SCranefield
60

varName = <no value>
constraint = <no value>

 : CustomerPattern
value = "C03412"
varName = <no value>
constraint = <no value>

 : StringPattern
ref

varName = <no value>
constraint = <no value>

 : ConsultationPattern
value = "JS218"
varName = <no value>
constraint = <no value>

 : StringPattern
ref

 : InformRef
Links representing other ACL message
components (e.g. sender and receiver)

have been omitted.

boundVarName

 : OODefDescription
root

Definite description
subtree the same

as in the QueryRef
message, with the
addition of the two

'ref' links shown here

defDescription

Itinerary

startDate = 2003-07-14
endDate = 2003-07-14
description = <no value>

 : AirJourney

startDate = 2003-07-14
endDate = 2003-07-19
description = <no value>

 : Stay

name = "Mercure"
address = "..."

 : HotelDescription

airline = "Air New Zealand"
flightCode = ...
depTime = ...
arrTime = ...

 : FlightSegment

name = "Melbourne ..."
code = "MEL"

 : AirportDescription

name = "Dunedin ..."
code = "DUD"

 : AirportDescription
name = "Christchurch ..."
code = "CHC"

 : AirportDescription

airline = "Air New Zealand"
flightCode = ...
depTime = ...
arrTime = ...

 : FlightSegment

name = "Melbourne"

 : CityDescription

refOrValue { ordered }

{ ordered }

name = "Dunedin"

 : CityDescription

to
from

subPlace

superPlace

subPlace

superPlace

subPlace

superPlace

from to tofrom

Figure 6: A reponse message from the travel booking agent

SCranefield
61

// Construct query structure containing variable i
CustomerPattern cust = new CustomerPattern();
ConsultationPattern cons = new ConsultationPattern();
ItineraryPattern itin = new ItineraryPattern();
StringPattern custName = new StringPattern();
AirJourney journ = new AirJourney();
Stay stay = new Stay();
Date monday = new Date(2003, 7, 14);
Date saturday = new Date(2003, 7, 19);
PlacePattern dunedin = new PlacePattern();
PlacePattern melbourne = new PlacePattern();
custName.setValue("Stephen Cranefield");
cust.setName(custName);
dunedin.setName("Dunedin");
melbourne.setName("Melbourne");
journ.setStartDate(monday);
journ.setEndDate(monday);
journ.setFrom(dunedin);
journ.setTo(melbourne);
stay.setStartDate(monday);
stay.setEndDate(saturday);
stay.setPlace(melbourne);
itin.setVarName("i");
Set reqs = new HashSet(); reqs.add(journ); reqs.add(stay)
cons.setRequirement(reqs);
cons.setItinerary(itin);
// Construct message object
Message m = new QueryRef(new AgentRef("agent1"), // Sender

// Recipients:
Collections.singleton(new AgentRef("agent2")),
// Content:
new OODefDescription("i", patternNetwork));

// Send message
m.send();

Figure 7: Using the generated Java code to create and serialise a message

SCranefield
62

An Initial Response to the OAS’03 Challenge Problem
Ian Dickinson

Hewlett-Packard Laboratories
Filton Road, Stoke Gifford

Bristol BS34 8QZ
U.K.

ian.dickinson@hp.com

Michael Wooldridge
Department of Computer Science

University of Liverpool
Liverpool L69 7ZF

U.K.

m.j.wooldridge@csc.liv.ac.uk

ABSTRACT
We present our initial response to the OAS '03 Challenge
Problem. The Challenge Problem proposes an agent-assisted
travel scenario, and asks what the role of ontologies would be to
support the agent's activity. We discuss a belief-desire-intention
(BDI) approach to the problem using our Nuin agent platform,
and illustrate various ways in which ontology reasoning
supports BDI-oriented problem solving and communications by
the agents in the system.

Keywords
Agent applications, BDI agents, Ontology, Semantic web

1. INTRODUCTION
The call for papers for the AAMAS ’03 workshop on
Ontologies and Agent Systems (OAS’03) includes a challenge
problem, adapted from an exercise by the OntoWeb project to
assess different ontology environments. The challenge problem
outlines a set of objectives for an agent-assisted travel planning
system, in which an agent-based travel agent must co-operate
with other agents to book a trip for a human client.
We have been investigating the design and development of
belief-desire-intention (BDI) [16] agents for use in the Semantic
Web [6]. One outcome of this research is a BDI agent platform,
Nuin, which has been designed ab initio to work with Semantic
Web information sources. At the time of writing, Nuin is still a
work in progress. Nevertheless, we have investigated how key
parts of the OAS challenge problem would be addressed by our
platform.

This paper reviews the salient features of the Challenge
Problem, in the context of a BDI agent. We briefly review some
of the characteristics of the Nuin platform, before presenting a
series of vignettes that show how we address some of the
challenges in the Challenge Problem. As it represents a rich and
plausible scenario, we are continuing development of a
complete solution to the Challenge Problem using the Nuin
platform.

2. OUTLINE PROBLEM
The scenario for the Challenge Problem is based on a travel
agent in New York, for which we are asked to develop an
agent-based application. The travel agency’s clients come to
make bookings for trips they wish to take, and the agency is
responsible for making reservations with various travel service
providers (airlines, hotels, train companies, etc) to satisfy the
client’s needs. The Challenge Problem description gives a rich
description of the kinds of knowledge possessed by various
players in the scenario, from which we distil the following
principal objectives and assumptions:

1. Clients come to the travel agency with more-or-less
specific objectives for their trip, for example a

departure date and destination, a tourist attraction to
visit or an academic conference to attend.

2. Clients have individual preferences about many
aspects of the travel services that may be booked,
including dietary choice, smoking/non-smoking, cost,
comfort level, choice of provider, etc.

3. The travel agency does not posses the data to arrange
trips or trip segments, but must request this
information from other agents. For simplicity in
building the model, we assume that the travel agency
does know the identities of the supplier agents (a more
realistic interpretation would be to require that the
agency contacts suppliers through a brokerage or
advertising service).

4. Requests from the travel agency to the suppliers may
be made at varying levels of specificity (for example
“a flight from Washington to London” vs. “a seat on
BA1234 from Washington to London”).

5. Interaction with the suppliers will produce multiple
potential solutions to the client’s initial request.
Priority should be given to solutions that match the
clients’ preferences, noting that the preferences may
not be unambiguously consistent.

6. Solutions may specify constraints that are not relevant
to the client (“no dogs in the hotel”), or may be of
unknown relevance.

The vocabularies used by different suppliers and the travel
agency may vary – for example, one may use kilometres while
another uses miles.

2.1 Issues from the challenge problem
From the distilled problem statement, we highlight the
following challenges for agents to address in this scenario.
Note: this is not intended to be an exhaustive list.

• modelling the motivations and attitudes of the actors –
there are a number of actors in the scenario, and we
assume each to be predominantly self-interested. The
BDI model accounts for the mental attitudes of a given
agent, but to correctly represent the scenario, the travel
agency agent, for example, must also account for at
least the goals and preferences of the user. We do not
assume that user preferences can, in practice, be
reduced to a utility function.

• ownership and responsibility – arguably, the
motivations of the travel agency itself should be
accounted for. For example, should the agent
recommend suppliers that have high commission rates
for agency, even if the utility to the client is neutral or
reduced? Should the agent explicitly model its contract
to the client and the travel agency?

• reconciling vocabularies – different agents or services
will use different vocabularies, for the same or

SCranefield
63

overlapping concepts. A simple example is the use of
miles and kilometres for distance, but other examples
will be more subtle or complex.

• varying degrees of detail in queries – at different stages
in the trip design process, queries will have differing
degrees of specificity. For example, “is it possible to
take a train from London to Paris”, compared to “when
would a train departing Waterloo at around 10:00 on
the 27th arrive in Paris?”

• checking solutions for acceptability – testing for basic
feasibility, including such constraints as not being in
two separate vehicles at the same time

• ranking and critiquing candidate solutions – given that
more than one possible solution exists, the user’s
preferences should be used to rank the solutions. This
is likely to be needed incrementally, to control the
growth of the search space.

• choosing which constraints to relax during negotiation
– if a good solution is not available with the current
constraints, it may be that relaxing some of them will
yield an acceptable solution. For example, a three star
hotel might have to be used to keep the cost within the
client’s budget.

• choosing when to ask the client to resolve choices or
provide more preference constraints – this involves
managing the dialogue with the client to neither
require them to ‘brain-dump’ their entire preference set
at the beginning, nor to be barraged with low-level
questions.

Not all of these issues are addressed by the use of ontologies,
though it would seem that the use of an ontology representation
has some impact on the solutions to most, if not all, of them.

3. OVERVIEW OF THE NUIN
PLATFORM
Nuin [9] is an agent platform we have created to assist agent
designers to program deliberative agents, with a particular
emphasis on BDI [16] agents. Nuin is founded on Rao’s
AgentSpeak(L) [15], and extended to make a practical, Java™-
based programming tool. In this section, we briefly introduce
some of the key features of Nuin, in order to provide some
background for the solution vignettes in section 4.
A key objective in developing Nuin was to create a flexible
platform for building practical agents from high-level
abstractions, such as beliefs, desires, intentions and plans. The
emphasis has not been on building agent infrastructure services:
we assume the existence of an underlying services architecture,
and Nuin provides a services abstraction layer that allows to
bind to a particular service fabric, for example the Jade agent
platform [5]. Nuin’s architecture is influenced by the FIPA
abstract architecture [12], in order to better utilise existing agent
infrastructure projects. We do not, however, assume that Nuin
will operate only in an FIPA environment.

