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Abstract. This paper describes SOUPA (Standard Ontology for Ubiquitous
and Pervasive Applications) and the use of this ontology in building the Con-
text Broker Architecture (CoBrA). CoBrA is a new agent architecture for
supporting pervasive context-aware systems in a smart space environment.
The SOUPA ontology is expressed using the Web Ontology Language OWL
and includes modular component vocabularies to represent intelligent agents
with associated beliefs, desire, and intentions, time, space, events, user pro-
files, actions, and policies for security and privacy. Central to CoBrA is an
intelligent broker agent that exploits ontologies to support knowledge sharing,
context reasoning, and user privacy protection. We also describe two proto-
type systems that we have developed to demonstrate the feasibility and the
use of CoBrA.

1. Introduction

Pervasive computing is a natural extension of the existing computing paradigm.
In the pervasive computing vision, software agents, services, and devices are all
expected to seamlessly integrate and cooperate in support of human objectives
– anticipating needs, negotiating for service, acting on our behalf, and delivering
services in an anywhere, any-time fashion [17]. An important next step for perva-
sive computing is the integration of intelligent agents that employ knowledge and
reasoning to understand the local context and share this information in support
of intelligent applications and interfaces. We describe a new architecture called
the Context Broker Architecture (CoBrA) for supporting context-aware systems
in smart spaces (e.g., intelligent meeting rooms, smart homes, and smart vehicles).

A key difference between CoBrA and the existing pervasive computing sys-
tems [15, 11, 37, 39, 26, 23] is in the use of ontology [7]. Computing entities in
CoBrA can share context knowledge using the CoBrA ontology, which extends the
SOUPA ontology (Standard Ontology for Ubiquitous and Pervasive Applications)
[10]. These ontologies are expressed in the Web Ontology Language OWL [29].
Central to CoBrA is an intelligent broker agent called Context Broker. Using the
CoBrA ontology and the associated logic inference engines, the Context Broker can
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reason about the local context of a smart space, and detect and resolve inconsis-
tent context knowledge acquired from disparate sensors and agents. Human users
in the CoBrA system can use an OWL representation of the Rei policy language
[22] to define privacy policies to control the sharing of their private information in
a pervasive context-aware environment.

Context-aware systems are computer systems that can provide relevant ser-
vices and information to users by exploiting context [6]. By context, we mean
information about a location, its environmental attributes (e.g., noise level, light
intensity, temperature, and motion) and the people, devices, objects and software
agents that it contains. Context may also include system capabilities, services of-
fered and sought, the activities and tasks in which people and computing entities
are engaged, and their situational roles, beliefs, and intentions [7].

The design of CoBrA addresses the following research issues in building per-
vasive context-aware systems: (i) context modeling (i.e., how to represent and store
contextual information), (ii) context reasoning (i.e., how to interpret context based
on the information acquired from the physical environment; how to detect and re-
solve inconsistent context knowledge due to inaccurate sensing), (iii) knowledge
sharing (i.e., how to help independently developed computing entities to share
context knowledge and interoperate), and (iv) user privacy protection (i.e., how
to protect the privacy of users by restricting the sharing of contextual information
acquired by the hidden sensors or agents).

The rest of this paper is organized as follows: In the next section, we describe
the problems in existing pervasive computing systems and our motivation to use
ontologies in CoBrA. In Section 3, we describe the SOUPA ontology and how it
can be used to represent various types of contextual information. In Section 4, we
present the design of CoBrA. In Section 5, we describe two different prototype
systems that implement CoBrA. One is a prototype for supporting context-aware
services in a smart meeting room system called EasyMeeting, and the other is
a toolkit for building stand-alone demonstrations of the Context Broker. Future
work and conclusions are given in Section 6 and Section 7, respectively.

2. Problems in the Existing Pervasive Computing Systems

A number of pervasive computing prototype systems have been designed and im-
plemented. Contributions to the field have been made in various aspects of perva-
sive computing. Dey [15] developed a middle-aware framework to facilitate context
acquisition, Coen et al. [11] defined new extensible programming libraries for build-
ing intelligent room agents, and several groups [37, 39] have created badge-size
tracking devices for determining people’s location in an indoor environment.

Major shortcomings of these systems are that they are weak in supporting
knowledge sharing and reasoning and lack adequate mechanisms to control how
information about individuals is used and shared with others. In Dey’s Context
Toolkit framework [15], Schilit’s context-aware architecture [37], and the Active
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Badge system [39], context knowledge is embedded in programming objects (e.g.,
Java classes) that are often inadequate for supporting knowledge sharing and data
fusion operations. The designs of these systems also make strong assumptions
about the accuracy of the information acquired from the hardware sensors. In
an open and dynamic environment, such assumptions can lead to system imple-
mentations that cannot cope with the frequently occurred inconsistent context
knowledge. In the Intelligent Room system [12] and the Cooltown architecture
[26], information about a user can be freely shared by all computing entities in the
environment. As physical environments are populated with ambient sensors, users
may be unaware of the use and the sharing of their private information, which can
create great concerns for privacy.

The design of CoBrA is aimed to address these issues using ontologies. We
believe ontologies are key requirements for building context-aware systems for the
following reasons: (i) a common ontology enables knowledge sharing in an open
and dynamic distributed system [33], (ii) ontologies with well defined declara-
tive semantics provide a means for intelligent agents to reason about contextual
information, and (iii) explicitly represented ontologies allow devices and agents
not expressly designed to work together to interoperate, achieving “serendipitous
interoperability” [19].

3. The SOUPA Ontology

The SOUPA project began in November 2003 and is part of an ongoing effort of
the Semantic Web in UbiComp Special Interest Group1, an international group of
researchers from academia and industry that is using the OWL language for perva-
sive computing applications and defining ontology-driven use cases demonstrating
aspects of the ubiquitous computing vision. The SOUPA ontology is expressed
using the OWL language and includes modular component vocabularies to repre-
sent intelligent agents with associated beliefs, desires, and intentions, time, space,
events, user profiles, actions, and policies for security and privacy.

