
Communicating Neural Network Knowledge between Agents in a Simulated
Aerial Reconnaissance System

Stephen Quirolgico and Kip Canfield
Department of Information Systems

University of Maryland, Baltimore County
Baltimore, MD 21250

fsquiro1, canfieldg@research.umbc.edu

Timothy Finin
Department of Computer Science and Electrical Engineering

University of Maryland, Baltimore County
Baltimore, MD 21250
finin@cs.umbc.edu

James A. Smith
Laboratory for Terrestrial Physics

NASA Goddard Space Flight Center
Greenbelt, MD 20771

jasmith@hemlock.gsfc.nasa.gov

Abstract

In order to maintain their performance in a dynamic en-
vironment, agents may be required to modify their learning
behavior during run-time. If an agent utilizes a rule-based
system for learning, new rules may be easily communicated
to the agent in order to modify the way in which it learns.
However, if an agent utilizes a connectionist-based system
for learning, the way in which the agent learns typically
remains static. This is due, in part, to a lack of research
in communicating subsymbolic information between agents.
In this paper, we present a framework for communicating
neural network knowledge between agents in order to mod-
ify an agent’s learning and pattern classification behavior.
This framework is applied to a simulated aerial reconnais-
sance system in order to show how the communication of
neural network knowledge can help maintain the perfor-
mance of agents tasked with recognizing images of mobile
military objects.

1. Introduction

In an agent-based system, agents are often required to
learn in order to improve their individual performance, pre-

cision, efficiency and scope of solvable problems [15]. In
order for an agent to learn, it must implement mechanisms
that define how and what it learns. Such mechanisms typ-
ically come in the form of a symbolic (i.e. rule-based)
or subsymbolic (e.g. connectionist-based) system. If an
agent exists in a dynamic environment, or is tasked with
learning new concepts, it may be necessary for the agent
to modify how and what it learns in order to maintain its
peformance. In an agent-based system where agents im-
plement rule-based systems for learning, new rules may be
easily communicated to agents in order to modify the way
in which they learn. However, if an agent implements a
connectionist-based system for learning, the way in which
the agent learns typically remains static during the life of the
agent. This is due, in part, to the lack of research in com-
municating subsymbolic information between agents. As a
result, agents may be unable to adapt their learning or classi-
fication behavior to changes in the environment (especially
if such changes are highly dynamic), and thus experience a
degradation in performance. By allowing subsymbolic in-
formation to be communicated between agents, however,
an agent may utilize new neural networks dynamically in
order to potentially maintain or increase its learning or pat-
tern classification performance.

In this paper, we present a framework for communi-

cating neural network knowledge between agents. We re-
fer to this framework as theConnectionist Model Trans-
fer (CMT) framework. The CMT framework is a gen-
eral framework for communicating subsymbolic informa-
tion between agents in a portable and efficient fashion, and
is intended for applications where agents exist in a dynamic
environment and implement neural networks for learning
and pattern classification. One potential application of the
CMT framework may involve intelligent interface agents
tasked with learning user preferences in order to tailor their
environments to specific users. Such agents may be asso-
ciated with a variety of environments including operating
systems, web pages,etc. As users move from environment
to environment, models of their preferences (in the form of
neural networks) may be communicated to agents so that
they may tailor their respective environments accordingly.
In this scenario, a received network may also be used by an
agent to continue learning about a user’s preferences in the
context of the current environment in order to refine the pro-
file of the user. The CMT framework may also be applied
to a distributed intrusion detection system where agents are
tasked with detecting anomalous system behavior that may
indicate a potential computer-related attack. Here, a set of
agents residing on remote hosts implement neural networks
for learning normal system behavior in order to more ac-
curately detect anomalous behavior. These networks may
then be communicated between agents in order to facilitate
intrusion detection among a set of hosts. Like the previous
example, a received network may also be used by an agent
to continue learning about system behavior in the context
of the current environment in order to refine its notion of
normal system behavior.

By applying the CMT framework, agents may communi-
cate knowledge of trained neural networks and immediately
instantiate this knowledge in a ”Plug-and-Play” fashion
allowing them to dynamically modify their learning or pat-
tern classification behavior in real-time. The CMT frame-
work may also be used to facilitatenetwork transfer. Net-
work transfer refers to the reuse of neural network parame-
ter values in order to improve the training of new neural net-
works [1, 17, 19]. Research in network transfer has shown
that the use of parameters from existing networks can accel-
erate the training, and improve the accuracy, of new neural
networks [16]. Finally, the CMT framework may be used to
allow for the implementation of distributed neural networks
by providing a means by which results of modular networks
may be communicated as input into remote networks.

We begin this paper by presenting an overview of the re-
lationship between neural networks and agent learning. The
motivation for this overview is to clarify the distinction be-
tween agent learning and neural network learning, and to
help establish the need for communicating neural network
knowledge between agents. We then follow with a descrip-

tion of the general CMT framework. This will involve a dis-
cussion of issues related to the modeling of neural network
knowledge, the functional requirements of agents, and the
protocols required to communicate neural network knowl-
edge between agents. We then describe the application of
the CMT framework to a simulated aerial reconnaissance
system. Using this system, we demonstrate how the com-
munication of neural network knowledge can help to main-
tain the performance of agents in a dynamic environment.