Figure 1: Outline Nuin architecture

As figure 1 shows, each Nuin agent has an interpreter, which
runs one or more scripts to provide the agent behaviour. An
agent also has a set of beliefs, as first-order sentences, and any
number of other knowledge sources, each of which is labelled
by a distinct symbol. A knowledge source can be wrapped by
one or more reasoners, which provide additional services over
the storage and retrieval of asserted sentences. Backwards-
chaining reasoners attempt to solve queries that they are given,
in essence by building a proof tree. Forwards-chaining
reasoners opportunistically assert additional entailments when
formulae are asserted into the knowledge store.

The key abstraction in defining an agent’s behaviour is the plan.
Following AgentSpeak(L), a plan has one or both of: a
triggering event condition or a logical postcondition. Internal
control flow within the agent is managed by a queue of events,
which can be exogenous or endogenous, and include messages
from other agents as a sub-type. A triggering condition is a
Boolean expression formed from two predicates over events:
on(E) is true when E unifies with the current event at the
head of the event queue, whereas after(E) is true when E
unifies with an event from the agent’s memory of past events.
The body of a plan is a set of individual actions, composed with
either a sequence operator (;) or a non-deterministic choice (|).
Plans may invoke other sub-plans directly or by post-condition,
and may recurse.
Currently, a plan library is supplied to the agent as part of its
script. However, there is no a priori reason why the plans could
not be dynamically generated by an online planner, and this is a
capability we intend to add in the future.
All of the abstractions shown in figure 1 are specified using
Java interfaces, and created using the design pattern Factory
Pattern. This makes it very easy for a programmer to provide a
customised variant of a particular part of the system. This
flexibility and extensibility was a key design goal for the
platform. The configuration of the agent is specified as an RDF
document, the URL of which is passed to the agent as a start-up
parameter.
Given that we want to develop agents for the Semantic Web, we
allow RDF stores as knowledge sources, using Jena [13]. In
addition, all internal symbols are URI’s. Jena’s ontology
reasoners are used to extend the entailments in the RDF stores,
where OWL or DAML+OIL sources are available.
The next section illustrates the use of Nuin in a series of
vignettes addressing some of the challenges outlined in section
2.1. Note that the script syntax illustrated is also a configurable
aspect of our platform. The encoding illustrated is NuinScript,

SCranefield
64

but this is only one possible syntax that can parse into the
internal abstract syntax form. An XML encoding is also
planned.

4. SOLUTION EXAMPLES USING NUIN
4.1 Preamble: use of ontologies
In the challenge problem description, a sample ontology for this
domain is provided by Corcho et al [7]. We decided to create
our own ontology, although it shares some characteristics with
that of Corcho and colleagues. Our ontology is written in
DAML+OIL [2], which allows us to use richer constructs than
that in the sample ontology. For example, figure 2 shows a 5-
star hotel in our formulation:

<daml:Class rdf:ID="QualityRating">
 <daml:oneOf rdf:parseType="daml:collection">
 <travel1:QualityRating rdf:about="#OneStar"/>
 <travel1:QualityRating rdf:about="#TwoStars"/>
 <travel1:QualityRating
rdf:about="#ThreeStars"/>
 <travel1:QualityRating
rdf:about="#FourStars"/>
 <travel1:QualityRating
rdf:about="#FiveStars"/>
 </daml:oneOf>
</daml:Class>

<daml:Class rdf:ID="FiveStarHotel">
 <rdfs:subClassOf rdf:resource="#Hotel"/>
 <rdfs:subClassOf>
 <daml:Restriction>
 <daml:onProperty rdf:resource="#rating"/>
 <daml:hasValue rdf:resource="#FiveStars"/>
 </daml:Restriction>
 </rdfs:subClassOf>
</daml:Class>

Figure 2: DAML+OIL ontology fragment for five -star hotel
Compare this with the definition from the sample ontology
(slightly abbreviated):

<rdfs:Class rdf:ID=”hotel5star”>
 <rdfs:comment>First class hotel</rdfs:comment>
 <rdfs:subClassOf rdf:ID=”#hotel” />
 <NS0:numberOfStars>5</NS0:numberOfStars>
</rdfs:Class>

Figure 3: RDFS fragment from OAS'03 call for papers
RDFS does not have the machinery to declare that quality
ratings may have exactly one of one, two, three, four or five as
values. Nor is it possible to infer in RDFS that having a five-
star rating and being a hotel entails being in the class
FiveStarHotel. In the sample RDFS ontology, membership of
this class must be stated explicitly. Finally, we note that the
RDFS ontology requires class ‘hotel5star’ to be treated as an
instance, since the class itself is the subject of the statement
‘numberOfStars 5’. Looking ahead, we intend to switch to
using OWL [8] as our ontology language 1. The use of classes as
instances necessarily places the hotel5star construct in the
OWL Full variant of that language, for which it is known that
inferencing is expensive and incomplete. Note that we have
chosen not to use cardinality restrictions to define hotel star-
classes. Consider this definition

1 The only reason we have not yet adopted OWL is that tool

support is limited, partly because, at the time of writing, the
OWL specification is not yet complete. This situation is
improving rapidly, however, and we anticipate switching to
OWL very soon.

<daml:Class rdf:ID=”FourStarHotel”>
 <rdfs:subClassOf rdf:resource=”#Hotel” />
 <rdfs:subClassOf>
 <daml:Restriction>
 <daml:onProperty rdf:resource=”#hasStar” />
 <daml:cardinality rdf:value=”4” />
 </daml:Restriction>
 </rdfs:subClassOf>
</daml:Class>

<Hotel rdf:about=”http://quite-nice.com”>
 <hasStar rdf:value=”*” />
 <hasStar rdf:value=”*” />
 <hasStar rdf:value=”*” />
 <hasStar rdf:value=”*” />
</Hotel>

Figure 4 Using cardinality restrictions as for hotel classes
Figure 4 suggests that the Quite-Nice hotel is a four star hotel,
but we cannot know this for certain. Given the open world
nature of the semantic web, we cannot be sure that we have
collected all of the relevant statements about URI
http://www.quite-nice.com – we may yet discover an
additional hasStar statement. We can only rule out the Three
Star and below classes.
Space does not permit a full explanation of our sample ontology
in this paper. Elements of the ontology will be introduced below
as needed. The full ontology is, however, available online at:
http://jena.hpl.hp.com/ontologies/travel1.

4.2 Initial client to agent communication
At the beginning of the process, the client’s basic goal to take a
trip of a certain form must be communicated to the agent. We
leave aside the machinery of the human-computer interface
(important though it is), to consider the process. The agent must
have access to two kinds of knowledge:

• the primary goal that initiated the travel request, and

• the client’s travel preferences

We assume that a message is delivered to the agent with the
first of these, and that the second can be queried from a general
database of known preferences. Since we are interested in
Semantic Web agents, we assume that the client preference
information is available in at least RDF (if not DAML+OIL or
OWL).
What should the message contain? An important choice is
whether the agent is seen as a collaborative partner, or a
subordinate. In the second case, the message might be a FIPA
request message, which takes an action as parameter. The
action is essentially an encoding of “book a trip respecting these
constraints”. The agent would directly adopt an intention to
carry out the action. The first case would correspond to sending
a FIPA inform message 2 saying “the client has a goal to go on
a trip, with these constraints”. We would then rely on the agent
being programmed with social or behavioural rules that would
translate this recognition of the user’s goal into an intent of its
own to assist with the development of the travel plan. For the
scenario of a single client walking into the travel agency’s
office seeking to make a booking, the difference between these
two approaches is slim. Indeed, the collaborative approach adds
extra complexity that the directive approach avoids. However,
consider the often quoted desire for proactive behaviour in
agents. The recognition of the user’s goal may arise by
inference, rather than by a directive from the user. If the agent is

2 Note that the FIPA ACL specification [11] does not include a

performative that directly delegates a goal to another agent.

SCranefield
65

able to infer that the user has a goal to make a trip (e.g. by
having a paper accepted at a conference), it can proactively
instigate the travel planning process.
Both approaches are supported by Nuin. Figure 5 shows a plan
fragment3 that reacts to an incoming message that the user has a
goal to make a booking, and creates a suitable intent.

plan
 on message()
 {fipa:performative ~ fipa:inform,
 fipa:content ~ goal() {
 user ~ ?u,
 makeTrip ~ ?t,
 constraints ~ ?c
 }
 }
 do
 holds desire(cooperate, ?u) ;
 intend-that
 finalised(trip(?t, ?proposal), ?c)
end.

Figure 5: plan to adopt user goal as agent intention
Thus: if a message is received informing the agent that the user
has a goal to make a given trip, and the agent desires to be
cooperative with that user (it may, of course, be predisposed to
be generally cooperative), then adopt an intention to achieve a
finalised proposal starting from the initial conditions ?t and
respecting constraints ?c. We can make use of an ontology of
different booking types to generalise this condition slightly:

plan
 on message()
 {fipa:performative ~ fipa:inform,
 fipa:content ~ goal() {
 user ~ ?u,
 makeBooking ~ ?b,
 constraints ~ ?c
 }
 }
 do
 holds desire(cooperate, ?u) ;
 holds rdf:type(?b, makeTrip) ;
 intend-that
 finalised(trip(?b, ?proposal), ?c)
end.

Figure 6: plan to detect a trip booking and adopt an
intention

Figure 6 shows a plan that reacts to any booking request, but
checks that it can infer a trip booking before proceeding. The
rdf:type makeTrip may be stated directly, or it may be an
entailment from the ontology class hierarchy, or rely on other
semantic entailments from the ontology language definition.

