
Policy-based Access Control for Task Computing Using Rei
Ryusuke Masuoka, Mohinder

Chopra, Yannis Labrou,
Zhexuan Song, Wei-lun Chen

Fujitsu Laboratories of America
8400 Baltimore Avenue, Suite 302

College Park, MD 20740, USA
 +1 (301) 486-0398

{ryusuke.masuoka,
mohinder.chopra, yannis.labrou,

zhexuan.song,
sam.chen}@us.fujitsu.com

Lalana Kagal
Massachusetts Institute of

Technology (MIT)
Computer Science and Artificial
Intelligence Laboratory (CSAIL)

32 Vassar Street, Cambridge, MA
02139, USA

+ 1 (617) 253-2613

lkagal@csail.mit.edu

Timothy Finin
University of Maryland, Baltimore

County
1000 Hilltop Circle

Baltimore, MD 21250, USA
+1 (410) 455-3522

finin@umbc.edu

ABSTRACT
In this paper, we describe a policy-based access control
implementation for Task Computing using the Rei policy engine.

Task Computing lets ordinary end-users accomplish complex
tasks on the fly from an open, dynamic, and distributed “universe
of network-accessible resources” in ubiquitous computing
environments as well as those on the Internet.

The Rei policy specification language is an expressive and
extensible language based on Semantic Web technologies. The
Rei policy engine reasons over Rei policies in OWL and domain
knowledge to answer queries about the current permissions and
obligations of an entity.

To provide unobtrusive and flexible access control for Task
Computing, a framework was created in which several Rei policy
engines were endowed with Web Services APIs to dynamically
process facts from clients, the private policies of service providers,
shared policies, and common shared ontologies. The framework is
implemented and deployed for Fujitsu Laboratories of America
(FLA), College Park office and evaluated.

Categories and Subject Descriptors
J.7 [Computer Applications]: Computers in Other Systems

General Terms
Management, Design, Experimentation, Security, Human Factors,
Languages.

Keywords
Task Computing, Rei, Policy, Semantic Web, OWL, OWL-S

1. Introduction

As the World Wide Web evolves as a computing and network
infrastructure, policy management becomes crucial to provide

access control not only for information on the Internet, but
resources in general, including networked devices and Web
Services, in such diverse environments as ubiquitous computing
and grid computing.

This paper focuses on access control for end-users to resources in
ubiquitous computing environments. These resources are
described abstractly in OWL as services, and are mainly realized
as UPnP devices and simple Web Services. This focus of
resources in ubiquitous computing poses a different set of
requirements and problems than for information on the Internet. It
is not that one is more difficult than the other. For example, a
framework can leverage from the physical reality in ubiquitous
computing environments. But the very dynamic nature of
ubiquitous computing environments definitely offers new kinds of
challenges.

Our contribution is to add a flexible policy-based access-control
to ubiquitous computing and demonstrate its utility and
effectiveness in a ubiquitous computing application. Task
Computing (TC, [1][2][3][[4]]) is a user-oriented framework that
lets end-users accomplish complex tasks on the fly from open,
dynamic, and distributed “universe of network-accessible
resources” in environments rich with applications, devices, and
services. Task Computing provides many ways for users to
interact with these ubiquitous environments and applies Semantic
Web technologies, such as OWL (Web Ontology Language,
http://www.w3.org/2001/sw/WebOnt/) and OWL-S
(http://www.daml.org/servcies) as its core enablers. In each
environment, functions (devices/OS/applications) are virtualized
as services. Through discovery mechanisms such as UPnP, TC
clients find those services and obtain their OWL-S files as their
semantic service descriptions. With those OWL-S files, TC clients
let the end-users to manipulate (compose, execute, publish, etc.)
the services on the spot.

