
A Component Based Architecture for Mobile Information Access *

Chaitanya Pullela! Liang Xu) Dipanjan Chakraborty, Anupam Joshi
Department of Computer Science and Electrical Engineering

University of Maryland, Baltimore County
Baltimore, MD 2 1250

{cpullel, lxu2, dchakrl, joshi} @cs.umbc.edu

Abstract

Implicit in today ’s mobile information access scenar-
ios is the assumption that the information required by
the mobile host is readily available on the network and
it’s location is “known” in a static fashion. There is a
significant ongoing research on ways to overcome the
problems (such as low-bandwidth of mobile networks)
existing in delivering available information to mobile
systems. We investigate the situations where the infor-
mation required is not readily available on the network
and it needs to be obtained by dynamically locating
the required data and then possibly initiating a series
of computations to obtain the information. This paper
presents a layered architecture for addressing this prob-
lem generally and also our initial implementation of this
architecture.

1 Introduction

To realize the dream of truly ubiquitious access to the
information superhighway, it is necessary that the infor-
mation be made available to mobile platforms. Typi-
cally, these mobile computers are resource poor (limited

‘This research supported in part by NSF career award

t Chaitanya Pullela is with Sun Microsystems effective July,2000
tLiang Xu is with Aether Systems effective June.2000

(1 189875433) and an IBM faculty development award to Dr.Joshi

0-7695-0771-9/00 $10.00 0 2000 IEEE

compute power, disks , battery life etc.) and are con-
nected over low-bandwidth wireless networks. Prior re-
search work has focussed on overcoming these problems
in delivering information to mobile platforms[2]. There-
fore, the effort has been on transcoding[5, 61, manag-
ing disconnection[7] and network related issues[17, 181.
These works are based on the assumption that the infor-
mation to be delivered is readily available on the net-
work. (Some initial work has also been done in access-
ing computational resources from mobile hosts [1, 41
and automatic selection of components [3, 131)

However, it is possible that the information required
by a mobile user may not be available per se but needs to
be computed dynamically using various resources (soft-
ware, data or hardware services) distributed over the
network. Recent research advances in area of software
components and the availability of dynamic service lo-
cation platforms have provided the necessary ground-
work to acheive this purpose. The componentization
of software allows for independently manufactured soft-
ware units to interact easily with each other. Also,
thanks to inexpensive disk storage, there is an increas-
ing amount of raw data available on network. For
example, on-line trading services provide a wealth of
stock information for customers to research. We see
a paradigm where independent software and data re-
sources could “plug and play”, with computations per-
formed on the fly, to obtain required information. Real-
izing this paradigm in a mobile information access envi-
ronment poses a problem - The mobile clients may not
have adequate computational power on board to perform
these computations and will need to borrow computa-
tional power from networked resources. There are two

65

mailto:cs.umbc.edu

issues to be considered here- 1)Efficiency demands that
some of the computation be performed on the mobile
host. This is especially true for components that need
a lot of user interaction. Executing these on the net-
work will generate a lot of traffic. 2)The wide variety of
mobile platforms available in the market, argue against
statically defining the location where a particular com-
ponent should be executed, because some clients may
not be able to handle even the slightest computation de-
mands.

The Web environment does not offer a solution to
this problem. Traditionally, Web has been an informa-
tion delivery vehicle. Distribution of computation has
been limited to sending executable content in form of
java byte codes or other scripting codes. It does not con-
sider cases where the client may not have enough power
to run the executable content. Recently, some solutions
which essentially provide a light weight script suitable
for mobile clients have been proposed. However, this
is focussed on phone type devices and ignores the cases
where mobile clients posses more computational power.
Considering the issues mentioned above, we clearly see
a need for a model where the distribution of computation
is based on availability of resources at the mobile client.

To find the appropriate components needed to obtain
information, it is necessary to have robust dynamic ser-
vice location mechanisms. Recent commercial systems
such as Jini[9] and e-speak[1 11 are works in that direc-
tion. But these come with limited syntax based matching
techniques which limit the expressive power of services.

This paper presents the middleware that we created to
address the above mentioned problems at various levels.
This paper has 5 sections. In section 2, we present the
background for our research. In particular, we describe
the Jini architecture and the Ronin agent framework. We
then, in section 3, describe the limitations of Jini frame-
work and present our solution (XReggie). In section 4,
we present the general architecture of the system and our
implementation of it. Section 5 finally summarizes our
work.