4.3 Interactions with suppliers
The travel agency’s agent does not handle provisioning of the
various elements of the trip itself. It will therefore need to
communicate with the various suppliers in order to decide on
flights, rail journeys, hotels and so on. It could be the case that

3 Syntax note: terms with fixed arity are encoded like Prolog

terms, with a functor and fixed argument list between
parentheses. However, many structured terms have variable
numbers of arguments (consider the FIPA message structure).
Nuin supports both constructions: a Prolog-like term may be
decorated with an additional list of named parameter-value
pairs, of the form functor() {key ~ value, … }.
Unification is extended to unify named arguments as well as
positional arguments.

the interface to each supplier is a web service, and the agent’s
job would then be to invoke the web service by fashioning a
suitable SOAP [17] call, or whatever the appropriate
mechanism is for that service. This can be accommodated in
Nuin by either designing a custom web-service action that gets
invoked from the script, or by registering a Java object binding
that gets invoked by the built-in invoke service action.
However, for the purpose of this exercise, we assume that the
suppliers are also agent-based, and that collaboration becomes a
problem of inter-agent communication.
First we note that a similar problem arises between agents as
between the client and the travel agency agent. Should the
agents invoke actions on the other agents, or delegate an
intention or goal? One determining factor may be the need to
build a coherent and optimal solution according to the client’s
preferences. The travel agency agent could determine which of
the customer’s preferences were relevant to a given subgoal,
and pass these to the supplier agent. Indeed, if the client’s
preferences are available as a Semantic Web source, then
(ignoring the important details of security and privacy) the
supplier agents could access the client’s preferences directly.
The potential difficulty here, though, is building a globally
optimal solution. Having each supplier agent construct an
optimal segment of the journey does not guarantee that the
overall solution is optimal. It may well be possible to use inter-
agent negotiations among the whole community of stakeholder
agents to build a globally optimal solution, but that is not the
focus of our current research. Therefore we assume that the
travel agency agent sends queries to the supplier agents, and
assembles the solution pieces into an overall trip proposal. All
negotiations are then pair-wise, with one of the parties always
being the travel agency agent. The travel agency agent is solely
responsible for optimising the solution.

The FIPA query-ref performative seems appropriate for the
task of seeking solution elements from the suppliers. But what
should the content of the message be? At the beginning of the
process, we may know that John wants to travel from Madrid to
Washington. We could query all known transportation services
providers for routes that originate in Madrid. This, however,
would generate many air-routes from Madrid, including those
taking John away from the USA, plus road and train journeys to
France and Portugal. We could ask for routes starting in Madrid
and terminating in Washington DC, which would allow airlines
to report their suggested routes (via Paris Charles de Gaulle, for
example). Another tactic would be to use the geographic
elements of the ontology to test whether a supplier is able to
provide a single journey to a given region (e.g. Madrid to the
Eastern USA) and use this to prune the search space by
querying in more detail only those agents that can provide
suitable routes in principle. This tactic may be invoked directly
from the agent’s script; it may also be invoked by the agent
monitoring the responses to queries, noticing a high branching
factor in the search space, and adopting an improved strategy.
The current version of Nuin does not support this meta-
monitoring directly. We will investigate convenient
mechanisms for doing so in future versions.
We make the distinction in our ontology between journeys,
routes and bookings. Initially, we query the supplier agent for
information on routes. A route has a start and end location,
distance and vehicle. A given instance of a route may start at
Madrid airport and end in Paris Charles de Gaulle, and use an
Airbus A320. We can infer that an A320 is an AirbusPlane
which is an Airplane, thus this trip is also in the class
AirTravel because AirTravel is defined as the class that

SCranefield
66

has vehicleType of class Airplane. Figure 7 shows a
fragment of our ontology class hierarchy (using Protégé [14]):

Figure 7: section of ontology class hierarchy

This approach highlights a particular difficulty with ontology
development: when to uses classes vs. instances. We can define
A320 as an instance of the class AirbusPlane, and for many
applications it is sufficient to know that a given route uses an
(i.e. some unknown) A320. But for other applications, such as
aircraft maintenance or scheduling, we need to know which
individual aircraft, so A320 should be a class, and instances of
it would be named by the individual aircraft identifiers. But to
define the route, naming the individual plane is incorrect, since
different actual planes will fly the route on different days. Using
DAML+OIL (or OWL), we can define an auxiliary Route
subclass using a restriction:

<daml:Class rdf:ID=”A320Route”>
 <daml:subClassOf rdf:resource=”#Route” />
 <daml:subClassOf>
 <daml:Restriction>
 <daml:onProperty
rdf:resource=”#vehicleType”/>
 <daml:toClass rdf:resource=”#AirbusA320” />
 </daml:Restriction>
 </daml:subClassOf>
</daml:Class>

Figure 8: class description for routes that fly A320's

For any A320Route, we can infer that the transporting vehicle
is an Airbus A320, even if we don’t know which one. It is an
open question, however, whether the extra complexity
introduced by this definition is worthwhile, or whether we
should have multiple ontologies (e.g. one for travel and one for
maintenance) and a process for translating between them when
necessary.

In Nuin, we implement the process of sending the query-ref
as a message send action, followed by a suspend until
the reply is received. This works for a single communication
with another agent. If, however, there are multiple agents
involved, a better alternative would be to send a series of
messages out, and have plans that trigger on the incoming reply
messages. There are two difficulties with the second approach:
firstly, enough state has to be asserted into the agent’s beliefs
(or other KS) to allow the agent to continue developing the plan
from that point, and secondly it is harder for the agent to
monitor a lack of response from the remote agents and adapt
accordingly. We solve the first by assigning each partial trip its
own unique identifier, and use the reply-with field to relate
incoming answers to the results of previous planning. This then
generates a set of new, extended partial plans that get new
identifiers. For the second problem we do not have a convenient
solution. A possible future extension to the Nuin platform will
be to include first-class support for the FIPA interaction
protocols [3]. Either directly as a result of supporting interaction
protocols, or as a result of implementing the necessary
supporting code, we hope that a clear and practical solution to
the meta-monitoring problem will emerge. Note that, in our
opinion, it remains an open question as to whether the ability of
PRS-based agent architectures to recurse to meta-level planning
is a viable solution to this problem (without creating enough
complexity in the agent plan to make it difficult to perform
software design and maintenance).

4.4 Reconciling vocabularies
In general, determining the correspondences between two (or
more) ontologies is a very difficult task, requiring extensive
human intervention [10]. Once the mapping between two
ontologies is defined, it is possible that translations between a
value expressed in one ontology and a value expressed in
another can be automated. Some transformations are fairly
straightforward, such as the units conversion (e.g. from km to
miles and vice versa).
In a multi-agent system, there is a open question about whose
responsibility it is to do ontology conversion. One possibility is
for each agent to have a normal form that it uses for its own
knowledge representation. Each received sentence would then
normalised, using the information from ontology mappings
where necessary. This would cope well with allowing
communications from agents that used different measurement
units, for example, providing that the units themselves are
explicit in the ontology . An alternative is that the ontology used
by the receiving agent is advertised in a public directory, and it
is the originating agent’s responsibility to do any necessary

SCranefield
67

translations before sending a sentence as part of a message. A
further alternative is an intermediate position between these
two, where the agent community includes translator agents that
can handle two-way translations between agents using different
ontologies. A version of the intermediary architecture may be
needed when providing large semantic web or other legacy
information sources into the agent community. It is often
impractical to translate the entire information source to a
different ontology, but it may well be possible to wrap the
information source with a mediating agent that dynamically
performs the necessary ontology -based transformations on
queries and results. We used this strategy effectively in a
project that used DMOZ [1] information in a distributed
knowledge-sharing application [4]. Rather than convert the very
large DMOZ data set to RDF, it was stored in a custom
database layout and queries and query results were dynamically
translated to RDF as needed.
Using Nuin, we can define a plan that triggers when incoming
messages are received, and use this to check that the message
content is in a suitable ontology. If not, it may be a simple
action to do the translation locally if the agent is capable of
doing so, or the agent may adopt an intention to translate the
message content to a suitable ontology. This intention may then
be discharged in different ways, for example by sending a
request to the translator agent. Once the message is expressed in
a known ontology, an event is raised to trigger further
processing on the message content.
Our current experiments with the Challenge Problem make the
simplifying assumption that the global ontology is shared. This
assumption is only valid for such a self-contained exercise. Any
realistic scale of application, especially one that uses open
semantic web information sources, will be exposed to the
ontology reconciliation problem.

4.5 Critiquing and ranking solutions
As the travel agency agent begins to assemble solutions to the
client’s requested travel goal, it will be faced with a rapidly
expanding search space. In order to improve its chances of
success, it should choose to pursue only those partial solutions
that are promising. If the agent waits until solutions (i.e. travel
plans) are complete to critique them, it is likely still to be
processing long after the client’s patience has run out and they
have left the store. This implies that we must be able to critique
partial solutions to the problem, and select which ones will be
further expanded. We note that planning algorithms have been
studied extensively for many years in AI, and it is not our intent
in this short paper to revisit the many choices that a planning
system can adopt to be able to plan effectively. Pending deeper
investigation of this topic, our current design uses a simple
forward-chaining means-end search algorithm. As mentioned
above, we assign each partial solution a unique identifier. A
solution is a series of segments, each of which is either a
journey segment or an accommodation segment. The journey
segment identifies the route, and may be composed of a series
of individual journeys. A segment has an associated cost.
Reviewing the Challenge Problem text, we hypothesise that the
following represent typical preferences a client may have over
journey segments:

• type vehicle (e.g. Airbus A370)

• cost

• quality rating (first class, business class, economy, five
star, etc)

• existence of facilities (TV, Internet connection,
smoking rooms, pool)

• preference of mode of transport (fly vs. drive) – which
may be conditional on other factors, such as
accessibility of airport

• distance to local amenities (sightseeing, ski, beach, etc)