The goal of the project is to define ontologies for supporting pervasive com-
puting applications. The design of SOUPA is driven by a set of use cases. While
the SOUPA vocabularies overlap with the vocabularies of some existing ontolo-
gies, the merits of SOUPA is in providing pervasive computing developers a shared
ontology that combines many useful vocabularies from different consensus ontolo-
gies. By providing a shared ontology, SOUPA can help developers inexperienced
in knowledge representation to quickly begin building ontology-driven applications
without needing to define ontologies from scratch and to be more focused on the
functionalities of actual system implementations.

SOUPA consists of two distinctive but related set of ontologies: SOUPA Core
and SOUPA Extension. The set of the SOUPA Core ontologies attempts to define

1http://pervasive.semanticweb.org
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Figure 1. SOUPA consists of two sets of ontology documents:
SOUPA Core and SOUPA Extension. The OWL owl:imports
construct is used to enable a modular design of the ontology.
Different domain vocabularies are grouped under different XML
namespaces.

generic vocabularies that are universal for building pervasive computing applica-
tions. The set of SOUPA Extension ontologies, extended from the core ontologies,
define additional vocabularies for supporting specific types of applications and
provide examples for defining new ontology extensions.

Note that the structure of the ontology merely suggests certain vocabularies
are more general than the others in supporting pervasive computing applications,
and there is no inherent computational complexity difference in adopting either
set of the ontologies. The complete set of SOUPA ontologies is available at http:
//pervasive.semanticweb.org.

3.1. The Web Ontology Language OWL

The OWL language is a Semantic Web language for use by computer applications
that need to process the content of information instead of just presenting infor-
mation to humans [29]. This language is developed in part of the Semantic Web
initiatives sponsored by the World Wide Web Consortium (W3C).

The current human-centered web is largely encoded in HTML, which focuses
largely on how text and images would be rendered for human viewing. Over the
past few years we have seen a rapid increase in the use of XML as an alternative
encoding, one that is intended primarily for machine processing. The machine
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which process XML documents can be the end consumers of the information,
or they can be used to transform the information into a form appropriate for
humans to understand (e.g., as HTML, graphics, and synthesized speech). As a
representation language, XML provides essentially a mechanism to declare and
use simple data structures, and thus it leaves much to be desired as a language
for expressing complex knowledge. Enhancements to the basic XML, such as XML
Schemas, address some of the shortcomings, but still do not result in an adequate
language for representing and reasoning about the kind of knowledge essential to
realizing the Semantic Web vision.

OWL is a knowledge representation language for defining and instantiating
ontologies. An ontology is a formal explicit description of concepts in a domain
of discourse (or classes), properties of each class describing various features and
attributes of the class, and restrictions on properties [30].

The normative OWL exchange syntax is RDF/XML. Ontologies expressed in
OWL are usually placed on web servers as web documents, which can be referenced
by other ontologies and downloaded by applications that use ontologies. In this
paper, we refer to these web documents as ontology documents.

3.2. Related Ontologies

Part of the SOUPA vocabularies are adopted from a number of different consensus
ontologies. The strategy for developing SOUPA is to borrow terms from these
ontologies but not to import them directly. Although the semantics for importing
ontologies is well defined [1], by choosing not to use this approach we can effectively
limit the overhead in requiring reasoning engines to import ontologies that may be
irrelevant to pervasive computing applications. However, in order to allow better
interoperability between the SOUPA applications and other ontology applications,
many borrowed terms in SOUPA are mapped to the foreign ontology terms using
the standard OWL ontology mapping constructs (e.g., owl:equivalentClass and
owl:equivalentProperty).

The ontologies that are referenced by SOUPA include the Friend-Of-A-Friend
ontology (FOAF) [3, 35], DAML-Time and the entry sub-ontology of time [20, 31],
the spatial ontologies in OpenCyc [27], Regional Connection Calculus (RCC) [36],
COBRA-ONT [7], MoGATU BDI ontology [32], and the Rei policy ontology [21].
In the rest of this section, we describe the key features of these related ontologies
and point out their relevance to pervasive computing applications.

FOAF This ontology allows the expression of personal information and relation-
ships, and is a useful building block for creating information systems that support
online communities [16]. Pervasive computing applications can use FOAF ontolo-
gies to express and reason about a person’s contact profile and social connections
to other people in their close vicinity.

DAML-Time & the Entry Sub-ontology of Time The vocabularies of these
ontologies are designed for expressing temporal concepts and properties common to
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any formalization of time. Pervasive computing applications can use these ontolo-
gies to share a common representation of time and to reason about the temporal
orders of different events.

OpenCyc Spatial Ontologies & RCC The OpenCyc spatial ontologies de-
fine a comprehensive set of vocabularies for symbolic representation of space. The
ontology of RCC consists of vocabularies for expressing spatial relations for quali-
tative spatial reasoning. In pervasive computing applications, these ontologies can
be exploited for describing and reasoning about location and location context [7].

COBRA-ONT & MoGATU BDI Ontology Both COBRA-ONT and Mo-
GATU BDI ontology are aimed for supporting knowledge representation and ontol-
ogy reasoning in pervasive computing environment. While the design of COBRA-
ONT focuses on modeling contexts in smart meeting rooms [7], the design of
MoGATU BDI ontology focuses on modeling the belief, desire, and intention of
human users and software agents [32].

Rei Policy Ontology The Rei policy language defines a set of deontic con-
cepts (i.e., rights, prohibitions, obligations, and dispensations) for specifying and
reasoning about security access control rules. In a pervasive computing environ-
ment, users can use this policy ontology to specify high-level rules for granting and
revoking the access rights to and from different services [24].

