
ABSTRACT

Title of Dissertation: An Intelligent Broker Architecture for Pervasive Context-Aware Systems

Harry Lik Chen, Doctor of Philosophy, 2004

Dissertation directed by: Dr. Timothy W. Finin
Professor
Department of Computer Science and
Electrical Engineering

Context-aware systems exploit the use of situational information, or context, to provide relevant informa-

tion and services to users. A great challenge remains in defining an architecture that supports context-aware

systems. Critical research issues include modeling and reasoning (how to represent contextual information for

machine processing and reasoning), knowledge sharing (how to enable agents to acquire consistent knowl-

edge from unreliable sensors and agents), and user privacy protection (how to give users control of their

private information that the system acquires).

To address these issues, I developed a new agent architecture called the Context Broker Architecture (Co-

BrA). It uses the Web Ontology Language OWL to define ontologies for context representation and modeling,

defines rule-based logical inference for context reasoning and knowledge maintenance, and provides a policy

language for users to control the sharing of their private information. Central to CoBrA is a server agent

called context broker. Its role is to maintain a consistent model of context that can be shared by all computing

entities in the space and to enforce the user-defined policies for privacy protection.

The major research contributions of this work include a broker-centric architecture for supporting context-

aware systems, a standard pervasive computing ontology, a reasoning approach that integrates assumption-

based reasoning and argumentation for resolving inconsistent contextual knowledge, and a privacy protection

mechanism that exploits information granularity adjustment.

To demonstrate the feasibility of CoBrA, I prototyped a context broker in the FIPA platform using the

JADE API library. I showed its use in supporting EasyMeeting, a smart meeting room system that provides

context-aware services for assisting speakers and audiences. Other contributions include the CoBrA Demo

Toolkit (an open source software package for demonstrating various aspects of CoBrA) and the CoBrA Text

Messaging Commands (a text messaging interface for mobile users to interact with a context broker via SMS

messages).

The lessons learned from this research are as the follows. (i) CoBrA’s broker-centric design can help to

reduce the time and effort to rapidly prototype context-aware applications. (ii) Ontologies expressed using

the OWL language can provide a uniformed solution for context representation and reasoning, knowledge

sharing, and meta-language definitions. (iii) Rule-based logical inference can help to develop flexible context-

aware systems by separating high-level context reasoning from low-level system behaviors.

AN INTELLIGENT BROKER ARCHITECTURE FOR

PERVASIVE CONTEXT-AWARE SYSTEMS

by
Harry Lik Chen

Dissertation submitted to the Faculty of the Graduate School
of the University of Maryland in partial fulfillment

of the requirements for the degree of
Doctor of Philosophy

2004

For G.

ii

ACKNOWLEDGEMENT

This dissertation marks the end of my journey as a student at UMBC and the beginning of a new journey

as a computer scientist in the industry. My accomplishment over the past several years is indebted to many

people. Especially, I want to thank Dr. Tim Finin. Tim is a great advisor and a fantastic friend. It was with

him that I first learned how to do research and how to write. His favorite quotes “the best idea is to have many

ideas” and “don’t worry be crappy” encouraged to me to think outside the box when I do research. Thank

you, Tim, I am very grateful.

I also want to thank my wife Gigi. She is the best cheerleader that I ever had. Whenever I was beaten

by the stressful paper deadlines or research obstacles, Gigi was always there to refuel my energy. Being a

graduate student is hard. Being a productive graduate student with a balanced life is even harder. Without

Gigi, my life would have been dull, and my research would have been less productive and less fruitful. Thank

you, Gigi, for loving me and supporting me.

Coming to study in the US was a turning point in my life. I had the opportunity to study abroad because

of the tremendous sacrifices that my parents have made. They have done everything possible to ensure that I

had a good education. For this and much more, I am forever in their debt. Thank you, Mom and Dad.

I owed much to my committee members. Not only they have helped me to define my research project, but

also they have given me advice that is invaluable to the rest of my research career. Thank you, Dr. Anupam

Joshi, Dr. Yun Peng, Dr. Marie desJardins, and Dr. Yannis Labrou, I really appreciated what you have done.

I believe we are the sum of our own experiences. I want to acknowledge all my friends who have been part

of my life experience – at work and at play. Without them being there to experience everything that we have

experienced together, in theory, I could not have been the same person. Especially, I want to acknowledge

Dennis Kelly and Matt Kelly, who inspired me to study computer science.

iii

TABLE OF CONTENTS

I. INTRODUCTION 1

A. Context-Awareness in Smart Spaces . 2

B. Issues in Building Context-Aware Systems . 3

1. Context Representation . 4

2. Knowledge Sharing . 4

3. Context Reasoning . 5

4. Privacy Protection . 5

C. Thesis Statement . 6

D. The Context Broker Architecture . 6

1. A Standard Pervasive Computing Ontology 7

2. Inference Procedures for Context Reasoning 8

3. A Policy-Based Approach for Privacy Protection 9

E. Minor Contributions . 10

1. EasyMeeting: A Smart Meeting Room Prototype 10

2. CoBrA Demo Toolkit . 10

3. A Text Messaging Interface for Knowledge Query 11

II. BACKGROUND 12

A. Reasons to Study Context . 12

B. Definition of Context . 13

C. Aspects of Context-Aware Computing . 14

1. Enhancing User Interfaces . 14

iv

2. Guiding Systems’ Adaptation Behavior 14

3. Enabling Smart Space Applications . 15

D. Context Acquisition Methods . 16

1. Direct Access to Hardware Sensors . 16

2. Facilitated by a Middle-ware Infrastructure 17

3. Acquiring Context from a Context Server 18

III. ARCHITECTURE DESIGN 19

A. Characteristics of a Pervasive Context-Aware System 19

B. Context Broker . 21

C. Implementation Blueprints . 23

D. Applications of CoBrA . 28

1. Intelligent Personal Agent . 28

2. Projector Tracking Service . 29

3. Visitor Assistant Service . 30

IV. ONTOLOGIES 31

A. Background . 31

B. SOUPA Ontology . 34

1. SOUPA Core . 34

2. SOUPA Extension . 42

C. CoBrA Ontology . 43

1. eBiquity Geo-Spatial Ontology . 43

2. eBiquity Meeting Ontology . 44

3. eBiquity Action Ontology . 44

V. CONTEXT REASONING 46

A. The Need for a Rule-based Framework . 46

B. System Design and Implementation . 47

C. How to Interpret Context . 49

1. Temporal Reasoning . 50

2. Spatial Reasoning . 51

v

3. Meeting Event Reasoning . 53

D. How to Detect and Resolve Inconsistency . 55

1. Detect Inconsistency Based on the Ontologies 57

2. Resolve Inconsistency by Weighing Assumptions 58

3. Reasoning that Incorporates Argumentation 67

VI. PRIVACY PROTECTION 76

A. Background . 77

B. Privacy Protection Issues . 78

C. The Policy Ontology . 79

D. A Policy Reasoning Algorithm . 81

E. Privacy Protection Applications . 84

1. An Example of the Privacy Policy . 85

2. Policy Reasoning Walk-Through . 88

VII. IMPLEMENTATIONS 94

A. EasyMeeting . 94

1. Services . 94

2. Use Case . 96

B. CoBrA Demo Toolkit . 97

1. Context Broker Agent . 98

2. ScriptPlay Agent . 99

3. CoBrA Eclipse Viewer . 101

C. CoBrA Text Messaging Commands . 103

VIII. CONCLUSIONS 106

A. Lessons Learned . 107

1. CoBrA Improves Rapid Prototyping . 107

2. Context-Aware Systems Needs Ontology 107

3. Logical Inference Helps to Enable Context-Awareness 108

B. Future Works . 109

vi

Chapter I.

INTRODUCTION

“The most profound technologies are those that disappear. They weave themselves into the fabric

of everyday life until they are indistinguishable from it.” – Mark Weiser, 1991.

It was more than a decade ago, when Mark Weiser wrote about his vision of “ubiquitous computing”

[108]. He described ubiquitous computing as a new computing paradigm in which computing systems are

seamlessly integrated into the lives of everyday users. Weiser believes that computing technology should be

made ubiquitous for people. Ubiquitous means that using computing technology should be as natural as using

non-computing technology, e.g., writing.

The ubiquitous computing vision has motivated many researchers to study how computing technology

can be seamlessly integrated into our everyday life. Among those researchers, many believe that context-

awareness is an important aspect of the ubiquitous computing vision [20]. For computing systems to be

context-aware means that they are capable of providing users with relevant services and information based

on the context of the users (where they are, who they are with, what they are carrying, etc.).

The work described in this dissertation is about developing an architecture to support pervasive context-

aware systems in a smart space environment. In this document, I use the term “pervasive computing” as

a synonym for the term “ubiquitous computing” since they have been widely referenced in the research

literature as interchangeable terms. I use the term “software agent” (or agent for short) to refer to the kind of

computing entities that can operate without direct intervention by humans or others [109].

1

2

A. Context-Awareness in Smart Spaces

Smart spaces (e.g., intelligent rooms, smart conference rooms, smart vehicles) are instances of pervasive

computing systems. These systems typically consist of a community of agents that can coordinate and co-

operate with each other to provide services to the human users. Some typical applications of a smart space

include automatically capturing free-hand sketches and presenting the meeting synopsis to the absent par-

ticipants [83], teams of autonomous vehicles conducting space exploration and search-and-rescue missions

[72], and teleporting graphical user interfaces from mobile devices to stationary desktop computers [9], and

assisting researchers to reschedule meetings and seeking replacement speakers [103].

I believe intelligenceis a necessary property of the smart spaces. In a smart space, the users will be

surrounded by a vast amount of computing services and devices. In order for the users to concentrate on their

specific tasks, the smart space should attempt to minimize the amount of manual overhead that is required to

configure, control, and manage those services and devices. Hence, I believe intelligent behavior and decision

making capabilities are essential in the realization of smart spaces.

Context-awareness is a kind of intelligent computing behavior. For the humans, context-awareness is an

essential capability for understanding the implicit information that is associated with the activities that they

conduct. For example, context-awareness enables a person to follow an ongoing conversation, and context-

awareness can help to guide the appropriate behavior of a student when the student enters a classroom. For the

computing systems, however, context-awareness is the capability to provide relevant services and information

to the users based on their situational conditions (i.e., contexts) [36].

A consensus definition of context is a collection of information that characterizes a person or a computing

entity [36]. Within in the smart space environment, I define the notion of context as the following: by context,

I mean an understanding of a location and its environmental attributes (e.g., temperature, noise level, light

intensity), and the people, physical objects, and computing entities that it contains. This understanding

necessarily extends to modelling the activities and tasks that are taking place in a location as well as the

beliefs, desires, commitments, and intentions of the human and the software agents involved.

The following are some typical use case scenarios of context-aware systems in a smart meeting room

environment:

• As a speaker enters the room, the room detects her presence and reasons about her intention. Knowing

she is the speaker, the room concludes that her intention is to give a presentation. Based on the profile

3

information of this person, the room informs the projector device of the URL from which the presen-

tation slides can be fetched. After the slides have been downloaded, the projector device sets up the

presentation.

• Seeing her slides are ready, the speaker signals the room that she is about to begin her presentation. At

this time, the room senses the lighting condition is too bright for viewing the projected presentation.

Consequently, the room instructs the room lights to be dimmed.

• During the presentation, the room detects the absence of some people who previously expressed interest

in the presentation. Knowing this information, the room acquires those people’s contact information

and informs the meeting minutes agent to send copies of the recorded presentation and the meeting

minutes to those people.

• As the presentation comes an end, the room reasons if other services should be provided to the speaker.

Knowing the speaker is an invited guest, and who plans to catch a flight later in the evening, the room

inquires the speaker if a taxi cab should be reserved for taking her to the airport.

• The speaker leaves the conference room but left behind her PDA in the room. The room detects the

PDA’s presence. Knowing the device is not co-located with its owner, the room sends a notification to

the speaker via text messaging.

B. Issues in Building Context-Aware Systems

There are great challenges in building context-aware systems, e.g. developing accurate sensors to acquire

information from the physical environment [89, 107, 65], building software infrastructure and tools to inter-

pret and process the sensed information [1, 8, 94], creating data management systems to manage and store

contextual data for later retrieval [93, 99], and developing frameworks to address security and privacy issues

associated with the context-aware systems [7, 3, 69].

My work addresses the following key research issues: modeling and reasoning (how to represent contex-

tual information for machine processing and reasoning), knowledge sharing (how to enable agents to acquire

consistent knowledge from unreliable sensors and agents), and user privacy protection (how to give users

control of their private information that the system acquires).

4

1. Context Representation

In order for computing systems to process the information acquired from the physical sensors, it must be

represented in a form that is suitable for machine processing. In a smart space, there are different varieties

of contextual information. For example, it may include time and temporal relations, geo-spatial entities and

relations, user profiles, social networks, actions taken by the people and the agents, meeting events, security

and privacy policies, the beliefs, desires, and intentions of the people and agents.

In the past [94, 36, 4, 29], contextual information is often represented as data structures or class objects

using programming languages (e.g., Java or C++). The key problem with this approach is that the represented

information lacks expressiveness and extensibility. Some previous research attempted to address this problem

by using a meta-language (i.e., XML) to represent contextual information [17, 50]. However, because XML

only provides a syntax level of representation and interoperability, it is unable to provide adequate support for

semantic representation and interoperability, which is essential to knowledge sharing and context reasoning

[21].

2. Knowledge Sharing

In an open and dynamic environment, no single agent will have complete knowledge about its context.

Knowledge sharing is an effective mechanism to help agents to build contextual knowledge. Effective com-

munication is required for knowledge sharing. In order to communicate, independently developed agents

must share a common ontology and communication language [41].

In the previous systems [94, 36, 4, 29], because contextual information is typically represented using

programming objects and ad-hoc data structures, it cannot be effectively shared among the independently

developed agents. However, some approach has suggested the use of a shared database repository to facilitate

knowledge sharing [36]. In this approach, the shared database schemas are used to function as a shared

ontology between different agents. As the database is updated by different agents when new knowledge

is acquired, the database becomes a shared knowledge base for these agents. However, there are several

problems with this approach.

First, database schemas have limited expressive power to describe the semantic relations between different

data sets [34]. This hinders the expressiveness of context representation. Second, because complex semantic

relations are difficult to model using database schemas, it is difficult to define an effective mechanism for

detecting and resolving inconsistent contextual knowledge. Third, when a database is shared by multiple

5

agents, all the data that is stored in it is accessible by all agents. Without any built-in functions for controlling

the access to this data, it creates concerns for user privacy and information security.

3. Context Reasoning

Context reasoning can play different roles in sensing and knowledge sharing. In sensing, context reasoning

is a process that reasons over the sensing data to make interpretations about the context. In knowledge

sharing, context reasoning is a process that reasons over different contextual knowledge to detect and resolve

inconsistent information.

The design and the implementation of context reasoning can vary depending on the type of contextual

knowledge that is involved. In the previous systems [17, 110, 63, 28], system implementations often program

the logics of context reasoning directly into the behavior of the systems. Because the implementation for un-

derstanding what information is present in the context is tightly coupled with the implementation for guiding

the context-aware behavior of the system, the developed applications often have rigid implementations and

are difficult to maintain [36]. In order to address this issues, we must take a new approach that allows the

logic of context reasoning to be implemented in separately from the behaviors of the systems. Rule-based

logical inference is a feasible approach to allow this decoupling [25]. However, adopting a rule-based ap-

proach creates a new challenge. Given that context will be represented using ontology languages to enable

knowledge sharing. Because these languages have different syntax and semantic representations from the

rule languages used to enable context reasoning, a challenge is how to effectively integrate the use of these

distinctive languages to support context-aware systems.

Furthermore, when agents are built to share knowledge, they will face the problem of receiving inconsis-

tent information. Because different agents have different beliefs about the context, the information that an

agent acquires from the others may be inconsistent with what it currently believes. To address this issue, the

context reasoning of an agent must include the capability to detect and resolve inconsistent information.

4. Privacy Protection

The most personal information of a user is often the most useful information to a pervasive context-aware

system [69]. This information may consist of the location information of a person, the social behavioral

patterns of a person, and the preferences and profiles of a person. Because this kind of information can be

misused for wrongful purposes, the users in a smart space will express concerns about their privacy.

6

Policy is an emerging approach to guide the behavior of an agent in an open and dynamic environment

[61]. A policy typically consists of a set of rules for controlling the performance of actions. After a system

accepts the policy, it agrees to enforce these rules when it performs actions. In the past, computing systems

often uses policy for supporting security access controls. In these systems, policies are typically defined by

the system administrators to specify the permissions for different agents to access information.

Policy also can be used for privacy protection [33]. However, there are differences between using policy

for security access control and for privacy protection. When using policy for privacy protection, the task of

policy definition can no longer rest on the shoulders of a system administrator. This is because different users

may have different privacy protection preferences, and it is difficult to define one global policy that would

suit the preferences of all users.

While users desire privacy protection, they typically do not intend to hide their contextual information

completely from the systems. If they do, it would hinder the systems’ ability to provide relevant services and

information because of lacking contextual knowledge. A useful feature that a policy language should offer

is to allow the users to control the granularity of the information that may be shared by the systems. For

example, a user may permit the trusted agents to share the name of the room in which she is present, but for

any other agents, only the name of the building is allowed to be shared.