2 Background

tional CORBA type approaches in that the traditional
approaches are geared more towards achieving platform,
language independence than supporting features related
to service discovery and utilization. For example, a
service is utilized basically in an RPC like fashion in
CORBA, whereas, Jini provides support for greater in-
teraction between the client and service. We build our
system based on the Jini architecture for it provides a ro-
bust infrastructure for distributed components to locate
and interact with each other.

Jini technology is a simple infrastructure for provid-
/ ing services in a network and for dicovering the services.
Services can join or leave the network in a robust fash-
ion, and clients can rely upon the availability of visible
services, or at least upon clear failure conditions. The
Jini discovery infrastructure supports both unicast and
multicast service discovery protocol. This infrastructure
allows services to be found in a uniform way, either on
a local or a remote network.

There are many advantages to employ Jini for service
discovery in a dynamic mobile environment. First, in
a dynamic mobile environment, components are often
heterogenous. Embedded hardware devices need to co-
operate with mobile software applications. For example,
a user wants to print out an email from hisher palmtop
using the printer that is available in the airport. In such
scenario two different types of hardware devices need to
communicate with each other. The Jini service-interface
advertisement mechanism provides a uniform and high-
level abstraction to both hardware and software compo-
nents.

In a mobile environment, resources (computation
power, memory, storage space, communication channel
etc.) are very critical. For example, it is very common
for mobile devices to become disconnected from the
network, either intentionally or unintentionally. Upon
the disconnection of a mobile device, the resource that
was held by the device should be freed. The Jini leas-
ing model provides a robust leasing infrastructure that
is beneficial in the mobile environment, where partial
failure can cause holders of resources to fail or become
disconnected from the resources before they explicitly
free them.

2.1 Service location mechanisms
2.2 Ronin Agent Framework

Recent commercial systems such as Jini[9], e-
Speak[l l], salutation[121 and UPnP[101 provide the
mechanisms through which service location is possible.
These systems are slightly different from more tradi-

The Ronin Agent Framework[8] is a Jini-based agent
development framework that is designed to aid in the de-
velopment of next generation smart distributed mobile

66

systems. The Ronin Agent Framework introduces a hy-
brid architecture, a composition of agent-oriented and
service-oriented architectures, for deploying dynamic
distributed systems. Ronin contains a number of fea-
tures that distinguish it from comparable frameworks,
including an Agent Communication Language (ACL)
and network protocol independent communication in-
frastructure. It also includes an agent description facility
that allows agents to discover and lookup each other, an
agent proxy architecture that provides agent mobility be-
havior and customizable agent communication scheme.

Ronin defines an open framework that specifies the
infrastructure requirement and the interface guidelines
for the interaction and communication between agent-
oriented Jini components. Ronin framework models
Jini services as agents. Central to Ronin architecture is
the notion of Ronin agent and it’s corresponding agent
deputy. An agent deputy acts as a front-end interface for
the other agents in the system to communicate with the
Ronin agent it represents. Ronin does not define how an
agent deputy should communicate with a Ronin agent.

Our solution to this problem is XReggie system,
which specifies how Jini (and similar systems) can be
taken beyond their simple syntax based service match-
ing approaches. The idea is to modify the Jini lookup
service to match services using XML[141 attributes in-
stead of interfaces and java attribute objects. Each com-
ponent(service) provides an ‘XML‘ entry describing its
functionality and requirements when it registers into the
Jini Lookup Service. When a client wants to use a ser-
vice, i t creates a XML DOM object describing the ser-
vice it needs along with constraints. It then finds the
appropriate service using the XML match function. The
XML match handles constraints such as requirements,
cost, mobility etc. For instance, the client can ask that
the service cost less than some amount, or that it be mo-
bile. In order to use XML in the match, the entities in the
system need an agreement on a ‘ontology’[l5]. In our
system, we assume that both services and clients have
previously agreed on an ontology and knows what each
entry in the XML description means.