3.3. SOUPA Core

The SOUPA core ontology consists of nine ontology documents. Together these
ontology documents define vocabularies for describing person contact information,
beliefs, desires, and intentions of an agent, actions, policies, time, space, and events.

Person This ontology defines typical vocabularies for describing the contact
information and the profile of a person. The OWL class per:Person is defined
to represent a set of all people in the SOUPA domain, and is equivalent to the
foaf:Person class in the FOAF ontology (i.e., the owl:equivalentClass prop-
erty holds between the per:Person and foaf:Person class). An individual of the
class can be described by a set of properties, which include basic profile informa-
tion (name, gender, age, birth date, etc.), the contact information (email, mailing
address, homepage, phone numbers, instant messaging chat ID, etc.), and social
and professional profile (people that a person is friend of, organizations that a
person belongs to). In addition, all property vocabularies that are applicable to
describe a person in the FOAF ontology can also be used to describe an individual
of the per:Person class. This is because all individuals of the per:Person class
are also individuals of the foaf:Person class. Figure 2 shows a partial ontology
description of the person Harry Chen.
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<!DOCTYPE rdf:RDF [
...
<!ENTITY foaf "http://xmlns.com/foaf/0.1/#">
<!ENTITY per "http://pervasive.semanticweb.org/dev/person#">
]>

<rdf:RDF ... >

<per:Person>
<per:firstName rdf:datatype="&xsd;string>Harry</per:firstName>
<per:lastName rdf:datatype="&xsd;string>Chen</per:lastName>

<per:gender rdf:resource="&per;Male"/>

<per:birthDate rdf:datatype="&xsd;date">1976-12-26</per:birthDate>

<per:homepage rdf:resource="http://umbc.edu/people/hchen4"/>

<foaf:weblog rdf:resource="http://umbc.edu/people/hchen4"/>

<per:hasSchoolContact rdf:resource="#SchoolContact"/>
<per:hasHomeContact rdf:resource="#HomeContact"/>

<foaf:workplaceHomepage rdf:resource="http://ebiquity.umbc.edu"/>
<foaf:workplaceHomepage rdf:resource="http://www.umbc.edu"/>
<foaf:workplaceHomepage rdf:resource="http://www.cs.umbc.edu"/>

</per:Person>

<per:ContactProfile rdf:ID="SchoolContact">
<per:address rdf:datatype="&xsd;string">

Dept. of CSEE, UMBC, 1000 Hilltop Circle, Baltimore, MD 21250, USA
</per:address>
<per:phone rdf:datatype="&xsd;string>+1-410-455-8648</per:phone>
<per:email rdf:resource="harry.chen@umbc.edu"/>
<per:im rdf:resource="aim:goim?screenname=hc1379"/>

</per:ContactProfile>

<per:Email rdf:about="harry.chen@umbc.edu"/>

<per:Homepage rdf:about="http://www.aim.com"/>

<per:ChatID rdf:about="aim:goim?screenname=hc1379">
<per:providedBy rdf:resource="http://www.aim.com"/>

</per:ChatID>

<per:ContactProfile rdf:ID="HomeContact">
...

</per:ContactProfile>

<foaf:knows>
<foaf:Person>

<foaf:name>Tim Finin</foaf:name>
<foaf:mbox_sha1sum>49953f47b9c33484a753eaf14102af56c0148d37</foaf:mbox_sha1sum>

</foaf:Person>
</foaf:knows>
</rdf:RDF>

Figure 2. A partial ontology description of the person Harry
Chen. Vocabularies from both the SOUPA ontology and the
FOAF ontology can be used to describe a person.
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Agent, Action & BDI Sometimes when building intelligent pervasive comput-
ing systems, it is useful to model computing entities as agents [40]. In SOUPA,
agents are defined with a strong notion of agency [40], which is characterized by
a set of mentalistic notions such as knowledge, belief, intention, and obligation.
In this ontology, both computational entities and human users can be modeled as
agents.

When the goals, plans, desires, and beliefs of different agents are explicitly
represented in the ontologies, this information can help independently developed
agents to share a common understanding of their “mental” states, helping them to
cooperate and collaborate. The explicitly represented human user’s mental states
can help computing agents to reason about the specific needs of the users in a
pervasive environment.

Three ontology documents are related to this ontology: agent, bdi, and
action. The agt:Agent class represents a set of all agents in the SOUPA do-
main and is associated with three properties that can be used to characterize
an agent’s “mental” state: agt:believes, agt:desires, and agt:intends. The
respective range values of these properties are the bdi:Fact, bdi:Desire, and
bdi:Intention classes. The goals of an agent are considered to be a special type of
desire, which is expressed by defining the agt:hasGoal property as a sub-property
of the agt:desires property.

The bdi:Fact class is a subclass of the rdf:Statement class, which repre-
sents a set of reified RDF statements [2]. A reified RDF statement consists of the
rdf:subject, rdf:object, and rdf:predicate properties.

The bdi:Desire class defines a set of world states that agents desire to bring
about. Every instance of this class can be characterized by the property bdi:end-
State. The range restriction of this property is unspecified in the bdi ontology
document. Application developers are responsible for defining the representation
of different world states. Some suggested representations are (i) symbolic names,
e.g., a set of pre-defined RDF resource URI and (ii) meta-representation, e.g., each
world state description is a set of reified RDF statements.

The bdi:Intention class represents a set of plans that agents intend to
execute. Plans are defined in terms of actions, pre-conditions, and effects. The
action ontology document defines the act:Action class with associated prop-
erties act:preCondition and act:effect. The representation of pre-conditions
and effects are unspecified in this ontology, and it is left to be defined by the
application ontologies.