C. Thesis Statement

In a pervasive computing environment, the intelligence of context-aware systems will be limited if the systems

are unable to represent and reason about context, and users will abandon the most useful context-aware ser-

vices if they are unable control the sharing of their private information. By developing a broker-centric agent

architecture with expressive ontologies, context reasoning procedures, and a policy-based privacy protection

mechanism, we can help computing entities to represent and share context, to detect and resolve inconsistent

knowledge, and to protect user privacy.

D. The Context Broker Architecture

A major contribution of my research is a new architecture for supporting pervasive context-aware systems

in smart spaces. This architecture called the Context Broker Architecture (CoBrA) is designed to address

the four key issues in building context-aware systems: how to representation contextual knowledge, how to

7

enable knowledge sharing, how to enable context reasoning, and how to protect user privacy.

Central to CoBrA is an intelligent agent calledcontext broker. In a smart space, a context broker has

the following responsibilities: (i) provide a centralized model of context that can be shared by all devices,

services, and agents in the space, (ii) acquire contextual information from sources that are unreachable by the

resource-limited devices, (iii) reason about contextual information that cannot be directly acquired from the

sensors (e.g., intentions, roles, temporal and spatial relations), (iv) detect and resolve inconsistent knowledge

that is stored in the shared model of context, and (v) protect user privacy by enforcing policies that the users

have defined to control the sharing and the use of their contextual information.

CoBrA differs from other similar architectures [93, 95, 29, 83] in (i) using ontologies expressed in the Web

Ontology Language OWL to support context modeling and knowledge sharing, (ii) using logic inferences to

detect and resolve inconsistent context knowledge that is acquired from unreliable physical sensors, and (iii)

using policies and logical inference to protect the privacy of the users.

The CoBrA design expects the context broker to be deployed in a relatively small scale indoor environ-

ment (e.g., offices and living rooms). Typically a single context broker is sufficient to support a smart space.

However, being the only service provider in the space, the context broker may become the bottleneck of the

system. To overcome this problem, a team of context brokers can be deployed to improve system robustness

through redundancy (see Chapter III. for further discussions).

1. A Standard Pervasive Computing Ontology

CoBrA defines a set of ontologies for supporting context modeling and knowledge sharing. These ontologies

expressed in the OWL language define the modular component vocabularies to represent intelligent agents

with associated beliefs, desires, and intentions, time, space, events, user profiles, social networks, actions, and

policies. In the CoBrA prototype implementations, these ontologies were used to support the representation

and the reasoning of context in a smart meeting room environment. The details of this ontology is described

in Chapter IV..

Key contributions resulted from the ontology development are as the follows. (i) I demonstrated that

the use of the ontology languages such as OWL and RDFS, as oppose to the programming languages such

as Java and C++, can greatly improve the expressiveness of the representation and the modeling of context.

(ii) I showed the OWL language not only can be used to express the semantics of the information on the

Web, but also can be used to express the semantics of the contextual information in the physical world.

8

Because the information in two distinctive domains can be expressed using a common language, the OWL

language can help the smart space applications to exploit knowledge in both the Web and the physical world.

(iii) I demonstrated the OWL language can be used to define meta-languages (e.g., policies) as the interface

languages for the traditional rule-based systems (e.g., policy reasoners). Because RDF/XML is one of the

normative surface syntaxes of OWL, and there are great software tools support for editing, managing, and

storing OWL data in RDF/XML, by having an OWL interface language for the rule-based systems can help to

ease the development efforts and to gain wider acceptance of the systems. (iv) I helped to develop a standard

ontology for support pervasive computing applications based on the core ontologies in CoBrA. This ontology

is called SOUPA – Standard Ontology for the Ubiquitous and Pervasive Application, and it is currently

maintained by the Semantic Web in UbiComp SIG (http://pervasive.semanticweb.org).

2. Inference Procedures for Context Reasoning

In CoBrA, there are two types of inference procedures for context reasoning. One for aggregating and inter-

preting the data acquired from the physical sensors, and the other for detecting and resolving the inconsistent

knowledge. I prototyped these inference procedures using different rule-based systems (i.e., Prolog and Jess)

and programming API (i.e., Jena), and showed that they are feasible for supporting the context reasoning

implementation of CoBrA.

The prototyped reasoning procedures can infer various types of contextual knowledge that are expressed

using the SOUPA and the CoBrA ontologies. This includes the temporal relations between different tem-

poral entities (i.e., time instant and time interval), spatial relations between different geographical entities

(country, state, city, building, room, etc.), relations associated with people’s social networks, the basic states

of scheduled meetings and associated properties, and the ownership relations between devices and users and

their respective profiles.

To detect and resolve inconsistent knowledge, the context reasoning procedures are implemented with

a hybrid design. The OWL-based ontology reasoning is used to detect knowledge inconsistency and the

assumption-based reasoning is used to resolve knowledge inconsistency. The OWL-based ontology reasoning

exploits the OWL-DL axioms [80] and is built on the existing OWL inference engines (i.e., Jena OWL

reasoner [92] and Racer [48]). The inconsistent knowledge is detected by computing RDF statements that are

inconsistent within a set of predefined ontologies.

The assumption-based reasoning for resolving inconsistent knowledge is built on the Theorist framework

9

[87], a Prolog meta-interpreter for default and abductive reasoning. In this approach, context knowledge

is treated as an agent’s belief about itsobservationsof the physical world. Inconsistent context knowledge

is formed when the agent has beliefs about two or more conflicting observations. To resolve inconsistent

knowledge is to find themost believableobservation among all the conflicting ones.

In this work, I demonstrated the feasibility of coupling rule-based systems with the semantic web pro-

gramming framework (e.g., Jena) to support context reasoning. Comparing to the past approaches that use

programming class objects to model context and “hardwire” procedures to interpret context, the rule-based

approach improves the flexibility of context reasoning implementation. The details of context reasoning’s

design and implementation are described in Chapter V..

3. A Policy-Based Approach for Privacy Protection

CoBrA uses policy for privacy protection. In this approach, users define policies to control the sharing of

their private information and send these policies to the context broker as they enter a smart space. Before the

context broker shares a user’s information with other agents, it consults the user’s policy to check whether

or not the communicating agents are permitted to acquire this information. The privacy policies are defined

using the SOUPA policy ontology.

The SOUPA policy ontology is designed to be reasoned with a description logic reasoner. The ontology is

defined using the DL (description logic) constructers of the OWL language. When defining a policy, the user

specifies the actions that represent the sharing of their private information. For each action, the user specifies

the prerequisites of the agents that are permitted or forbidden to perform the action. When this policy is

reasoned by a description logic reasoner, these ontology descriptions are used to classify the knowledge

sharing actions.

The SOUPA policy ontology also allows the users to control the granularity of the information that can

be shared with the agents in the space. When some user information is forbidden to be shared and the sharing

of a less specific version of the same information is desirable, the context broker will attempt to adjust the

granularity of the information. For example, when sharing the specific location of a person is forbidden, the

context broker will attempt to adjust the granularity of the location information by finding a more general

location concept in a geo-spatial ontology.

The contributions of this work are as follows. (i) I defined a new policy language expressed using the

OWL language and showed it can be used to support privacy protection in a pervasive context-aware system.

10

(ii) I developed a novel algorithm for reasoning over privacy policies and prototyped an implementation of this

algorithm using the Jena API and the Racer inference engine. (iii) I developed an ontology-driven approach

to facilitate the adjustment of information granularity and showed it can enhance knowledge sharing while

avoiding the violation of privacy policies.

E. Minor Contributions

To show the feasibility of CoBrA, I implemented prototype systems to demonstrate various aspects of the

architecture. These systems include (i) EasyMeeting – a smart meeting system built on an earlier pervasive

computing system developed at UMBC, (ii) CoBrA Demo Toolkit – a collection of agents, user interface

programs, ontologies, and policies for demonstrating different aspects of CoBrA, (iii) CoBrA Text Messaging

Commands (CTMC) – a text messaging interface for mobile users to interact with a context broker via SMS

messages.

1. EasyMeeting: A Smart Meeting Room Prototype

EasyMeeting is an extension to Vigil [106], a third generation pervasive computing infrastructure developed

at UMBC. While security is the main focus in Vigil, context-awareness is the main focus in EasyMeeting. In

EasyMeeting, the context broker acquires contextual information from the sensors in the room and share that

information with various Vigil meeting services. Using this information, the services are able to compose

and play personalized greeting messages as people enter the meeting room, help speakers to set up their

PowerPoint presentations, and show the audiences the profiles of individual speakers while they are giving

presentations.

2. CoBrA Demo Toolkit

CoBrA Demo Toolkit is an open source software package for demonstrating CoBrA. This package consists

of a set of agents implemented using the Jade API library. One of these agents is Context Broker, which is

capable of acquiring and reasoning with the contextual information. Another key agent is Script Play Agent,

which is a configurable user interface program for driving the CoBrA demonstration. I also developed an

Eclipse Plug-in module for browsing the ontology and the inferred knowledge that is stored in the context

broker’s knowledge base. In addition, this toolkit includes a collection of ontologies and privacy policies that

11

are used to facilitate the EasyMeeting and the user privacy protection demonstrations. The CoBrA Demo

Toolkit is available athttp://cobra.umbc.edu .

3. A Text Messaging Interface for Knowledge Query

The CoBrA Text Messaging Commands comprise a list of text messages for mobile users to communicate

with a context broker via SMS. The goal is to create a light-weight communication interface for the human

users to communicate with the smart space environment. Because the use of text messaging is becoming

ubiquitous for the mobile users (e.g., seeking new friends, interacting with the online special interest groups)

[84], it is natural to include text messaging as an alternative means to communicate with the smart space

services. For example, when users enter the smart space, the system automatically sends the users a list of

CTMC commands for controlling various services that are relevant to their situational tasks (e.g. forwarding

calls, adjusting the room temperature). I prototyped a CTMC service that allows mobile users to inquire

event schedules of the UMBC eBiquity weekly meetings and register themselves to be notified when new

presentations and meeting minutes are posted on the eBiquity group web site.

Chapter II.

BACKGROUND

A. Reasons to Study Context

We humans often exploit context when we communicate and take actions. During a conversation, we can

often convey ideas to the others without needing to explicitly state the background information. This is

because we share a common understanding of the context. For example, when two people walk into a room

with only one door, one person tells the other person, “close the door, please”. Because they share the same

context, the first person can convey his desire without explicitly pointing to the door that he wants to be

closed. In addition, an understanding of context can also affect our behavior. For example, when watching a

movie in a movie theater, reasonable people will try to avoid loud conversations; when speeding down on a

highway, reasonable drivers will reduce their driving speed if they see a police car is driving next to them.

It is clear that part of the human’s intelligence involves context-awareness [39]. The context-aware sub-

ject has been studied in different fields of computer science, which include artificial intelligent [74, 105],

information retrieval [19], nomadic computing [63], sensor networks [97, 89] and human-computer interac-

tions [93, 37, 2]. In these research projects, the same subject is studied with distinctive aims. Some projects

focused on defining theoretical foundations for context-awareness, and some others are more interested in

building applications that exploit context. Nevertheless, these studies all agree that context-awareness should

be an essential feature of the future intelligent computing systems.

12

13

B. Definition of Context

In order to build context-aware systems, we must define context. What is context? What kind of information

is part of or not part of context? How should we describe context from an engineering perspective?

According to the Merriam-Webster Online Dictionary (http://www.m-w.com/), context is defined

as “(i) the parts of a discourse that surround a word or passage and can throw light on its meaning; (ii)

the interrelated condition in which something exists or occurs”. Researchers argue that this definition is

inadequate for describing the relation between context and a computing environment [20].

Schilit et al. [94] characterize context as a collection of information that describe the users in a context-

aware system. Their definition of context is as the follows.

Definition 1 In a mobile distributed computing system, contexts are the location of the user, the identity of

people and physical objects that are nearby the user, and the states of devices that the user interact with.

While this definition characterizes the types of context that are used in Schilit’s system [94], but it ex-

cludes other types of context (e.g. the intentions and desires of the users, the profiles of the users). Dey [36]

argues that a definition of context should not just be a list of information that describes users or the system

because “context is all about the whole situation that is relevant to an application and its set of users”. He

gives a different definition:

Definition 2 Context is any information that can be used to characterize the situation of an entity. An entity is

a person, or object that is considered relevant to the interaction between a user and an application, including

the user and application themselves.

Definition 2 is more general than Definition 1 because it is not bounded to a specific list of information.

Definition 2 extends the definition to include all information that describes physical objects and computing

applications.

I define context as the following:

Definition 3 Context is information about a location, its environmental attributes (e.g., noise level, light

intensity, temperature, and motion) and the people, devices, objects and software agents that it contains.

Context may also include system capabilities, services offered and sought, the activities and tasks in which

people and computing entities are engaged, and their situational roles, beliefs, and intentions.

14

C. Aspects of Context-Aware Computing

1. Enhancing User Interfaces

One aspect of context-aware computing is to enhance the user interfaces of mobile devices. Mobile devices

are important part of our everyday life. They give us the freedom to communicate with people and do work

in an any-time-anywhere fashion. However, because the size of typical mobile devices shrinks, designing

adequate user interfaces for these devices becomes a challenge.

Today’s devices often have tiny buttons, small display screens. The users often feel awkward to use these

miniature interfaces to interact with the devices. For example, finding a button or activating a control on the

screen can require significant visual attention [51].

To address this issue, Hinckleyel at. have developed a context-aware approach to enhance the user

interfaces of a palm-size PC (i.e. Cassiopeia E-105) [51]. In their approach, various functions of a device can

be activated based on how a user holds the device. The on-board context-aware system controls the device’s

functions by calculating the position and the orientation of the device. For example, when the system detects

the user is holding the PDA as if he/she is holding a microphone or a cellphone, it automatically actives

the voice memo application. When the system detects the device is being held in a landscape orientation, it

automatically reformats the display to suit the current viewing orientation.

Independently, Schilitet al. [95, 94], Rekimoto [91], Harrisonet al. [96] have developed similar ap-

proaches to enhance the different user interfaces of mobile devices. Schmidtet al. describe a cellphone that

combines tilt, light, head, and other sensors to detect whether the device is sitting on a table, in a briefcase,

or being used in an outdoor environment. Knowing the cellphone is one of those states, the context-aware

systems automatically adjusts the ring tone and volume of the cellphone. Rekimoto uses the tilting position

context of a device to guide menu selections. Harrisonet al. exploit the tilting position context to help users

to scroll through information that is displayed on the mobile devices.

2. Guiding Systems’ Adaptation Behavior

In an open and dynamic environment, the availability of computing resources and conditions may frequently

change. Context can help to guide the adaptive behavior of computing systems.

Network properties are commonly used to guide the adaptive behavior of mobile applications. These

properties include network bandwidth, error rate, connection setup time, usage costs, security requirements,

15

contention, disconnection rate, and round-trip delay [95]. Among these, network bandwidth is the mostly

frequently. For example, while streaming a video file over a wireless network, if an application is able to

detect changes in the network bandwidth, it can adjust the streaming quality of the video without interrupting

the viewer’s attention [95]. Network bandwidth can also help a context-aware web browser to decide the types

of image files that it should request from the web server in order to maintain an acceptable downloading speed

[76].

3. Enabling Smart Space Applications

Context is also used in building smart space applications. Researchers believe that the use of context can

help computing systems to anticipate our needs and act on our behalf. Context-aware systems will draw

computing into the natural world of the humans, as oppose to drawing humans into the complex world of

computers [49].

Location and user identity are commonly used in smart space applications. In Cyberguide [36], the system

provides users with customized direction service and interactive map service by understanding the present

location of the users. In a different project [9], a call forwarding system uses a person’s location information

to decide where the incoming calls to the person should be routed to. Asthanaet al. [4] describes the use of

user identity in a shopping assistant system. In this system, the shoppers identities are tracked by a Person

Shopping Server. The server uses this information to provide services such as recommending products and

helping the users to locate shelved items.

In addition to location and user identity information, some researchers also explored the use of users’

mental states (i.e., intention, desire, and belief) in smart space applications. Unlike location and user identity,

the mental states of users are relatively difficult to acquire via sensing. To acquire this information, context-

aware systems typically rely on machine reasoning. In the Intelligent Room project [28], the system has a

pre-defined behavior model of a user, and this model is used to infer the user’s intention. For example, a

user’s behavior model might be that the user is lying down on a couch, and the user’s intention associated

with this model might be that the user intends to take a nap. If the system detects the user is currently lying

down on a couch, based on the associated intention, the system will try to close the curtains in the room, so

that it creates a comfortable resting environment.

16

D. Context Acquisition Methods

The process to acquire context is called context acquisition [36]. Typically computing systems acquires

contextual information via sensors. These sensors may be hardware sensors (e.g. temperature sensors, weight

sensors, and noise sensors). Context sensors may also be software programs that aggregate the general

information acquired from the hardware sensors to form more specialized knowledge. Different context-

aware systems explore different architecture designs and methods to acquire context. I define the following

three categories of context acquisition methods:

1. Direct access to hardware sensors

2. Facilitated by a middle-ware infrastructure

3. Acquire context from a context server

1. Direct Access to Hardware Sensors

The rapid advancement in sensing technology is a key driving force behind the context-aware research. In the

past, due to technological limitations (e.g., battery life, sensing accuracy), the kind of contextual information

that could be acquired via hardware sensors is very limited. Thus, the functions of the context-aware sys-

tems that built on these sensing technologies were also limited. Today, as the sensing technology advances,

contextual information that previously could not have been acquired now can be directly access by pervasive

context-aware systems to enhance their functionalities [40].