3.2 XReggie modifications
3 XReggie

3.1 Enhanced Jini Lookup Service

The Jini discovery infrastructure provides a good
base foundation for developing a system with compo-
nents distributed in the network that need to discover
each other. Unfortunately, Jini is still not adequate be-
cause it essentially operates at a syntactic level. In
other words, a client needs to specify the exact func-
tiodinterface needed in order to discover a service. We
aim to build a dynamic service discovery mechanism
where the lookup process can operate at a semantic level.
Namely, the client should be able to provide a service
description at a higher level of abstraction than the in-
terface description. We also want to be able to specify
features(such as the cost of a service) that Jini does not
envision handling. We want to be able to specify con-
straints on these features(e.g. cost < max) - recall that
Jini can only handle equality relationships. Finally, we
want to be able to allow “similarity” matches and return
services that are similar to, but not the same as, the re-
quested service. For example, the system returns a ser-
vice providing a 3 month stock chart when the client
asks for a service providing 6 month stock chart. This
is useful when exact matches cannot be found for the
service requested by the user.

In order to make the XML based match work, we
have made modifications to Reggie, the Sun’s imple-
mentation of Jini Lookup Service. Reggie provides all
the functions and methods defined in the Jini Core pack-
age, besides some extra functionality provided by Sun.
We modify it as follows:

0 A Xmlentry class is added
in the net.jini.lookup.entry package, which takes a
XML DOM object as argument in its constructor.

0 An XmlMatch
interface is added in the com.sun.jini.reggie pack-
age, which defines the various functions needed in
the XML match function

An XmlMatchImpl class is
pluged in the com.sun.jini.reggie package, which
implements the functions defined in the XmlMatch
interface. It uses the Java Xml parser to convert the
XML description to a Java DOM object and does
the comparison with the two XML DOM objects
from client and server side.

0 The RegistrarImpl class in the com.sun.jini.reggie
package is modified, which lets the enhanced Jini
Lookup Service(XReggie) know when and how to

67

Mobile Client

Delivery Layer

Broker Laycc

Dynamic Service Location Layer

0

4

4.1

0 - 0
lndividual Services
f Software + Data + Hacdwacc >

Figure 1. General Architecture

do the XML attribute match instead of doing the
ordinary Namemype syntax-level match.

The CreateLookup class in the com.sun.jini.reggie
package is changed, which lets the enhanced
Lookup Service(XReggie) know where to find the
imformation of XML parser package

The command line to start Jini Lookup Service has
also been adjusted to contain some extra options.

System Architecture and Implementa-
tion

General Architecture

We now present the general architecture of our sys-
tem . The architecture comprises of 3 layers which form
the middleware through which mobile clients and indi-
vidual services interact. Note that this architecture does
not map directly into traditional client-proxy-server ap-
proach, though it is related to it. (Figure 1).

0 Dynamic service location
This layer represents the mechanisms through
which services are discovered and the mechanisms
through which services express themselves. Thus
this layer enables the core function of dynamic ser-
vice location. It is important that the platform sup-
port dynamic interaction between services and the
clients of the services, with no or little prior knowl-
edge of each other.

0

4.2

Brokering

This layer has the knowledge base of what services
should interact to produce the required information
to the end-user. It also handles the interactions be-
tween the services and manages the distribution of
computation depending on the resources available
to mobile user and constraints (such as cost) if any.
This layer utilizes the services of the dynamic ser-
vice location layer. It is comprised of some helper
services which assist in performing its duties. For
example, the broker would have at its disposal an
execution platform service which provides com-
pute power on the wired side.

Delivery

This layer manages the delivery of information to
the user. It could take into account any limitations
of the user and try to deliver the result. For exam-
ple, for mobile clients connected to low bandwidth
network, the delivery layer could perform some fil-
tering and compression to’reduce the data needed to
be transmitted or even change the data to different
format (say, as a WAP proxy).

System overview

The system is targeted to run on mobile devices that
are capable of executing Jini enabled applications. Cur-
rently, high end mobile devices such as laptops can sup-
port fully featured Java Virtual Machine(JVM) and are
capable of executing Jini applications. A light-weight
JVM for handheld devices such as palmtop known as
KVM[16] is currently being developed. Thus our as-
sumption of a JavdJini system does not cause a loss of
generality. The system overview is shown in Figure 2.
Our system involves the following components:

1. End User - The user of hand-held device who re-
quires some information.

2. A Palmtop - End-user device.

3. Broker - The service which helps the user in finding
required information.

4. Agent Deputies -

0 Agent for mobile client which sits on wired
side. This deputy handles the information to
be delivered to mobile client.