Sometimes it may be useful to describe whether or not different desires of
an agent are in conflict of each other, and whether or not certain desires are
achievable. The cause of desire conflicts may be due to inconsistent beliefs in
the knowledge base or conflicting user preferences or systems policies. The cause
of unachievable desires may be due to the change of situational conditions. In
the bdi ontology document, different subclasses of the bdi:Desire class, namely
bdi:ConflictingDesire, bdi:NonConflictingDesire, bdi:AchievableDesire,
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<!DOCTYPE rdf:RDF [
...
<!ENTITY jade "http://pervasive.semanticweb.org/dev/fipa-jade#>
<!ENTITY pol "http://pervasive.semanticweb.org/dev/policy#">
]>

<rdf:RDF>

<pol:Policy>

<pol:creator>
<per:Person>

<foaf:name>Tim Finin</foaf:name>
</per:Person>

</pol:creator>

<pol:enforcer>
<agt:Agent>

<jade:name rdf:datatype="&xsd;string">Context Broker in ITE328</jade:name>
<jade:agentID rdf:datatype="&xsd;string">ctb@cobra1.cs.umbc.edu:1099/JADE</jade:agentID>

</agt:Agent>
</pol:enforcer>

<pol:rule rdf:resource="#r1"/>
<pol:rule rdf:resource="#r2"/>

</pol:Policy>

<pol:Prohibition rdf:ID="r1">
...

</pol:Prohibition>

<pol:Right rdf:ID="r2">
...

</pol:Right>

</rdf:RDF>

Figure 3. An instance of the pol:Policy class is the entry point
to a SOUPA policy definition. In this example, the policy is cre-
ated by a person with foaf:name “Tim Finin”, and is enforced
by the Context Broker in the Room ITE328. The definition of the
two associated policy rules (i.e., r1 and r2) is shown in the next
figure.

and bdi:UnachievableDesire, are defined for classifying different types of agent
desires.

Policy Security and privacy are two growing concerns in developing and deploy-
ing pervasive computing systems [4, 25, 18]. Policy is an emerging technique for
controlling and adjusting the low-level system behaviors by specifying high-level
rules [14].

Part of the SOUPA policy ontology adopts the vocabularies of the Rei policy
language [21]. In SOUPA, a policy is a set of rules. Rules are defined by a policy
creator (e.g., a user or an agent), and the rules are to be enforced by one or
more policy enforcer (e.g., a security authority or a privacy protection agent). The
definition of each rule gives specific enforcement instructions to the policy enforcer
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<pol:Prohibition rdf:ID="r1">
<!-- Any owl:Thing that is an audience of the defined Ebiquity Group meeting

is prohibited from changing presentation slides. -->
<pol:actor>

<!-- a special class for expressing "For all X"-->
<pol:Variable/>

</pol:actor>

<pol:action rdf:resource="ChangePresentationSlides"/>

<pol:constraintMemebershipClass>
<owl:Class>

<rdf:subClassOf rdf:resource="&mtg;Audience"/>
<rdfs:subClassOf>

<owl:Restriction>
<owl:onProperty rdf:resource="&mtg;ofMeeting"/>
<owl:hasValue rdf:resource="http://ebiquity.umbc.edu/v2.1/event/html/id/15/"/>

</owl:Restriction>
</rdfs:subClassOf>

</owl:Class>
</pol:constraintMemebershipClass>

</pol:Prohibition>

<pol:Right rdf:ID="r2">
<!-- Person Harry Chen has the right to adjust room lighting if he is

a speaker of the defined Ebiquity Group meeting -->

<pol:actor>
<per:Person>

<foaf:name>Harry Chen</foaf:name>
</per:Person>

</pol:actor>

<pol:action rdf:resource="#AdjustRoomLighting"/>

<pol:constraintMemebershipClass>
<owl:Class>

<rdf:subClassOf rdf:resource="&mtg;Speaker"/>
<rdfs:subClassOf>
<owl:Restriction>

<owl:onProperty rdf:resource="&mtg;ofMeeting"/>
<owl:hasValue rdf:resource="http://ebiquity.umbc.edu/v2.1/event/html/id/15/"/>

</owl:Restriction>
</rdfs:subClassOf>

</owl:Class>
</pol:constraintMemebershipClass>

</pol:Right>

Figure 4. The pol:Prohibition and pol:Right are subclasses
of the pol:DenoticObject class. Instances of these classes repre-
sent individual SOUPA policy rules.

over a set of actions. For example, an action may be adjusting the lighting in a
room, changing presentation slides on a projector device, or printing documents
to a nearby printer.

Every enforcement instruction given to the policy enforcer falls under one of
the following four categories: (i) the enforcer should permit the agents of certain
class to perform the specified action, (ii) the enforcer should prohibit the agents
of certain class to perform the specified action, (iii) the enforcer should assign
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the agents of certain class to be responsible for performing the specified action,
and (iv) the enforcer should waive the agents of certain class to be responsible for
performing the specified action.

The entry point to the SOUPA policy ontology is the pol:Policy class.
An individual of this class represents a policy document. The property pol:rule
relates a policy rule instance to a policy document. Each policy document can
have zero or more defined policy rules. Figure 3 shows a partial description of a
SOUPA policy.

Policy rules are typically defined as individuals of one of the four rule
classes: (i) pol:Right, (ii) pol:Prohibition, (iii) pol:Obligation, and (iv)
pol:Dispensation. The semantics of these four class definitions correspond to
the four enforcement instructions that are described above. These four classes are
subclasses of the pol:DenoticObject class, and the set of individual members of
each class disjoints with each other.

The pol:DeonticObject class has three defined properties: pol:action,
pol:actor, and pol:constraintMemebershipClass. The pol:action property
relates a policy rule to a specific action that it applies to, which must be type
of act:Action. The pol:actor property defines a named agent who may be the
actor of the defined action. By default, an actor does not have the right to perform
an action unless it also satisfies the membership class constraint defined by the
pol:constraintMembershipClass property.

The range of the pol:constraintMemebershipClass property is owl:Class.
The purpose for this construct is to define a template class to match the class mem-
bership types of a given actor. An actor belongs to the constraint membership class
if it is rdf:type of the defined class. In which case, the enforcement instruction
given by the rule applies to the actor. Figure 4 shows examples of two SOUPA
policy rules.