Some of these preferences will be fixed, some context
dependent. On a business trip, customers might be less cost-
sensitive than on a personal vacation (or vice versa!). In
summer, distance from ski resorts is less important than
distance from the beach.
We would like to explore making this preference information as
widely available as possible, so encoding it as a semantic web
resource seems plausible (we ignore for the time being
important requirements to do with security and privacy).
One natural approach is to consider the various categories of
alternatives that the client might prefer as ontological classes.
Thus, a customer who prefers non-smoking hotel rooms has a
preference for a room in the class NonSmoking over class
Smoking. A simple way to encode this in the client’s profile is
shown in fig 9:

<Preference>
 <prefer rdf:resource=”#NonSmoking” />
 <over rdf:resource=”#Smoking” />
</Preference>

Figure 9: First attempt at encoding user preferences

<Preference>
 <prefer>
 <NonSmoking />
 </prefer>
 <over>
 <Smoking />
 </over>
</Preference>

Figure 10: alternative encoding for user preferences

This example uses classes as individuals, so again, exceeds the
limitations of OWL DL and OWL Lite. An alternative approach
would be to treat the preference arguments as expressions, using
RDF blank nodes (bNodes) as existential variables (an
interpretation sanctioned by RDF theory). This transforms the
preference from fig 9 into fig 10:
The difference between these approaches may be subtle to
readers unfamiliar with RDF. In the first encoding (fig 9), the
arguments to the preference relation are the classes themselves.
In the second encoding, the term <NonSmoking /> is RDF
shorthand for:
 <rdf:Description>
 <rdf:type rdf:ID=“NonSmoking” />
 </rdf:Description>
that is, an anonymous node of type NonSmoking.

To use this second encoding, the agent must match the
existential query implicit in the graph to the data at hand. This
exploits a feature of RDF (not, it must be admitted, a
universally loved feature) that meta-level information can be
encoded in the same formalism as the object-level information.
The preference query can be seen as expressing a predicate over
the proposed solution classes, but is encoded in the same graph
structure as the data itself.
By using pair-wise preferences of this kind, whichever
approach is adopted, we obtain a partial ordering over sets of
solutions. The reified Preference relationship is transitive, so a
data source aware of this fact could pre-compute the transitive
closure of preferences. Thus, if the client stated their preference
was for 5-star hotels over 4-star, and 4-star over 3-star, the
transitive closure would allow two proposed segments, one for a

SCranefield
68

5-star hotel and one for a 3-star hotel to be ranked correctly.
Since the ordering would be partial, however, not all solutions
could be ranked, so the solution evaluator would need to allow
for sets of equally preferred candidates at any one time.

The client should be able to order their preferences, so that the
preference for a certain cost band is allowed to dominate over
the preference for smoking rooms, or vice versa. This could be
achieved by adding a weight to the each Preference
instance, or allowing preferences that ranked other preferences
recursively. It is not clear which, if either, of these choices
would work better in practice, and more experimentation is
needed.
Again, speculating about the design (we have not yet
implemented the solution ranking mechanism), we could
encode context -dependent preferences by adding a condition
clause to the Preference instance. The problem we foresee
here is that there is no standard mechanism, de facto or
otherwise, for encoding general predicates in RDF. Thus any
mechanism that allowed the encoding of “if summer-time” on a
preference of NearBeach over NearSkiRun would be
dependent on a processor being aware of the encoding scheme
used. The choices presented above, assuming that the existence
of Preference is recognised, stay closer to standard RDF
interpretations.
Given that we can achieve a satisfactory encoding of user
preferences, we must then incorporate them into the strategy for
prioritising the search space. We envisage a plan that is
triggered by the asserting of a partial solution into the agent’s
beliefs KS, and which would rank the new solution against the
current unexpanded partial solutions. Thus each partial solution
is in one of two states: either it has been selected for expansion,
or it has not been expanded yet, but is sorted according to the
partial order defined by the user’s preferences. It would only be
necessary to find the highest ranked plan that has not yet been
expanded that is preferred over the new solution, so searching
from the front of the candidates list will be effective.
A more open question, and one that we have not yet addressed,
is to be able to critique full and partial solutions, rather than just
rank them. For example, if the agent was able to determine that
a client could save a substantial amount of money by accepting
a certain hotel that meets all criteria except having in-room
Internet connections, it may be able to propose this to the user.
Alternatively, such deductions might form the basis for
negotiation strategies that suggest which factors to yield on, and
which to stand firm on. This seems to be a fruitful area for
future investigation.

4.6 Determining acceptable solutions
Before proposing a solution to the client, the agent must be
certain that it has met the client’s expressed criteria for the trip.
We have not yet stated in this paper how the client’s constraints
are to be specified. This is in part because we run into
limitations of standard ontological languages, since we will
need constraints on the literal values of instance properties, and
this is not an area that current ontology languages address.
Assuming that we have an appropriate canonicalization of the
string form of a date, we can test for equality between two
departure dates. But if the client specifies a departure date of
“10-July -2003”, domain knowledge is needed to recognise that
“10-July -2003 10:16” is acceptable. Moreover, the client may
actually want specify a departure date of “around the 10th of
July” or “between the 4th and the 10th of July”.
We may also want to specify that the trip includes a visit to the
Statue of Liberty. While we can – just – imagine the creation of

a pseudo-class VisitToStatueOfLiberty, and
subsequently a check that some segment of the trip is subsumed
by this pseudo-class, it is hard to see what the definition of the
class would be in practice.

We thus currently define the constraints as a list of logical
predicates that are interpreted by problem solvers other than the
ontology reasoners. However, it remains an interesting area for
speculation and future research whether there is a reasonably
simple constraint language, that could be combined with a
description-logic –like reasoner to give a richer means of
checking consistency in candidate solutions.

5. Evaluation and conclusions
We have presented some vignettes of parts of the solution to the
OAS’03 Challenge Problem using our BDI agent platform,
Nuin. The key goal in the Challenge call for papers is to explore
how agents would actually use ontological information. Much
of the foregoing discussion represents our design thinking, since
we have only begun to build the complete solution.
Our agents are strongly knowledge-based, and use logical
sentences and mental attitudes for their internal modelling.
Ontological information is clearly useful compactly describing
the domain of discourse (especially if the same ontology is
shared with other agents), and allows the agent to use class and
property hierarchies to generalise and specialise queries and
results.

Given our interest in building agents for the semantic web, we
have restricted ourselves to the common semantic web ontology
languages: DAML+OIL and OWL. Both of these languages’
designs are based on description logic (DL) reasoning. The use
of description logic reasoners in practical agent applications is
not a widely explored topic, due in part to a limited availability
of DL reasoners. More such reasoners are now becoming
available, and we can expect more research into this area in
future. A key component of the description logic approach is
class description, and we have shown above a few instances of
using class descriptions in the agent’s reasoning. Using class
descriptions and a meta-level prefers predicate to
encapsulate the client’s preferences appears to be a useful way
to make those preferences available to a wider range of
semantic web services. The limitations of description logic
sentences, however, suggest that richer representations will
need to be developed to encode a broadly useful sub-set of the
client’s general preferences.
While we have shown the use of ontology information by BDI
agents, both as additional open knowledge sources for the agent
to access, and as additional entailments that the agent reasoners
can draw upon, we nevertheless feel that this is only a
preliminary account of the integration of these two areas.
Further practical experiences will help to resolve this, and we
continue to develop a complete implementation of the
Challenge Problem in the Nuin framework. We also look
forward to the development of theoretical treatments of the
interactions between the principles of deliberative agents and
the principles of description logics.

6. ACKNOWLEDGEMENTS
We would like to thank the anonymous OAS’03 reviewers for
their detailed comments on the original version of this paper.
Due to a short deadline and a lack of space, we have not been
able fully to address all of their comments, but we hope to do so
in future publications. Thanks also to Dave Reynolds of HP
Labs for his comments and suggestions.

SCranefield
69

7. REFERENCES
 1. ODP - The Open Directory Project.

http://www.dmoz.org
2. The DARPA Agent Markup Language (DAML+OIL).

2001.
Web site: http://www.daml.org

3. FIPA Interaction Protocol Specifications. 2003.
http://www.fipa.org/repository/ips.php3

4. Banks, Dave, Cayzer, Steve, Dickinson, Ian, and
Reynolds, Dave. The ePerson Snippet Manager: a
Semantic Web Application. (HPL-2002-328) HP Labs
Technical Report. 2002.
Available from:
http://www.hpl.hp.com/techreports/2002/
HPL-2002-328.html

5. Bellifemine F., Poggi A. & Rimassa G. "Developing Multi
Agent Systems With a FIPA-Compliant Agent
Framework". Software Practice and Experience. Vol.
31:2. 2001. pp. 103–128.

6. Berners-Lee, Tim, Hendler, James, and Lassila, Ora "The
Semantic Web". Scientific American. 2001.

7. Corcho, O., Fernandez-Lopez , M., & Gómez-Pérez , A.
An RDF Schema for the OAS Challenge Problem . 2003.
http://oas.otago.ac.nz/OAS2003/Challeng
e/MadridTravelOntology.rdfs

8. Dean, Mike, Schreiber, Guus, van Harmelen, Frank,
Hendler, Jim, Horrocks, Ian, McGuinness, Deborah L.,
Patel-Schneider, Peter F., and Stein, Lynn Andrea . OWL
Web Ontology Language Reference. 2003.
http://www.w3.org/TR/owl-ref/

9. Dickinson, I. & Wooldridge, M. "Towards Practical
Reasoning Agents for the Semantic Web". In: Int. Conf.
on Automomous Agents and Multi-Agent Systems
(AAMAS'03). 2003. pp. to appear.