Many context-aware systems acquire context via the direct access to physical sensors. A key benefit of

this approach is that the high-level applications can have great controls over the operations of the low-level

sensors, and can have better knowledge about how different data is collected and computed. In the context-

aware Pocket PC designed by Hinckleyet al. [51], the context-aware system acquires the states and the

position of the device by directly accessing the on-board sensors – proximity range sensors, touch sensors,

and tilt sensors. From the proximity range sensors, the system acquires a proximate distance between a

physical object in the range and the device. From the touch sensors, the system acquires whether or not a

user is holding the device and the amount of time that it has been held. From the tilt sensors, the system

acquires the tilt angles of the device (i.e. left/right and back/forward), the display orientation of the device,

and whether or not the device is being shook.

17

In the Forget-me-not project [67], the user’s handle device accesses the user’s location information by

communicating with the Active Badge sensors. The same technique is also used in the call forwarding

system described by Wantet al. [107] and the teleporting system described by Bennettet al. [9]. In the RFID

Chef application described by Langheinrichel at., a cooking recipe recommendation agent is connected to a

RFID (Radio Frequency Identification) reader to determine the identity of the cook.

Direct sensor access has some shortcomings. To communicate with different sensors means an application

must maintain the implementation to communicate with different sensors. As the number of context used by

the application increases, the amount of implementation for sensor communications also increases. For this

reason, the application’s overall implementation becomes difficult to maintain [36].

2. Facilitated by a Middle-ware Infrastructure

Using context acquisition middle-wares can address the shortcomings of direct sensor access. The idea is

that instead of letting the applications to manage the low-level sensing details, middle-ware infrastructures

are provided to facilitate sensing. Using middle-ware infrastructures, context-aware applications’ implemen-

tations can focus on how to use context but not on how to acquire context.

Context acquisition middle-wares are typically built into the hosting devices or platform on which the

context-aware applications operate. In the Odyssey project [76], context-aware agents are built on a middle-

ware infrastructure to acquire status about the communication network. The middle-ware infrastructure runs

on the same hosting device as the agent. In this project, Nobleet al. successfully demonstrated three different

context-aware agents that can adapt their behaviors according to the network bandwidth changes.

Context Toolkit [36] is a middle-ware infrastructure for supporting context acquisition. Unlike the middle-

ware infrastructure in Odyssey, Context Toolkit is aimed to provide a general solution for building scalable

and reusable context acquisition modules. The Context Toolkit design built on the widget concept in the

graphical user interface design. The toolkit defines various kind of widgets (i.e., context widgets) for ac-

quiring context. Widgets shield the low-level sensing implementations from the high-level applications. The

user of a widget only concerns the contextual information that the widget provides not the actual operations

associated with context sensing.

One problem with the middle-ware context acquisition approach is that it imposes additional computation

burden on the hosting devices. A middle-ware design trades computation resources for development conve-

nience. In order to maintain a generic programming interface between the high-level applications and the

18

low-level sensors, certain amount of computation resources (e.g., CPU power, memory, network bandwidths)

must be allocated for the middle-ware operations. While this might not create a problem for devices that

have rich computing resources, however, it will lead to resource contention problem in devices that have less

resources (e.g., cellphones and embedded devices).

3. Acquiring Context from a Context Server

If the hosting device of a context-aware application has limited computing resource, an alternative context

acquisition method is to use a context server. A context server is a computing entity that provides contextual

information to different context-aware applications in a distributed environment. Instead of building the

context acquisition procedures into the devices that host the context-aware applications, the idea of a context

server is to shift the context acquisition procedures into the implementation of a server entity that runs on a

resource-rich device. From the context server, applications that do not have built-in sensing capability can

acquire context and become context-aware.

The Me-Centric Domain Server developed by Perich [81] is an example of a context server. In this

system, the physical world is divided into a set of micro-worlds. Each micro-world represents a particular

domain in the physical world. A domain might be an office room, a meeting room, etc. Each micro-world

has context. The role of a Domain Server is to maintain the context of the individual micro-worlds and share

this information with the computing entities of a Me-Centric application.

There are similarities between the design of CoBrA and the Me-Centric Domain Server. In both archi-

tecture, a server entity is responsible to share contextual information with other agents in the space. Both the

context broker and the Domain Sever use knowledge representation languages to express contextual informa-

tion (i.e., CoBrA uses OWL, and Me-Centric Domain Server uses RDF).

However, there are differences between these two architectures. In CoBrA, the role of the context broker

is not only to share contextual information but also to maintain a consistent model of the context. Maintaining

context means to detect and resolve inconsistent information that may have been acquired from unreliable

sensors and agents. CoBrA also differs from the Me-Centric Domain Server in the language that it uses

to represent context. Using the OWL language to represent context as ontologies, CoBrA allows indepen-

dently developed agents to share knowledge and provides a means for context reasoning. In addition, CoBrA

addresses the privacy issue by providing users with a policy language for controlling the sharing of their

contextual information. Privacy was not addressed in the Me-Centric Domain Server.

Chapter III.

ARCHITECTURE DESIGN

A. Characteristics of a Pervasive Context-Aware System

The future pervasive computing environment will be very different from today’s computing environment.

These differences include a physical environment that is embedded with different types of context sensors, a

dynamic network in which devices and services can dynamically join and leave, and an open communication

infrastructure that enables independently developed agents to establish relationships and to share information

with each other. In order to develop an architecture to support pervasive context-aware systems, we must

consider the distinct characteristics of the future computing environment.

Constrained Resources of a Single Agent

In a real-world computing environment, software agents often have a limited amount of resources. In par-

ticular, this is true for the agents of pervasive computing. Agents of physical sensors, mobile devices and

embedded devices are typically resource poor. While the advancement in computing technology has helped

to improve the capability of these agents – e.g., giving them more memory, CPU power, and accurate sensors,

it only solves part of the problem.

There is no doubt that advanced technology can improve an agent’s capability to acquire and understand

context. However, even with the enhanced capability, it is unreasonable to presume any single agent will have

sufficient resources to acquire and understand all contextual information that is available in the environment.

For example, when an agent must perform multiple context acquisition tasks simultaneously, and a combi-

nation of these tasks requires an amount of resources that excesses the agents’ capability, the agent may be

19

20

forced to abandon the performance of certain tasks. Consequently, the agent is unable to develop a complete

understanding of the context.

One approach to solve this problem is to enable agents to share knowledge. When an agent can utilize the

knowledge of other agents through knowledge sharing, the agent can reduce the amount of internal resources

that it must use for context acquisition and processing. Furthermore, knowledge sharing can also help agents

to acquire additional information that are not directly accessible to them.

An Open and Dynamic Network

A pervasive computing system is usually built on an open and dynamic network. In this network, different

agents are built with different types of wired and wireless communication interfaces (Bluetooth, 802.11x,

Ethernet, GPRS/GSM, etc.). These agents are also highly dynamic. They dynamically join and leave the

network, they dynamically discover other agents to acquire information and services, and they dynamically

form teams to achieve goals in a cooperative manner. Knowledge sharing is key part of the agents’ behavior

in this dynamic environment.

While knowledge sharing is an effective approach to overcome the resource constraint problem of an sin-

gle agent, it also creates a new set of problems. First, enabling knowledge sharing may add extra complexity

to the implementation of an agent. For example, in order to prove the authenticity and determine the reliability

of the acquired information, an agent must dedicate sufficient resources for security authentication and trust

establishment. When inconsistent information is acquired from multiple sources, an agent must also dedicate

sufficient resources for detecting and resolving inconsistent information. Second, in an open environment,

not all agents are built to use a common langauge and vocabularies for describing context. Without sharing

a common knowledge representation language and ontologies, agents would be unable to share knowledge

effectively. Third, as information is acquired through knowledge sharing, some of which may be inconsistent

or inaccurate. For this reason, the agents must also dedicate resources to maintain the storage and consistency

of this shared knowledge.

Ubiquitous Sensing of Private Information

In a pervasive computing environment, context sensors are typically hidden from the users. Through these

sensors, service agents acquire the contextual information about the users and their surrounding environment.

They use this knowledge to provide relevant services and information. Sometimes the agents also share the

21

information with each other. Because the users are often focused on the tasks in hand not at the underlying

behavior of the surrounding agents, they may not notice exactly how different agents use and share their

private information. For this reason, privacy protection is an important issue that must be addressed in the

pervasive context-aware systems.

Privacy is about the control of information. The users of a pervasive computing system should be in

control of their private information – how their information can be used and who can have access to it.

Because it is not feasible to assume users’ privacy information can be completely shielded from the ubiquitous

sensors and agents, the systems should provide adequate mechanisms to allow users to take control of their

privacy. Policy is an effective mechanism for privacy protection [58]. Users can define policy rules to control

the use of their private information.

B. Context Broker

CoBrA is a broker-centric agent architecture for supporting context-aware systems in smart spaces. Central

to CoBrA is an intelligent agent calledcontext broker(see Figure 1). The context broker is a specialized

server entity that runs on a resource-rich stationary computer in the space. In a smart space, a context broker

has the following responsibilities:

• provide a centralized model of context that all devices, services, and agents in the space can share,

• acquire contextual information from sources that are unreachable by the resource-constrained devices,

• reason about contextual information that cannot be directly acquired from the sensors,

• detect and resolve inconsistent knowledge stored in the shared context model, and

• protect privacy by enforcing policies that users have defined to control the sharing and use of their

contextual information.

The functional design of the context broker consists of four modular components. Each component

provides distinctive functions for supporting persistent data storage, context reasoning, context acquisition,

and privacy protection.

1. Context knowledge base.This component manages the storage of the context broker’s knowledge. This

knowledge includes the ontologies for describing various types of contexts, the ontology instance data

22

Figure 1: An intelligent context broker acquires context information from devices, agents and sensors in its
environment and fuses it into a coherent model, which is then shared with the devices and their agents.

of the acquired contextual information, and the meta-data for describing the storage structure of the

represented knowledge.

2. Context-reasoning engine.A logical inference engine for reasoning over the acquired contextual infor-

mation. The function of this engine includes interpreting context based on the acquired sensing data,

aggregating the contextual information from multiple sources using ontologies and domain heuristics,

detecting and resolving inconsistent information.

3. Context-acquisition module.This component is a set of library procedures for acquiring contextual

information from sensors, agents, and the Web. It hides the low-level context sensing implementations

from the high-level functional components. This middle-ware system design is aimed to improve the

reusability of the context sensing procedures.

4. Privacy-management module.This component manages the users’ privacy policies and controls the

sharing of their private information. It is responsible for enforcing the appropriate privacy policies

when the context broker attempts to share certain user information. When sharing information, if it is

23

forbidden by some user’s policy, this components also helps to guide the logical reasoning to adjust

information granularity.

The above design description only provides a functional specification for implementing a context broker.

The developers of a context broker must also consider additional engineering issues when building a context

broker for a particular smart space.

C. Implementation Blueprints

In this section, I describe a basic framework for implementing a context broker for a smart meeting room.

This framework builds on the context broker design and consists of recommendations for a pragmatic context

broker implementation. It addresses the following engineering issues: (i) the development of ontologies

for building a context broker, (ii) the service discovery and communication between a context broker and

computing entities with heterogenous network interfaces, (iii) the deployment and administration of a context

broker, and (iv) the single-point-of-failure scenario in a distributed system.

Note that a number of other issues are not explicitly addressed in this framework, such as network security,

data integrity, and scalability. I consider these issues as part of the CoBrA’s future works.

How to Develop Ontologies

The use of ontologies in a context broker serves two important purposes. First, it provides an explicit rep-

resentation of the kind of context information that the context broker is capable of sharing and processing.

Second, it helps to disambiguate contextual information that may have different meanings in the distinctive

agent implementations.

Ontology development is an iterative process. First, the developers should study the domain in which

the context broker is to be deployed – understand what is the essential contextual knowledge that must be

represented and understand the appropriate relations and constraints that should be modeled in order to avoid

ambiguities. Second, knowing the kind of contextual information that must be represented, the developers

should research relevant ontologies that may have been developed in the past and evaluate if these ontologies

can be reused. Third, if reusing or extending from the existing ontologies is possible, the developers should

define test cases to verify whether or not these ontologies can effectively support the applications of the

context broker in the target domain. Otherwise, new ontologies should be developed. Lastly, if the ontologies

24

do not pass all of defined test cases, the developers should again study and re-evaluate the domain applications

of the context broker by repeating the first step.

Let’s consider a simple exercise example of ontology development. In this example, the goal is to develop

a context broker that can acquire user profiles from the Web and share this information with the service agents

in a smart meeting room.

First, study the domain applications of the context broker. We discuss with the domain experts of the

smart meeting room applications and find out the important concepts that must be represented. Assume that

the following is a list of the information that the domain experts have provided: (i) the contact information of

a person, (ii) the social network of a person, (iii) the hardware profiles of the devices that a person owns, and

(iv) the privacy policies of a person.

Second, research and evaluate whether or not any existing ontologies can be reused or extended. For

example, the SOUPA ontology [24] and the FOAF ontology [15] have numerous ontological vocabularies

that are suitable for describing people’s contact information and social network. The policy ontologies in

SOUPA and Rei [58] have defined vocabularies of policy. The FIPA device [42] and CC/PP [64] ontologies

have defined typical vocabularies for device hardware and software profiles and Quality of Services (QoS).

By either extending or importing from these ontologies, we reduce the engineering effort that is required for

ontology development.

Third, develop test cases and verify the feasibility of the ontologies. Assume that a key use of the ontolo-

gies in this context broker is to support knowledge sharing (i.e., sharing user profiles with other agents in the

system). To verify the feasibility of our ontologies, we define test cases that include example communication

messages that resemble the actual communication messages between the context broker and other agents.

The developed ontologies pass the test cases if they can be shown to effectively express the content of the

defined communication messages.

Lastly, re-evaluate the domain applications if the developed ontologies do not pass all test cases. Assume

that the ontologies directly imported from the SOUPA ontology are unable to describe the role changes of a

person. We repeat the first step of the ontology development process.

How to Discover and Communicate a Broker

In order to acquire contextual information from a context broker, devices, services, and agents must be able

to discover and communicate with the context broker. A fundamental issue is how to enable computing

25

Figure 2: Using the proxy design pattern to create surrogate agents to facilitate the discovery and the com-
munication with a FIPA-compliant context broker.

entities with different communication network interfaces to discover and communicate with a context broker.

For example, cellphones may have different communication and service discovery interfaces than laptops or

agents that run on them. In a smart meeting room, the web services that implement the W3C standards may

communicate using protocols that are different from the software agents that implement the FIPA standards.

An approach that addresses this issues is the use of theproxydesign pattern [46]. The idea is to define

surrogates for computing entities with distinctive network interfaces to discover and communicate with a

context broker. The following example illustrate the use of the proxy pattern in CoBrA:

Assume that a context broker is implemented as a FIPA agent (i.e., it uses the hosting FIPA platform

for publishing services and facilitating communications). The goal of this exercise is to develop a solution

that enables cellphones with the Bluetooth interface and web services with the SOAP interface to discover

and communicate with the context broker. Using the proxy pattern, we can develop two independent FIPA

agents to facilitate the discovery and the communications via Bluetooth and the SOAP protocols, respectively.

Figure 2 shows the design diagram of these two agents and the context broker.

How to Deploy and Administer a Broker

For deploying a context broker, a typical configuration is to install the agent on a resource-rich computer in the

space. Some tasks associated with the administration of a context broker are similar to those associated with

the administration of a typical web service. These tasks include defining service descriptions for supporting

26

service discovery, monitoring the internal behavior of the system via an administrator user interface console.

The following example describes the detail of deploying and administrating a context broker. It is based

on a CoBrA prototype that I have developed. The prototype context broker is implemented as a FIPA agent

using the JADE programming library. JADE provides a standard FIPA service discovery framework. To

register the context broker with a local FIPA Directory Facilitator, the system administrator must define a

service registration description, which consists of the ontologies, the content representation languages, and

the protocols that are supported by the context broker.

With the emergence of the Semantic Web Services standards, in the future, web service description lan-

guage such as OWL-S (http://www.daml.org/services/owl-s/) could also be used to describe

services. Using OWL-S can improve expressiveness and enhance service discovery.

A key reason for monitoring a context broker is to provide the system administrator with a traceable record

of the agent’s internal behavior. This includes the steps in the execution of logical inferences, the context

broker’s conversations with other agents, and the changes of the context broker’s ontologies and contextual

knowledge. Building tools to monitor the context broker, typically there are two approaches: a web-based

approach and a stand-alone user interface approach. I recommend the use of the Eclipse platform to develop

a stand-alone user interface. Although a web-based approach allows an administrator to perform tasks via

a light-weight client (i.e., a standard web browser), but it requires relatively large amount of development

overhead. The Eclipse platform is an open platform for tool integration. It allows customized Plug-in tools to

be built by reusing the standard Eclipse GUI widgets and UI layouts. I have developed a CoBrA monitoring

tool prototype in Eclipse and its details are described in the Chapter VII..

How to Overcome Single-Point-Of-Failure

The centralized design of the context broker could create a “bottle neck” situation in a distributed system.

This is also known as thesingle-point-of-failureproblem. Because context-aware agents heavily depend

on the knowledge of a context broker, in case the context broker fails, the functions of these context-aware

agents could be hindered. To overcome the single-point-of-failure problem in CoBrA, I propose a fault-

tolerant solution based on thepersistent teamapproach described in the Adaptive Agent Architecture [66].

In the rest of this section, I describe the design of this persistent team approach. A reference implementation

and the evaluation of the Adaptive Agent Architecture can be found in [66].

The core of the persistent team approach is the notion of a broker team (i.e., a group of broker agents).