2. Neural Networks and Agent Learning

In a number of agent-based systems, neural networks are
used to implement the mechanisms for carrying out a va-
riety of agent learning methods. Such methods, including
rote learningand learning by discovery, are typically dis-
tinguished by the amount of learning effort required by an
agent [20]. Rote learning refers to the immediate and di-
rect implantation of knowledge and skills without requir-
ing further inferencing or transformation by the learner (i.e.
agent) [14, 20]. This type of learning requires the least
amount of effort by an agent, but typically requires the high-
est levels of communication in order to acquire knowledge
and skills from other agents. In contrast, learning by discov-
ery (or isolated learning) is concerned with having agents
learn by themselves [9, 20]. In this form of learning, agents
acquire new knowledge and skills by making observations
and conducting experiments. Thus, learning by discovery
requires the most amount of learning effort by an agent
and is not typically facilitated through communication with
other agents.

A discussion of agent learning in the context of neural
networks requires discussion of the relationship between
the learning of an agent and the learning of its associated
neural network. The life cycle of a neural network is com-
prised of two phases: a training phase and an execution (or
recall) phase. In general, neural network learning is asso-
ciated with the adjustment of a network’s parameters (e.g.
weights) during its training phase. It is through the adjust-
ment of these parameters by which a neural network learns.
Once a network has been trained, it represents ”learned”
knowledge and may be applied (i.e. executed) in some do-
main. The application of a neural network represents the
recall phase of a network.

In many cases, a trained neural network is used to imple-
ment systems that simply classify tuples of input data. Such
systems are often referred to asclassifier systems[7, 10, 12].
In a classifier system, the parameters of a network remain
constant which prevent it from continuing to learn during
execution. Neural networks may also be used, however,
to implement systems that continue to learn, adapt, and
strengthen their classification capabilities during execution
by analyzing feedback from the environment and adjusting

their network parameters accordingly. Such systems are of-
ten referred to asreinforcement learning systems[8, 13].
Note that connectionist-based classifier and learning sys-
tems embody a potential ability togeneralize. Generaliza-
tion refers to the ability of a network to derive appropriate
results given incomplete, noisy, or previously unseen data
without modification to its internal parameter values. Thus,
generalization is not a form of learning, but rather a result
of learning. Through generalization, classifier and learning
systems possess the ability to recognize new patterns, but
only if these patterns are similar to those that the network
has learned to recognize.

In this paper, we define agent learning as a reflection of
the knowledge and skills acquired through (1) the instanti-
ation and execution of a new network or (2) the continued
learning of an embodied network. When an agent instanti-
ates and executes a new network, it learns how to classify
(or learn) new patterns immediately (i.e. through rote learn-
ing). If this network is used as a classifier system, its pa-
rameters will remain constant and will not continue to learn
during execution. Thus, its embodying agent may continue
to learn if and only if it instantiates a new network (or incor-
porates another learning mechanism). However, if the net-
work is used as a learning system, it may continue to learn
through the adjustment of its parameters, and its embody-
ing agent will continue to exhibit new learning each time
the parameters of the network are adjusted (or a new net-
work is instantiated). In this paper, we simplify discussion
by assuming that all agents implement a single network and
that the learning or classification performance of an agent
is highly dependent upon (and directly correlated with) the
learning or classification performance of its associated net-
work.

Currently, there are limitations of what a neural network
can learn during its recall phase. In most cases, neural net-
works that learn during execution typically do so in order
to refine their notion of concepts they already know. How-
ever, if an agent exists in a highly dynamic environment or
is tasked with learning new concepts, a network embodied
by the agent may be unable to sufficiently adapt in order to
maintain its performance. This problem is even more se-
vere for agents tasked with recognizing (significantly) new
patterns using neural networks that do not learn during ex-
ecution (i.e. classifier systems). In order to facilitate per-
formance in such cases, it may be necessary to override the
learning and pattern classification mechanisms of an agent
with new models. In order to do this, however, a means of
communicating such models between agents must exist.

3. General Framework

The idea of communicating neural network knowledge
between agents raises a number of issues. One issue is con-

cerned with the development of appropriate models for rep-
resenting neural network knowledge. Another issue con-
cerns the identification and development of agent services
that are required in order to make communicated neural
network knowledge useful and practical. Yet another is-
sue concerns the identification of appropriate protocols for
communicating neural network knowledge between agents.
The CMT framework attempts to address these issues by
(1) providing a model specification for representing neural
network knowledge, (2) providing a specification of agent
services for managing neural network knowledge within a
multi-agent system, and (3) identifying a protocol for com-
municating neural network knowledge within the context of
an agent communication language.

3.1. Representing Neural Network Knowledge

Before neural networks can be communicated between
agents in a portable fashion, a model of their representa-
tion must be defined. Although a number of general speci-
fications have been proposed for modeling the architecture
of neural networks [3, 4], these models lack a representa-
tion that provides meta-knowledge about a network. Such
knowledge is useful in providing information about a neu-
ral network for use in a multi-agent system. In this pa-
per, we present a model for representing neural network
knowledge that is, a network’s architecture and related
meta-knowledge. We refer to this model as aConnection-
ist Model(CM). The general ontology of a CM is shown in
figure 1.

Architecture

Functions

SubobjectsHas

Engines

CM

Neural Network

Header

Data

Has

Meta Knowledge

Has

Has

Weights/Biases

Has

Has

Has

Has

Has

Describes

Figure 1. Connectionist model ontology.

The meta-knowledge ontology of a CM is comprised of

ontologies for specifying

� header information: This describes general informa-
tion about the neural network including its

– name, version, date, type, and purpose

– learning and pattern classification capabilities

– domain, environmental, and contextual con-
straints

– author, institution, and contact information.

� data information: This describes information about the
network’s input and output data including

– information surrounding appropriate sources of
input and sensor data

– the semantics of possible network output values

– information about available input data preproces-
sors

– actual data values used in the training and testing
of the network

– mappings of input vectors to output vectors (in
the form of a rule-base) for explanation-based
reasoning or validation of the network’s results.