68

Figure 2. System Overview

0 Agent for broker which sits on the palm de-
vice. This deputy handles the information to
be delivered to broker. Note that since the
mobile client actively participates in the com-
putation, there is some information travelling
from mobile client to broker.

5. Execution platform - This is a helper service to pro-
vide computational power on the wired side i.e run
components on behalf of mobile clients that do not
have adequate compute power.The broker has this
service available for use.

6. Individual services - component services available
on the network.

4.3 System Behaviour

The overall nature of the system is flexible and adap-
tive to the environment. For a weak (processing power)
mobile client, all of the computation could be performed
at service site - a clienvserver system. For moder-
ately capable clients, compuation could be distributed
between various parties - a truly distributed system. In
some cases all the computation could be performed on
mobile client itself. The delivery layer could be thought
of another proxy layer - which handles other limitations
(disconnections, limited display etc) of clients, if any.
We believe that this architecture is most suitable, given
wide variety of mobile clients and wireless networks.
We explain the overall behaviour of our system with the
help of some simple examples.

0 A busy investor learns from the latest news-feed on
his pager that the value of Japanese yen is down
compared to American dollar. Since he has invest-
ments in Japan, he wants to find out how this would
affect the net-value (in American Dollars)of his in-
vestment, adjusted for exchange rate change. He
instructs his palmtop to find any financial informa-
tion services offered over the network. His palmtop
discovers a JINI lookup service on it’s local net-
work by multicast service discovery protocols. Us-
ing normal JINI lookup mechanisms, it then looks-
up for a financial services broker which is ready
to find the required information for the user. The
user-interface for the broker is automatically down-
loaded by the JINI lookup process.
Upon making sure through the user-interface that
the service he wants is offered by the broker, the
user selects the option to find the information he
wants. The user-interface prompts the user to en-
ter required information (Ticker, number of shares,
value at purchase and the duration of purchase).
The constraints of user’s palmtop, which are stored
as XML attributes are also sent to the broker.
The broker has a mapping for each service it offers
to individual services needed to be used to compute
the information. In this case, the broker needs the
following services

- Gives the current exchange rate for a particu-
lar foreign currency to another, for any partic-
ular day.

- Gives the current stock price given the ticker

- Software component that computes net
loss/gain after adjustment in exchange rate,
given required data.

The broker attempts to find required services using
dynamic service location mechanisms(XReggie).
Once the services are found the broker decides on
an execution sequence to obtain the required infor-
mation. Broker decides on the execution sequence
taking into account the XML attributes specified by
the user and the services. For our example, the bro-
ker first obtains the data and since the computation
to be performed is not very processor intensive, the
component and the data are sent to the palmtop for
execution. Upon completion of execution, required
information is displyed on palmtop.

69

0 Noticing the fact that the stock of a company he in- Mobik aim Mobile aim

vested in, is widely fluctuating, an investor wishes
to find the average value of a share over one year.
When he requests the information to the broker
as explained in the previous scenario, the broker
sees that it primarily needs a service which pro-
vides the data for last 1 year. Since the amount

out that it is unwise to transfer it over the network.
Also the computation is fairly processor intensive
in this case. So the broker tries to locate a stock

pute power locally, so that the software compo-
nents could be sent to data site. Since data services
provide information about local processing using
XML attributes, the ’XReggie’ system would per-
form this screening and return any such services
to the broker. The broker would send the software

Romn Agcm hammock mri Brolnr l m p l m n m o n

of data required is significant, the broker figures D y m c h e Location Layer Jim t X k g g c

0 0 0 0 0 0
data provider which is ready to provide some com- lnmvtdual Scrvtm

1 Softwan c Data + Hardware 1
Jm Scrvrcr

Figure 3. Implementation

RAMrequired: processing power that service re-
1 quires.

size : size of software. components to compute the average to the data site
and simply return the result to the user. Note that if
a data service which is ready to provide local pro-
cessing is not found, the broker would send the data
and software components to the execution platform
service, obtain the results from execution platform
and return the result to the user. In any case, the
broker would avoid transferring raw data and com-
putation to mobile host.

The system could also handle cases where the re-
quired information is readily available. For exam-
ple, when a mobile user requests for a stock quote,
the broker finds a single service that simply returns
the quote given a ticker.