27

Figure 3: A recovery scenario of a context broker team. (1) Agent A1 is connected to Broker1. (2) Both
Broker1 and Broker2 become unavailable, and Agent A1 disconnects from Broker1. (3) The underlying sys-
tem signals Broker3 about the failure of the other two members, and then “spawns” new team members. (4)
Broker3 establishes team intention and team maintenance goal with the new team members, and establishes
itself as the new service provider for Agent A1.

This team of brokers share a set of joint commitments. The persistent team approach is an extension of the

joint intention theory [30]. In a persistent broker team, the broker agents establish ateam intentionand a

team maintenance goal, which is informally defined by the following mission statements [66]:

• Whenever an agent registers with the broker team, the brokers have a team intention of connecting with

that agent, if it ever disconnects, as long as it remains registered with the team.

• The broker team has a team maintenance goal of having at leastN brokers in the team at all times

whereN is specified during the team formation.

The use of the persistent team approach in CoBrA assumes the following: (i) the members of a broker

team are capable of synchronizing their stored contextual knowledge to maintain shared models of the con-

28

text, (ii) the infrastructure on which the CoBrA is deployed is capable of “spawning” new instances of the

context broker when it is necessary to maintain a required number of team members, (iii) the same infrastruc-

ture is also capable of detecting the availability of the individual team members, and (iv) all messages send

between the broker team members are always delivered in a synchronized manner and will never lost during

the network transmission.

The following recovery scenario demonstrates the use of a persistent team: a team of three brokers are

deployed in a system (see Figure 3). The team is required to maintain at least two members. When context-

aware agent A1 is connected with Broker1, Broker1 has the commitment to notify the rest of the team about

A1. Sometime later, due to a system failure in Broker1 and Broker2, they become unavailable and unable

to continue to provide contextual information. As the size of the team falls below two, Broker3 signals

the underlying infrastructure to spawn additional broker agents. Once the new member agents are created,

Broker3 establishes a team intention and team maintenance goal with them. In addition, knowing that agent

A1 has previously depended on Broker1 to provide contextual information, Broker3 communicates with A1

and establishes itself as the new service provider. To fulfill its joint commitment, it notifies the rest of the

team of this new change.

D. Applications of CoBrA

CoBrA is designed to support pervasive context-aware systems in smart spaces. This section describes three

different smart meeting room applications that could be built on CoBrA.

1. Intelligent Personal Agent

An Intelligent Personal Agent (or personal agent for short) is a software agent that maintains personal infor-

mation for a user. It usually operates on a stationary computer that the user has set up (e.g., on a desktop

computer in the office or at home). A personal agent can access the user’s private information, such as the

daily schedules, address books, personal profiles, location information, etc. It also has the right to decide

when and with whom this information can be shared.

Key functions of the personal agent are recording and maintaining a user’s context (e.g., what the user is

doing, where the user is located, what event the user is attending) and to share this information with other

agents that attempt to provide context-aware services to the user. A typical use case of the personal agent is

29

the following:

As the user Alice enters a smart meeting room ITE-201A, the Context Broker of the associated space

immediately informs Alice’s personal agent. Knowing Alice is located in ITE-201A, the context broker

attempts to determine why Alice is there. It asks Alice’s personal agent. The personal agent reviews Alice’s

daily schedule. Without knowing any evidence to the contrary, it concludes that she is scheduled to give

a presentation in ITE-201A, and informs the context broker of Alice’s speaker role and the URL of her

presentation slides. On receiving this information, the context broker shares it with a projector service agent.

This agent is permitted by Alice’s privacy policy to acquire such information. A few minutes later, the

projector service agent downloads the slides and sets up the presentation.

2. Projector Tracking Service

A Projector Tracking Service is a service that monitors the whereabouts of a portable projector. In an office

environment, this service can help people to track the location of a public portable projector that has been

borrowed for meeting presentations. A public projector is a device that is owned by an organization (e.g., a

department) but shared by different people in the organization (e.g., faculty, graduate students).

Key functions of this service are tracking the location of a projector and sending reminders to the user

who has borrowed the projector but has not yet returned the device. A typical use case of this service is the

following:

As Alice starts to give her PowerPoint presentation, the context broker detects the presence of a projector

in the room. Immediately the context broker informs the Projector Tracking Service of the projector location.

Knowing the projector is in the Room ITE-201A, the service asks the context broker who should be

responsible for returning the device when the presentation ends. From the meeting schedule, the context

broker learns that Alice is invited by Bob, who is the organizer of the meeting. Knowing this information, the

context broker sends an SMS message to Bob, inquiring if he is willing to be in charge of the returning of the

projector. Bob replies “yes”, and the context broker relays this message to the tracking service. To track the

location of the projector, the tracking service subscribes to the context broker, requesting to be notified about

the device location and the state of the device (i.e., active, sleep, turned off) every 30 minutes.

As the meeting ends, Bob leaves the room and accidentally forgets to return the projector. A couple of

hours later, the Projector Tracking Service continuously receives updates about the projector being inactive in

the Room ITE-201A. Without having any evidence to the contrary, the service concludes Bob has forgotten

30

to return the device. Immediately, it sends a reminder to Bob asking him to return the projector.

3. Visitor Assistant Service

A Visitor Assistant Service is a service that helps to coordinate and plan typical activities for visiting speakers.

In a university, for example, the visiting speakers from other institutions may be unfamiliar with the local

environment and require assistants.

Key functions of this service include arranging local transportation, providing directions to various places

on the campus, and planning meeting schedules for the visitors. A typical use case scenario of this service is

the following:

When the meeting is over, the context broker informs the Visitor Assistant Service that the visiting speaker

Alice has finished her presentation. The assistant service asks the context broker for Alice’s schedule, so that

it can help to make plans for her. Knowing Alice’s privacy policy permits the schedule information to be

shared, the context broker sends this information to the assistant service. According to Alice’s schedule,

she has a flight to catch in four hours. Based on this knowledge, the assistant service believes that it should

reserve a taxi cab service for Alice getting to the airport. It asks the context broker to get a confirmation from

Alice. The context broker sends a request for confirmation message to the Alice via text messaging. Alice

replies “yes”. The context broker notifies the assistant service and tells it to go ahead with the reservation.

Since it will be few hours before Alice’s flight departs, the assistant service decides to ask whether Alice

would like to arrange a short meeting with some of the graduate students in the department or tour the

university campus. The context broker relays this request to Alice. Alice decides that she will tour around

the university campus. In particular, she wants to visit the university library. In order to send Alice the

directions to the library building, the assistant service needs to know her current location. It asks the context

broker. Knowing Alice’s policy permits the location information to be shared at a spatial granularity level

that is equal or greater than “building”, the context broker tells the assistant service the building that Alice is

currently in. A few seconds later, the walking directions to the library is sent to Alice.

Chapter IV.

ONTOLOGIES

The use of ontologies is an important part of CoBrA. The architecture exploits ontologies expressed in the

Web Ontology Langauge OWL for context modeling, context reasoning, and knowledge sharing. Two sets

of ontologies are used in CoBrA: the SOUPA ontology and the CoBrA ontology. This chapter describes the

details of these ontologies.

A. Background

The ontologies of SOUPA and CoBrA are closely related, but they are designed with distinctive objectives.

The CoBrA ontology (COBRA-ONT) is a smart meeting ontology for prototyping CoBrA applications. In

particular, the ontology defines the vocabularies for describing the meeting events of the eBiquity Research

Group at UMBC. It was first released in March 2003. After the first release, there were five other incremental

releases of the revised ontology.

The SOUPA ontology, on the other hand, is a standard ontology for supporting pervasive and ubiquitous

computing applications. This SOUPA ontology project was initiated by myself and an international group of

researchers who are part of the Semantic Web in UbiComp Special Interest Group (http://pervasive.

semanticweb.org). Our motivation was to create a standard ontology that brings together many useful

ontologies from distinctive domains to support pervasive computing applications. We believe by defining a

shared ontology, SOUPA can help developers who are inexperienced in knowledge representation to quickly

begin building ontology-driven applications without needing to define ontologies from scratch and to be more

focused on the functionalities of the actual system implementations.

31

32

At the time of writing this dissertation, SOUPA 2004-06 is the latest release version of the SOUPA

ontology, and COBRA-ONT 2004-05 is the latest release version of the CoBrA ontology. The latest version

of the CoBrA ontology encourages ontology reuse by importing many top-level concepts from the SOUPA

ontology.

The Web Ontology Language OWL

The OWL language is a Semantic Web language for use by computer applications that need to process the

content of information instead of just presenting information to humans [75]. This language is developed in

part of the Semantic Web initiatives sponsored by the World Wide Web Consortium (W3C).

The current human-centered web is largely encoded in HTML, which focuses largely on how text and

images would be rendered for human viewing. Over the past few years we have seen a rapid increase in the

use of XML as an alternative encoding, one that is intended primarily for machine processing. The machines

which process XML documents can be the end consumers of the information, or they can be used to transform

the information into a form appropriate for humans to understand (e.g., as HTML, graphics, and synthesized

speech). As a representation language, XML essentially provides a mechanism to declare and use simple data

structures, and thus it is not a desirable language for expressing complex knowledge. Enhancements to the

basic XML such as XML Schemas address some of the shortcomings, but still do not result in an adequate

language for representing and reasoning about the kind of knowledge essential to realizing the Semantic Web

vision.

OWL is a knowledge representation language for defining and instantiating ontologies. An ontology

is a formal explicit description of concepts in a domain of discourse (or classes), properties of each class

describing various features and attributes of the class, and restrictions on properties [77].

The normative OWL exchange syntax is RDF/XML. Ontologies expressed in OWL are usually placed on

web servers as web documents, which can be referenced by other ontologies and downloaded by applications

that use ontologies. I refer to these web documents asontology documents.

Related Ontologies

Part of the SOUPA vocabularies are adopted from a number of different consensus ontologies. The strategy

for developing SOUPA is to borrow terms from these ontologies but not to import them directly. Although

the semantics for importing ontologies is well defined [5], by choosing not to use this approach we can

33

effectively limit the overhead in requiring reasoning engines to import ontologies that may be irrelevant to

pervasive computing applications. However, in order to allow better interoperability between the SOUPA

applications and other ontology applications, many borrowed terms in SOUPA are mapped to the foreign

ontology terms using the standard OWL ontology mapping constructs (e.g.,owl:equivalentClass and

owl:equivalentProperty).

The ontologies that are referenced by SOUPA include the Friend-Of-A-Friend ontology (FOAF) [15, 88],

DAML-Time and the entry sub-ontology of time [52, 79], the spatial ontologies in OpenCyc [71], Regional

Connection Calculus (RCC) [90], COBRA-ONT (i.e., COBRA-ONT 2003-11) [21], MoGATU BDI ontology

[82], and the Rei policy ontology [57].

The FOAF ontology allows the expression of personal information and relationships, and is a useful

building block for creating information systems that support online communities [38]. Pervasive computing

applications can use the FOAF ontologies to express and reason about a person’s contact profile and social

connections to other people in their close vicinity.

The vocabularies of the DAML-Time ontology and the entry sub-ontology of time are designed for ex-

pressing temporal concepts and properties common to any formalization of time. Pervasive computing appli-

cations can use these ontologies to share a common representation of time and to reason about the temporal

orders of different events.

The OpenCyc spatial ontologies define a comprehensive set of vocabularies for symbolic representation

of space. The ontology of RCC consists of vocabularies for expressing spatial relations for qualitative spa-

tial reasoning. In pervasive computing applications, these ontologies can be exploited for describing and

reasoning about location and location context [21].

Both COBRA-ONT and MoGATU BDI ontologies are aimed for supporting knowledge representation

and ontology reasoning in pervasive computing environment. The design of COBRA-ONT focuses on mod-

eling context in smart meeting rooms [21], and the design of MoGATU BDI ontology focuses on modeling

the belief, desire, and intention of human users and software agents [82].

The Rei ontology defines a set of deontic concepts (i.e., rights, prohibitions, obligations, and dispensa-

tions) for specifying and reasoning about security access control rules. In a pervasive computing environment,

users can use this policy ontology to specify high-level rules for granting and revoking the access rights to

and from different services [60].

34

Figure 4: SOUPA consists of two sets of ontology documents: SOUPA Core and SOUPA Extension. The
OWL owl:imports construct is used to enable a modular design of the ontology. Different domain vo-
cabularies are grouped under different XML namespaces.

B. SOUPA Ontology

SOUPA consists of two distinctive but related set of ontologies: SOUPA Core and SOUPA Extension. The

set of the SOUPA Core ontologies attempts to define generic vocabularies that are universal for different

pervasive computing applications. The set of SOUPA Extension ontologies, extended from the core ontolo-

gies, define additional vocabularies for supporting specific types of applications and provide examples for the

future ontology extensions.

Note that the structure of the ontology merely suggests certain vocabularies are more general than the

others in supporting pervasive computing applications, and there is no inherent computational complexity

difference in adopting either set of the ontologies.

1. SOUPA Core

The SOUPA Core ontologies consist of vocabularies for expressing concepts that are associated with per-

son, agent, belief-desire-intention (BDI), action, policy, time, space, and event. The ontologies are grouped

into nine distinctive ontology documents. Figure 4 shows a diagram of the ontology documents and their

associated relations.

35

Person

This ontology defines typical vocabularies for describing the contact information and the profile of a person.

The OWL classper:Person is defined to represent a set of all people in the SOUPA domain, and is

equivalent to thefoaf:Person class in the FOAF ontology (i.e., theowl:equivalentClass property

holds between theper:Person andfoaf:Person class). An individual of the class can be described by

a set of properties, which include basic profile information (name, gender, age, birth date, etc.), the contact

information (email, mailing address, homepage, phone numbers, instant messaging chat ID, etc.), and social

and professional profile (people that a person is friend of, organizations that a person belongs to). In addition,

all property vocabularies that are applicable to describe a person in the FOAF ontology can also be used to

describe an individual of theper:Person class. This is because all individuals of theper:Person class

are also individuals of thefoaf:Person class. The following shows a partial ontology description of the

person Harry Chen:

<per:Person>
<per:firstName rdf:datatype="&xsd;string>Harry</per:firstName>
<per:lastName rdf:datatype="&xsd;string>Chen</per:lastName>
<per:gender rdf:resource="&per;Male"/>
<per:birthDate rdf:datatype="&xsd;date">1976-12-26</per:birthDate>

<per:homepage rdf:resource="http://umbc.edu/people/hchen4"/>
<foaf:weblog rdf:resource="http://umbc.edu/people/hchen4"/>

<per:hasSchoolContact rdf:resource="#SchoolContact"/>
<per:hasHomeContact rdf:resource="#HomeContact"/>

<foaf:workplaceHomepage rdf:resource="http://ebiquity.umbc.edu"/>
<foaf:workplaceHomepage rdf:resource="http://www.umbc.edu"/>
<foaf:workplaceHomepage rdf:resource="http://www.cs.umbc.edu"/>

</per:Person>

<per:ContactProfile rdf:ID="SchoolContact">
<per:address rdf:datatype="&xsd;string">

Dept. of CSEE, UMBC, 1000 Hilltop Circle, Baltimore, MD 21250, USA
</per:address>
<per:phone rdf:datatype="&xsd;string>+1-410-455-8648</per:phone>
<per:email rdf:resource="mailto:harry.chen@umbc.edu"/>
<per:im rdf:resource="aim:goim?screenname=hc1379"/>

</per:ContactProfile>

<per:Email rdf:about="mailto:harry.chen@umbc.edu"/>
<per:Homepage rdf:about="http://www.aim.com"/>
<per:ChatID rdf:about="aim:goim?screenname=hc1379">

<per:providedBy rdf:resource="http://www.aim.com"/>
</per:ChatID>

<per:ContactProfile rdf:ID="HomeContact">
...

</per:ContactProfile>

<foaf:knows>
<foaf:Person>

<foaf:name>Tim Finin</foaf:name>
<foaf:mbox_sha1sum>49953...148d37</foaf:mbox_sha1sum>

</foaf:Person>
</foaf:knows>
</rdf:RDF>

36

Policy & Action

Security and privacy are two growing concerns in developing and deploying pervasive computing systems

[16, 62, 47]. Policy is an emerging technique for controlling and adjusting the low-level system behaviors by

specifying high-level rules [35].

The SOUPA policy ontology defines vocabularies for representing security and privacy policies and a

description logic based mechanism for reasoning about the defined policies. The defined vocabularies in this

ontology are influenced by the Rei policy language [57].

A policy is a set of rules that is specified by a user or a computing entity to restrict or guide the execution

of actions. For example, in the context of system security, a system administrator may use policies to define

who has the right to execute what services; in the context privacy protection, a user may use policies to restrict

the type of personal information that can be shared by the public services.

The ontology representation of an action is defined in theaction ontology document. The class

act:Action represents a set of all actions. Individuals of this class can have a set of property values,

which include (i)act:actor – the entity that performs the action, (ii)act:recipient – the entity that

receives the effect after the action is performed, (iii)act:target – the object that the action applies to,

(iv) act:location – the location at where the action is performed, (v)act:time – the time at which

the action is performed, (vi)act:instrument – the thing that the actor uses to perform the action.