10. Dou, D., McDermott, D., & Qi, P. "Ontology Translation
by Ontology Merging and Automated Reasoning". In:
Proc. EKAW Workshop on Ontologies for Agent Systems.
2002. pp. 3-18.
http://cs-
www.cs.yale.edu/homes/dvm/papers/DouMcDermot
tQi02.ps

11. FIPA. FIPA ACL Message Structure Specification.
(XC00061) 2000.
http://www.fipa.org/specs/fipa00061/

12. FIPA. Abstract Architecture Specifiation. 2002.
http://www.fipa.org/specs/fipa00001/

13. HP Labs. The Jena Semantic Web Toolkit. 2002.
http://www.hpl.hp.com/semweb/jena-
top.html

14. Noy N. F., Sintek M., Decker S., Crubezy M., Fergerson R.
W. & Musen M. A. "Creating Semantic Web Contents
With Protege-2000". IEEE Intelligent Systems. Vol. 16:2.
2001. pp. 60-71.
http://www-
smi.stanford.edu/pubs/SMI_Reports/SMI-
2001-0872.pdf

15. Rao, A. "AgentSpeak(L): BDI Agents Speak Out in a
Logical Computable Language". In: Proc. 7th European
Workshop on Modelling Autonomous Agents in a Multi-
Agent World (MAAMAW '96). Springer-Verlag, 1996. pp.
42–55.

16. Rao, A. & Georgeff, M. "BDI Agents: From Theory to
Practice". In: Proc. First Int. Conf on Multi-Agent
Systems (ICMAS-95). 1995.

17. W3C. Simple Object Access Protocol (SOAP) 1.1. 2000.
http://www.w3.org/TR/SOAP/

SCranefield
70

Guidelines for Constructing Reusable Domain Ontologies

Muthukkaruppan Annamalai
Department of Computer Science & Software

Engineering
The University of Melbourne

Victoria 3010, Australia

mkppan@cs.mu.oz.au

Leon Sterling
Department of Computer Science & Software

Engineering
The University of Melbourne

Victoria 3010, Australia

leon@cs.mu.oz.au

ABSTRACT
The growing interest in ontologies is concomitant with the
increasing use of agent systems in user environment. On-
tologies have established themselves as schemas for encoding
knowledge about a particular domain, which can be inter-
preted by both humans and agents to accomplish a task in
cooperation. However, construction of the domain ontolo-
gies is a bottleneck, and planning towards reuse of domain
ontologies is essential. Current methodologies concerned
with ontology development have not dealt with explicit reuse
of domain ontologies. This paper presents guidelines for
systematic construction of reusable domain ontologies. A
purpose-driven approach has been adopted. The guidelines
have been used for constructing ontologies in the Experi-
mental High-Energy Physics domain.

1. INTRODUCTION
The World Wide Web has become the de facto medium
for distributed user community to share digital information,
posing a challenge for users to effectively utilise the accessed
information. The next generation agentised web promises
to dispense with some of the human effort through machine
processable metadata linked to ontologies. The working def-
inition of ontology is a specification of shared conceptuali-
sation [4]. An ontology presents a shared understanding of
how the world is organised in a particular aspect of the do-
main and specifies the meaning of terms that make up the
vocabulary in the domain of discourse – a necessity for in-
formation access and interoperability.

Constructing ontologies from scratch to support domain ap-
plications requires a great deal of effort and time. Alterna-
tively, reusable domain ontologies provide opportunities for
developers to exploit and reuse existing domain knowledge
to build their applications with much ease and reliability.
A common belief is that reusable ontologies ought to be
conceived and developed independent from application and
context of its use. The consequence of adhering strictly to
this notion is that the developed reusable domain ontologies
are: a) usually over-generalised and omit useful knowledge;
b) often are also sparse constructs because it is not easy
to determine which part of the concrete domain knowledge
can be reused, particularly when the capturing of the do-
main knowledge is attempted in a top-down fashion; and c)
necessitates modification and considerable extension work
before it can be utilised. A better alternative is to be able
to develop reusable ontologies without over-compromising
their usability in the domain.

The approach we propose is to first ask which kind of do-
main knowledge should be encoded; bring together the rele-
vant pieces of knowledge; only then identify which of those
pieces of knowledge can be reused and isolate them. This
paper outlines a strategy to develop reusable domain on-
tologies in this manner. We will discuss this issue in the
context of a case study to develop reusable Experimental
High-Energy Physics (EHEP) ontologies for the Belle col-
laboration (http://belle.kek.jp/belle/). The distributed sci-
entific community collaboratively sets-up experiment, accu-
mulate event data, generate simulation data, construct soft-
ware tools to analyse the data, carry out data analysis, pub-
lish their findings, and progressively build on each other’s
work. We aim to show that suitable ontologies be developed
and reused to facilitate this scientific community to produce
and share information effectively on the agentised web [1,
2]. The reusable domain ontologies will serve as a basis for
communication, integration and sharing of information per-
taining to experimental analysis within the collaboration.

The paper is organised as follows. In Section 2, we sketch
out our basic strategy for developing reusable domain on-
tologies. This strategy is further elaborated and illustrated
in Sections 3 and 4. The development guidelines are also
given in here. Finally, in the concluding section we sum-
marise the contribution of this paper.

2. STRATEGISING THE DEVELOPMENT
OF REUSABLE DOMAIN ONTOLOGIES

We have devised a strategy for developing reusable domain
ontologies by putting together the key points in traditional
and modern ontology development methodologies and prin-
ciples, such that of [3, 4, 5, 8, 9, 10]. The notable features
in these methodologies will be pointed out as we advance
through this paper.

There are two types of ontologies in our environment, namely,
domain and purposive ontologies. A domain ontology cap-
tures an area of the domain generically, and serves as a
reusable knowledge entity that can be shared across this do-
main. The domain ontologies are loosely coupled to one an-
other, reflecting the association between the different facets
of the domain captured by the respective ontologies. On
the other hand, a purposive ontology explicitly defines the
terms for supporting specific purpose or use. The purposive
ontology encodes specialised domain knowledge by compos-
ing various reusable domain ontologies and then affecting
the necessary application-specific extensions.

SCranefield
71

Analysis
Variable

Publishing
AnalysisStatistical

Distribution
Model

Dimension
Unit

Parametric
Constraint

Particle

Detector

Figure 1: Interconnected Ontologies

The ontological commitment required to support a particu-
lar need is embodied in a set of reusable domain ontologies
as illustrated in Figure 1. The filled box denotes the purpo-
sive ontology modelled for publishing EHEP analysis. Each
empty box represents generic domain ontology. An arrow
points at the ontology that holds the definition of the re-
ferred terms. A generic ontology is linked to another via
concept relations. This links depicts the dependencies be-
tween the ontologies in this conceptualisation of the domain.
This kind of loose coupling allows scalable modifications of
the domain ontologies.

The value of reusable ontologies is long recognised by on-
tology researchers. The research on the technology for sup-
porting knowledge sharing and reuse originated in Stanford’s
Knowledge Systems Laboratory (KSL) [7]. It spurred the
development of reusable, general ontologies (such as On-
tology of Time, Money, Measure, etceteras) for the KSL’s
Ontolingua server. The design principles espoused in [4]
were commonly used to develop these ontologies that are
meant to be shared across different knowledge domains.1

While the past attempt was concerned with the develop-
ment of domain-independent single ontologies, we focus on
constructing inter-depending ontologies that are small and
easier to reuse in a particular domain.

There appears to be no clear methodology for building do-
main ontologies that can be reused with minimal extensions.
Moreover, a disagreeable prospect arises from the conven-
tional idea that reusable domain ontologies ought to be con-
ceived and developed independent from their application,
due to the following reasons: a) Unlike general knowledge,
which ground out in primitives with assumptions that are or-
dinarily understood, domain knowledge deals with domain-
specific jargon; b) It is not feasible to think of knowledge
needs of all foreseeable domain applications; c) The intended
meaning of some terms can be different according to context
of application; and d) It is also impractical for knowledge
engineers to describe all knowledge they know about the do-
main. Hence, it is difficult to see how it would be possible for
knowledge engineers to rely on their intuition alone to build
ontologies that adequately capture the reusable knowledge
in their domain.

Given this situation, we maintain that it is only sensible
if we allow our current needs to dictate the creation of us-
able domain ontologies that are also reusable.2 Modelling

1Clarity, Coherence, Extendibility, Minimal encoding bias
and Minimal ontological commitment are prescribed as suit-
able design principles.
2As a matter of fact, the modern ontology development

according to the purpose and use helps to determine what
features of the domain knowledge should be encoded and
provide a focus for knowledge acquisition. Consequently, we
advocate development of purposive ontologies, and simulta-
neously pursue the creation of reusable domain ontologies.

Our basic strategy is spelt out as follows: a) Adopt a bottom-
up view of the domain to conceptualise the knowledge re-
quired to support a specific need, and build the conceptual
model; b) Identify potentially reusable chunk in the con-
ceptual model and generalise it; and c) Formalise the gen-
eralised domain model into reusable domain ontology. In
what follows, we will elaborate this strategy and illustrate
it using simple examples.

3. PURPOSE-DRIVEN CREATION OF RE-
USABLE DOMAIN ONTOLOGIES

We begin by modelling the purposive ontology, which defines
the vocabulary for the purpose of describing the experimen-
tal analysis in collaboration documents, such as research
notes and research papers. The ontology can be applied
for document annotation, query-answering and information
retrieval.

3.1 Modelling the Purposive Ontology
We set out to accomplish this task by creating the concept
model, which will serve as the foundation for the purpo-
sive ontology. Individuals in this conceptualisation are typ-
ically defined as concepts, and are constrained by proper-
ties, relations and axioms. The taxonomic and cross rela-
tionships among the concepts are explicitly specified. We
used Protege-2000 (http://www-protege.stanford.edu), a fr-
ame-based modelling tool to construct the concept model.
Figure 2 describes a partial hierarchy of top-level concepts
in the model that was developed to conceive this purposive
ontology.