When started, the TC client dynamically finds the local services
on the computer on which it runs and pervasive services in the
sub-network the computer is on. UPnP is used for the service
discovery on the sub-network. When a local or subnet service is
discovered, the TC client downloads the appropriate OWL-S files
that represents its semantic service description. Using the OWL-S
descriptions, TC client such as STEER allow a user to compose
and execute the services. The user can also create new semantic
services dynamically by instantiating or composing other services.
For example, Task Computing enables a user to display a
presentation file from his mobile PDA or computer on the

Copyright is held by the author/owner(s).
WWW 2005, May 10--14, 2005, Chiba, Japan.

stationary room projector without connecting a VGA cable, even
if this is the first time the user has been in the room. In another
example, a user can print a presentation file from his laptop on the
printer provided in the room without configuring his computer, or
show a photo just taken with his digital camera on the photo
frame in the same room immediately and print it on a photo
printer without moving memory cards around, or, display the
current weather at an address in his PIM (Personal Information
Manager) on the projector with just a few operations of point and
click. Task Computing enables end-users to accomplish all of the
above and more through a simple graphical user interface to the
Task Computing environment. You can even use your own voice
to make those same things happen through a voice-based Task
Computing client, VoiceSTEER.
Rei is a policy specification language for describing different
kinds of policies in a wide range of application domains. The
main goal of Rei is to address the issue of governing autonomous
entities in constantly evolving distributed environments. Rei
provides specifications for describing declarative machine-
understandable policies enabling both policy enforcement and a
more normative approach where autonomous entities can decide
whether or not to fulfill the applicable policy.
Rei is represented in an extension of OWL-Lite ([6][8][9][10])
and can be used to describe policies over domain knowledge in
different ontology languages such as RDF, DAML+OIL, and
OWL. Though its classes and properties are represented in OWL,
Rei also includes logic-like variables giving it the flexibility to
specify constraints that are not directly possible in OWL e.g., the
uncle relation, the same age as relation etc. Rei models deontic
concepts of permission, prohibition, obligation, and dispensation
and supports speech acts such as delegation, revocation, cancel,
and request for dynamic policy modification.
As most entities in pervasive environments will have several
overlapping policies of behavioral norms, constraints, and rules
acting on them, they will be over-constrained. This means that
they cannot always satisfy all of the policies, but deviating too
much or too often has its consequences - loss of reputation,
penalty clauses, imposition of sanctions, etc. Rei provides two
mechanisms for handling these situations namely consequences
and meta policies. Rei allows consequences to be modelled as
'sanctions' so that autonomous entities or providers can reason
over them to decide whether or not to deviate from a certain
policy. Rei also allows meta policies to be used to resolve
conflicts. Rei models two main types of meta policies: (i) for
defaults and (ii) for conflict resolution to handle different
requirements of policies. Depending on the type of conflict
resolution required, the appropriate meta policy should be
selected. Some policies may want a more high level meta policy
and can use default behaviors or modality precedences. However,
for tighter control, priorities are more suitable but are tougher to
define and maintain.
In order to support policy development, Rei provides two forms
of policy analysis: use-cases (also known as test-case analysis)
and what-if analysis (also known as regression testing). The
policy engine includes analysis tools accessible via a Java
interface that can be executed by policy engineers to check the
consistency and validity of the policies and ontologies.
From the initial implementation of Task Computing Environment,
it was immediately apparent that it requires some kinds of access
control for the services because it makes so easy for the end-users
to use the devices and services dynamically found on the same

sub-network. In home network environment, it would not be so
much a problem as long as the network is firewalled from the
outside networks. But when Task Computing should be applied to,
for example, office or hospital environments where there are
many devices that should be protected from abuses by
unauthorized accesses.
To provide unobtrusive and flexible access control for Task
Computing, a framework is created with Rei policy engines
endowed with Web Services API to process facts from the client,
service's private policy, shared policies, and ontologies
dynamically. The framework is implemented and deployed for
Fujitsu Laboratories of America (FLA), College Park office and
evaluated.
In this paper, the motivation and design goals of the work are
given in Section 2. The implementation and test deployment of
Task Computing access control with the Rei policy engine is
described in Section 3. Then Section 4 describes how the above
design goals are met. Related work is discussed in Section 5 and
Section 6 concludes this paper.