Time SOUPA defines a set of ontologies for expressing time and temporal re-
lations. They can be used to describe the temporal properties of different events
that occur in the physical world.

Part of the SOUPA ontology adopts the vocabularies of the DAML-time
ontologies and the entry sub-ontology of time. The basic representation of time
consists of the tme:TimeInstant and tme:TimeInterval classes. All individual
members of these two classes are also members of the tme:TemporalEntity class,
which is an OWL class that is defined by taking the union of the tme:TimeInstant
and tme:TimeInterval classes. The set of all temporal things that are divided
into two disjoint classes: tme:InstantThing, things with temporal descriptions
that are type of time instant, and tme:IntervalThing, things with temporal de-
scriptions that are type of time interval. The union of these two classes forms the
tme:TemporalThing class.

In order to associate temporal things with date/time values (i.e., their tem-
poral descriptions), the tme:at property is defined to associate an instance of the
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<tme:TimeInterval>
<tme:from>

<tme:TimeInstant>
<tme:at rdf:datatype="xsd;dateTime">2004-02-01T12:01:01</tme:at>

</tme:TimeInstant>
</tme:from>
<tme:to>

<tme:TimeInstant>
<tme:at rdf:datatype="xsd;dateTime">2004-02-11T13:41:21</tme:at>

</tme:TimeInstant>
</tme:to>

</tme:TimeInterval>

Figure 5. A representation of a time interval using the SOUPA
time ontology. The beginning and the ending of a time interval
are defined by the tme:from and tme:to properties, respectively.

tme:InstantThing with an XML xsd:dateTime datatype value (e.g., 2004-12-
25T12:32:12), and the tme:from and tme:to properties are defined to associate
an instance of the IntervalThing with two different tme:TimeInstant individ-
uals. Figure 5 shows the representation of a time interval with the associated
temporal description.

For describing the order relations between two different time instants, the
ontology defines the following properties: tme:before, tme:after, tme:before-
OrAt, tme:afterOrAt, and tme:sameTimeAs. Both tme:before and tme:after
properties are defined of type owl:TransitiveProperty. The tme:sameTimeAs
property expresses that two different time instants are associated with equivalent
date/time values and is defined of type owl:SymmetricProperty.

For describing the order relations between two different temporal things
(i.e., time instants and time intervals), the ontology defines the following prop-
erties: tme:startsSoonerThan, tme:startsLaterThan, tme:startsSameTimeAs,
tme:endsSoonerThan, tme:endsLaterThan, tme:endsSameTimeAs, tme:starts-
AfterEndOf, and tme:endsBeforeStartOf. The first three properties respectively
express that for any two given temporal things A and B, the starting time of A
is before the starting time of B, the starting time of A is after the starting time
of B, and the starting time of A is the same as the starting time of B. The next
three properties respectively express that for any two given temporal things A
and B, the ending time of A is before the ending time of B, the ending time of
A is after the ending time of B, and the ending time of A is the same as the
ending time of B. The tme:startsAfterEndOf property expresses that the begin-
ning of one temporal thing is after the ending of another temporal thing, and the
tme:endsBeforeStartOf property expresses the inverse of this property.

Space This ontology is designed to support reasoning about the spatial rela-
tions between various types of geographical regions, mapping from the geo-spatial
coordinates to the symbolic representation of space and vice versa, and the repre-
sentation of geographical measurements of space. Part of this ontology vocabularies
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are adopted from the spatial ontology in OpenCyc and the OpenGIS vocabularies
[13].

Two ontology documents are related to this ontology: space and
geo-measurement. The first ontology document defines a symbolic representation
of space and spatial relations, and the second document defines typical geo-spatial
vocabularies (e.g., longitude, latitude, altitude, distance, and surface area).

In the symbolic representation model, the spc:SpatialThing class rep-
resents a set of all things that have spatial extensions in the SOUPA do-
main. All spatial things that are typically found in maps or construction
blueprints are called spc:GeographicalSpace. This class is defined as the union of
the spc:GeographicalRegion, spc:FixedStructure, and spc:SpaceInAFixed-
Structure classes.

An individual member of the spc:GeographicalRegion class typically rep-
resents a geographical region that is controlled by some political body (e.g., the
country USA is controlled by the US government). This relation is expressed by
the spc:controls property, the domain of which is spc:GeopoliticalEntity
and the range of which is spc:GeographicalRegion. Knowing which political en-
tity controls a particular geographical region, a pervasive computing system can
choose to apply the appropriate policies defined by the political entity to guide
its behavior. For example, a system may apply different sets of privacy protection
schemes based on the policies defined by the local political entities.

To support spatial containment reasoning, individual members of
the spc:GeographicalSpace class can relate to each other through the
spc:spatiallySubsumes and spc:spatiallySubsumedBy properties. For exam-
ple, a country region may spatially subsume a state region, a state region may
spatially subsume a building, and a building may spatially subsume a room. Know-
ing the room in which a device is located, we can infer the building, the state and
the country that spatially subsumes the room.

In the geo-spatial representation model, the individual members of the
spc:SpatialThing class are described by location coordinates (i.e., longitude, lat-
itude, and altitude). This relation is expressed by the spc:hasCoordinates prop-
erty, the range of which is the geo:LocationCoordinates class. In this model,
multiple location coordinates can be mapped to a single geographical region (e.g.,
a university campus typically covers multiple location coordinates.). This relation
is useful for defining spatial mapping between different geographical locations and
GPS coordinates. This information can enable a GPS-enabled device to query the
symbolic representation of its present location for a given set of longitude, latitude,
and altitude.