� engine information: This describes information related
to the instantiation and execution of the network in-
cluding

– information related to translators for mapping
object representations of CMs to and from var-
ious knowledge representation formats as well as
translators for mapping CMs to and from various
neural network development and execution envi-
ronments

– information related to processing engines avail-
able from other sources that may be retrieved and
utilized in the agent’s local environment. These
processing engines may exist in many forms in-
cluding objects, libraries,etc.

The neural network portion of a CM is based on the
MATLAB network object specification [3] and is comprised
of ontologies for specifying

� architecture information: This describes the number of
network subobjects and how they are connected.

� subobject structure information: This describes prop-
erties of array structures that define the network’s in-
puts, layers, outputs, targets, biases, and weights.

� functions information: This defines the algorithms
used for initialization, adaptation, and training.

� weights and biases: This defines the network’s dy-
namic parameters including weight matrices and bias
vectors.

A primary motivation for the use of a CM is to support
the communication of neural networks in a portable fashion.
Because a CM does not require the use of a specific rep-
resentation language in order to be communicated between
agents, CMs may be represented and communicated in a va-
riety of languages including LISP, Prolog and KIF [6]. CMs
may also be represented as objects comprised of multiple
subobjects. For example, table 1 shows an InputWeights
object that is comprised of a set of parameters including
a learning parameter (learn_param) that is defined by a
LP subobject [3]. Note that because of its modular structure,
a CM may be communicated either partially or in its en-
tirety. This may help to improve system performance by al-
lowing only those parts of a CM that are required by agents
to be communicated.

Although portions of a CM may be of interest to human
readers (e.g. header information), a CM is intended to be
communicated in a machine-readable representation. Thus,
agents are required to make such knowledge available for
human consumption where necessary. Providing a means
by which humans can examine knowledge related to CMs
would be required in order to help agent or neural network
designers identify existing CMs that satisfy their needs.

3.2. Communicating Neural Network Knowledge

Depending on the requirements of a system, the proto-
cols required to communicate knowledge between agents
may vary. In the context of the CMT framework, how-
ever, protocols are established that offer some standardized
means by which to communicate neural network knowl-
edge. These protocols are required in order for agents to
conduct intelligent dialog with respect to such knowledge.

The CMT framework uses theKnowledge Query and
Manipulation Language[5, 11] to communicate CMs, or
parts thereof, between agents. KQML is a language and
protocol for exchanging knowledge. When an agent uses
KQML to communicate knowledge, it does so by passing a
KQML message. Each KQML message is associated with
a performativethat defines the permissible operations that
may be attempted on knowledge maintained and communi-
cated by agents. In the CMT framework, KQML is used
to perform a variety of operations on CMs and is particu-
larly useful in defining the context surrounding a commu-
nicated CM. For example, suppose a sending agent wishes
to insert a CM into a receiving agent’s knowledge base. In
this case, the sending agent may send a KQML message
containing the CM and an associatedinsert performa-
tive. By examining the received performative, the receiving

Table 1. InputWeights object.

InputWeights
Type Parameter Description

int delay defines a tapped delay line be-
tween thejth input and its weight
to theith layer

string init func defines the function used to initial-
ize the weight matrix going to the
ith layer from thejth input

int learn defines whether the weight matrix
to the ith layer from thejth input
is to be altered during training and
adaptation

string learn func defines the function used to up-
date the weight matrix going to the
ith layer from thejth input during
training

LP learnparam defines the learning parameters
and values for the current learning
function of theith layer’s weight
coming from thejth input

int size defines the dimensions of theith
layer’s weight matrix from thejth
network input

string weight func defines the function used to apply
the ith layer’s weight from thejth
input to that input

LP
Type Parameter Description

double lr defines the learning rate
double mc defines the momentum constant

agent will understand that a request has been made to in-
sert the content of the received message (in this case, a CM)
into its knowledge base. As another example, suppose that
a sending agent wishes to have a receiving agent execute
a CM in the receiving agent’s local environment. In this
case, the sending agent may send a KQML message con-
taining the CM and an associatedachieve performative.
When the message is received, the receiving agent will ex-
amine the received performative and understand that a re-
quest has been made to execute the received CM in its local
environment. In some cases, only a portion of a CM will
be communicated between agents. For example, suppose a
sending agent wishes to acquire a CM contained in the re-
ceiving agent’s knowledge base where the name of the CM
is RECONand the version is2.0.1 . The sending agent
may define the query constraints as a Header structure con-
taining two defined parameter valuesname=RECONand

version=2.0.1 . This agent may then send a KQML
message containing the Header structure and an associated
ask-one performative. When the receiving agent receives
the message, it will understand that a request has been made
to locate the first CM that matches the query constraints as
defined by the received Header structure. Figure 2 shows
an example KQML message where an agent A queries an
agent B for a<CM>that contains a specified<HEADER>
where<HEADER>and<CM>represent logic-based expres-
sions (or objects) of Header and CM knowledge, respec-
tively. Note that we may specify constraints on the structure
to be returned by the receiving agent (i.e. a full or partial
CM) through the:reply-with field of a KQML mes-
sage.

 :reply-with <CM>

 :ontology CM)

Agent BAgent A

 :content (<Header>)

(tell

 :sender B

 :receiver A

 :content (<CM>)

 :receiver B

 :sender A

(ask-one

 :ontology CM)

Figure 2. Querying an agent using a KQML
ask-one performative.

By using KQML, the CMT framework inherits the com-
munication protocols required in order to communicate
CMs in a multi-agent system. Note that although the CMT
framework is designed to facilitate the communication of
CMs between agents, agents may also be required to com-
municate additional knowledge depending on the task do-
main.