2. Motivation and Design Goals

As mentioned above, the initial implementation of Task
Computing immediately revealed the need for access control of
services. A simple access control mechanism, which will not be
described any further here, was implemented in the early stage.
This mechanism leveraged the physical embodiment as devices of
many services in Task Computing and this mechanism is often
enough for a simple deployment of services based on devices, but
it had its limitations. It was inappropriate for large deployments of
dynamic services and clients, or for services without their
physical embodiments. Simple identity or role based access
control mechanisms were unable to meet the requirements of
these dynamic environments. A sophisticated policy-based
solution for Task Computing was necessary to cover such cases.
At the core of the solution, a way to express rule based policies
and an engine to process the policies were required. The Rei
policy specification language and Rei policy engine came as a
perfect match.

Rei is an expressive policy language based on Semantic Web
technologies. As Task Computing had already embraced OWL
and OWL-S as its core enabler, it made it easier to integrate many
aspects of Task Computing into the policy language. Specifically
Task Computing needs seamless inferences over policies, facts,
and ontologies. The Rei policy engine can combine dynamically
policies including delegations, OWL ontologies, and facts
described using ontologies and infer the access rights for users
and programs.

The dynamic nature of ubiquitous computing environments also
requires the policies to be defined not in terms of ID’s and roles,
but rules based on properties of entities such as users, devices,
and services. In the ubiquitous environment with often
unforeseeable entities, the access control should shift to rule-
based approaches using descriptions of entities involved.

In order to give enough flexibility, it necessitates the use of
mechanisms for updating the policies on the fly. Especially
delegation mechanisms, which Rei also supports, are imperative.
Users do let others use devices and services on their behalf or
temporarily in everyday life. If the system does not allow such

flexibility, the users would be forced to drop the mechanism
totally or find a way to evade it.

We also deem it important that the system allows developers,
system administrators, and even end-users to specify the policies
in a natural and intuitive way. It would make the system very easy
to use if, for example, the system lets the user specify policy very
close to everyday languages and processes them in the way the
ordinary people would expect it to be processed. While the policy
language itself needs not to have everyday language aspects, a
policy language with high expressivity enables such a system by
allowing mapping the user’s policy specifications correctly into
the policy language.

Such considerations made the Rei policy specification language
and policy engine a natural choice for us.

On the other hand, we wanted to get leverage from the ubiquitous
computing environments as application areas of Task Computing.
It can be difficult to hand out credentials signed by appropriate
CA’s to the users. As it turns out in the next section, the process is
smoothly incorporated into the office check-in process and the
credential is copied on the physical memory device for the user
with the full Task Computing client on it. The credential is sent
by the user through the Task Computing client to the service to be
authenticated and consumed by the Rei engine.

When we design the access control for Task Computing
Environment using Rei, the following items are set as its design
goals.

1. Minimally obtrusive for users

2. Enable both centralized/distributed solutions

3. Allow multiple certificate authorities

4. Secure dynamic delegation

For the first point, it is always a trade-off between security and
ease of use. (You can create a perfectly secure system … just let
no one use it.). But with appropriate technologies and smart
deployment of the system, we can shift the balance, more security
with less obtrusiveness. If the access control is difficult or
cumbersome to use, it would kill the Task Computing experience.
It is also imperative to finish the policy calculation in a
reasonable amount of time. The access control is secondary
function to the main function. It is like putting the cart in front of
the horse if it takes longer time than the main function.

Secondly, we wanted to have both centralized/distributed
solutions possible because the access control deployments can be
different from one site to another. For some site, an IT department
might want to manage the policy centrally, thus requiring a
centralized solution. In some other cases, the end-user might want
to set some policy for a single device. It is preferable, for example,
the end-user can set the policy for the device at its initial
configuration. Such a distributed solution is often enough for a
small office. There is another aspect of centralized/distributed
solutions as to where the policy engine should run. In case of
resource-limited devices, there might be no choice, but to choose
the centralized solution in which the device accesses the policy
engine running on a different more powerful machine.