The model is elaborated from scientific collaboration doc-
uments, mainly books, research papers, existing standard
HEP terminology and consulting the EHEP physicists. Our
initial discussion with the EHEP physicists and related liter-
ature review enabled us to recognise some of the distinct con-
cepts required for describing a typical EHEP experimental
analysis. They are Signal event, Background event, Kine-
matic variables, Topological variables, Particle, etceteras.
We called them the hook-concepts, as they serve as hooks (or
links) for structuring additional concepts into the concept
model. Initially, our competency questions [5], that are the
questions we want the ontology to answer, revolved around
these hook-concepts.3 Subsequently, new concepts affiliated
with the existing concepts emerge, which are organised in
the hierarchical model by bottoming-up and middling-out
processes [10]. The internal structures of these concepts are
defined to limit their possible interpretation and relations in

methodologies [8, 9] follow the tradition of knowledge en-
gineering and back the development of application-oriented
ontologies.
3In essence, the competency questions identify the kind of
domain knowledge that should be encoded. Examples of
competency questions are: What are the kinematic cuts per-
formed in B → ρπ event analysis? What are the suppressed
background events?

SCranefield
72

Figure 2: Externalising Reusable Domain Models

the ontology. This cycle is continued until the model is sat-
isfactorily developed, that is when the set of compiled com-
petency questions and their related answers can be clearly
represented using the terms defined in the ontology. Each
cycle evolves the model closer to the desired form.

3.2 Abstraction of Reusable Chunks
The concepts in the model are distinctly organised accord-
ing to their role in elucidating particular aspects of the do-
main. As a rule, homogeneous concepts tend to cluster un-
der a common parent concept and are potentially reusable
in another situation (in whole or part). The reuse poten-
tial of these clustered concepts is reflected by their coherent
nature.4 The task of the knowledge engineer is to exam-
ine each cluster of concepts to identify the chunk that has
reuse potential. The reusable chunk is isolated from the
model and generalised into an independent reusable domain
model. For example, the definition about Particle and its
sub-classes in the concept model (shown in Figure 2) can be
externalised from this model and componentised as reusable
knowledge entity. Using this simple technique, we generated
all the domain ontologies supporting the purposive ontology
for describing experimental analysis as depicted in Figure 1.

Ontology Development Guideline I. We summarise the
operational guidelines for developing purposive and domain
ontologies (that does not reuse existing ontologies) as fol-
lows: a) Specify purpose and uses of ontology; b) Iden-
tify hook-concepts; c) Formulate competency questions; d)
Identify new terms required to precisely formulate the com-
petency questions and their generated answers; e) Define
the new terms (concepts, properties, relations and axioms).
Structure the concept into the concept model; f) Evaluate
concept model against the set of competency questions and
make the necessary changes; g) If still not satisfied with the
level of details in the model, return to step [c] ; h) Analyse
concept clusters in the model that particularises specific ar-
eas of the domain. If a group of related concepts has reuse
potential, generalise and shape them as a separate reusable
domain model (sub-model); i) Link back the sub-models to
the main model. Make the necessary application-specific ex-

4The coherency among a set of concepts can be appropri-
ately assessed by performing an ontological analysis [6] in-
volving the concepts and relations in the model.

tensions to the incorporated generalised domain knowledge;
and j) Formalise the main model and the sub-models into
purposive ontology and reusable domain ontologies, respec-
tively. The ontological terms and definitions are expressed
formally in a web-ontology specification language, such as
DAML+OIL (http://www.daml.org).

Future domain applications can exploit these reusable do-
main ontologies and may even churn out new reusable do-
main ontologies. This matter is discussed in the next sec-
tion.

4. THE REUSE OF DOMAIN ONTOLOGIES
Using an existing domain ontology for supporting another
application or to serve as a basis for building another on-
tology is cost-effective, provided the reusable ontology does
not require much customisation effort. We describe two such
scenarios that illustrate the reuse of existing domain ontolo-
gies and the creation of new versions of existing ontologies.

Purpose 1: Supporting Analysis Specification. We
envision applications that allow physicists to partially au-
tomate experimental analysis such as skimming, tracking,
vertexing and particle reconstruction. As a result, the vo-
cabulary to describe the rudiments of these low-level anal-
yses will need to feature in the purposive ontology built to
support these applications.

We begin by sketching the concept model of this purposive
ontology. The preliminary study shows that the purposive
ontology will provide the vocabulary to describe the EHEP
analysis, as in the previous case (refer to Section 3), but in
greater detail. In particular, there will be additional anal-
ysis variables to be considered, and requires a much ‘finer’
representation.

All the domain ontologies created earlier are candidates for
reuse. However, the Analysis Variable ontology will be re-
vised to cater for this new requirement. Low-level analyses
also involve tracks and clusters associated with event parti-
cles. Like Particle ontology, the knowledge about tracks and
clusters can be held as separate entities. As we do not antic-
ipate changes to the other existing ontologies, the purposive
ontology being developed can make use of those reusable
domain ontologies directly.

This developmental activity has generated two new domain
ontologies, namely Track and Cluster ; and a new version of
Analysis Variable ontology, extended from its earlier version
(see Figure 3). The distinction between the two versions of
the Analysis Variable ontology can be made on the basis of
additional definitions used to characterise the conceptualisa-
tion in the later version. Since no alteration to the existing
definitions in this ontology was made, the new version is in-
deed backward compatible. Our rationale for constructing a
new version of this ontology is to ensure that the prospective
users who have adopted the original version can continue to
rely upon their ontology, and not be overwhelmed with ab-
straction unrelated to their need.

Purpose 2: Supporting Detector Description. An-
other planned application aims to provide information about
the Belle detectors. The purposive ontology developed for

SCranefield
73

 derived

Analysis
Variables
(Ver. 2)

Describing
Detector

Dimension
Unit

Parametric
Constraint

Particle

Detector
(Ver. 2)

Track

Cluster

Analysis
Variables

Detector

 derived

Figure 3: Reusing Existing Domain Ontologies

this application will be used to build a knowledge base about
detectors’ particle identification capabilities.5

The existing Detector ontology merely describes the detec-
tor and regions where the presence of tracks and clusters
are sensed and is referred to by definitions in Analysis Vari-
able ontology. The new requirement necessitates definitions
in Detector to refer to definitions in Analysis Variable in-
stead (see Figure 3). The new version of Detector ontology
will have to provide the vocabulary to describe the Belle
detectors in greater details, including inverse relationships
between definitions in Detector and Analysis Variable.

Ontology Development Guideline II. We now recapitu-
late the operational guidelines for developing purposive and
domain ontologies by reusing existing domain ontologies: a)
Specify purpose and uses of ontology; b) Sketch the model
of the purposive ontology; c) Identify existing reusable do-
main ontologies that can be used to support the modelling
process; d) Construct the unsupported portion of the model
based on Guideline I steps [b] - [g] ; e) Identify reusable re-
gion in the model. If found, convert the related concepts into
an independent reusable domain model. It corresponds to
Guideline I step [h] ; f) Select reusable ontologies (identified
earlier) and make necessary changes to accommodate appli-
cation needs. Sometimes, the modified ontologies may be
redeveloped as new versions of the existing ontologies; and
g) Rebuild the model of the purposive ontology by linking
the sub-models, and formalise the ontologies. It is similar
to Guideline I steps [i] and [j].

5. CONCLUDING REMARKS
We have presented guidelines for creating reusable domain
ontologies for a scientific user-community. In our environ-
ment, the different domain ontologies organise and structure
the knowledge of diverse parts of the domain. The domain
ontologies are constructed as small reusable knowledge com-
ponents that can be easily shared across applications. These
ontologies are loosely coupled to one another reflecting their
association in the real world.

The conceptualisation is guided by a common set of compe-
tency questions generated when application-dependent pur-
posive models are conceived. This provides the reason for
believing that the same kind of reusable chunks will emerge

5An example piece of knowledge may look like this: Aero-
gel Cerenkov Counter discriminates Kaon over Pion (event
variable) with 93% efficiency for momentum greater than
700MeV/C.

from the different purposive models, even if the order in
which the applications are considered is varied. The con-
cepts in the domain ontologies are captured in some gener-
ality to make reuse possible. We are consistent with making
specific knowledge more generic.

Sometimes it would be necessary to allow co-existence of
different versions of a domain ontology to accommodate dif-
ferent needs in the domain. For example, in Section 4 we
exemplified the creation of new versions of existing ontolo-
gies. These versions are seen as distinct domain ontologies
with dissimilar reuse potential. Herein lays the larger issue
of the management of the domain ontologies. A mechanism
to control the different versions of domain ontologies is es-
sentially required.

Acknowledgments: We are grateful to our associates in
the Physics department, particularly Glenn Moloney and
Lyle Winton for providing insights into EHEP experimental
analysis.

6. REFERENCES
[1] M. Annamalai, L. Sterling, and G. Moloney. A

collaborative framework for distributed scientific
groups. In Proceedings of AAMAS’02 Workshop on
Ontologies in Agent Systems, 2002.

[2] L. Cruz, M. Annamalai, and L. Sterling. Analysing
high-energy physics experiments. In Proceedings of
AAMAS’02 Workshop on AgentCities, 2002.

[3] M. Fernandez, A. Gomez-Perez, and N. Juristo.
Methontology: From ontological art towards
ontological engineering. In Proceedings of AAAI’97
Spring Symposium on Ontological Engineering, 1997.

[4] T. Gruber. A translation approach to portable
ontologies. Knowledge Acquisition, 5(2):199–220, 1993.

[5] M. Gruninger and M. S. Fox. Methodology for the
design and evaluation of ontologies. In Proceedings of
IJCAI’95 Workshop on Basic Ontological Issues in
Knowledge Sharing, 1995.