3.3. Managing Neural Network Knowledge

Although different multi-agent applications will necessi-
tate varying functional requirements of its agents, the CMT
framework requires that agents must facilitate a core set
of services for managing CMs, and that these services be
initiated through protocols inherited from the underlying

KQML communication infrastructure. Depending on the
system, services for managing CMs may be carried out by
a wide number and variety of agents. However, agents that
are responsible for carrying out such services will typically
have the same general architecture. We refer to a set of
agents that carry out CM-related services asCM agents. In
general, CM agents will have a set of proactive services
for initiating communication with other agents and a set
of reactive services for responding to communication ini-
tiated by other agents. CM agents may be comprised of
CMProducer, CMConsumer, CMRepository, andCMBro-
keragents.

A CMProducer agent is primarily responsible for CM
creation-related services. These services are concerned with
the creation of CMs from trained neural networks as well as
the submission of these CMs to the system. CMProducer
agents are the least autonomous of all the CM agent as they
require interaction with human operators (i.e. neural net-
work developers). In order to create a CM, a human op-
erator instructs the CMProducer to extract parameters from
a specific neural network that has been trained in the lo-
cal training environment and to map these parameters into
a CM in some appropriate representation language or bi-
nary format. This mapping of neural network parameters to
a CM is performed using an environment-specificNN2CM
translator. Once a CM is created, it may be submitted to
the system for use. Submission of CMs to the system may
involve conducting dialog with other agents in order to de-
termine where to send a newly created CM. The general
architecture of a CMProducer agent is shown in figure 3.
Here, we note that a CMProducer may also be responsible
for receiving neural network knowledge from other agents
in order to facilitate network transfer. In such cases, pa-
rameters from received CMs are extracted using a CM2NN
translator and made available to the local training environ-
ment for (manual) training by a human operator.

A CMConsumer agent is primarily responsible for CM
execution-related services. These services are concerned
with the execution of received neural networks. In order
to execute a received neural network, a CMConsumer must
first instantiate a received CM by using a CM2NN translator
that maps knowledge from the received CM into a represen-
tation that may be used in the local execution environment.
A CMConsumer is also responsible for determining an ap-
propriate set of input (e.g. sensor) data and providing this
data to the execution environment in real-time. In many
cases, a CMConsumer may use meta-knowledge from a re-
ceived CM to determine the appropriate sets of input data
required by the network. In addition, such knowledge may
also be used to assess the meaning of network results. Fi-
nally, a CMConsumer may also be responsible for initiating
dialog with other agents in order to communicate results,
search for more powerful CMs,etc. The general architec-

in

Services

Reactive

Services

out

NN Training Environment

NN System API

CM2NNNN2CM

KQML

Proactive

Figure 3. CMProducer agent.

ture of a CMConsumer is shown in figure 4.
A CMRepository agent is responsible for CM mainte-

nance and storage services. These services include CM
query and search services as well as translation services for
mapping CMs to and from various representation languages
and formats. CM query and search services allow agents
(and humans) to search a CMRepository agent’s knowledge
base for appropriate CMs. By allowing humans to browse
the contents of a repository and examine descriptions of
CMs, they may be better able to determine which neural
networks are appropriate for use in their agents, or to deter-
mine appropriate networks from which to extract parameter
values to be used for network transfer. A CMRepository
may also initiate dialog with other agents in order to alert
agents of updated CMs, forward queries to other agents,etc.

Finally, a CMBroker agent is responsible for carrying out
marketing and advertising services on behalf of CM agents.
When a CM agent is instantiated, it registers its services
with a CMBroker which, in turn, recommend, advertise and
market these services to other agents. In general, a CM
agent will typically initiate dialog with a CMBroker before
communicating with other CM agents in order to determine
which agents provide the most appropriate services for its
needs.

4. Simulating Aerial Reconnaissance

In a military campaign, the activity of aerial reconnais-
sance is invaluable in providing information on the location
of mobile military objects including tanks, troops,etc. In
an aerial reconnaissance mission, Unmanned Aerial Vehi-
cles (UAVs), reconnaissance aircraft, and satellites are used

input Data

CM2NN Handlers

Services

Proactive

data
Result

NN System API

NN Execution Environment

in

Preprocessor

Services

Reactive

out

KQML

Figure 4. CMConsumer agent.

to provide still images and video of targets in a defined
geospatial region. Often, these images are first forwarded to
a central command location where they are manually ana-
lyzed and then forwarded to appropriate commanders in the
field. Unfortunately, this process is time consuming. Even
in cases where video is streamed directly to commanders in
the field, commanders must still manually analyze the video
stream and wait until events of interest are displayed.

In order for commanders to assess battlespace conditions
in a timely fashion, it is important to receive aerial recon-
naissance information in a timely manner. In addition, it is
important for commanders to receive only those images that
are required to assess the situation at hand. In this section
we present a system that simulates the filtering and forward-
ing of reconnaissance images to appropriate commanders in
the field. We refer to this system as theAutomatic Image
Filtering and Forwarding for Aerial Reconnaissance(AIF-
FAR) system. The AIFFAR system is shown in figure 5.

The AIFFAR system is a multi-agent system comprised
of CM agents. Here, CMProducer agents are used to cre-
ate CMs from neural networks trained to recognize images
of mobile military objects. CMProducer agents then sub-
mit these CMs to the system by first initiating dialog with
a CMBroker in order to determine appropriate CMReposi-
tory agents to store the CMs, and then forwarding the CMs
to those CMRepository agents directly.