4.4 Dynamic service location layer

We implement this layer using ’XReggie’. (Fig-
ure 3).Individual services are registered onto the net-
work with capabilities and constraints expressed as
XML attributes. The ‘capabilities’ attributes describe
the actual function that service provides. The ’con-
straints’ attributes represent any additional properties of
the service.

Examples of the ‘constraints’ attributes we have used
are:

For Software services:

0 mobility : Describes if service is implemented as
remote service (non-mobile) or local(mobi1e code)
service.

For Data services :

0 Size : size of raw data.

0 LocalProcessing : Describes if there is some com-
pute power available at data site.(So that a compo-
nent may be sent to data site instead of transferring
lot of raw data over network)

4.5 Broker

The broker is the core engine which finds the indi-
vidual services required in computing required informa-
tion and manages the distribution of computation. In
the first phase, the broker finds all the required individ-
ual services required for solving the particular problem.
The broker uses the XML match functionality of the
Jini lookup service to screen some services at the lower
layer. For example, if broker decides that the mobile
client is too weak to perform any computation, it looks
up for services that are implemented as remote. Recall
that ’mobility’ is one of the attributes which is specified
by software services. In the second phase, the broker
decides where each component should be executed de-
pending on the resource requirements and constraints of
the services and resource availability, constraints of the
mobile client.

The broker that we implemented solves a set of prob-
lems within financial services domain (vertical solu-
tion). In our implementation, the broker has a map-

70

ping of each service that it provides with the individ-
ual services required in solving the particular problem.
We have implemented this mapping statically as a proof
of concept. It is not difficult to envision brokers utiliz-
ing complex AI features to find services required in a
dynamic fashion. Further, we envision networks being
populated with brokers, each being capable of solving
problems within a particular domain.

The broker may decide to execute some components
on the mobile host itself. To execute a particular com-
ponent on mobile host, the broker sends the following
information to the mobile host. 1) Unique Jini servi-
ceID of the component. 2) The method name to be in-
voked on service object. 3) Arguments to be used for
the method. The mobile host then fetches the service
object from the lookup service, performs the necessary
computation and returns the results to the broker. This
implementation could be improved by making the bro-
ker to fetch the service object itself and send it to the
mobile host thus relieving the burden of fetching from
the mobile host. There are two points worth mentioning
here - 1)The mobile host need not have any knowledge
(like the service interface) about the service it is using.
It simply uses the Java reflection mechanism to invoke a
method on the service object. The broker acts as a mid-
dleware between mobile host and the Jini framework. 2)
The broker would assign the mobile host to perform this
computation only after it decides (from XML attributes
specified by mobile host) that the mobile host has the
resources to do so. Any information (data or software
component) that is to be delivered to the mobile client is
done so via the delivery layer.

4.6 Delivery

We have used the Ronin agent framework to imple-
ment this layer. In the Ronin framework, each agent
consists of two parts: Agent Deputy and Ronin Agent.
The functionality of an Agent Deputy is similar to the
functionality of a Proxy object in the Jini programming
paradigm. An Agent Deputy acts as a front-end inter-
face for the other agents in the system to communicate
with the Ronin Agent it represents. For example, when
a mobile host represents a Ronin agent, it’s agent deputy
sits on the wired network. Ronin does not define how an
Agent Deputy should communicate with a Ronin Agent.
However, it does define the interface for the communi-
cation between the Ronin Agent and Agent Deputy.

Ronin is particularly suitable for our purposes be-
cause it is designed in such a way that the mode of trans-

portation could be easily changed at run time. Thus,
When a mobile host moves between various type of net-
works, the transport module appropriate for that partic-
ular network could be chosen dynamically. Also, the
ability to use different transport modules would defi-
nitely help in mobile enyironments where wide variety
of mobile clients are available. If the broker notices from
XML attributes of the mobile client that the client lacks
a particular resource, the deputy would provide appro-
priate transcoding or filtering solution.

We have implemented a concrete agent deputy to
handle disconnection’s of mobile clients. This deputy
communicates with Ronin agent using network socket
model and uses store-forward message delivery scheme.
Just before a mobile client is about to be disconnected,
it sends a ’store’ message to it’s deputy on wired side,
which instructs the deputy to Queue any messages.
Later, on re-connection to network, the mobile client
sends a ’forward’ message to it’s deputy there by receiv-
ing all the collected messages.