Event Events are event activities that have both spatial and temporal ex-
tensions. An event ontology can be used to describe the occurrence of different
activities, schedules, and sensing events. In the event ontology document, the
eve:Event class represents a set of all events in the domain. However, the defini-
tion of this class is silent about its temporal and spatial properties.
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<owl:Class rdf:ID="DetectedBluetoothDev">
<rdfs:subClassOf rdf:resource="&eve;TemporalSpatialEvent"/>

</owl:Class>

<owl:ObjectProperty rdf:ID="foundDevice">
<rdfs:domain rdf:resource="#DetectedBluetoothDev"/>

</owl:ObjectProperty>

<DetectedBluetoothDev>
<spc:hasCoordinates>

<geo:LocationCoordinates>
<geo:longitude rdf:datatype...>-76.7113</geo:longitude>
<geom:latitude rdf:datatype...>39.2524</geom:latitude>

</geo:LocationCoordinates>
</spc:hasCoordinates>

<foundDevice rdf:resource="url-x-some-device"/>
<tme:at>

<tme:TimeInstant>
<tme:at rdf:datatype="xsd;dateTime">2004-02-01T12:01:01</tme:at>

</tme:TimeInstant>
</tme:at>

<DetectedBluetoothDev>

Figure 6. An example shows the representation of a sensing
event using the SOUPA space, time and event ontology. In this
example, the Bluetooth network interface of a device has been
detected at the time instant 2004-02-01T12:01:01 at a location
with the GPS coordinates (-76.7113/39.2524).

The eve:SpatialTemporalThing class represents a set of things that have
both spatial and temporal extensions, and it is defined as the intersection of
the tme:TemporalThing and spc:SpatialThing classes. To specifically describe
events that have both temporal and spatial extensions, eve:SpatialTemporal-
Event class is defined as the intersection of the eve:SpatialTemporalThing and
eve:Event classes.

Figure 6 shows how the ontology can be used to describe an event in which a
Bluetooth device has been detected on 2004-02-01 at 12:01:01 UTC, and the event
occurs at a location that is described by longitude -76.7113 and latitude 39.2524.

3.4. SOUPA Extension

The SOUPA Extension ontologies are defined with two purposes: (i) to define an
extended set of vocabularies for supporting specific types of pervasive application
domains, and (ii) to demonstrate how to define new ontologies by extending the
SOUPA Core ontologies. At present, the SOUPA Extension consists of experimen-
tal ontologies for supporting pervasive context-aware applications in smart spaces
and peer-to-peer data management in a pervasive computing environment.

Priority By default the BDI ontology is silent about the priority relation among
the set of desires and intentions of an agent. The priority ontology defines addi-
tional vocabularies for assigning priority values to an agent’s desires and intended
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actions. At times when there are conflicts between different desires or actions,
priority values can be used to set the precedence.

Conditional & Unconditional Belief. This ontology defines the vocabular-
ies for describing conditional beliefs. A conditional belief statement can be attrib-
uted by temporal values, accuracy values, or locally defined conditions. Statements
defined with conditional attributes will be believed to be true if the associated time
stamp is valid, the accuracy value is above a pre-defined threshold, and all the lo-
cally defined conditions are satisfied. Otherwise, the statements will be believed
to be false.

Contact Preference. This ontology defines the vocabularies for describing a
user’s contact preference, which is a set of rules that specify how the user likes to
be contacted by the system under different situational conditions (i.e., in meeting,
out of town, on the weekends). For example, a user may specify the system to
contact her on a cellphone when she is out of town, and to contact her using only
SMS when she is in a meeting.

Meeting & Schedule. These two ontologies define the vocabularies for describ-
ing a meeting event, schedules, and the associated attendees. They can help smart
meeting systems to represent and reason about the context of a meeting (e.g., are
all scheduled attendees located in the meeting room? What is the end time of this
meeting?)

4. The Context Broker Architecture

CoBrA is a broker-centric agent architecture for supporting context-aware systems
in smart spaces [8]. Central to the architecture is the presence of a Context Broker,
an intelligent agent that runs on a resource-rich stationary computer in the space.
The responsibility of the Context Broker is to (i) provide a centralized model of
context that can be shared by all devices, services, and agents in the space, (ii)
acquire contextual information from sources that are unreachable by the resource-
limited devices, (iii) reason about contextual information that cannot be directly
acquired from the sensors (e.g., intentions, roles, temporal and spatial relations),
(iv) detect and resolve inconsistent knowledge that is stored in the shared model
of context, and (v) protect user privacy by enforcing policies that the users have
defined to control the sharing and the use of their contextual information.

Our centralized design of the context broker is motivated by the need to
support small devices that have relatively limited resources available for context
acquisition and reasoning. With the presence of a broker, small devices such as cell-
phones, PDA and watches can offload their burdens of managing context knowledge
onto a resource rich context broker, including reasoning with context, detecting
and resolving inconsistent context knowledge. Furthermore, in an open and dy-
namic environment, users may desire that their personal contextual information
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Figure 7. A Context Broker acquires contextual information
from heterogeneous sources and fuses into a coherent model that
is then shared with computing entities in the space.

be kept private. A centralized management of context knowledge makes it easy to
implement privacy protection and information security.

The design of a Context Broker consists of the following four parts:

1. CoBrA Ontology (COBRA-ONT): A set of ontology documents that define
the vocabularies for representing contextual information and for support-
ing the context reasoning. This ontology extends the SOUPA ontology and
introduces additional domain specific vocabularies. COBRA-ONT v0.52 is
the latest version of this ontology, which defines an ontology of the UMBC
eBiquity Research Group meetings and a spatial ontology that describes
the geographical location of UMBC.

2. Context Knowledge Base: This knowledge base stores the contextual in-
formation that is acquired from the physical environment and knowledge
that is inferred by the Context Reasoning Engine. In our prototype imple-
mentation [9], this knowledge base is stored in a relational database3 using
the Persistent Ontology Model API of the Jena 2 semantic web framework
[5]. All knowledge in this knowledge base is expressed as RDF triples.