In the AIFFAR system, CMConsumer agents represent
UAVs capable of capturing, filtering and forwarding aerial
reconnaissance images. Using the architecture as shown in

CMConsumer
agents

CMProducer

agents

Monitor

agents

CMRepository
agents

CMBroker

agents

Figure 5. AIFFAR system.

figure 4, a CMConsumer is responsible for

� receiving CMs through KQML messages

� mapping received CMs to neural network parameters
using a CM2NN translator

� instantiating network parameters in the local network
execution environment

� capturing and providing continuous, raw image data to
the system

� mapping raw image data into a numerical representa-
tion for input into the network

� executing the network and deriving classification re-
sults

� computing classification performance

� returning results.

Results generated by a CMConsumer may be forwarded
to other agents includingmonitor agents. Monitor agents
are used to provide commanders an interface to AIFFAR.
This interface allows commanders to request notification
when an image of interest is recognized.

In our aerial reconnaissance scenario, CMConsumer
agents traverse a geospatial region divided into multiple
sectors as shown in figure 6. Here, each sector represents a
typical military area of interest. For example, sector A may
represent a battlefield containing objects typically found in
ground-based warfare including tanks, trucks and surface-
to-air missiles (SAMs), while sector B may represent an

airfield containing objects including fighter jets, helicopters,
and radar systems. In addition, objects that are not normally
found in a particular sector may appear periodically. Thus,
for example, it may be possible to capture an image of a he-
licopter in sector A or a tank in sector B. In this simulation,
each CMConsumers starts in a particular sector and, upon
initialization, is assigned a network for classifying images
of mobile military objects typically found in that sector. The
goal of each CMConsumer is to maintain its ability to cor-
rectly classify images of objects while it moves from sector
to sector.

Type A tank

Type A truck
Type B truck

Sector C

Sector A Sector B

Sector D

Type B tank

Type B helicopter
Type A helicopter
Type B SAM
Type A SAM

Type A radar
Type B radar

Type A fighter
Type B fighter

Figure 6. UAVs traverse a geospatial region
divided into multiple sectors.

The AIFFAR system is a controlled simulation and in-
tended as a proof-of-concept implementation of the CMT
framework. The motivation for the use of this simulated
scenario was to illustrate situations where agents exist in
a dynamic environment and require the communication of
neural network knowledge in order to maintain their classi-
fication performance. We do not, however, make any claims
about the applicability of the CMT framework to actual
aerial reconnaissance systems nor provide any assessments
regarding the performance of this framework with respect to
such systems. The AIFFAR system was implemented and

tested under Solaris 2.6 using Sun JDK1.2, the Jackal 3.1
KQML package [2] and the MATLAB 5.2/C API for the
training and execution of neural networks.

5. Experiment in Neural Network Communi-
cation

In order to show the benefits of communicating neural
networks between agents, we conducted a simple exper-
iment in order to show how the communication of CMs
could improve a CMConsumer agent’s ability to maintain
its classification performance in a dynamic environment.
In this experiment, neural networks were implemented as
classifier systems rather than learning systems. The motiva-
tion for this was to be able to illustrate the benefits of com-
municating neural network knowledge for facilitating agent
performance without having to also assess the contribution
to agent performance due to an internal (and continuously
learning) connectionist-based mechanism. By eliminating a
network’s ability to learn, we were better able to effectively
demonstrate the impact of communicating CMs in order to
maintain agent performance. As described in Section 2,
however, we note that agents that use connectionist-based
learning systems may also require an ability to receive and
instantiate new neural network knowledge if they are unable
to adapt sufficiently to maintain their performance.

In this experiment, CMConsumer agents were tasked
with correctly classifying images of mobile military objects.
The experiment was divided into two phases: acontrol
phaseand atest phase. These phases were distinguished by
the ability to communicate CMs in their respective systems.
In the control phase of the experiment, each CMConsumer
was assigned a CM for performing classification of objects
typically found in its initial sector. Because of their inabil-
ity to communicate CMs, however, CMConsumer agents
used their initially assigned network to classify objects in
all other sectors that they visited. Similarly, each CMCon-
sumer in the test phase of the experiment was assigned a
CM for performing classification of objects typically found
in its initial sector. However, unlike the system in the con-
trol phase, the system in the test phase allowed for the com-
munication of new CMs to CMConsumers. We hypothe-
sized that by allowing for the communication of CMs be-
tween agents, CMConsumer agents in the test phase of the
experiment would exhibit a greater ability to classify images
of mobile military objects over those in the control phase of
the experiment.

In both the control and test phases of the experiment,
ten CMConsumer agents traversed a geospatial region di-
vided into four sectors: two battlefield sectors and two air-
field sectors (as shown in figure 6). Four neural networks
for classifying images typically found in each of these four
sectors were trained, converted into CMs, and submitted to

the system by four CMProducer agents. These CMs were
subsequently stored and maintained by two CMRepository
agents one for storing battlefield-related CMs and the
other for storing airfield-related CMs. As CMConsumer
agents were initialized, they would conduct dialog with
other CM agents in order to identify and acquire an initial
CM from one of the two CMRepository agents.

The capturing of images by a CMConsumer agent was
simulated through the random selection of image files. To
provide a more realistic scenario, a CMConsumer would
occasionally capture the image of an object not typically
found in its currently occupied sector, or wander into an
adjacent sector and capture images from that sector. After
every 30 images captured and processed, a CMConsumer
would randomly select a new sector to patrol. In addition,
each CMConsumer was given an ability to compute its own
classification performance by comparing the results of its
network with additional information provided about each
image file. This information contained a description of the
object in the image including the object’s type. The motiva-
tion for allowing a CMConsumer to access this information
was to simulate the feedback it may receive from some ex-
ternal source (e.g. human monitor). After an image was
presented to a CMConsumer, its embodied network would
derive a classification result, compare this result to informa-
tion about the object in the image, and compute its classifi-
cation performance.