The following shows a partial ontology that defines a special class of knowledge sharing action:

<owl:Class rdf:ID="ShareHarryLocInfoWithEBMembers">
<owl:intersectionOf rdf:parseType="Collection">

<owl:Class rdf:about="&act;Action"/>

<owl:Restriction>
<owl:onProperty rdf:resource="&act;actor">
<owl:hasValue>

<agt:Agent rdf:about="ctb@cobra1.cs.umbc.edu"/>
</owl:hasValue>

</owl:Restriction>

<owl:Restriction>
<owl:onProperty rdf:resource="&act;target"/>
</owl:allvaluesFrom rdf:resource="#LocationContextOfHarry"/>

</owl:Restriction>

<owl:Restriction>
<owl:onProperty rdf:resource="&act;recipient"/>
<owl:allValuesFrom rdf:resource="&eb;EbiquityMembers"/>

</owl:Restriction>
</owl:intersectionOf>

</owl:Class>

<owl:Class rdf:ID="LocationContextOfHarry">
<owl:intersectionOf rdf:parseType="Collection">

<owl:Class rdf:about="&loc;LocationContext"/>
<owl:Restriction>

<owl:onProperty rdf:resource="&loc:locationContextOf"/>
<owl:hasValue>

<per:Person rdf:about="http://umbc.edu/people/hchen4"/>
</owl:hasValue>

</Restriction>

37

</owl:intersectionOf>
</owl:Class>

The above example describes a set of actions of which the actor is agentctb@cobra1.cs.umbc-

.edu , the recipient is any member of the eBiquity group, the target, or the information to be shared, is

Harry’s location information.

In SOUPA, a policy consists of rules that eitherpermitor forbid the execution of certain described actions.

Defined in thepolicy ontology document, thepol:Policy class represents a set of all policies. For a

given policy individual, it may be associated with one or morepol:permits orpol:forbids properties.

The range of these two properties are thepol:PermittedAction class and thepol:Forbidden-

Action class, respectively.

The following example shows a policy that gives agentctb@cobra1.cs.umbc.edu the permission

to share Harry’s location information with all eBiquity members:

<pol:Policy rdf:about="&cobra;harrychen-policy">
<pol:policyOf>

<per:Person rdf:about="http://umbc.edu/people/hchen4">
<per:name rdf:datatype="&xsd;string">Harry Chen</per:name>

</per:Person>
</pol:policyOf>

<pol:defaultPolicyMode rdf:resource="&pol;RequiresExplicitPermission"/>

<pol:permits rdf:resource="#ShareHarryLocInfoWithEBMembers"/>
</pol:Policy>

The policy ontology also defines vocabularies for describing meta information about individual poli-

cies. This information includes the author of a policy (pol:creator), the entity that enforces a policy

(pol:enforcer), the creation time of a policy (pol:createdOn), and the default reasoning mode of a

policy (pol:defaultPolicyMode).

The design of the SOUPA policy exploitsclassificationas a means to reason about policies. A typical

process flow of the system implementation is the following: (i) a user or a system administrator defines a

policy, (ii) the policy is transmitted to the appropriate policy enforcer (e.g., a security or a privacy protection

agent), (iii) before the policy enforcer can permit other agents to perform an action, it creates an explicit

representation of the action using the SOUPA action ontology, (iv) this represented action is then loaded into

a description logic reasoner (e.g., Racer [48] or FaCT [53]) along with the associated ontology, and (v) the

policy enforcer will permit the execution of the action if the action is classified as type ofpol:Permitted-

Action , and it will forbid the execution of the action if the action is classified as type ofpol:Forbidden-

Action .

38

In case if an input action is classified as bothpol:PermittedAction and pol:Forbidden-

Action , then the policy enforcer will report there is an inconsistency in the policy, and may forbid the

execution of the action by default. In case if the action cannot be classified as either class, the policy en-

forcer will decide whether the action should be permitted or forbidden based on the default policy mode

(see the above example). If the mode ispol:RequiresExplicitPermission , then the action will be

forbidden. If the mode ispol:RequiresNoExplicitPermission , then the action will be permitted.

Agent & BDI

When building intelligent pervasive computing systems, sometimes it is useful to model computing entities

asagents[109]. In SOUPA, agents are defined with a strong notion of agency [109], which is characterized

by a set ofmentalisticnotions such as knowledge, belief, intention, and obligation. In this ontology, both

computational entities and human users can be modeled as agents.

When the goals, plans, desires, and beliefs of different agents are explicitly represented in the ontologies,

this information can help independently developed agents to share a common understanding of their “mental”

states, helping them to cooperate and collaborate. The explicitly represented human user’s mental states can

help computing agents to reason about the specific needs of the users in a pervasive environment.

Two ontology documents are related to this ontology:agent andbdi . Theagt:Agent class repre-

sents a set of all agents in the SOUPA domain. It has three properties that characterize an agent’s “mental”

state:agt:believes , agt:desires , andagt:intends . The respective range values of these proper-

ties are thebdi:Fact , bdi:Desire , andbdi:Intention classes. The goals of an agent are considered

to be a special type of desire, which is expressed by defining theagt:hasGoal property as a sub-property

of theagt:desires property.

Thebdi:Fact class is a subclass of therdf:Statement class, which represents a set of reified RDF

statements [14]. A reified RDF statement consists of therdf:subject , rdf:object , andrdf:pre-

dicate properties.

Thebdi:Desire class defines a set of world states that agents desire to bring about. Every instances

of this class can be characterized by the propertybdi:endState . The range restriction of this property

is unspecified in thebdi ontology document. Application developers are responsible for defining the rep-

resentation of different world states. Some suggested representations are (i) symbolic names, e.g., a set of

pre-defined RDF resource URI and (ii) meta-representation, e.g., each world state description is a set of

39

reified RDF statements.

The bdi:Intention class represents a set of plans that agents intend to execute. Plans are de-

fined in terms of actions, pre-conditions, and effects. Thebdi:Plan class is defined as a subclass of

theact:Action class with additional properties, namelybdi:preCondition andbdi:effect .The

representation of pre-conditions and effects are unspecified in this ontology, and it is left to be defined by the

application ontologies.

Sometimes it may be useful to describe whether or not different desires of an agent are in conflict of each

other, and whether or not certain desires are achievable. The cause of desire conflicts may be due to inconsis-

tent beliefs in the knowledge base, conflicting user preferences, or conflicting systems policies. The cause of

unachievable desires may be due to the change of situational conditions. In thebdi ontology document, dif-

ferent subclasses of thebdi:Desire class,bdi:ConflictingDesire , bdi:NonConflicting-

Desire , bdi:AchievableDesire , andbdi:UnachievableDesire , are defined for classifying

different types of agent desires.

Time

SOUPA defines a set of ontologies for expressing time and temporal relations. They can be used to describe

the temporal properties of different events that occur in the physical world.

Part of the SOUPA ontology adopts the vocabularies of the DAML-time and the entry sub-ontology of

time. The basic representation of time consists of thetme:TimeInstant and tme:TimeInterval

classes. All individual members of these two classes are also members of thetme:TemporalEntity

class, which is an OWL class that is defined by taking the union of thetme:TimeInstant andtme:Time-

Interval classes. The set of all temporal things that are divided into two disjoint classes:tme:Instant-

Thing , things with temporal descriptions that are type of time instant, andtme:IntervalThing , things

with temporal descriptions that are type of time interval. The union of these two classes forms thetme:-

TemporalThing class.

In order to associate temporal things with date/time values (i.e., their temporal descriptions), thetme:at

property is defined to associate an instance of thetme:InstantThing with an XML xsd:dateTime

datatype value (e.g., 2004-12-25T12:32:12), and thetme:from andtme:to properties are defined to asso-

ciate an instance of thetme:IntervalThing with two differenttme:TimeInstant individuals. The

following example shows the representation of a time interval with the associated temporal description:

<tme:TimeInterval>

40

<tme:from>
<tme:TimeInstant>

<tme:at rdf:datatype="xsd;dateTime">2004-02-01T12:01:01</tme:at>
</tme:TimeInstant>

</tme:from>
<tme:to>

<tme:TimeInstant>
<tme:at rdf:datatype="xsd;dateTime">2004-02-11T13:41:21</tme:at>

</tme:TimeInstant>
</tme:to>

</tme:TimeInterval>

For describing the order relations between two different time instants, the ontology defines the follow-

ing properties:tme:before , tme:after , tme:beforeOrAt , tme:afterOrAt , andtme:same-

TimeAs . Both tme:before andtme:after properties are defined of typeowl:TransitivePro-

perty . The tme:sameTimeAs property expresses that two different time instants are associated with

equivalent date/time values and is defined of typeowl:SymmetricProperty .

For describing the order relations between two different temporal things (i.e., time instants and time inter-

vals), the ontology defines the following properties:tme:startsSoonerThan , tme:startsLater-

Than , tme:startsSameTimeAs , tme:endsSoonerThan , tme:endsLaterThan , tme:ends-

SameTimeAs, tme:startsAfterEndOf , andtme:endsBeforeStartOf . The first three proper-

ties respectively express that for any two given temporal things A and B, the starting time of A is before

the starting time of B, the starting time of A is after the starting time of B, and the starting time of A is the

same as the starting time of B. The next three properties respectively express that for any two given temporal

things A and B, the ending time of A is before the ending time of B, the ending time of A is after the ending

time of B, and the ending time of A is the same as the ending time of B. Thetme:startsAfterEndOf

property expresses that the beginning of one temporal thing is after the ending of another temporal thing, and

thetme:endsBeforeStartOf property expresses the inverse of this property.

Space

This ontology is designed to support reasoning about the spatial relations between various types of geograph-

ical regions, mapping from the geo-spatial coordinates to the symbolic representation of space andvice versa,

and the representation of geographical measurements of space. Part of this ontology vocabularies are adopted

from the spatial ontology in OpenCyc and the OpenGIS vocabularies [32].

Two ontology documents are related to this ontology:space andgeo-measurement . The first on-

tology document defines a symbolic representation of space and spatial relations, and the second document

defines typical geo-spatial vocabularies (e.g., longitude, latitude, altitude, distance, and surface area).

41

In the symbolic representation model, thespc:SpatialThing class represents a set of all things that

have spatial extensions in the SOUPA domain. All spatial things that are typically found in maps or construc-

tion blueprints are calledspc:GeographicalSpace . This class is defined as the union of thespc:-

GeographicalRegion , spc:FixedStructure , andspc:SpaceInAFixedStructure classes.

An individual member of thespc:GeographicalRegion class typically represents a geographical

region that is controlled by some political body (e.g., the country US is controlled by the US government).

This relation is expressed by thespc:controls property, the domain of which isspc:Geopoliti-

calEntity and the range of which isspc:GeographicalRegion . Knowing which political entity

controls a particular geographical region, a pervasive computing system can choose to apply the appropriate

policies defined by the political entity to guide its behavior. For example, a system may apply different sets

of privacy protection schemes based on the policies defined by the local political entities.

To support spatial containment reasoning, individual members of thespc:GeographicalSpace

class can relate to each other through thespc:spatiallySubsumes andspc:spatiallySubsumed-

By properties. For example, a country region may spatially subsume a state region, a state region may spa-

tially subsume a building, and a building may spatially subsume a room. Knowing the room in which a device

is located, we can infer the building, the state and the country that spatially subsume the room.

In the geo-spatial representation model, the individual members of thespc:SpatialThing class are

described by location coordinates (i.e., longitude, latitude, and altitude). This relation is expressed by the

spc:hasCoordinates property, the range of which is thegeo:LocationCoordinates class. In

this model, multiple location coordinates can be mapped to a single geographical region (e.g., a university

campus typically covers multiple location coordinates.). This relation is useful for defining spatial mapping

between different geographical locations and GPS coordinates. This information can enable a GPS-enabled

device to query the symbolic representation of its present location for a given set of longitude, latitude, and

altitude.

Event

Events are event activities that have both spatial and temporal extensions. An event ontology can be used

to describe the occurrence of different activities, schedules, and sensing events. In theevent ontology

document, theeve:Event class represents a set of all events in the domain. However, the definition of this

class is silent about its temporal and spatial properties.

42

The eve:SpatialTemporalThing class represents a set of things that have both spatial and tem-

poral extensions, and it is defined as the intersection of thetme:TemporalThing andspc:Spatial-

Thing classes. To specifically describe events that have both temporal and spatial extensions,eve:Spa-

tialTemporalEvent class is defined as the intersection of theeve:SpatialTemporalThing and

eve:Event classes.

The following example shows how the ontology can be used to describe an event in which a Bluetooth

device has been detected on 2004-02-01 at 12:01:01 UTC, and the event occurs at a location that is described

by longitude -76.7113 and latitude 39.2524:

<owl:Class rdf:ID="DetectedBluetoothDev">
<rdfs:subClassOf rdf:resource="&eve;TemporalSpatialEvent"/>

</owl:Class>

<owl:ObjectProperty rdf:ID="foundDevice">
<rdfs:domain rdf:resource="#DetectedBluetoothDev"/>

</owl:ObjectProperty>

<DetectedBluetoothDev>
<spc:hasCoordinates>

<geo:LocationCoordinates>
<geo:longitude rdf:datatype="&xsd;string">-76.7113</geo:longitude>
<geom:latitude rdf:datatype="&xsd;string">39.2524</geom:latitude>

</geo:LocationCoordinates>
</spc:hasCoordinates>

<foundDevice rdf:resource="url-x-some-device"/>
<tme:at>

<tme:TimeInstant>
<tme:at rdf:datatype="xsd;dateTime">2004-02-01T12:01:01</tme:at>

</tme:TimeInstant>
</tme:at>

<DetectedBluetoothDev>

2. SOUPA Extension

The SOUPA Extension ontologies are created for two purposes: (i) define an extended set of vocabularies for

supporting specialized domains of pervasive computing, and (ii) demonstrate how to define new ontologies

that extend the SOUPA Core ontologies. At present, the SOUPA Extension consists of experimental ontolo-

gies for supporting pervasive context-aware applications in smart spaces and peer-to-peer data management

in a pervasive computing environment.

• Meeting & Schedule. For describing typical information associated with meetings, event schedules,

and event participants. They can help smart meeting systems to represent and reason about the context

of a meeting, e.g., do all meeting attendees currently located in the meeting room, and what is the end

time of this meeting?

• Document & Digital Document. For describing meta-information about documents and digital docu-

ments, e.g., the creation date and the author of a document, the source URL of a digital document, file

43

size, and file type.

• Image Capture. When a camera phone takes a picture, this event is type of image capturing event.

This ontology defines vocabularies for describing image capturing events, e.g., where and when was

the picture taken, and which device has taken the picture?

• Region Connection Calculus.A spatial ontology that supplements the core space ontology. Based on

the Region Connection Calculus [90], this ontology defines vocabularies for expressing spatial relations

for qualitative spatial reasoning.

• Location. For describing sensed location context of a person or an object. The location context is

information that describes the whereabouts of a person or an object, which includes both temporal and

spatial properties.

C. CoBrA Ontology

The CoBrA ontology extends the SOUPA ontology and defines the basic ontology vocabularies for proto-

typing CoBrA applications. The COBRA-ONT aimed to support smart meeting room applications for the

eBiquity group meetings at UMBC. The ontology covers typical concepts associated with UMBC geographi-

cal information, eBiquity group meetings, and actions performed by the smart meeting applications. The full

ontology documents are accessible athttp://cobra.umbc.edu/ont/2004/05 .

1. eBiquity Geo-Spatial Ontology

This ontology defines vocabularies for modeling certain physical places located on the UMBC campus and

their spatial relations and constraints. In particular, it defines ontology classes for symbolic representations

of rooms, buildings, campus, states, and countries. It also defines instants of these geo-spatial classes and the

associated relations.

Sometimes it is useful to map a symbolic representation of a physical place to a geometric represen-

tation. For example, the UMBC Main Campus has a symbolic representation that is a class individual of

theUniversityCampus class. To add geometric representation to the same class individual, we use the

spc:hasCoordinates property.

<UniversityCampus rdf:ID="UMBCMainCampus">
<spc:spatiallySubsumes rdf:resource="#ITE"/>

44

<spc:hasCoordinates>
<geom:LocationCoordinates rdf:about="campusCoordinates">

<geom:latitude rdf:datatype="&xsd;string">39.2524</geom:latitude>
<geom:longitude rdf:datatype="&xsd;string">-76.7113</geom:longitude>

</geom:LocationCoordinates>
</spc:hasCoordinates>

</UniversityCampus>

2. eBiquity Meeting Ontology

The eBiquity Research Group at UMBC usually hosts group meetings every week. During the weekly meet-

ings, the group members or invited speakers often give presentations. This ontology extends the SOUPA

meeting ontology and schedule ontology to model the eBiquity weekly meetings.

Key concepts covered by the ontology include the modeling of the eBiquity group membership, the

friends of the eBiquity group members, and the meeting context. The meeting context consists of descriptions

about the speaker of the presentation, the meeting organizer, the meeting attendees, presentation video file,

event photos, and voice recording of the discussions.

<owl:Class rdf:ID="EbiquityMeeting">
<rdfs:subClassOf>

<owl:Class rdf:about="&mtg;Meeting"/>
</rdfs:subClassOf>

<rdfs:subClassOf>
<owl:Restriction>

<owl:onProperty rdf:resource="#speaker"/>
<owl:cardinality rdf:datatype="&xsd;nonNegativeInteger">1</owl:cardinality>

</owl:Restriction>
</rdfs:subClassOf>

<rdfs:subClassOf>
<owl:Restriction>

<owl:onProperty rdf:resource="&spc;location"/>
<owl:hasValue rdf:resource="&ebgeo;ITE325B"/>

</owl:Restriction>
</rdfs:subClassOf>

<rdfs:subClassOf>
<owl:Restriction>

<owl:onProperty rdf:resource="&mtg;organizedBy"/>
<owl:hasValue rdf:resource="#timfinin"/>

</owl:Restriction>
</rdfs:subClassOf>

</owl:Class>

<per:Person rdf:ID="timfinin">
<per:name rdf:datatype="&xsd;string">Tim Finin</per:name>
<per:workplaceHomepage rdf:resource="http://ebiquity.umbc.edu"/>
<per:workplaceHomepage rdf:resource="http://www.cs.umbc.edu"/>

</per:Person>

3. eBiquity Action Ontology

This ontology is aimed to support privacy protection in a context broker. It extends the SOUPA action on-

tology. In CoBrA, policies are used to protect privacy by controlling the sharing of information. Sharing

information among the agents involves communication. This ontology defines the communication vocabu-

laries between a context broker and other agents.