[6] N. Guarino and C. Welty. Ontological analysis of
taxonomic relationships. In Proceedings of ER’00
Conference on Conceptual Modelling, 2000.

[7] R. Neches, R. Fikes, T. Finin, T. Gruber, T. Patil,
R. Senator, and W. R. Swartout. Enabling technology
for knowledge sharing. AI Magazine, 12(3):16–36,
1991.

[8] A. T. Schreiber, J. M. Akkermans, A. A. Anjewierden,
R. Dehoog, N. R. Rhadbold, W. V. D. Velde, and
B. J. Wielinga. Knowledge Engineering and
Management - The CommonKADS Methodology.
University of Amsterdam, 1998.

[9] S. Staab, R. Studer, H. P. Schnurr, and Y. Sure.
Knowledge process and ontologies. IEEE Intelligent
Systems, pages 26–34, Jan/Feb 2001.

[10] M. Uschold. Building ontologies: Towards a unified
methodology. In Proceedings of the British Computer
Society Specialist Group Conference on Expert
Systems, 1996.

SCranefield
74

CO3L: Compact O3F Language
Pedro Ramos
ADETTI / ISCTE

”We, the Body and the Mind” Group
Av. Forças Armadas, Lisboa, Portugal

+351 217 903 099

Pedro.Ramos@iscte.pt

Luis Botelho
ADETTI / ISCTE

”We, the Body and the Mind” Group
Av. Forças Armadas, Lisboa, Portugal

+351 217 903 099

Luis.Botelho@iscte.pt

ABSTRACT
This paper presents CO3L, a compact, expressive and easy to
use language for ontology representation. CO3L reflects the
O3F model of ontology representation proposed elsewhere.
The proposed language enables the representation of basic
ontological entities, their relationships, and arbitrary axioms
of the domain. Ontological entities include classes,
properties, methods, facets and types. Relationships include
n-ary associations and inheritance. Axioms may be used to
capture complex constraints and relations between entities, to
define relational and functional methods, and to represent the
effects of the execution of action methods in the world.
CO3L is based on the language of the first order logic, with
explicit world states; the relational operator State/1, which is
true of world state designators; the functional operator Do/2,
which returns the world state designator resulting of the
execution of an action in a given world state; and the modal
operator Holds/2 which is true of propositions satisfied in
given world states.

1. INTRODUCTION
In open agent systems it is important to ensure
interoperability at the several levels of the so-called
communication stack. One such level pertains ontology
technology and its uses. Often, agents need to dynamically
use ontological information for the most diverse tasks,
including service discovery [2] and message translation.
Unfortunately there is no consensus regarding the
requirements of ontology services for open agent systems.
Some need just a simple way of describing the classes of the
domain. Others need more than classes; they need to know
the kinds of actions in a given domain. Yet others need
detailed descriptions of the existing relations between input
and output parameters of dynamic computations, or even of
descriptions of the effects of performing domain actions.

Each of the above requirements has been handled to different
degrees by the most common approaches to ontology
representation and use. This has resulted in a heterogeneous
landscape of ontology technologies that has not contributed
to improve interoperability.

One way to go about this problem is by developing general,
more abstract frameworks of which, the existing approaches
can be seen as particular cases. This paper contributes to the
advancement of one such a framework – O3F, the
object-oriented ontology framework.

O3F [10], is a general framework for ontology representation
that can be used to capture ontological information originally
described in several formalisms including DAML+OIL [4],

OWL [11], Ontolingua [5] and OKBC [3]. Additionally, O3F
has several advantages in relation to these other approaches,
namely the possibility of representing arbitrary axioms,
which can only be found in Ontolingua and OKBC, and the
possibility of declaratively representing action methods and
their effects in the world, which is not offered by any other
approach. Besides, [10] presents a significant advance in
terms of the formal specification of several kinds of
translation relations between ontologies, which were based
on the concept of basic mapping.

Given the above, O3F is a natural candidate for ontology
representation in web and agent based applications.
However, the ontology representation language proposed in
[10] uses long cumbersome expressions. This problem is a
considerable handicap of the O3F framework because it will
impair its effective use and dissemination in the agent and
web communities.

The difficulty of using and understanding the proposed
representation language derives from two main facts. First, it
was directly shaped from the UML class diagram
representing the O3F ontology representation model. Second,
it straightforwardly adapts constructs used in the agent
content language proposed in [1], which are not necessarily
the best for an ontology representation language.

This paper presents a solution for the difficulties encountered
in the ontology representation language proposed for the O3F
representation framework, by attacking the two mentioned
problems. The proposed solution preserves the full
expressiveness of the language while drastically improving
its readability. Furthermore, the representation power of the
original O3F framework is also not affected.

Section 2 briefly describes the O3F original approach with
special emphasis on the originally used representation
language. Section 3 describes our approach to improve the
readability and usability of the representation language. First,
we show how it is possible to deviate from the original
language constructs used in [10] without losing generality or
expressiveness. Then, we present CO3L, the new ontology
representation language for O3F. Section 4 analyses our
approach in the scope of related work. Finally, section 5
presents conclusions and future work.

2. O3F FRAMEWORK
O3F [10] is a general object oriented framework for ontology
representation. An ontology is composed of a set of basic
entities, simple relationships between them and arbitrary
domain-dependent axioms. Basic entities are classes,
properties, facets, methods and types.

SCranefield
75

As in DAML+OIL, properties, methods and axioms have
autonomous existence separated from the classes with which
they might be related. The independence of properties from
the classes with which they may be related enables O3F to
capture ontologies originally represented in DAML+OIL and
OWL.

The possibility to represent arbitrary axioms using first order
logic enables O3F to capture ontologies originally
represented in Ontolingua. Finally, the possibility to
represent procedural methods is an advantage of O3F over
their direct competitors.

Using the approach described in [10], for instance, it is
possible to specify the class named Restaurant, the properties
named Name and Price.

(instance (Class :name Restaurant) Class)
(instance (Property :name Name) Property)
(instance (Property :name Price) Property)

It is also possible to associate the attributes RestauratName
and MaxPrice to the class Restaurant. Originally, in O3F,
associations between classes were represented through
instances of the special class O3FRelation. O3FRelation is
an O3F class used in the language to represent all the O3F
relations (e.g., Archetype_Attribute, Argument_Attribute).

The class O3FRelation has the attributes name, which is the
name of a specific relation; arguments, which is the set of
archetypes that are associated in a given relation; and
attributes, which is the private attributes that belong to a
relation. Each element in the set of arguments of a relation is
an instance of the class RArgs (Relation Arguments), which
is composed of the class of the archetype being associated
(e.g., Class or Property), the key attribute of the archetype
being associated (e.g., name) and the name of that archetype
being associated (e.g., Restaurant). The following statement
says that the property named Name is associated with the
class Restaurant.

(instance
 (O3FRelation
 :name Archetype_Attribute
 :arguments (set
 (RArg
 :class Property
 :key name
 :object Name)
 (RArg
 :class Class
 :key name
 :object Restaurant))
 :attributes (set

 (Attribute
 :name Name
 :value RestaurantName)))

 O3FRelation)
An association between an archetype and a property defines
an attribute of the archetype. The above association between
the property Name and the Class Restaurant defines the
attribute RestaurantName of the class Restaurant.

The example discussed in this section makes it clear that the
specification of an ontology using the proposed language is a
cumbersome process which results in a large set of long,
difficult to read expressions. Since this process may have to

be handwritten, it is better to make it easier and shorter. The
next section shows our proposal to achieve this goal.

3. THE NEW O3F LANGUAGE
In this section we show how the O3F class architecture must
be re-interpreted before it can be used as the basis for the
design of the ontology representation language.

3.1 Representing O3F Basic Entities
Class, Property, Method, Type, Facet and other entities are
classes of the O3F class diagram. Particular domain classes,
properties, methods, types and facets are instances of those
classes. Using the language proposed in [10], those instances
are represented through the two-place relation instance. Here
we propose to use one reserved word for specifying instances
of each of these classes. The relations Class, Property,
Method, Type, Facet, and Axiom will be used to specify the
classes, the properties, the methods, the types the facets and
the Axioms of the ontologies.

The statement (Ontology RestaurantOntology ‘Agentcities
Consortium’) asserts the fact that RestaurantOntology is an
ontology whose author is the Agentcities Consortium. The
statement (Class Restaurant RestaurantOntology) means that
Restaurant is a class of the RestaurantOntology). As another
example, the statement (Property Price RestaurantOntology)
means Price is the name of a property of the ontology
RestaurantOntology. From now on the ontology will be
omitted from the arguments list of the language statements,
so that the explanations can stay focused.

3.2 O3F Class Diagram Re-Cast
The main problem with the interpretation of the O3F
framework is the way associations are represented.
Originally, all associations were represented using the special
purpose class O3FRelation (see section 2). This policy,
together with the way instances were specified using the
two-place predicate Instance/2 lead to lengthier, more
complex and cumbersome expressions.

Here we propose to use one specific relation for each of the
possible associations of the model. For example, in order to
represent the attribute RestaurantName of the Class
Restaurant it is not necessary to have a language we use the
attribute statement (Attribute Restaurant RestaurantName),
which contrasts with the long expression in section 2.

3.3 Arbitrary Axioms
Besides the relations specified in sections 3.1 and 3.2, it is
also necessary to define a set of primitive operators used in
the definition of arbitrary axioms.

Often the declaration of classes, properties, methods and
relationships between them is not enough to capture the
relations of the domain.

In order to represent arbitrary axioms in first order logic, it is
necessary to have the usual logical connectives and
quantifiers. This is not new when compared with other
ontology representation languages such as KIF [6] in
Ontolingua.