The third point is important when you consider the applications
for relatively open spaces such as shopping malls. By allowing
multiple certificate authorities in the framework, it can maximize

the chances that the user can use the service. Of course, the user
and the service need to agree on at least one common certificate
authority that they both trust, in order for authentication to happen.

The last point is crucial in order to make the access control
flexible. Sometimes one wants to override the default access
control to let someone else to use the service. It is necessary that
the person has the enough authority to do it and that it should be
done securely. But if the system does not allow such flexibility,
the user would eventually find the system useless or tries to find
ways to circumvent the access control.

3. Implementation and Test Deployment

We have ported the Rei policy engine to run in the Windows
environment because many of the Task Computing services are
provided by Windows-based systems. A Web Services API was
created for the Rei engine to facilitate its use in a highly
distributed environment. We incorporated the access control
based on the Rei policy engine into the “Pervasive Print” TC
service, which lets users print files remotely (without any printer
setup) to create the “Secure Print” service. The Credential
Creator software was produced to easily create a digitally signed
credential in the OWL format. We also created the Delegation
Manager software to let the users insert and/or remove delegation
statements (in the Rei format) into/from the shared policy site
securely over HTTPS.

The resulting system was deployed in the Fujitsu Laboratories of
America (FLA), College Park office. The Credential Creator was
installed on the desktop machine in the reception area, the
“Secure Print” service was installed on a computer with a printer
in the conference room along with the Rei policy engine. (Here
we had the “distributed solution” in the sense that the policy
engine is distributed to each service.)

We will explain the usage scenario first and then give the details
how it is realized.

STEER + Credential

REI Engine

Web Service

Facts
Policy

STEER-Stick

Figure 1. Deployment of Task Computing Access Control

The scenario goes like this (See Figure 1). Mohinder, a UMBC
(University of Maryland, Baltimore County) student, visits FLA,
College Park. Valerie, the Office Administrator of FLA, College
Park, greets Mohinder in the reception area.

1. Valerie creates a STEER-Stick with credential for Mohinder.

STEER-Stick is a USB memory device with all the software
necessary to run STEER, a Task Computing client including Java
runtime along with the credential. The credential includes his
name, affiliation, status (‘’Visitor’’) and metadata of credential
(its creation date, expiration date/time, etc.), and the digital
signature signed with the FLA private key. The Credential
Creator software saves the credential in OWL format in the
credential folder of the STEER-Stick. It also saves an HTML file
for the human to check the contents of the credential.

 Mohinder runs the STEER using the STEER-Stick in his
laptop. STEER finds the “Secure Print” service dynamically
and show the service with a key icon.

The “Secure Print’’ OWL-S file states that an FLA credential is
required. (It can state that it requires one of multiple credentials.)
When STEER finds that the service requires a credential, it shows
a key icon for the service.

2. Mohinder tries to use the “Secure Print”, but he fails
because a “Visitor” is not allowed to use it.

Based on the “Secure Print” OWL-S file, STEER looks for an
FLA credential in its “credential” folder. When it finds it, it sends
the credential along with service invocation parameters in the
Web Service call.

“Secure Print” checks the digital signature of credential to make
sure it is valid. (So that facts in the credential are not modified.)
Then it uses these facts to determine if the caller has the authority
to use the service by the Rei policy engine, which is called
through Web Service API. The Rei policy engine determines that
Mohinder can not use the service as he is just a “Visitor” and
returns the result through its Web Service API. The service , in
turn, returns an error for the original Web service call with the
reason.

3. Mohinder asks Ryusuke to delegate the right to print.

Ryusuke uses the Delegation Manager software to assert a
statement to delegate the right to Mohinder by Ryusuke to the
FLA shared policy site securely.