As CMConsumer agents moved from sector to sector in
the control phase of the experiment, they would continue
to capture and classify images regardless of potentially dra-
matic decreases in their classification performance. In con-
trast, CMConsumer agents in the test phase of the exper-
iment would attempt to acquire new CMs if their classi-
fication performance dipped below some specified thresh-
old. In this case, the minimum classification performance
threshold was set at 80.0% (i.e. each CMConsumer was
required to maintain its ability to correctly classify 80%
of its captured images). The acquisition of new, more ap-
propriate CMs involved the initiation of dialog with other
agents via the CMT framework. If a CMConsumer reached
the minimum classification performance threshold, it would
initiate dialog with a CMBroker to find other CMConsumer
agents occupying the same sector. The CMConsumer would
then initiate dialog with these agents in order to assess their
current classification performance. If their classification
performance exceeded the minimum defined threshold, the
CMConsumer would then acquire a CM from one of these
agents (e.g. the one with the highest classification perfor-
mance). If no other CMConsumer agents were found in the
same sector, or those that did exist in the same sector ex-
hibited poor classification performance, the CMConsumer
would initiate dialog with a CMRepository in order to ac-
quire a new CM.

5.1. Reconnaissance Image Data

In this experiment, we used simulated reconnaissance
data in the form of GIF and JPEG images as input for
network training and recall. The images were grouped
into seven general object types:fighter , helicopter ,
radar , sam, tank , troop , andtruck . The motivation
for the selection of these object types was to provide a set
of mobile military objects that may be of interest to com-
manders in combat situations. Figure 7 shows a sample of
images used in this simulation.

Figure 7. Simulated reconnaissance images
(clockwise from top left): helicopter, fighter,
tank, and SAM.

Each object type was associated with three im-
age variations: rotation , low-visibility , and
low-light , and some object types consisted of two dif-
ferent models,A andB. Figure 8 shows two fighter models
with rotation, low-visibility and low-light image variations.
In addition, some object types had acamouflage image
variation. Two such objects are shown in figure 9.

To simplify the experiment, a number of assumptions
and constraints regarding the simulated images were made.
First, we assumed that all images were captured from a rela-
tively constant altitude and from an identical type of camera
with identical zoom settings. This assumption was neces-
sary in order to restrict large variations in the size of objects
in an image. Second, we assumed that each CMConsumer
was either remotely controlled or used a global position-
ing system (GPS) in addition to possible image preprocess-
ing algorithms for centering objects within the image (e.g.

Figure 8. Sample image variations (clockwise
from top left): Type A fighter (rotated), Type
A fighter (low-visibility), Type B fighter (low-
light), Type B fighter (normal).

Figure 9. Camouflaged tank and truck.

edge detection algorithms). This assumption was necessary
in order to ensure that all objects would occupy the center
portion of an image so that the object was not cropped at the
edge of the image. Third, we assumed that objects within
an image depicted little or no shadow and that images of
objects were always captured at a 180° angle to the object.
This assumption was necessary in order to restrict variations
in the color/shadow of an image which may have affected
the recognition of the object. Finally, we assumed that each
image had a constant dimension. This assumption was nec-
essary in order to restrict variations in the size of the image
background.

Before information from images could be used for train-
ing by CMProducer agents, or execution by CMConsumer
agents, the raw data from these images was first prepro-

cessed. Because the focus of this paper was not concerned
with the development of new, robust computer vision al-
gorithms, we used a simple ad-hoc algorithm for extract-
ing RGB color and alpha values from raw image data.
This algorithm involved scanning each pixel of a GIF or
JPEG image and extracting its associated RGB/alpha value.
The RGB/alpha value for each pixel was then stored in a
hashtable as a single integer. This integer was also used as
the key into the hashtable. If a RGB/alpha value for a pixel
mapped to the same slot in the hashtable, the number of pix-
els associated with this slot was incremented. The idea of
this algorithm was to sum the number of pixels that had the
same RGB/alpha value. The sums of the number of pixels
for each RBG/alpha value were then sorted in descending
order into a RGB/alpha pixel array. This array defined the
number of pixels for each RGB/alpha value such that the
first element in the array represented the number of pixels
for the most frequent RGB/alpha value in the image. For
most images, this value represented the number of pixels of
the image background.

5.2. Network Architectures

In this experiment, four neural networks NN-A, NN-B,
NN-C, and NN-D were used to classify images of objects
in sectors A, B, C, and D, respectively. All four networks
were relatively simple, three-layer, backpropagation net-
works that used a Levenberg-Marquardt algorithm for ac-
celerated training. In addition, each network used four in-
puts (one for each of the first four values of a generated
RGB/alpha pixel array).

As shown in table 2, each network was trained on im-
ages of objects typically found in its corresponding sec-
tor. For example, network NN-A was trained on images of
Type A tank andType A truck objects while net-
work NN-B was trained on images ofType B fighter
andType B helicopter objects.

One of the motivations for the CMT framework was to
provide a framework that allowed agents to modify not only
the types, but also the number, of possible classifications it
might derive for a single input vector. In this experiment,
we illustrated this property through the use of networks that
varied in the number of elements contained in their output
vectors. Here, the number of elements in an output vec-
tor denoted the number of possible classifications a net-
work could derive. For example, the topology of network
NN-A contained five outputs denoting its ability to classify
five types of objects while the topology for network NN-B
contained three outputs denoting its ability to classify three
types of objects. The architectures of the networks also var-
ied in their number of hidden layers as well as their values
for weight and bias matrices.

In addition to architectural variations, variations also

Table 2. Summary of neural network proper-
ties.