45

The OWL classebact:Communication represents a set of all actions that involve communications

between two agents. Property constraints are defined on the set of actions properties that inherited from the

act:Action class.

<owl:Class rdf:ID="Communicate">
<owl:intersectionOf rdf:parseType="Collection">

<owl:Class rdf:about="&act;Action"/>

<owl:Restriction>
<owl:onProperty rdf:resource="&act;actor"/>
<owl:allValuesFrom>

<owl:Class>
<owl:unionOf rdf:parseType="Collection">

<owl:Class rdf:about="&per;Person"/>
<owl:Class rdf:about="&agt;Agent"/>

</owl:unionOf>
</owl:Class>

</owl:allValuesFrom>
</owl:Restriction>

<owl:Restriction>
<owl:onProperty rdf:resource="&act;actor"/>
<owl:cardinality rdf:datatype="&xsd;nonNegativeInteger">1</owl:cardinality>

</owl:Restriction>

<owl:Restriction>
<owl:onProperty rdf:resource="&act;recipient"/>
<owl:allValuesFrom>

<owl:Class>
<owl:unionOf rdf:parseType="Collection">

<owl:Class rdf:about="&per;Person"/>
<owl:Class rdf:about="&agt;Agent"/>

</owl:unionOf>
</owl:Class>

</owl:allValuesFrom>
</owl:Restriction>

<owl:Restriction>
<owl:onProperty rdf:resource="&act;recipient"/>
<owl:cardinality rdf:datatype="&xsd;nonNegativeInteger">1</owl:cardinality>

</owl:Restriction>

<owl:Restriction>
<owl:onProperty rdf:resource="&act;target"/>
<owl:someValuesFrom rdf:resource="#Information"/>

</owl:Restriction>
</owl:intersectionOf>

</owl:Class>

To describe a specific type of communication action (e.g. the communications between a specific con-

text broker and other agents), additional subclasses are defined (e.g.,ebact:BrokerCommunication-

Action . The subclasses define additional restricts on the inherited properties. In the following example, the

class is defined a communication action that involves an eBiquity context broker being the actor of the action:

<owl:Class rdf:ID="BrokerCommunicateAction">
<owl:intersectionOf rdf:parseType="Collection">

<owl:Class rdf:about="#Communicate"/>

<owl:Restriction>
<owl:onProperty rdf:resource="&act;actor"/>
<owl:allValuesFrom rdf:resource="&ebm;ContextBroker"/>

</owl:Restriction>

<owl:Restriction>
<owl:onProperty rdf:resource="&act;actor"/>
<owl:cardinality rdf:datatype="&xsd;nonNegativeInteger">1</owl:cardinality>

</owl:Restriction>
</owl:intersectionOf>

</owl:Class>

Chapter V.

CONTEXT REASONING

CoBrA supports two kinds of context reasoning: (i) reasoning for building a shared model of context, and

(ii) reasoning for maintaining a consistent model of context. The first kind of reasoning involves the use

of inference to interpret sensing information, and the other kind of reasoning involves the use of inference

to detect and resolve inconsistent information. This chapter describes the context reasoning components of

CoBrA.

A. The Need for a Rule-based Framework

Context reasoning is essential to every context-aware systems. The function of a context-aware system de-

pends on the support of context reasoning. In the previous systems [94, 36, 4, 29], context reasoning is typ-

ically implemented as procedures using programming languages such Java and C++. These object-oriented

languages encourages code reuse at the API level. However, they lack expressive power for knowledge repre-

sentation. When context reasoning is implemented using these languages, the non-declarative representation

of the reasoning logic often makes code modification and human inspection difficult.

To address these issues, I chose to design CoBrA’s context reasoning with a rule-based logical inference

approach. The advantages of this approach are as follows.

• An explicit representation of the context reasoning rules can help to separate the high-level reason-

ing logic from the low-level functional implementation. By separating the logic from the functional

implementation, developers can modify or replace context reasoning components without requiring

significant amount of re-programming efforts.

46

47

Figure 5: A UML diagram that depicts the state transitions of CoBrA’s context reasoning framework.

• A rule-based approach allows many well-defined logic models of general concepts such as time and

space to be directly mapped into the context reasoning implementation. The logical inference associ-

ated with these general concepts are often useful in context reasoning [24].

• When context interpretation rules are explicitly represented, meta-reasoning techniques can be devel-

oped to detect and resolve inconsistent context interpretations.

B. System Design and Implementation

CoBrA’s context reasoning framework comprises a set of state transitions (see Figure 5). When a context

broker acquires contextual information from the external sources, it stores the information in a persistent

knowledge base. This assertion of new knowledge triggers the context broker’s reasoning behavior. Depend-

ing on the type of the asserted knowledge, different rule-based logical inferences are executed to interpret

the context. Before any new knowledge can be committed in the knowledge base, inconsistency checks are

performed. If conflicting information is detected, the appropriate reasoning behaviors are triggered to resolve

48

this inconsistency.

Based on this context reasoning framework, I developed a context broker prototype to demonstrate its

feasibility in supporting context reasoning. In this prototype, the context broker is implemented as a FIPA-

compliant agent using the JADE programming API.

The functional behavior of a context broker is implemented as a set of JADE agent behavior classes.

These behavior classes share a common set of the agent’s resources. These include a shared knowledge base,

a collection of context reasoners, and the essential class objects for engaging in agent communications and

service discovery in a FIPA platform. At runtime, the execution of these behavior classes are managed by

an internal scheduler of the JADE agent super class (i.e., the context broker agent class is a subclass of the

JADE agent class).

The communication between a context broker and other agents follows the FIPA Agent Communication

standards [44]. The implementation defines several interaction protocols for agents to communicate with a

context broker. These protocols are communication protocols for informing a context broker about certain

situational conditions, querying a context broker for certain contextual knowledge, and convincing a context

broker to believe certain knowledge is true through argumentation [73].

The context broker implementation supports two different types of content message representations. De-

pending on the purpose of communication, content messages are represented using different languages. For

sharing information with other agents, an XML/RDF representation of the OWL language is used. For

answering queries about certain contextual knowledge, the RDQL language [98] is used. The ontological

vocabularies used in these representations are imported from the SOUPA and CoBrA ontologies.

The SOUPA and CoBrA ontologies are also used in expressing the internal knowledge of a context broker.

The knowledge of a context broker is represented as RDF statements and is stored in a persistent knowledge

base. This knowledge base is backed by a MySQL database. The implementation exploits the Jena API to

manage the knowledge base and to provide access methods to the knowledge base. Figure 6 shows a UML

diagram of the context broker implementation.

The CoBrA’s context reasoning uses a number of different rule-based systems, which include the Jena

rule-based reasoners [92], JESS (Java Expert System Shell) [45], and Theorist (an assumption-based rea-

soner in Prolog) [87]. Different rule-based systems provide different logical inference support for context

reasoning. The Jena rule-based reasoners are used for OWL ontology inferences, the JESS rule engine is

used for interpreting context using domain specific rules, and the Theorist system is used for supporting the

49

Figure 6: A UML state diagram that shows the design of the prototyped context broker implementation. The
implementation exploits a number of different rule-based systems to support context reasoning.

necessary logical inferences to resolve inconsistent knowledge. Not all context reasoners are implemented in

Java. The context broker implementation uses different programming interfaces to interact with the different

rule-based systems. It directly interacts with both JESS and Jena rule engines using their built-in Java API.

Because Theorist is a Prolog program, it is executed as a separate running process using the SICStus Prolog’s

Java Native Interface API.

C. How to Interpret Context

Interpreting context typically involves a two-step process in a context broker. The first step is for the context

broker to determine the type of the information that has been acquired and decide whether it can be fused

with the existing knowledge to deduce new contextual knowledge. If the new information can be used to

infer new contextual knowledge, the second step is for the context broker to load relevant facts and rules into

appropriate reasoners and invoke the associated reasoning rules.

I prototyped two kinds of context reasoner implementations. One kind exploits the ontology semantics

defined by the OWL language, and the other kind exploits heuristic rules associated with certain applica-

tion domains. These reasoners can interpret contextual information that is associated with time, space, and

50

meeting events.

1. Temporal Reasoning

Time is a central notion in describing events. In a smart meeting room environment, events may include

the occurrence meetings, the presence of people, the performance of actions, the sending and receiving of

messages among the agents, and the internal state changes of services and devices. When events are properly

described with temporal information, the context broker will be able to reason about their associated temporal

order relations.

In the prototype, the logical inference for temporal reasoning is implemented based the semantics of

the SOUPA time ontology. The notion of time instant and time interval are the basic primitives in this

implementation, and they are used to describe smart meeting room events. The intended usage of this logical

inference framework is to compute the temporal ordering of a set of events.

Temporal ordering information is useful to a context broker in a number of different ways. First, it can

help a context broker to answer queries with temporal constraints. For example, an agent may wish to know

the arrival time of different people who were present in a particular room from 8:00 AM to 12:00 PM. Second,

temporal ordering information can help a context broker to correlate distinctive contextual information. For

example, knowing a meeting is scheduled to take place from 10:00 AM to 11:00 AM in Room 232, and a

cellphone device has been detected in the same room at 10:32 AM, without any evidence to the contrary, a

context broker can conclude the owner of the cellphone is attending the meeting. Third, temporal ordering

information also can be used to detect inconsistent contextual knowledge. For example, a context broker is

informed that a person is currently located at home. Later, a new report indicates that the same person is

present at work. The event time intervals described in the two reports overlap. Using this temporal ordering

information, the context broker can detect the person’s location information is inconsistent.

I implemented two different temporal reasoners. One is in Prolog, and the other is in Jena. The Prolog

implementation is intended to provide temporal reasoning support for Prolog applications (e.g., Theorist).

The Jena implementation is intended to provide similar support for Java programs that use the Jena API.

When processing the temporal descriptions of different events, the reasoners assume time values (i.e., date,

time, and time zone) are expressed according to the ISO 8601 Date and Time Formats (see [12] for details).

When reason with time values that are expressed in different time zones, the reasoners first computes their

corresponding values in UTC (Coordinated Universal Time), and then computes their temporal ordering

51

relation using the UTC referenced values.

The Jena implementation of the reasoner is built on a general purpose rule-based reasoner called Generic

Rule Reasoner, which is provided by the Jena API. This reasoner supports rule-based inference over RDF

graphs and provides forward chaining, backward chaining, and a hybrid execution model [92]. When using

the Jena API to process OWL data, all RDF statements are stored in an abstract data structure calledmodel.

The model of the RDF statements can answer queries about the underlying RDF graph. A Generic Rule

Reasoner can be attached to a model to provide additional inference support. Figure 7 shows some of the

rules used to define a temporal reasoner in Jena.

(?x tme:before ?y) <-
(?x rdf:type tme:IntervalThing), (?x tme:ends ?endsX),
(?y rdf:type tme:IntervalThing), (?y tme:begins ?beginsY),
(?endsX tme:before ?beginsY).

(?x tme:inside ?y) <-
(?x rdf:type tme:InstantThing),
(?y rdf:type tme:IntervalThing),
(?y tme:begins ?beginsY), (?y tme:ends ?endsY),
(?beginsY tme:before ?x), (?x tme:before ?endsY).

(?x tme:overlaps ?y) <-
(?x rdf:type tme:ProperIntervalThing),
(?y rdf:type tme:ProperIntervalThing),
(?x tme:begins ?beginsX), (?x tme:ends ?endsX),
(?y tme:begins ?beginsY), (?y tme:ends ?endsY),
(?beginsY tme:before ?endsX),
(?beginsX tme:before ?beginsY),
(?endsX tme:before ?endsY).

(?x tme:overlappedBy ?y) <- (?y tme:overlaps ?x).

Figure 7: An example of the rules used to configure a Generic Rule Reasoner to support temporal reasoning.
These rules are defined to reason over the SOUPA time ontology vocabularies in a RDF graph.

2. Spatial Reasoning

Spatial information is an important part of the location context. The logical inference for reasoning over the

spatial information of some object’s location context is called spatial reasoning. In CoBrA, spatial reasoning

is more than just knowing the location of a physical object. It includes the use of geo-spatial data and ontology

to derive new spatial knowledge that cannot be obtained through sensing.

In general, the location context of a physical object has two kinds of spatial information: geo-metric and

symbolic. Different logical inference for geo-metirc and symoblic information can provide different spatial

reasoning support in a context broker. For example, the geo-metric information such as the latitude and longi-

tude coordinates can be used to calculate the distance between two locations. The symbolic representation of

things typically found in maps or construction blueprints can be used to support qualitative spatial reasoning

52

[90].

The SOUPA space ontology is central to the spatial reasoning implementation in CoBrA. The implemen-

tation assumes that all spatial information is expressed using the SOUPA space ontologies. Based on the

ontology semantics, the following logical inference is supported: (i) given geographical spaceX andY (i.e.,

they are instants of thespc:GeographicalSpace class), infer whetherX is spatially subsumed byY or

X spatially subsumesY , (ii) given two geographical spaceX andY , infer whether they are disconnected, (iii)

given geographical spaceX with defined latitude and longitude coordinates, infer geographical spaceY that

spatially subsumesX, and (iv) given geographical spaceX with defined latitude and longitude coordinates,

infer geographical spaceY that is spatially subsumed byX.

A context broker can exploit spatial reasoning in a number of different ways. First, it can use spatial

reasoning to infer a location’s spatial properties that cannot be directly acquired from the physical sensors.

For example, from the readings of a GPS device that a person carries, the context broker can acquire some

basic information about the person’s location (e.g. the latitude and longitude coordinates). By finding the

corresponding symbolic representation of the coordinates in a pre-defined ontology, the context broker can

infer additional spatial information (e.g., the city in which the person is located, or a nearby building that is

spatially subsumed by the university campus that the person is located in). Second, spatial reasoning can used

to detect inconsistent information about a person’s location. For example, according a predefined ontology,

roomA is disconnected from roomB, and there are two different reports about the same person is located in

both roomA and roomB during the same time interval. Using spatial reasoning, the context broker infers

a person cannot be simultaneously located in two disconnected rooms. Hence, it concludes the reported

location information is inconsistent. Third, the context broker can use spatial reasoning to protect users’

privacy by adjusting the granularity of their location information. For example, based on a set of predefined

obfuscation rules, the context broker intentionally generalizes the location information of a person and shares

which with the agents that the person does not trust.

I implemented a spatial reasoner using the Jena API’s Generic Rule Reasoner. This spatial reasoner is

capable of reasoning over the symbolic spatial constructs defined in the SOUPA space and RCC ontology.

Figure 8 shows some of the rules used to define a spatial reasoner.

53

(?x spc:spatiallySubsumes ?y) <-
(?x rdf:type spc:GeographicalSpace), (?y rdf:type spc:GeographicalSpace),
(?y spc:spatiallySubsumedBy ?x).

(?x spc:spatiallySubsumedBy ?z) <-
(?x rdf:type spc:GeographicalSpace), (?y rdf:type spc:GeographicalSpace),
(?x spc:spatiallySubsumedBy ?y), (?y spc:spatiallySubsumedBy ?z).

(?x rcc:isDisconnectedFrom ?y) <-
(?x rdf:type spc:GeographicalSpace), (?y rdf:type spc:GeographicalSpace),
(?x rdf:type rcc:RCCSpatialRegion), (?y rdf:type rcc:RCCSpatialRegion),
(?x spc:spatiallySubsumedBy ?z), (?z rcc:isDisconnectedFrom ?y).

(?x rcc:properPartOf ?y) <-
(?x rdf:type spc:GeographicalSpace), (?y rdf:type spc:GeographicalSpace),
(?x rdf:type rcc:RCCSpatialRegion), (?y rdf:type rcc:RCCSpatialRegion),
(?x spc:spatiallySubsumes ?y), (?y rcc:notPartOf ?x).

Figure 8: An example of the rules used to configure a Generic Rule Reasoner to support spatial reasoning.
These rules are defined to reason over the SOUPA space and RCC ontology vocabularies in a RDF graph.

3. Meeting Event Reasoning

Part of CoBrA’s feasibility demonstration is to support context-aware services in a smart meeting room envi-

ronment. The role of a context broker in this system to maintain a shared model of the meeting event context

and share this information with other services. In the prototype implementation, the context of a meeting

event is defined as information that describes (i) the schedule of the meeting and its expected participants,

(ii) the situational roles of the individual participants, (iii) the types of services should be provided to the

participants based on their situational roles, and (iv) the profiles and privacy policies of the participants.

The context broker uses different kinds of logical inference to interpret meeting event context. This

includes the use of temporal and spatial reasoners as well as the use of logical inference rules associated with

the application domain heuristics. In the prototype, the domain-specific inference rules are defined based on

the conventions of the eBiquity Research Group at UMBC. These conventions are as follows.

• The schedule of the eBiquity group meetings are usually accessible on the group’s web site. The web

site publishes detail descriptions of the individual meetings in OWL. The ontology used by the web

site can be mapped to the SOUPA and CoBrA ontologies.