4. Mohinder tries again to use the “Secure Print” and this time
he succeeds.

There is a statement at FLA Policy Site that Senior Employee has
a right to delegate the right to visitors. With the newly added
statement of the delegation, it enables Mohinder to print.

5. After that, Ryusuke revokes the delegation.

The delegation assertion created in the step 3 is removed from the
FLA shared policy site by using the Delegation Manager.
Mohinder can not use the service any longer.

Access control is determined based on the following elements:

 Facts provided by the client (authenticated by the digital
signature)

 Printer’s private policy
 FLA shared policy (and potentially other shared policies)
 Ontologies

The service can use multiple shared policies depending on its
configuration. Each time, these elements listed above are mixed to
determine the access control.
Figure 2 shows what happens behind the scene. The number given
in the figure corresponds to the numbered item in the scenario.
Shared policies and ontologies are cached and they are
downloaded only when they are updated.

Delegation
Manager

Delegator Client (STEER)

Print Service

REI Engine

Consult REI Engine

Delegate/Revoke
right

Modify FLA Policies

Call Print with the Facts

Download Print
Policies (private)

Download FLA
Policies (shared)

Print Policies

FLA Policy Site Ontologies Sites
Download Required
Ontologies

Save Credential
(1)(2, 4)

(2, 4)

(2, 4)

(2, 4)

(3, 5)

(3, 5)

Credential Creator

(2, 4)

Figure 2. What is Happening behind the Scene

Figure 3 gives parts of fact, private policy for the Secure Print
service, and the shared policy for FLA used in this scenario.
The scenario above centers around the value for “flaonto:Status”
in the fact. All pieces of information in the fact are digitally
signed and the digital signature assures its integrity. If any part of
it is changed, the facts can not be authenticated.
Another thing to note is that it has the expiration time as a part of
the credential’s metadata. If the time has passed this expiration
time, the “Secure Print” service will decline any request to print.
The Printer’s private policy states that it can be used by a senior
employee, but not by a visitor. Therefore Mohinder, who is a
visitor, fails to print at first.
The FLA shared policy states that a Senior Employee has the
right to delegate the right to use the “Secure Print” service (It is
not shown in Figure 3). When Ryusuke insert his delegation
statement (which is shown in Figure 3) using the Delegation
Manager, this enables Mohinder to use the “Secure Print”
because the service detects the update at the FLA Policy site and
downloads the new FLA shared policy (and because of the
statements that Ryusuke Masuoka is a Senior Researcher and that
a Senior Researcher is a Senior Employee in the ontologies).

<!– Fact from Task Computing client -->
<rdf:RDF …>

<rdfs:label lang=en>Mohinder Chorpa</rdfs:label>
<flaonto:Name …>Mohinder Chorpa</flaonto:Name>
<flaonto:Expiry …>2004-08-23T23:05:28Z</flaonto:Expiry>
<flaonto:Status …>&flaonto;FLACPVisitor</flaonto:Status>
<flaonto:Affiliation …>UMBC</flaonto:Affiliation>
<Signature xmlns="http://www.w3.org/2000/09/xmldsig#">

<SignedInfo>
…

</SignedInfo>
<SignatureValue>ZrbEVA7JWWGNbpqc…Jo6dDw=</SignatureValue>

</Signature>
</rdf:RDF>

<!– Printer Private Policy -->
…
<deontic:Permission rdf:about="&flapolicy;right_to_be_printed_on“

policy:desc="All senior employees have the right to print">
<deontic:actor rdf:resource="&flapolicy;var1"/>
<deontic:action rdf:resource="&flapolicy;printing_in_conference"/>
<deontic:constraint rdf:resource="&flapolicy;preOrSenior"/>

</deontic:Permission>
…

<!– Delegation Inserted (and Removed) in Shared Policy-->
<action:Delegation

rdf:ID=“Delegation2004-08-23T19:32:19ZRyusukeMasuoka">
<action:sender rdf:resource="&inst;RyusukeMasuoka"/>
<action:receiver rdf:resource="&inst;MohinderChorpa"/>
<action:content>