Property NN-A NN-B NN-C NN-D

layers 3 3 3 3

input 4 4 4 4

hidden 6 8 8 4

output 5 3 4 4

learning rate .05 .10 .09 .03

momentum .90 .50 .01 .40

avg. conv. 66 54 130 49

objects

fighter B B

helicopter B A B

radar A B B

sam A

tank A A

troop A A

truck A A B

existed between the network’s training parameters includ-
ing their momentum constants and learning rates. Table 2
also shows each network’s average convergence (in epochs)
given randomly initialized weights.

5.3. Simulation Results

Results of this experiment were obtained by comparing
the classification performance of CMConsumer agents dur-
ing the control phase with the classification performance of
these agents during the test phase. For the control phase
of the experiment, we letC = fc1; c2; : : : ; cng be the set
of CMConsumer agents tasked with classifying images us-
ing networks assigned at initialization. Each CMConsumer
agent was defined as a quadrupleci = (Ki; Vi; Ui; ri),
1 � i � n, whereKi represented a set of correctly clas-
sified images,Vi represented a set of incorrectly classified
images,Ui represented a set of unclassifiable images, and

ri =
kKik

kKik+kVik+kUik

represented the classification rate of the agent. For the test
phase of the experiment, we letC� = fc�1; c�2; : : : ; c�ng be
the set of CMConsumer agents tasked with classifying im-
ages using networks acquired through communication with
other agents. Here, each CMConsumer agent was defined
as a quadruplec�i = (K�i; V�i; U�i; r�i), whereK�i represented
a set of correctly classified images,V�i represented a set of

incorrectly classified images,U�i represented a set of un-
classifiable images, and

r�i =
kK�ik

kK�ik+kV�ik+kU�ik

represented the classification rate of the agent. In both
phases of the experiment, each CMConsumer agent at-
tempted to correctly classify 100 images. The final classifi-
cation rates for each CMConsumer agent during the control
and test phases of the experiment are shown in table 3.

Table 3. Final classification rates for CMCon-
sumer agents tasked with classifying 100 im-
ages during the control and test phases.

Final Classification Rates

CMConsumer r r�

1 0.552 0.823

2 0.597 0.805

3 0.667 0.842

4 0.644 0.840

5 0.602 0.838

6 0.733 0.859

7 0.632 0.844

8 0.529 0.816

9 0.648 0.801

10 0.721 0.842

Here, we see that the final classification rates for the test
phase of the experiment (columnr�) were greater for each
CMConsumer agent than during the control phase of the
experiment (columnr). The final mean classification rate
during the control phase was

xr =

nP

i

ri

n
= 0:632

while the final mean classification rate for the test phase was

xr�=

nP

i

r�i

n
= 0:831:

Thus, CMConsumer agents in the test phase showed a
31.4% increase in their final average classification rates.
This result supported the hypothesis that the communica-
tion of CMs between agents increased the image classifica-
tion capabilities of CMConsumers agents during run-time.

Figure 10 compares the average classification rate for all
agents during the control phase with the average classifi-
cation rate for all agents during the test phase. Note that
in the test phase, CMConsumer agents initiated a search
for more powerful models when their classification perfor-
mance dipped below 80.0%.

0.6

0.65

0.7

0.75

0.8

0.85

0.9

0.95

1

0 10 20 30 40 50 60 70 80 90 100

A
vg

. C
la

ss
ifi

ca
tio

n
R

at
e

Number of Cases

control phase
test phase

Figure 10. Comparison of average classifi-
cation performance of agents during control
and test phases.

6. Related Work

Previous research efforts have studied issues related to
the use of parameters from existing neural networks to facil-
itate the training of new networks. In [17] Pratt introduced
the notion of transferring neural networks, or parts thereof,
in the same representational formalism to new learning
tasks. The motivation for her research was to show the ef-
fects of using parameter values from existing networks on
the training of new networks. Although her research sup-
ported the claim that network transfer was valuable for in-
creasing the training performance of a network, it assumed
the existence of mechanisms for communicating neural net-
work parameters from the source network to the new (tar-
get) network. Thus, no protocols for communicating net-
work parameters, nor models for representing such param-
eters, were presented. One motivation for the development
of the CMT framework was to provide the mechanisms by
which network transfer may take place in an agent-based
system.

Previous research efforts have also studied the commu-
nication of learned models between agents. Perhaps the
most similar to the ideas presented in this paper were those
presented by Stolfoet. al. [18]. Their research presented
a system, known as theJAM system, for communicating

learned models and classifiers between agents. Like the
CMT framework, the JAM system facilitated ”Plug-and-
Play” of learned classifiers. However, the concepts pre-
sented in this paper differs from described in [18] in a num-
ber of significant ways. Perhaps the most important dif-
ference lies in the models used by each system. In the
JAM system, agent learning was carried out by a variety of
algorithms including ID-3, Bayesian, and CART while in
the CMT framework, agent learning is connectionist-based.
Second, the JAM system used ad-hoc communication proto-
cols in order to communicate models between agents. This
differs from the CMT framework where the communica-
tion protocols are inherited from its underlying KQML in-
frastructure. Third, models and classifiers in the JAM sys-
tem were communicated as native applications or applets
which potentially limit the portability of such models. In
the CMT framework, CMs may be communicated in a num-
ber of representations languages and formats allowing them
to be used in a variety of environments.

7. Conclusions

This paper presented the CMT framework for commu-
nicating neural network knowledge between agents. The
motivation for this framework was to allow for the com-
munication of neural network knowledge between agents in
order to facilitate agent learning and pattern classification.
The CMT framework was comprised of a model specifica-
tion for representing neural network knowledge, a specifi-
cation of services for managing neural network knowledge
in a multi-agent system, and a protocol for communicating
neural network knowledge between agents.