2COBRA-ONT is available at http://cobra.umbc.edu.
3The current implementation uses the MySQL system.
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3. Context Reasoning Engine: It is a rule-based component that provides
logic inference support for interpreting context and for detecting knowl-
edge inconsistency. This engine has a two-tier design: Tier-1 and Tier-2. A
key difference between the reasoners in Tier-1 and Tier-2 is in the type of
inferences that they support. While Tier-1 only supports ontology infer-
ences using either the built-in or the customized ontology axioms, Tier-2
supports domain heuristics inferences using an external logic inference en-
gine. We have prototyped two reasoners – one in Prolog [8] and the other
one in Jess [9].

4. Privacy Protection Module: This module is responsible for analyzing user
defined policy rules and helps the Context Broker to decide whether con-
text knowledge about a user can be shared with a particular agent in the
system. In our prototype design, this module reads in user privacy policies
that are expressed in the SOUPA policy ontology. Before the Context Bro-
ker shares the context knowledge about a user, the Context Broker calls
this module to check whether the receiving agent is permitted to acquire
this information.

5. CoBrA Applications

To demonstrate the use and the feasibility of CoBrA for supporting pervasive
context-aware systems, we have developed two prototype systems. Both proto-
types exploit the SOUPA and COBRA-ONT ontology to support context model-
ing, context reasoning, and knowledge sharing. The first prototype system, called
EasyMeeting, is a smart meeting room system that is aimed to facilitate typical
user activities in an everyday meeting. The second prototype system is a toolkit
for building demonstrations of the CoBrA system without needing to set up a
complete pervasive computing infrastructure.

5.1. The EasyMeeting System

EasyMeeting is an extension to Vigil [38], a third generation pervasive computing
infrastructure developed at UMBC. The goal of developing EasyMeeting is to cre-
ate a smart meeting room that can facilitate typical user activities in an everyday
meeting. This includes setting up presentations, allowing users to control services
via speech, and adjusting lighting and background music in a room based the state
of the meeting.

In EasyMeeting, the role of a Context Broker is to provide a shared model of
context for all agents and services. In particular, it is responsible for acquiring and
maintaining consistent knowledge about (i) the location of meeting participants,
(ii) the event schedule of a meeting, (iii) the presentations that are scheduled for the
meeting, (iv) the profiles of the speakers, and (v) the state of a meeting. To acquire
this knowledge, the Context Broker explores different sources of information that
is published on the Semantic Web and provided by the sensor agents (e.g., the
Bluetooth Sensing Agent in Figure 8).
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Figure 8. In EasyMeeting the Context Broker shares its contex-
tual knowledge with the MajorDemo agent. Using this knowledge,
MajorDemo selects and then invokes appropriate Vigil services to
provide relevant services and information to the speakers and au-
diences.

The following is a typical EasyMeeting use case: Room 338 is a smart meeting
room. On January 8th, 2004, a presentation is scheduled to take place from 1:00-
2:30 PM in this room. Moments before the event starts, the room’s Context Broker
acquires the meeting’s schedule from the Semantic Web and concludes the meeting
is about to take place in the Room 338. As the meeting participants begin to arrive,
the room’s Bluetooth Sensing Agent detects the presences of different Bluetooth
enabled devices (e.g., cellphones, PDA’s). Because each device has a unique device
profile that is described by standard Semantic Web ontologies, the sensing agent
can share this information with the Context Broker.

Based on the user profile ontologies that are stored in the Context Broker’s
knowledge base (e.g., who owns what devices), without knowing any evidence to
the contrary, the Context Broker concludes the owners of the detected devices are
also located in the Room 338. Among the arrived participants, there are Harry
(the speaker) and President Hrabowski (the distinguished audience). The Context
Broker shares the location information of these participants with the subscribed
MajorDemo agent.

Knowing that President Hrabowski has a distinguished audience role, the
MajorDemo agent invokes the Greeting Service to greet him. At 1:00 PM, the
Context Broker informs the MajorDemo agent that all listed key participants
have arrived and that the presentation can be started. Knowing all the lights in
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the meeting are currently switched on and the background music is also playing,
the agent invokes the Dim Light Method on the the Light Control Service and the
Stop Music Method on the Music Service.

As Harry walks to the front of the meeting room, he speaks to the system
using a wireless microphone, “load Harry’s presentation”. The voice command is
received by the Voice Recognition Service and a corresponding CCML command is
generated. The MajorDemo agent sends this text string command to the Presenta-
tion Service along with the URL at which Harry’s presentation can be downloaded
(this information is provided by the Context Broker). As the Presentation Service
loads Harry’s PowerPoint slides, the MajorDemo agent invokes the Profile Display
Service to show Harry’s home page. Few seconds later, all LCD displays sitting
on the conference table start showing Harry’s biosketch and his profile. Using the
same wireless microphone, Harry speaks to the system to control his presentation.

5.2. CoBrA Demo Toolkit

This toolkit a set of software applications for demonstrating the key features of
CoBrA. It is aimed to provide a proof-of-concept demonstration and stimulate
future system design and development. This toolkit has three key components: (i)
a stand-alone Context Broker implementation in JADE, (ii) a customizable JADE
agent called ScriptPlay for facilitating demo scripts, and (iii) an Eclipse Plug-in
called CoBrA Eclipse Viewer (CEV) for monitoring the knowledge base changes
in the Context Broker.

Using this toolkit, we can develop customized demonstrations to show how
the knowledge base of a Context Broker changes when new contextual information
is acquired or when the logic inference for context reasoning is triggered. Through
a graphical user interface, users can (i) inspect the ontology schemas and data
instances that form the Context Broker’s belief about the present context, (ii)
view privacy policies that the individual users have defined to protected their
private information, and (iii) monitor the communication messages that are sent
between the Context Broker and other agents.

CEV is a tool for browsing the context model in the knowledge base of the
Context Broker and to monitor its changes while the Context Broker acquires new
information from other agents or infers new context knowledge. Figure 9 shows
a screenshot of the CEV plug-in that displays partial knowledge of the Context
Broker.