<deontic:Permission>
<deontic:action rdf:resource="&inst;ASeniorEmployeePrintingAction"/>

</deontic:Permission>
</action:content>

</action:Delegation>

Figure 3. Fact, Private Policy, and Shared Policy

The example given above is kept relatively simple for the sake of
easy understanding. The system as it is now can fully utilize the
expressivity which the Rei engine allows. For example, a scenario,
such as one in which a senior employee gives to a class of users
(ex. all visitors from UMBC on Jan 31st) the right to use a class
of resources (ex. all devices in the conference room), is possible.

4. Evaluation and Discussions

In this section, we discuss how we met the initial design goals set
forth in Section 1.

1. Minimally obtrusive for users

We tried to keep the additionally requirements for all the users
involved as little as possible.

We have created software tools such as Credential Creator and
Delegation Manager so that end-user needs not to write complex
OWL/Rei statements, but just to give essential information.

The credential creation process is integrated into an ordinary
office check-in process in which the Office Administrator types in
the visitor’s name and affiliation, selects the appropriate status
(selections created dynamically from an ontology) and the
expiration time in the Credential Creator GUI ,and hit the save
button. The digitally signed credential in OWL is automatically
created and saved in the appropriate folder of the STEER-Stick
USB memory device,.

The STEER-Stick includes a full Task Computing client, STEER,
on it and the user can run STEER from the STEER-Stick without
any installation.

STEER hides the details of using the secured services and shows
only essential information. Secured services are shown with key
icons so that the user knows that it requires appropriate authority
to execute it. When the execution fails because of the security
clearance, it will notify the user the reason. All the details are
handled behind the scene such as determining from the OWL-S
file if the service is secured and what kinds of credential is
necessary and sending appropriate credential to the secured
service.

On the service side, we found that the Rei policy engine needed to
be accelerated so as not to hamper the user’s experience.
Originally it took seven to eight seconds to finish the access
control calculation based on the fact, policies, and ontologies. In
general, caching answers does not help as we can not expect fact,
policies, and ontologies to remain fixed (especially facts). We
made various changes to the Rei policy engine to enable it to
produce answers to queries in less than one second.

2. Enable both centralized/distributed solutions

From the aspect of policy management, we can have the spectrum
between centralized and distributed solutions. One can put the
policies that should be kept private in the private policy while
policies that can or should be shared can be put in one of the
shared policies at the shared policy sites. Which shared policies
for the service to use is up to the service to decide.
From the aspect of policy engine, the Rei policy engine with Web
Services API allows very flexible deployment as long as the Rei
policy engine is accessible from the service by HTTP/HTTPS.
But the privacy of private policy is compromised to some degree
when the Rei policy engine is running on a different machine
because the private policy needs to be sent to the Rei policy
engine for the access control calculation.

3. Allow multiple certificate authorities

We allow the OWL-S file for the service to include the multiple
certificate authorities that the service accepts. On the other hand,
STEER looks into its credential folder for credentials from
compatible certificate authorities for the service and send the
credential along with the Web Services calls if found.
For example, Mohinder may carry two credentials, one from FLA
and one from UMBC in the credential folder. The OWL-S file of
“Secure Print” may state that it requires a credential from FLA or
8400 Baltimore Avenue Building (where FLA, College Park
office is located in). STEER selects the credential from FLA in
the credential folder to use “Secure Print” service.

4. Secure dynamic delegation

With the Delegation Manager software, it is possible for end-users
easily to insert (and later remove) the Rei delegation assertions
into the shared policy hosted at a Web server securely over
HTTPS. This gives flexibility often necessary in everyday usage
of the system.