In this paper, we presented the connectionist model
(CM) as a model for representing neural network knowl-
edge. Unlike other specifications that have been proposed
for modeling neural networks, a CM is comprised of both
network parameters and meta-knowledge that describes ad-
ditional information about a network. Such information
may be useful in allowing agents to determine, for exam-
ple, the semantics of network outputs. Because CMs may
be communicated in a variety of representation languages
and formats, they provide a flexible model that may be used
to communicate neural network knowledge in a portable
fashion. In addition, we identified and described protocols
for communicating CMs between agents. These protocols
were inherited through the use of the KQML agent commu-
nication language. In the CMT framework, KQML is used
to perform a variety of operations on CMs and is particu-
larly useful in defining the context of a communicated CM.
Through KQML, agents may communicate CMs as well as
initiate CM-related services for creating, storing, managing,
and executing CMs.

Finally, we described the application of the CMT frame-

work to a simulated aerial reconnaissance system. This sys-
tem, referred to as the AIFFAR system, was comprised of a
set of CM agents for managing networks trained to recog-
nize images of mobile military objects. Using the AIFFAR
system, we conducted a simple experiment that showed how
the use of the CMT framework could help agents maintain
their classification performance in a highly dynamic envi-
ronment.

References

[1] Y. S. Abu-Mostafa. Learning from hints in neural networks.
Journal of Complexity, 6(2):192–198, 1989.

[2] R. S. Cost, T. Finin, Y. Labrou, X. Luan, Y. Peng, I. Sobo-
roff, J. Mayfield, and J. Boughannam. Jackal: A java-based
tool for agent development. In J. Baxter and B. Logan, edi-
tors,Software Tools for Developing Agents: Papers from the
1998 AAAI Workshop, pages 73–83. AAAI Press, 1998.

[3] H. Demuth and M. Beale.Neural Network Toolbox User’s
Guide, Version 3.0. The MathWorks, Inc., Natick, MA,
1998.

[4] E. Fiesler. Neural network classification and formalization.
Computer Standards and Interfaces, 16(3):231–239, 1994.

[5] T. Finin, Y. Labrou, and J. Mayfield. KQML as an agent
communication language. In J. Bradshaw, editor,Software
Agents, Cambridge, MA, 1997. MIT Press.

[6] M. R. Gesenereth and R. Fikes. Knowledge interchange for-
mat, version 3.0 reference manual. Technical Report Logic-
9201, Computer Science Department, Stanford University,
1992.

[7] J. H. Holland. Escaping brittleness: The possibilities of
general-purpose learning algorithms applied to parallel rule-
based systems. In R. S. Michalski, J. G. Carbonell, and
T. M. Mitchell, editors,Machine Learning, an Artificial In-
telligence Approach. Morgan Kaufmann, 1986.

[8] L. P. Kaelbling, M. L. Littman, and A. W. Moore. Reinforce-
ment learning: A survey.Journal of Artificial Intelligence
Research, 4:237–285, 1996.

[9] M. Kaiser, R. Dillman, and O. Rogalla. Communication as
the basis for learning in multi-agent systems. InECAI ’96
Workshop on Learning in Distributed AI Systems, Budapest,
Hungary, 1996.

[10] R. L. Kashyap. Algorithms for pattern classification. In J. M.
Mendal, editor,A Prelude to Neural Networks: Adaptive and
Learning Systems, pages 81–113, Englewood Cliffs, 1994.
Prentice-Hall.

[11] Y. Labrou and T. Finin. A proposal for a new KQML speci-
fication. Technical Report TR CS-97-03, Computer Science
and Electrical Engineering Department, University of Mary-
land Baltimore County, 1997.

[12] P. Maes. Modeling adaptive autonomous agents. In C. G.
Langton, editor,Artificial Life, An Overview, Cambridge,
Massachussets, 1995. MIT Press.

[13] M. Mataric. Reinforcement learning in the multi-robot do-
main. Autonomous Robots, 4(1):78–83, 1997.

[14] H. S. Nwana. Software agents: An overview.Knowledge
Engineering Review, 11(3):1–40, 1996.

[15] E. Plaza, J. Arcos, and F. Martin. Cooperative case-based
reasoning. In G. Weiβ, editor, Distributed Artificial Intel-
ligence Meets Machine Learning, pages 180–201, Berlin,
1997. Springer-Verlag.

[16] L. Pratt. Experiments on the transfer of knowledge between
neural networks. In S. Hanson, G. Drastal, and R. Rivest, ed-
itors, Computational Learning Theory and Natural Learn-
ing Systems, Constraints and Prospects, pages 523–560.
MIT Press, 1994.

[17] L. Y. Pratt. Transferring Previously Learned Back-
Propagation Neural Networks to New Learning Tasks. PhD
thesis, Department of Computer Science, Rutgers Univer-
sity, 1993.

[18] S. Stolfo, A. Prodromidis, S. Tselepis, W. Lee, D. Fan, and
P. Chan. JAM: Java agents for meta-learning over distributed
databases. InProceedings of the Third International Confer-
ence on Knowledge Discovery and Data Mining (KDD-97),
Newport Beach, CA, 1997.

[19] G. G. Towell and J. W. Shavlik. The extraction of re-
fined rules from knowledge-based neural networks.Machine
Learning, 13(1):71–101, 1991.

[20] G. Weiβ. Adaptation and learning in multi-agent systems:
Some remarks and a bibliography. In G. Weiβ and S. Sen,
editors,Adaptation and Learning in Multi-Agent Systems,
pages 1–21. Springer-Verlag, 1996.