SCranefield
76

In order to define the effects of action methods (i.e., methods
whose execution changes the state of the world), it is
necessary to talk about states of the world, and to capture the
execution of methods in the world along with the changes
they produce.

We introduce the following operators:

State/1 is a relational operator used to declare an identifier
for a world state. State(<State Identifier>) means <State
Identifier> is a state identifier.

Holds/2 is a modal operator used to say that a given
proposition holds in a given state of the world.
Holds(<Proposition>, <State Identifier>) means
<Proposition> is true in the state of the world identified by
<State Identifier>. In the current approach, Holds/2 is a
modal operator instead of a relational operator as in [10], in
order to avoid the reification of relations, logical operators
and quantifiers to functions.

Do/2 is a functional operator used to represent the state that
results of the execution of a given method in a given state of
the world. Methods are represented by terms called action
identifiers. Do(<Method>, <State Identifier>) represents the
sate of the world that results of the execution of the method
<Method> in the state identified by <State Identifier>.

Given these operators it is possible to represent the effects of
the execution of action methods and it is also possible to
represent constraints over states of the world. The axioms
written below represent the method BookFlight used to book
a plane ticket in a travel agency. BookFlight takes the flight
number (f), the date of departure (d), the flight class (c) and
the identification of the client (x).

∀s, f, d, x ∃t State(s) ∧ Holds(¬(t ∈Ticket) ∧ x ∈ Client ∧ <c
, f> ∈ Flight_Classes, s) ⇒
 Holds(t ∈Ticket ∧ <x , t> ∈ Client_Ticket ∧
 <t , <c , f >> ∈ Flight_Classes_Ticket ∧ t.Date = d,
 Do(Ticket.BookFlight(f, d, c, x), s))

There is a t for which if it is not a ticket in situation s, it
becomes a ticket (t ∈Ticket) in the situation resulting of
booking a ticket.
Moreover, the booked ticket becomes associated with the
client specified in the reservation (<x , t> ∈ Client_Ticket);
the booked ticket becomes associated with the pair of the
class and flight specified in the reservation (<t, <c , f >> ∈
Flight_Classes_Ticket); and the date of the ticket becomes
the date specified in the reservation (t.Date = d).
The axioms of the ontology are expressions in which the
logic and other general-purpose symbols such as quantifiers
and reserved operators belong to the language, and the
domain symbols such as classes (e.g., Ticket) and
associations (e.g., Client_Ticket, Flight_Classes) must
belong to the ontology.
Here, we have used the notation commonly used in textbooks
about logic. This is not the actual syntax of CO3L, since
CO3L is an abstract language (section3.4).

3.4 Compact O3F Language
This section presents examples of the abstract syntax of the
O3F Representation Language. Basically, this is a first order
logic, with modal operator Holds/2, and a set of reserved
relational and functional operators. In [8] we present a simple
ontology example using the UML notation. The example is a
fragment of the Travel Agent scenario described in the
OAS'03 Challenge Problem.

The provided abstract syntax defines an abstract language
that may be instantiated through a variety of concrete
syntaxes such as the S-Expression, the usual prefix first order
logic syntax, and an XML syntax commonly used in web
applications. The top-level symbol representing Compact
O3F Language statements is OntologicalProposition, which
can be an ontology declaration, an ontological entity
declaration, an ontology relationship, an arbitrary axiom1, or
an instance definition.

Frame Name OntologicalProposition Abstract
Kind of CO3LExpression
Description Top level language statement

The frame OntologicalProposition is an abstract concept in
the sense that it cannot be instantiated.
OntologicalProposition is a CO3LExpression, thus the slot
kind-of is CO3LExpression, which is the top most CO3L
expression.

Frame Name EntityDeclaration Abstract
Kind of OntologicalProposition, AtomicProposition
Description Declares the existence of ontological entities

such as classes, properties, methods, types

An entity declaration is also abstract. Only its sub-frames
(e.g., ClassDeclaration, PropertyDeclaration,
MethodDeclaration) can have concrete instances.

Frame Name OntologyRelationship Abstract
Kind of OntologicalProposition, AtomicProposition
Description Declares the existence of a relationship between

two or more ontological entities (e.g., the
relation between a property and its type)

Simple ontological relationships are represented through
atomic propositions. That’s why the frame
OntologyRelationship is also a kind of AtomicProposition.

The full language description involves several other frames.
However, space constraints preclude their presentation. The
complete specification can be found in [7].

The presented abstract grammar enables the definition of
diverse concrete syntaxes as appropriate for the application at
hand. Our agents have been using S-Expression syntax, but
others can also be defined, in particular XML syntax.

1 An axiom is certainly a relationship between entities of the

ontology. This distinction highlights the difference between
the simple relations usually captured in ontology
representation languages, and the complex relationships
that can be expressed by axioms such as the one in this
section.

SCranefield
77

4. RELATED WORK
In the same vein as RDF / RDF Schema [12] and
DAML+OIL [4], CO3L is also an abstract language for
which several concrete syntaxes may be defined including
S-Expression and XML syntaxes.

As in DAML+OIL [4] and OWL [11], properties have
autonomous existence outside the scope of classes. This
allows defining hierarchic and other relations between
properties. The same holds for methods, which may also
exist outside the scope of classes.

Besides a predefined set of facets, CO3L allows the
definition of new facets if desired. As far as we are aware of,
only Ontolingua [5] and OKBC [3] have this feature.

Unlike other well-known ontology language, CO3L allows
the declaration of methods, their arguments and return values
(in case of functional methods). This feature has been
proposed has a desired extension to DAML+OIL in [9] but
was never officially integrated as part of DAML+OIL.
Ontolingua allows the definition of functions and relations
but can’t associate them to classes.

As with Ontolingua [5] and OKBC [3], CO3L allows the
definition of arbitrary axioms. However, unlike them, CO3L
allows the definition of action methods (i.e., methods whose
execution changes the state of the world) through state
constraint and state change axioms. This is possible only
because CO3L has a set of operators used to capture world
state and world state changes.

5. CONCLUSIONS AND FUTURE
WORK
This paper proposes a compact version of the ontology
representation language of O3F. Since O3F is a reasonably
comprehensive ontology representation framework capable
of representing ontologies originally expressed in a variety of
other frameworks such as DAML+OIL, OWL, and
Ontolingua, the proposal of an expressive and yet simple to
use language for O3F can be a useful contribution to advance
the state of the art.

Some of the properties of the framework exceed the
capabilities of common ontology representation approaches.
In particular, the O3F framework allows to represent all
commonly used ontological entities such as classes,
properties and facets; it also represents some concepts that
are not so common such as arbitrary axioms; and it represents
other concepts that are not represented in other approaches
such as action method definition.

Moreover, since the compact language proposed in this paper
is much more usable and readable than the original proposal,
it is at least likely that our work will contribute to facilitate
the ontology specification process.

Finally, since we have provided an abstract grammar for the
proposed language, it makes it possible to easily define
diverse concrete syntaxes, which may be more adequate for
the application at hand. For instance, the XML syntax of O3F
will certainly be welcome in the web community.

The first future step is the development of a user-friendly
editor for O3F to facilitate the definition and maintenance of
ontologies using the O3F framework.

One would also profit from the existence of plug-in parsers
and generators for other ontology representation languages
such as DAML+OIL, OWL and Ontolingua. This way, it
would be possible to import and export O3F ontologies from
and to other formats.

Most ontology representation frameworks, such as
description logic based approaches, have been proposed with
the goal of enabling the development of decidable theorem
provers. In general, it is necessary to trade off expressiveness
for decidability. One of the future steps of our work will be
to define subsets of the O3F representation language with
different types of decidability.

6. ACKNOWLEDGMENTS
The research is supported by UNIDE/ISCTE.

7. REFERENCES
[1] Botelho, L.B.; Antunes, N.; Mohmed, E.; and Ramos, P.

“Greeks and Trojans Together”. In Proc. of the AAMAS
2002 Workshop “Ontologies in Agent Systems”. 2002

[2] Botelho, L.M.; Mendes, H.; Figueiredo, P.; and
Marinheiro, R. “Send Fredo off to do this, send Fredo
off to do that”. Submitted to the International Workshop
on Cooperative Information Agents (CIA-2003). 2003

[3] Chaudhri, V.K.; Farquhar, A.; Fikes, R.; Karp, P.D.; and
Rice, J.P. “Open Knowledge Base Connectivity 2.0.31”.
http://www.ai.sri.com/~okbc/spec.html. 1998

[4] DARPA Agent Markup Language. “Reference
description of the DAML+OIL (March 2001) ontology
markup language”. 2001

[5] Farquhar, A.; Fikes, R.; and Rice, J. “Tools for
Assembling Modular Ontologies in Ontolingua”. In
Proc. of the Fourteenth National Conference on
Artificial Intelligence (AAAI’97). 1997

[6] Genesereth, M.R.; and Fikes, R., eds. Knowledge
Interchange Format. Draft proposed American National
Standard (dpANS). NCITS.T2/98-004 . 1998

[7] http://we-b-
mind.org/o3f/language/abstract_spec_v1.htm

[8] http://we-b-mind.org/o3f/ontologies/travel_agency.htm

[9] Mota, L. “Extension to DAML+OIL: representation of
methods”. 3rd Agentcities.net Information Day. 2003

[10] Mota, L.; Botelho, L.M.; Mendes, H.; and Lopes, A.
O3F: an Object Oriented Ontology Framework. Proc. of
the Second International Joint Conference on
Autonomous Agents and Multi-Agent Systems
(AAMAS2003), 2003, to appear

[11] W3C. OWL Web Ontology Language Overview. W3C
Working Draft 31 March 2003.
http://www.w3.org/TR/owl-features/. 2003

[12] W3C. Resource Description Framework (RDF).
http://www.w3.org/RDF/

SCranefield
78