In addition to the initial design goals, we would like to discuss
here about our decision not to make the Rei engine Web Services
discoverable dynamically as a semantic service as it is usually the
case for Task Computing Web Services. While it is easy to make
the Rei Web Service discoverable through, for example, UPnP

and the service automatically starts using the Rei Web Service, it
can be a security hole simply doing that. The dynamically found
Rei engine needs to be authenticated and there is a bootstrapping
issue. It is also likely that the human service provider has a very
specific idea of which policy engine to use along with each
service.

5. Related work

Extensible Access Control Markup Language (XACML) [16] is a
language in XML for expressing access policies. This work is
similar to ours; in that it allows control over actions and supports
resolution of conflicts. However, as it is based in XML, it does
not benefit from the interoperability and extensibility provided by
Semantic Web languages. It also does not model speech acts or
handle conflict resolution across policies.

Lately there has been a significant body of standardization efforts
for XML-based security, such as WS-security, -trust, and -policy
at W3C, or SAML of the OASIS Security Services Technical
Committee, and the Security Specifications of the Liberty
Alliance Project. The standards support low-level security or
policy markups that concern formats of credentials or supported
character sets for encoding. They do not address semantic user- or
application-specific trust tokens and their relations. These
standards have been developed to support controlled B2B
applications where both client and service can be mutually
authenticated and recognized. These standards are not extensible
to more dynamic environments in which simple authentication is
not enough, but authentication on user-defined attributes needs to
be considered. For this, a semantic approach like we take in this
paper, is a possible solution.

KAoS is a policy language based in OWL [17][18]. This language
is similar to Rei in that it can be used to develop positive and
negative authorization and obligation policies over actions. KAoS
policies are OWL descriptions of actions that are permitted (or
not) or obligated (or not). This limits the expressive power, so
that there are policies that Rei can describe that KAoS cannot.
However, KAoS allows the classification of policy statements
enabling conflicts to be discovered from the rules themselves. The
Rei engine can only discover conflicts with respect to a particular
situation and cannot pre-determine them. However, Rei includes
run-time conflict resolution by supporting meta-policies.

The paper [19] presents an XML-based specification language,
which incorporates content and context based requirements for
documents in XML-based Web Services. It uses a role-based
access control model which simplifies authorization
administration by assigning permissions to users through roles.
Although it relates roles to permissions, there is no way to
dynamically change these roles or permissions. Using the
delegation module of REI we can change the policies dynamically
to adapt to the changes in roles or permissions.

6. Conclusion

It is our belief that security and access control should be natural,
flexible and minimally obtrusive for the end-users as they try to
accomplish everyday tasks. If not, the users will eventually find
ways to evade the mechanisms rendering them useless, at best,
and possibly counter-productive. It is also important to give

enough flexibility in the deployment aspect of security and access
control because their requirements and rules differ from one
site/office to another.

To that regard, we have been successful in adapting our flexible
access control framework to blend in an ordinary office
environment.

Future work includes:

 Discovery security
By making it so that only accessible services are found for Task
Computing client, it will make the whole system more secure and
easy to use.

 Service authentication
By using the OWL-S file of the service, the service notifies its
(shareable part of) policy to the client. It enables the client to
better determine if the service is executable in advance.

 Explanation and negotiation
The user would get frustrated if the system simply rejects his/her
use of certain resources without giving a reason. The system
needs to give out understandable explanation for the rejection if
asked. It should also be very useful if the system can provide the
information on what it requires in order to gain permission.

7. REFERENCES

[1] Masuoka, R., Parsia, B., and Labrou, Y., “Task Computing –
The Semantic Web meets Pervasive Computing -.” In D.
Fensel et al. (Eds.), “The Semantic Web - ISWC 2003,” the
Second International Semantic Web Conference (ISWC
2003), Sanibel Island, FL, USA October 2003 Proceedings,
LNCS 2870, 2003, pp. 866-881.

[2] Masuoka, R., Labrou, Y., Parsia, B., and Sirin, E.,
“Ontology-Enabled Pervasive Computing Applications,”
IEEE Intelligent Systems, vol. 18, no. 5, Sep./Oct. 2003, pp.
68-72.