5 Conclusions

To realize the paradigm of pervasive computing, in
addition to ubiquitious delivery of already available in-
formation, it is important to consider cases where the
information required by mobile unit is not readily avail-
able, but needs to be computed dynamically. In this pa-
per, we presented the initial steps we have taken in ad-
dressing this problem. A general architecture which may
be employed in these scenarios is presented. Our imple-
mentation of this architecture, using extensions to Jini
and Ronin agent frameworks is presented. It is worth
pointing that the implementation of broker could be im-
proved by incorporating complex AI techniques so that
more general problems are addressed. Also, knowledge
recommender agent systems such as PYTHIA[131 could
be used to intelligently manage the distribution of com-
putation between mobile platform and the stationary ma-
chines. These systems use previously seen computations
as a basis for predicting the execution profile of a com-
putation about to be scheduled.

References

[11 T.Drashansky, S. Weeraw arna,
A.Joshi, R.Weerasinghe, and E.Houstis. Software
architecture of ubiquitious scientific computing en-

71

vironments. ACM-Bake Journal on Mobile Net-
works and Applications, 1,1997.

[2] T.Imielinski and B.R.Badrinath. Mobile Wire-
less Computing:Challenges in Data Management.
Comm. ACM,37(10): 18-28,1994.

[3] Joshi, Anupam, Ramakrishnan, N., and Houstis,
E.N., ”MultiAgent Systems to Support Networked
Scientific Computing” IEEE Internet Computing,
2 ~ 3 , pp 69-83, 1998.

[4] A.D.Joseph,A.F.deLespinasse,
J.A.Tauber, D.K.Gifford, and M.F.Kassshoek.
Rover:A Toolkit for Mobile Information Access. In
Proc. 15th Symposium on Operating Systems Prin-
ciples.ACM,December 1995.

[5] A.Fox and E.A.Brewer. Reducing www latency
and bandwidth requirements by real-time distilla-
tions. In Proc. Fifth International World ,Wide Web
Conference, May 1996.

[6] Harini Bharadvaj, A.Joshi, and Sansanee
Auephanwiriyakyl. An active transcoding proxy to
support mobile web access. In Proc. IEEE Sympo-
sium on Reliable Distributed Computing, October
1998

[7] A.Joshi,S.Weerawarna, and E.N.Houstis. Discon-
nected browsing of distributed information. In
Proc. Seventh IEEE Intl. Workshop on Re-
search Issues in Data Engineering, pages 101-
108.IEEE,April 1997.

[8] Harry Chen. Developing a Dynamic Distributed
Intelligent Agent Framework Based on the Jini Ar-
chitecture. Master’s thesis,University of Maryland
Baltimore County,January 2000.

[9] Ken Arnold, Ann Wollrath, Bryan O’Sullivan,
Robert Scheifler, and Jim Waldo. The Jini Speci-
fication. Addison-Wesley,Reading,MA,USA, 1999

[101 http://www.microsoft.comfHWDEV/UPnP/
default.htm

[1 11 Hewlett-Packard. E-Speak Architectural Specifica-
tion,version beta 2.2 edition, December 1999.

[12] Rakesh John. UPnP,Jini and Salutation - A look
at some popular coordination frameworks for fu-
ture network devices.Technica1 Report, Califor-
nia Software Labs, 1999. Available online from
http://www.cawl.com/whitepaper/tech/upnp.html

[131 S.Weerawarna, E.N.Houstis, J.R.Rice, A.Joshi,
and Houstis C.E. PYTHIA: A knowledge based
system to select scientific algorithms. ACM Trans.
Math. Software, 22:447-468,1997.

[141 extensible Markup Language(XML) -
www.w3.org/xml

[151 ontology.org:
Frequently asked questions. Available online from
http://www.ontology.org/main/papers/faq.html

[16] KVM home page:
http://java.sun.com/products/kvm/

[171 R.O.LaMarite, A.Krishna, and H.Ahmadi. Analy-
sis of a Wireless MAC Protocol with client-server
Traffic and Capture. IEEE Journal on Selected Ar-
eas in Communication12(8):1299-1313,0ct 1994.

[181 C.Perkins. IP Mobility Support - RFC 2002 ,octo-
ber 1996.

72

http://www.microsoft.comfHWDEV/UPnP
http://www.cawl.com/whitepaper/tech/upnp.html
http://www.ontology.org/main/papers/faq.html
http://java.sun.com/products/kvm