• Members of the eBiquity group publish their personal profiles and social network information on the

Web. The same ontology and instant data used to describe their individual identities are also used by

the eBiquity group’s web site in publishing meeting attendee descriptions.

• If a visitor from a different organization is scheduled to participate in an eBiquity group meeting,

his/her personal profiles and social network information are published on the eBiquity group web site

prior to his/her arrival.

54

Figure 9: A UML diagram that depicts the state transition of a context broker’s meeting context reasoning.

• People usually carry some kind of personal devices (e.g., cellphones or PDA) in a smart meeting room

environment. The device profile of these personal devices are published on the personal homepages of

their users in OWL using the SOUPA device ontology.

• People who are scheduled to give presentations at the eBiquity group meetings typically make avail-

able their PowerPoint presentation slides on the Web. The necessary information that are needed to

download these documents are described in their personal profiles.

Meeting context reasoning is a continuous process. The implementation of this process can be modeled

as a set of state transitions (Figure 9). This process begins as part of a context broker’s behavior execution.

The first state (Checking Status) involves the reasoning to determine whether or not any scheduled meeting

is about to take place in the room. This stage of reasoning uses the meeting schedule information that is

acquired by the context broker from the eBiquity group’s web site. If no meeting is expected in the next 15

minutes, the Checking Status state remains active. Otherwise, the process enters a new state – “Reasoning

About the Meeting Participants”.

In this state, there are two parallel processes. One process is responsible for inferring services that should

55

be provided to the meeting participants based on their situational roles. The role information is inferred from

the acquired personal profiles. The service selection reasoning is based on a pre-defined user model (i.e.,

presentation services should be provided to all speakers, greeting services should be provided to all meeting

participants). The other process, which is executed in parallel to the previous one, is responsible for counting

the number of the arrived participants. This calculation uses the attendee information described in the meeting

schedule and the people presence information inferred from the sensing data. Knowing who is expected to

participate in the meeting, the reasoner matches this information against the identity of the people who are

present in the room. During these two processes, if new knowledge is inferred (i.e., an indication of context

change), a new state is entered.

In this state, the process is to reason about the meeting status. The logic of the reasoning is as follows: (i)

a scheduled meeting is in session if the current time instant is inside the beginning and the ending time of the

meeting schedule, (ii) a scheduled meeting has ended if the current time instant is after the ending time of the

meeting schedule, (iii) a participant (a presenter or an invited participant) is arrived at the meeting if he/she is

located in the room of the schedule meeting, and there is no evidence suggesting that he/she is located in any

other place, and (iv) a meeting can begin if no participants (a presenter or an invited participant) are missing.

Figure 10 is the set of JESS rules that implement this logic inference process.

If the meeting status reasoning concludes a scheduled meeting is currently taking place, the process enters

a new state. In this new state, the context broker has the opportunity to share its new contextual knowledge

with other agents. During the knowledge sharing process, the context broker is required to enforce privacy

policies that are defined by the users. On the other hand, if the meeting status reasoning concludes an ongoing

meeting is over, then the present reasoning process for this particular meeting is terminated. Unless the whole

behavior execution of the context broker is terminated, the meeting event reasoning process continues.

D. How to Detect and Resolve Inconsistency

Different information acquired from distinct resources may be inconsistent with each other. In order to

maintain a consistent model of context, a context broker must be able to detect the existence of inconsistency

in the knowledge base and resolve it through reasoning and communication.

A number of different reasons could cause information inconsistency. For example, the raw data collected

from the physical sensors is inaccurate, the logical inference used to interpret the sensing data has flawed

56

(defrule meeting-in-session
(meeting (name ?x) (location ?l) (begin-time ?bTime) (end-time ?eTime))
(current-time ?cTime)
(test (call XSDDateTimeTool after ?cTime ?bTime))
(test (call XSDDateTimeTool before ?cTime ?eTime))
=>
(assert (meeting-in-session ?x)))

(defrule meeting-has-ended
?id <- (meeting-in-session ?x)
(current-time ?cTime)
(meeting (name ?x) (end-time ?eTime))
(test (call XSDDateTimeTool after ?cTime ?eTime))
=>
(retract ?id))

(defrule participant-arrived-at-meeting
(meeting-in-session ?m)
(meeting (name ?m) (location ?loc) (begin-time ?bTime) (end-time ?eTime))
(arrival (person ?p) (location ?loc) (at-time ?t))
(test (call XSDDateTimeTool after ?t ?bTime))
(test (call XSDDateTimeTool before ?t ?eTime))
(not (not-located-in ?p ?loc))
=>
(assert (arrived ?p ?m)))

(deffunction can-meeting-begin (?meeting)
(bind ?a1 (count-query-results find-meeting ?meeting))
(bind ?a2 (count-query-results find-missing-participant ?meeting))
(if (= ?a1 0) then (return FALSE)

else (if (= ?a2 0) then (return TRUE)
else (return FALSE)

)
)

)

Figure 10: JESS rules that implement the logical inference for reasoning about the meeting status. In order
to support the reasoning in JESS, an external procedure is used to map facts from the OWL representation of
the meeting schedule to the JESS rule representation.

57

domain heuristics, or the defined knowledge representation is unable to model every aspects of the physical

context in perfection. In CoBrA, the context reasoning attempts to address this problem.

I developed an ontology-based approach for detecting information inconsistency and an assumption-based

reasoning approach for resolving information inconsistency. I prototyped implementations to show the feasi-

bility of these approaches.

My implementations support two different scenarios. In one scenario I showed how to detect and resolve

the inconsistent information about a person’s location, and in the other I showed how to detect and resolve

the inconsistent information about the status of a scheduled meeting.

1. Detect Inconsistency Based on the Ontologies

Ontologies expressed using the OWL langauge can be used to detect information inconsistency. The idea is

to model context as ontologies and exploit ontology reasoning to detect information inconsistency. The OWL

langauge is an expressive language that allows various aspect of a context to be represented. This includes

objects in a context domain, relations between these objects, and restrictions of those relations. Once an

ontology is defined, context observations made in the physical world are represented as instant data of the

ontology. Given an ontology and a set of instant data, ontology reasoners are used to infer whether the context

described by the instant data is consistent with the model defined by the ontology.

I developed a prototype implementation to show how this approach is used to detect inconsistent infor-

mation about a person’s location. The application scenario is as follows. Harry enters his a conference room

(ITE RM 201). The room detects the presence of his Bluetooth cellphone. Without knowing any evidence

to the contrary, the room infers Harry is also present in the room and informs the context broker. Moments

later, Harry leaves the conference room in a hurry and forgets his cellphone in the room. After leaving the

conference room, Harry goes back to his office (ITE RM 338). As he logs in to his office’s workstation, the

computer detects his presence and informs the context broker that Harry is located in his office. According

to the ontology (see Figure 11), ITE RM 338 is spatially disconnected from ITE RM 201. Given this infor-

mation and unable to prove Harry has exited from any one of these rooms, the context broker concludes that

the location information about Harry is inconsistent.

58

Figure 11: Using ontologies to detect inconsistent location information about a person. Based on the ontology,
the context broker infers it is inconsistent for Harry being located in both Room ITE-201 and Room ITE-338.

2. Resolve Inconsistency by Weighing Assumptions

The root of information inconsistency is the source agents that provide the information. Because the agents

may have used inaccurate sensing data or flawed domain heuristics to interpret context, information acquired

from these agents may be inconsistent. The scenario described in the previous section is a typical example

that shows how inconsistent information can emerge due to sensing limitations and flawed reasoning in the

source agents.

I developed an assumption-based reasoning approach for resolving inconsistent information. In this ap-

proach, the context broker weighs the assumptions that the individual agents used to derive their conclusions

and only accept conclusions that have the most reliable assumptions.

Assumptions are the default beliefs of an agent, and they are the foundation of the agent’s logical in-

ference. For example, when an agent detects the presence of a cellphone, the agent infers the presence of

the owner of the cellphone. In this case, the assumption of the agent is the co-location relation between the

cellphone and the person, i.e., the owner of a cellphone is always located in the same place as the cellphone.

Note that the assumptions built into the reasoning of an agent may not always lead to accurate conclu-

sions. These assumptions may have flawed heuristics. For example, an exception in assuming the co-location

59

relation is a situation in which the owner accidently loses or walks away from the cellphone. In such case, the

assumption is no longer reliable. Consequently, the conclusion derived from this assumption also becomes

unreliable.

I developed two prototype implementations to show the feasibility of this approach. Both implemen-

tations use the Theorist reasoning system for modeling and reasoning about assumptions. The difference

between the two implementations is in the modeling of the assumptions. In one implementation, the context

broker has an explicit model of the assumptions that the other agents use to interpret context. In the other

implementation, the context broker does not begin with an explicitly model other agents’ assumptions. As

the context broker detects inconsistent information, it acquires the assumptions dynamically from the agents

via communications.

In my prototype implementations, the reasoning system designs assume the following:

• All ontologies used by the context broker are assumed to be consistent. The context broker is not

required to detect and resolve inconsistent information that is resulted from inaccurate ontology speci-

fications.

• All agents share a common ontology with the context broker. This common ontology includes the

vocabularies and the associated semantics used for describing contexts and modeling reasoning as-

sumptions.

• When agents are asked by the context broker to justify their beliefs about the context, no agents shall

intentionally provide false information to deceive the context broker. In other words, there is no “liar”

agents, and all agents are cooperative.

• The context broker is only responsible for resolving the kinds of inconsistent information that it has

sufficient knowledge about. The built-in logical inference of the context broker pre-defines this knowl-

edge.

Theorist Framework Overview

For modeling and reasoning about the assumptions of different agents, I used the Theorist system. It is a

logical reasoning system for default reasoning and diagnosis [87]. The version of the Theorist that I have

used is in Prolog (see [86] for the users guide of this implementation). I adopted the following introduction

from the Theorist Users Guide.

60

When using Theorist, the user provides three sets of first order formulae.

F is a set of closed formulae called thefacts. These are intended to be true in the world being modeled.

∆ is a set of formulae which act aspossible hypotheses, any ground instance of which can be used in an

explanation if consistent.

C is a set of closed formulae taken as constraints. The constraints restrict what can be hypothesized.

We assume thatF ∪ C is consistent.

Definition 4 a scenarioof F ,∆ is a setD ∪ F whereD is a set of ground instances of elements of∆ such

thatD ∪ F ∪ C is consistent.

Definition 5 If g is a closed formula then anexplanationof g fromF ,∆ is a scenario ofF ,∆ which implies

g.

That is,g is explainable fromF ,∆ if there is a setD of ground instances of elements of∆ such that

F ∪D |= g and

F ∪D ∪ C is consistent

F ∪D is an explanation ofg.

The syntax of Theorist is designed for maximum flexibility. Virtually any syntax is appropriate for wffs;

the formulae are translated into Prolog clauses without mapping out subterms.

A wff is a well formed formula made up of arbitrary combination of implication (“=>”, “ < −”), dis-

junction (“or”, “;”), conjunction (“and”, “ &”, “,”) and negation (“not”, “˜”) of atomic symbols. Variables

follow the Prolog convention of being in upper case. There is no explicit quantification.

A name is an atomic symbol with only free variables as arguments.

The following gives the syntax of the Theorist code:

fact w.

wherew is a wff, means that(∀w) ∈ F ; i.e., the universal closure ofw (all variables universally

quantified) is a fact.

default d.

whered is a name, means thatd ∈ ∆; i.e.,d is a default (a possible hypothesis).

61

default d : w.

whered is a name andw is a wff meansw, with named can be used in a scenario if it is consistent.

Formally it meansd ∈ ∆ and(∀d⇒ w) ∈ F .

constraint w.

wherew is a wff means∀w ∈ C.

prolog p.

wherep is an atomic symbol means any Theorist call top should be proven in Prolog. This allows us

to use built-in predicates of pure Prolog. One should not expect Prolog’s control predicates to work.

explain w.

wherew is an arbitrary wff, gives all explanations of∃w.

predict w.

wherew is a arbitrary ground wff, returns “yes” ifw is in every extension of the defaults and “no”

otherwise. If it returns “yes”, a set of explanations is returned, if it returns “no” then a scenario from

whichg cannot be explained is returned (this follows the framework of [85]).

The following example is a file to do the birdsfly example

dyn flies(X).
dyn bird(X).
default birdsfly(X): flies(X) <- bird(X).
constraint not birdsfly(X) <- not flies(X).
default emusdontfly(X): not flies(X) <- emu(X) .
constraint not emusdontfly(X) <- flies(X).
constraint not birdsfly(X) <- emu(X).
fact bird(X) <- emu(X).
fact bird(X) <- robin(X).
fact bird(tweety).
fact emu(polly).
fact robin(cohen).

The following is a session with theorist for default reasoning. We assume that the preceding code is in a

file called “birdsfly”.

theorist

Welcome to THEORIST 1.1 (5 October 88 version)
Any Problems see David Poole (poole@vision.ubc.cdn)

yes
| ?- thconsult birdsfly.

yes
| ?- explain flies(tweety).
Answer is flies(tweety)
Theory is [birdsfly(tweety)]

no
| ?- explain flies(polly).

62

no
| ?- explain flies(X).
Answer is flies(cohen)
Theory is [birdsfly(cohen)]

Answer is flies(tweety)
Theory is [birdsfly(tweety)]

no
| ?-

Note that the explain command always finds all answers and then returns with “no” (note that, for sim-

plicity, it is a Prolog command).

A Use Case Implementation

When a context broker detects inconsistency, it first tries to find the assumptions that different agents have

used to derive their interpretation of the context, and then tries to resolve inconsistent information by adopt-

ing the context interpretation with the most reliable assumptions. In one of the prototype implementation

scenario, the assumptions of different sensing agents are explicitly represented as part of the context broker’s

reasoning framework. The following is the representation of these assumptions as Theorist formulae:

fact can_bel(observed(S,located_in(P,R))) <-
voice_reg_sensor(S), acquired_reliable_voice_data(S,R).

fact can_bel(observed(S,located_in(P,R))) <-
cellphone_sensor(S), cellphone(C), carries_cellphone(P,C).

default acquired_reliable_voice_data(S,R).

constraint not acquired_reliable_voice_data(S,R) <-
sensor(S), observed(S,noise_level(R,L)), gt(L,60).

default owner_often_carries_cellphone(P,C) :
carries_cellphone(P,C) <- person(P), cellphone(C), owned_by(C,P).

constraint not carries_cellphone(P,C) <- lost(P,C).
constraint not carries_cellphone(P,C) <- not_colocate(P,C).

fact not_colocate(P,C) <- person(P), cellphone(C), owned_by(C,P),
sensor(S),
observed(S,missed_calls(C,N1)), gt(N1,10),
observed(S,outgoing_calls(C,N2)), eq(N2,0).

fact voice_reg_sensor(‘http://cobra.umbc.edu/sensor/s1’).
fact cellphone_sensor(‘http://cobra.umbc.edu/sensor/s2’).

fact person(‘http://umbc.edu/˜hchen4’).
fact cellphone(‘http://umbc.edu/˜hchen4/hc_t68i’).
fact owned_by(‘http://umbc.edu/˜hchen4/hc_t68i’,

‘http://umbc.edu/˜hchen4’).

The termlocated in(P,R) represents the fact that personP is currently located in roomR. The term

observed(S,located in(P,R)) represents the fact that sensorS has observed personP is located in

roomR. The termcan bel(observed(S,located in(P,R))) represents the fact that the context

broker believes the assumption that sensor agentS uses to interpret its observation about the location of

personP . For simplicity, temporal property is not explicitly modeled in this reasoning program.

63

In this program, the sensor agent’s assumptions are defined by two different Theorist defaults:acquir-

ed reliable voice data(S,R) and owner often carries cellphone(P,C) . The first de-

fault is part of a voice recognition agent’s assumption. The context broker believes that if a voice recognition

agent observed a person is located in roomR, then the agent must have assumed the voice data collected

from roomR is reliable. The second default is part of a cellphone presence agent’s assumption. The context

broker believes that if a cellphone-detection agent observed personP is located in a room, then the agent

must have assumed personP always carries a cellphone.

For each default assumption, a set of constraints are defined for weighing the reliability of the conclu-

sion that it derives. In the code above, the context broker is restricted not to hypothesizeacquired -

reliable voice data(S,R) if the voice data is collected when the noise level in the room is greater

than 60 decibels. The context broker is also restricted not to hypothesizeowner often carries cell-

phone(P,C) if either personP has lost his/her cellphoneC or personP is not co-located with cellphone

C. PersonP is not co-located with cellphoneC if cellphoneC has 10 missed calls and 0 outgoing calls.

Note that for demonstration purposes, these defined constraints only consider a small set of attributes

and heuristics, and it represents one possible model for weighing the reliability of other agents’ assumptions.

Depending on the actual requirements of future applications, these constraint definitions can be fine tuned

and extended with additional attributes and heuristics.

When the context broker receives information from the sensor agents, it asserts this information into the

Theorist reasoner as a set of facts. For example, when a voice recognition agent reports person Harry Chen

is located in Room 338, then context broker asserts the following term:
fact observed(‘http://cobra.umbc.edu/sensor/s1’,

located_in(‘http://umbc.edu/˜hchen4’,
‘http://cobra.umbc.edu/ont/2004/05/ebiquity-geo#ITE338’)).

In this term, the URI’s represent the identities of the corresponding sensor agent, person, and room. These

URI’s are defined as part of the shared ontology between the context broker and the sensor agents.