[3] Song, Z., Labrou, Y., and Masuoka, R., “Dynamic Service
Discovery and Management in Task Computing,”
MobiQuitous 2004, August 22-26, 2004, Boston, USA, pp.
310 - 318.

[4] Task Computing Home Page, http://taskcomputing.org

[5] Lalana Kagal, Tim Finin, and Anupam Joshi, “Trust Based
Security for Pervasive Computing Enviroments”, IEEE
Communications, December 2001.

[6] Lalana Kagal, “Rei : A Policy Language for the Me-Centric
Project”, HP Labs Technical Report, 2002.

[7] Jefferey Undercoffer, Filip Perich, Andrej Cedilnik, Lalana
Kagal, Anupam Joshi, Tim Finin, “A Secure Infrastructure
for Service Discovery and Management in Pervasive
Computing”, The Journal of Special Issues on Mobility of
Systems, Users, Data and Computing, 2003.

[8] Lalana Kagal, Tim Finin, and Anupam Joshi, “A Policy
Language for Pervasive Systems”, Fourth IEEE International
Workshop on Policies for Distributed Systems and Networks,
2003.

[9] Lalana Kagal, Tim Finin and Anupam Joshi, “A Policy
Based Approach to Security for the Semantic Web”, Second
Int. Semantic Web Conference (ISWC2003), Sanibel Island
FL, October 2003.

[10] Lalana Kagal, “A Policy-Based Approach to Governing
Autonomous Behavior in Distributed Environments”,
Dissertation, September, 2004.

[11] Grit Denker, Lalana Kagal, Tim Finin, Massimo Paolucci,
and Katia Sycara, “Security for DAML Web Services:
Annotation and Matchmaking”, Second Int. Semantic Web
Conference (ISWC2003), Sanibel Island FL, October 2003,

[12] Lalana Kagal and Tim Finin, “Modeling Conversation
Policies using Permissions and Obligations”, AAMAS 2004
Workshop on Agent Communication (AC2004), July, 2004,

[13] Pranam Kolari, Lalana Kagal, Anupam Joshi, and Tim Finin,
“Enhacing P3P Framework with Policies and Trust”, UMBC
Technical Report and under review, 2004.

[14] Anand Patwardhan, Vlad Korolev, Lalana Kagal, and
Anupam Joshi, “Enforcing policies in Pervasive
Environments”, International Conference on Mobile and
Ubiquitous Systems: Networking and Services, 2004.

[15] Lalana Kagal, Massimo Paolucci, Naveen Srinivasan, Grit
Denker, Tim Finin, and Katia Sycara , “Authorization and

Privacy in Semantic Web Services”, IEEE Intelligent
Systems (Special Issue on Semantic Web Services), 2004.

[16] S. Godik and T. Moses, “OASIS eXtensible Access Control
Markup Language (XACML)”, OASIS Committee
Secification cs-xacml-specification-1.0, November 2002.

[17] A. Uszok, J. Bradshaw, P. Hayes, R. Jeffers, M. Johnson, S.
Kulkarni, M. Breedy, J. Lott, and L. Bunch, “DAML reality
check: A case study of KAoS domain and policy services”,
International Semantic Web Conference (ISWC 03), Sanibel
Island, Florida, 2003.

[18] A. Uszok, J. M. Bradshaw, R. Jeffers, M. Johnson, A. Tate,
J. Dalton, and S. Aitken, “Policy and Contract Management
for Semantic Web Services”, AAAI Spring Symposium, First
International Semantic Web Services Symposium, 2004.

[19] Arif Ghafoor, James B. D. Joshi, Rafae Bhatti, and Elisa
Bertino, “XML-Based Specification for Web Services
Document Security”, IEEE Computer Society Press , 2004.

	1. Introduction
	2. Motivation and Design Goals
	3. Implementation and Test Deployment
	4. Evaluation and Discussions
	5. Related work
	6. Conclusion
	7. REFERENCES