One of our demonstration scenario is to show the Context Broker’s ability
to detect knowledge inconsistency when maintaining the location information of
a person. In this demonstration, the ScriptPlay agent is configured to simulate
a group of location tracking agents that individually send sensed people location
information to the Context Broker. To simulate a real world scenario, some of
the reported location information are intentionally made to be inconsistent with
each other. For example, one report may express that a person is located in the
Room ITE 325, which is part of the ITE building on the UMBC campus, and the
other report may express the same person is located in some place in the state
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Figure 9. A screenshot of the CoBrA Eclipse Viewer (CEV).
On the left, CEV lists the ontology classes and instances that are
part the Context Broker’s knowledge base. On the right, CEV
users can explore the properties of individual class instances.

of California during the same time interval. Because the UMBC campus in in the
state of Maryland, which is a geographical region that is disconnected from the
state of California, the previous two reports of the same person’s location context
are inferred to be inconsistent.

In this demonstration, the Context Broker continuously waits to receive in-
coming reports about people’s location context and notifies the senders when the
reported information is inconsistent with its stored knowledge. If the incoming
report is consistent with the stored knowledge, the Context Broker replies with a
confirmation message and adds the new information to its knowledge base. Figure
10 shows a UML sequence diagram of a complete run of this demonstration4. At
present, our implementation only handles the detection of inconsistent knowledge
and does not handle the resolution of inconsistent knowledge. We are investigating
different strategies for resolving inconsistent knowledge after it has been detected.

4A QuickTime video of this demonstration is available at http://cobra.umbc.edu
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Figure 10. Using the CoBrA Demo Toolkit, users can moni-
tor the underlying behavior and the knowledge base of the Con-
text Broker and inspect the communication messages between the
Context Broker and other agents. This demo shows the Broker’s
ability to detect inconsistent location information about a per-
son when there are inaccurate sensing reports. Upon receiving
information that is inconsistent with its existing belief, the Bro-
ker notifies the sender of the information and refuses to add this
information to its knowledge base.
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H1: locatedIn(Per,Rm), owner(Per,Dev) => locatedIn(Dev,Rm).

H2: locatedIn(Per,Rm), meeting(Mt,Rm),
speakerOf(Per,Mt), not(notLocatedIn(Per,Rm))

=> intends(Per,give_prst(Mt)).

F1: locatedIn(t68i,rm338).
F2: owner(harry,t68i).
F3: meeting(m1203,rm338).
F4: speakerOf(harry,m1203).

Figure 11. Rules for assumption-based reasoning in the Theorist framework.

6. Future Work

Our near term objective is to improve the logic inference mechanism in the Context
Knowledge Base. We are investigating the use of the Theorist framework [34], a
Prolog meta-interpreter for processing assumption-based reasoning. Different from
the conventional deductive reasoning systems, in this framework, the premises of
the logic inference consists both facts (axioms given as true) and assumptions
(instances of the possible hypotheses that can be assumed if they are consistent
with the facts). Supporting both default reasoning and abductive reasoning is a
key feature of the Theorist framework.

One way to use Theorist is for context reasoning, exploiting both default and
abductive reasoning. In this approach, all contextual information acquired by the
Context Broker are viewed as its observation about the environment. When an
observation is received, the Context Broker first uses abduction to determine the
possible causes and then uses default reasoning to predict what else will follow
from the causes [28].

Let’s consider the example in Figure 11. Hypotheses H1 states that a per-
sonal device is located in a room if the owner of the device is also in that room.
Hypotheses H2 states that if a person is in a room where a meeting is scheduled to
take place, the same person is the speaker of the meeting, and no evidence showing
the person is not in that room, then the person intends to give a presentation at
the meeting. Fact F1 states that Cellphone T68i is located in the room RM338.
Fact F2, F3, and F4 state that Harry is the owner of the Cellphone T68i, Meeting
m1203 is scheduled to take place in the room RM338, and Harry is the speaker
of the Meeting m1203, respectively. We expect F1 to be knowledge acquired from
the sensors, and F2, F3, and F4 to be knowledge acquired from the Semantic Web.

Our first objective is to infer the cause for the observation that the Cellphone
T68i is located in the room RM338 (i.e., F1). We use abduction. Based on the given
knowledge, {locatedIn(harry,rm338), owner(harry,t68i)} is a plausible ex-
planation for locatedIn(t68i,rm338). Knowing Harry is in room RM338, our
second objective is to predict his intention in that room. We use default reasoning.
Using H2, we can infer Harry intends to give a presentation in the Meeting m1203.
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7. Conclusions

The Semantic Web languages and ontologies defined using these languages are of
great importance to future pervasive context-aware systems. Using the OWL lan-
guage we can define ontologies for modeling context and for supporting context
reasoning. Shared ontologies can also help agents, services, and devices to share
context knowledge and to interoperate in an open and dynamic environment. As
the Semantic Web tools and ontologies emerge, they will bring new research op-
portunities in developing pervasive context-aware systems.

We have described the SOUPA ontology, an emerging standard ontology for
supporting ubiquitous and pervasive computing applications. Based on our expe-
rience in prototyping CoBrA, the SOUPA ontologies have shown great promises
in supporting context modeling, context reasoning, and knowledge sharing. The
results of EasyMeeting and the CoBrA Demo Toolkit have successfully demon-
strated aspects of the CoBrA system. In the EasyMeeting system, the Context
Broker helped the smart meeting room services to provide relevant services and
information to the meeting participants based on their context. In the demon-
stration supported by the CoBrA Demo Toolkit, we have shown the ability of
the Context Broker to detect inconsistent information about people’s location by
reasoning with a set of geographical spatial ontologies. In the future, we will ex-
pand the demonstration to show the Context Broker’s ability to resolve knowledge
inconsistency and to protect the privacy of users.
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