The next step in the reasoning is to detect if the new information is consistent with the current belief of

the context broker. In this step, the detection of inconsistency is done by the ontology reasoning described in

the previous section. If inconsistency is detected, then the context broker tries to determine the assumptions

used by different sensor agents that provide this information. For example, after being told by the voice

recognition agent that Harry Chen is located in Room 338, the context broker receives information from

a cellphone-presence detection agent saying that Harry is located at home (which is identified by the URI

http://cobra.umbc.edu/ont/2004/05/ebiquity-geo#LOC232).

64

fact observed(‘http://cobra.umbc.edu/sensor/s2’,
located_in(‘http://umbc.edu/˜hchen4’,

‘http://cobra.umbc.edu/ont/2004/05/ebiquity-geo#LOC232’)).

Knowing Room 338 is spatially disconnected from Harry’s home, the context broker concludes there is

an inconsistency about Harry’s location.

Using the Theorist system, this inconsistency can also be detected by reasoning if the context broker’s

knowledge about Harry’s location (represented by a Theorist formulaeω), is in every extension of the defaults.

In specific, based on the facts that are told by different sensor agents, the context broker may have a set of

knowledgeK that describe Harry’s location (i.e.,K = {ω1 . . . ωn}). In the previous example,K = {ω1, ω2},

andω1 represents Harry is located in Room 338, andω2 represents Harry is located at home. To detect

inconsistency, the context broker reasons for eachωi in K, if it is in every extension of the defaults. Based

on the code described in above, we augment the reasoning with an additional set of formulae:

default obs_person_at_work(S,P,R):
located_at_work(P) <- sensor(S), conf_room(R),

observed(S,located_in(P,R)),
can_bel(observed(S,located_in(P,R))).

default obs_person_at_home(S,P,R):
located_at_home(P) <- sensor(S), room_at_home(R),

observed(S,located_in(P,R)),
can_bel(observed(S,located_in(P,R))).

fact not (located_at_home(P) and located_at_work(P)).

fact pred_person_loc(P,work) <- located_at_work(P).
fact pred_person_loc(P,home) <- located_at_home(P).

fact room_at_home(R) => room(R).
fact conf_room(R) => room(R).

fact voice_reg_sensor(S) => sensor(S).
fact cellphone_sensor(S) => sensor(S).

fact conf_room(’http://cobra.umbc.edu/ont/2004/05/ebiquity-geo#ITE338’).
fact room_at_home(’http://cobra.umbc.edu/ont/2004/05/ebiquity-geo#LOC232’).

The named default “obs person at work ” represents the fact that personP is located at work if a

sensor has observed personP is located in a conference room, and the context broker believes the assumption

that the sensor has used. The named default “obs person at home” has similar logic. It represents the

fact that personP is located at home if a sensor has observed personP is located in a room that is part

of the home, and the context broker believes the assumption that the sensor has used. These two named

defaults are possible hypothesis for explaining the location of a person, which is represented by the predicate

“pred person loc ”.

It is inconsistent to believe a person is simultaneously located at home and at work. This fact is repre-

sented by

fact not (located_at_home(P) and located_at_work(P)).

65

To reason if the knowledge about a person’s location in every extension of the defaults, the context broker

calls the “predict” command of the Theorist system. The following is a command line session that shows

how the reasoner detects inconsistency because “pred person loc(P,R) ” is not in every extension of

the defaults:

SICStus 3.11.2 (x86-win32-nt-4): Wed Jun 2 19:48:46 WEDT 2004
Licensed to umbc.edu
| ?- thconsult demoloc2.
yes
| ?- fact observed(‘http://cobra.umbc.edu/sensor/s1’,

located_in(‘http://umbc.edu/˜hchen4’,
‘http://cobra.umbc.edu/ont/2004/05/ebiquity-geo#ITE338’)).

yes
| ?- fact observed(’http://cobra.umbc.edu/sensor/s2’,

located_in(‘http://umbc.edu/˜hchen4’,
‘http://cobra.umbc.edu/ont/2004/05/ebiquity-geo#LOC232’)).

yes
| ?- predict pred_person_loc(‘http://umbc.edu/˜hchen4’,work).
No, pred_person_loc(‘http://umbc.edu/˜hchen4’,work) is not explainable from
[acquired_reliable_voice_data(‘http://cobra.umbc.edu/sensor/s1’,
‘http://cobra.umbc.edu/ont/2004/05/ebiquity-geo#ITE338’),
obs_person_at_home(‘http://cobra.umbc.edu/sensor/s2’,‘http://umbc.edu/˜hchen4’,
‘http://cobra.umbc.edu/ont/2004/05/ebiquity-geo#LOC232’),
owner_often_carries_cellphone(‘http://umbc.edu/˜hchen4’,
‘http://www.cs.umbc.edu/˜hchen4/hc_t68i’)].
yes
| ?- predict pred_person_loc(‘http://umbc.edu/˜hchen4’,home).
No, pred_person_loc(‘http://umbc.edu/˜hchen4’,home) is not explainable from
[owner_often_carries_cellphone(‘http://umbc.edu/˜hchen4’,
‘http://www.cs.umbc.edu/˜hchen4/hc_t68i’),
obs_person_at_work(‘http://cobra.umbc.edu/sensor/s1’,
‘http://umbc.edu/˜hchen4’,‘http://cobra.umbc.edu/ont/2004/05/ebiquity-geo#ITE338’),
acquired_reliable_voice_data(‘http://cobra.umbc.edu/sensor/s1’,
‘http://cobra.umbc.edu/ont/2004/05/ebiquity-geo#ITE338’)].
yes

After detecting inconsistency, the context broker calls the Theorist “explain” command to determine the

assumptions of the sensor agents. The following is a command line session of the reasoning:

| ?- explain can_bel(observed(‘http://cobra.umbc.edu/sensor/s2’,
located_in(‘http://umbc.edu/˜hchen4’,
‘http://cobra.umbc.edu/ont/2004/05/ebiquity-geo#LOC232’)).

Answer is can_bel(observed(‘http://cobra.umbc.edu/sensor/s2’,
located_in(‘http://umbc.edu/˜hchen4’,
‘http://cobra.umbc.edu/ont/2004/05/ebiquity-geo#LOC232’)))
Theory is [owner_often_carries_cellphone(‘http://umbc.edu/˜hchen4’,
‘http://www.cs.umbc.edu/˜hchen4/hc_t68i’)]
took 0.000 sec.

| ?- explain can_bel(observed(‘http://cobra.umbc.edu/sensor/s1’,
located_in(‘http://umbc.edu/˜hchen4’,
‘http://cobra.umbc.edu/ont/2004/05/ebiquity-geo#ITE338’)).

Answer is can_bel(observed(‘http://cobra.umbc.edu/sensor/s1’,
located_in(‘http://umbc.edu/˜hchen4’,
‘http://cobra.umbc.edu/ont/2004/05/ebiquity-geo#ITE338’)))
Theory is [acquired_reliable_voice_data(‘http://cobra.umbc.edu/sensor/s1’,
‘http://cobra.umbc.edu/ont/2004/05/ebiquity-geo#ITE338’)]
took 0.000 sec.

no
| ?-

The inferred answers are exactly the set of assumptions that the voice recognition agent and the cellphone-

presence detection agent used to interpret Harry’s location –acquired reliable data andowner-

often carries cellphone . To weigh these assumptions, the context broker adopts a strategy that

66

compares their reliability based on its own internal measurement functions.

These functions consist of (i) verifying if it is true that the noise level in the room was above a pre-

defined threshold when the voice recognition agent acquired the voice data, and (ii) verifying if it is true

that there is any evidence showing the cellphone was not in the close vicinity of its owner user when the

cellphone-presence detection agent discovered the cellphone. For a given assumption, if an internal mea-

surement function returns true, then the assumption is consider unreliable. Once all assumptions have been

measured, the context broker adopts only one that is considered to be reliable.

An example of this process is as follows. To decide if the voice recognition agent’s assumption is reliable,

the context broker asks for the noise level in the room when it detected Harry’s presence. The sensor agent

replies the noise level was measured at 50 decibels. To decide if the cellphone-presence detection agent’s

assumption is reliable, the context broker asks for the number of outgoing calls and the number of missed

calls recorded in Harry’s cellphone. The sensor agent replies there was 11 missed calls and 0 outgoing

calls recorded in Harry’s cellphone. The context broker asserts this information into the reasoner, and calls

“predict” again to check if this inconsistency can be resolved.

Based on the defined assumption model, the voice recognition agent’s assumption is reliable because

the noise level was measured at less than 60 decibels. However, the cellphone-presence detection agent’s

assumption is unreliable because the number of missed calls is greater than 10 and the number of outgoing

calls was 0, i.e., a strong evidence showing that the cellphone and the owner did not co-located in the same

room. The following is a command line session of this reasoning process:

| ?- fact observed(‘http://cobra.umbc.edu/sensor/s2’,
missed_calls(‘http://www.cs.umbc.edu/˜hchen4/hc_t68i’,11)).

yes
| ?- fact observed(‘http://cobra.umbc.edu/sensor/s2’,

outgoing_calls(‘http://www.cs.umbc.edu/˜hchen4/hc_t68i’,0)).
yes
| ?- fact observed(‘http://cobra.umbc.edu/sensor/s1’,

noise_level(‘http://cobra.umbc.edu/ont/2004/05/ebiquity-geo#ITE338’,50)).
yes
| ?- predict pred_person_loc(‘http://umbc.edu/˜hchen4’,X).
Yes, pred_person_loc(‘http://umbc.edu/˜hchen4’,work) is in all extensions.
Explanations are:
1: [obs_person_at_work(‘http://cobra.umbc.edu/sensor/s1’,
‘http://umbc.edu/˜hchen4’,‘http://cobra.umbc.edu/ont/2004/05/ebiquity-geo#ITE338’),
acquired_reliable_voice_data(‘http://cobra.umbc.edu/sensor/s1’,
‘http://cobra.umbc.edu/ont/2004/05/ebiquity-geo#ITE338’)].
X = work ? ;
no
| ?-

I implemented this use case scenario using the JADE agent library. The context broker calls the Theorist

reasoner using the Java Native Interface API provided by the SICStus Prolog system. The context broker

communicates with the sensor agents using the FIPA messages. The message content is expressed using the

OWL language. A special XML transformation process is called to transform the RDF representation of the

67

Figure 12: This example shows how a context broker can use assumption-based reasoning to resolve inconsis-
tent information. When conflicts are detected, the context broker reasons about the assumptions that different
sensors may have used to interpret context. By finding evidences to prove some assumptions are unreliable,
the context broker resolves the conflicts between the competing context interpretations.

message content to the corresponding Theorist formulae. Figure 12 shows a UML sequence diagram of this

prototype implementation.

3. Reasoning that Incorporates Argumentation

In a dynamic and open environment, a single context broker is usually fragile and has limited capability.

To improve system robustness, multiple context brokers may be deployed as a team to support a pervasive

context-aware system. In a context broker team, individual context broker is responsible to maintain distinc-

tive contextual knowledge and share this knowledge with other members to create a comprehensive view of

the shared context.

Different team members can have different interpretations about the context. Because of this difference,

68

when sharing their knowledge, information inconsistency can occur. To overcome this problem, the context

brokers must be able to detect and resolve inconsistency.

This problem can be solved by the assumption-based approach described in the previous section. How-

ever, the resulting implementation would require replicating the assumption models of different team mem-

bers in every single context brokers. A change in the assumption model of a single context broker would

directly affect the implementation of other team members.

An alternative approach is to enable the team members to resolve inconsistency through arguments. In

this approach, the communications among the team members are defined with a set of special speech acts and

protocols. Based on these constructs, the context brokers can be programmed to engage in an argument-based

dialog that is aimed for detecting and resolving inconsistent information.

I have developed a prototyped implementation based on the Fatio Argumentation Protocol [73] and sim-

ulated the underlying argumentation reasoning of a single context broker in the Theorist system.

In this prototype implementation, the reasoning system design adopts the set of assumptions described in

previous section. In addition, it assumes the following:

• When multiple context brokers engage in an argument-based dialog, they share a common ontology

that describes the kinds of justification knowledge that can be used in the dialog. In other words, a

context broker is only required to provide justifications for knowledge that is part of its built-in logical

inference.

• Different context brokers may possess different rules for interpreting the same type of context. How-

ever, all context brokers share the same representation of the constructs that are used to express rules.

• In the implementation of each argument-based dialog, there is a special set of knowledge that all context

brokers are willing to believe without any doubts. During a dialog, if a context broker asserts some

knowledge of this kind is true, the context broker will not be required to justify why this knowledge is

true.

A Use Case Scenario

Two context brokers are teamed to support a smart meeting room. Each member of the team has access

to different source of contextual information. Periodically the team members synchronize their knowledge

through communication. On a typical workday, person Harry is scheduled to host a meeting. Few minutes

69

before the scheduled meeting starts, one member of the context broker team B1 has evidence that Harry is

absent from the meeting, and decide that it should inform the meeting schedule to either delay or cancelled

the meeting. Before it sends out this notification, it must also obtain consensus from the other team member

B2. Context broker B1 informs context broker B2 that Harry is absent from meeting. Based on a different

set of sensing information, context broker B2 does not believe Harry is absent. In order to reach a consistent

view of the shared context, the context brokers begin an argument-based dialog.

During the argumentation, the objective of context broker B1 is to provide context broker B2 with ar-

guments that can prove the absence of Harry, and the objective of the context broker B2 is to challenge the

arguments provided by context broker B2 until it reaches one of the two possible conclusions: it is convinced

that the context broker B1’s original proposition is either true or false.

The Fatio Argumentation Protocol Overview

In this section, I summarize the key speech acts of the Fatio protocol that are used in my prototype. The

following material is adopted from [73].

The statements made in an argumentation dialog may any of: factual statements, expressive statements,

social connection statements, commissives, directives, and inferences. Fatio is a generic protocol which can

be used on its own, or incorporated into other interaction protocols or ACLs (including FIPA ACL).

The syntax for utterance is:

• illocution(Pi, φ) or

• illocution(Pi, Pj , φ)

where illocution is an illocution,Pi is an identifier for the agent making the utterance (the speaker),Pj

denotes an agent at whom the utterance is directed, andφ is the content of the utterance.

Some of the legal locutions in Fatio are the following:

assert(Pi, φ): A speakerPi asserts a statementφ ∈ C (a belief, an intention, a social connection, an ex-

ternal commitment, etc.) In doing so,Pi creates a dialectical obligation within the dialog to provide

justification forφ if required subsequently by another participant.

question(Pj , Pi, φ): A speakerPj questions a prior utterance ofassert(Pi, φ) by another participantPi, and

seeks a justification forφ. The speakerPj of the question creates no dialectical obligation on himself

by the question utterance.

70

justify(Pi, Φ `+ φ): A speakerPi who had utteredassert(Pi, φ), and was then questioned or challenged

by another speaker, is able to provide a justificationΦ ∈ A for initial statementφ by means of this

locution.Φ `+ φ indicates thatΦ is an argument in support ofφ.

As part the protocol, these locutions are subject to several combination rules:

• The utteranceassert(Pi, φ) may be made at any time.

• The utterancequestion(Pj , Pi, φ) may be made at any time following an utterance ofassert(Pi,

φ). Similarly, the utterancequestion(Pj , Pi, φ) may be made at any time following an utterance of

justify(Pi, Φ `+ φ).

• Immediately following an utterance ofquestion(Pj , Pi, φ), the speakerPi of assert(Pi, φ) must reply

with justify(Pi, Φ `+ φ), for someΦ ∈ A.

Context Broker B2’s Knowledge in Theorist

I developed a Theorist program to demonstrate the feasibility of using argumentation for resolving inconsis-

tent information. This program simulates the underlying reasoning of context broker B2, which is described

in the previous use case scenario. The logical inference of this program is designed to drive the high-level

argumentation behavior of the context broker.

Central to this program is a model of context broker B2’s belief, which consists of facts that the context

broker believes and reasoning rules that it uses in making hypotheses.

% D1
default organizer_likely_to_be_present(Person,Meeting):

organizer_present(Person,Meeting) <-
meeting(Meeting), organizer(Person, Meeting), at_work(Person).

% D2
default absent_organizer_is_at_home(Person, Meeting) :

organizer_absent(Person,Meeting) <-
meeting(Meeting), organizer(Person, Meeting), at_home(Person).

% D3
fact not (organizer_present(Person,Meeting) and

organizer_absent(Person,Meeting)).

In the defined model, the context broker can hypothesize that a meeting organizer is likely to be present

at the meeting if it can hypothesize that the organizer is at work. On the other hand, the context broker can

hypothesize that a meeting organizer is likely to be absent from the meeting if it can hypothesize that the

organizer is at home. In addition, it is inconsistent to hypothesize that the same meeting organizer is likely to

be present and absent from the meeting.

71

default at_work_on_workday(Person) :
at_work(Person) <- person(Person), today(X), is_workday(X).

default at_work_doing_overtime(Person):
at_work(Person) <- person(Person), today(X), is_weekend(X),

work_overtime(Person).

constraint not at_work(Person) <- owned_car_at_home(Person).
constraint not at_work(Person) <- on_travel(Person).

default at_home_bec_owned_car_is_at_home(Person):
at_home(Person) <- person(Person), owned_car_at_home(Person).

default at_home_on_weekend(Person) :
at_home(Person) <- person(Person), today(X), is_weekend(X).

constraint not at_home(Person) <- work_overtime(Person).
constraint not at_home(Person) <- on_travel(Person).

fact is_workday(X) <-
(eq(X,mon) or eq(X,tue) or

eq(X,wed) or eq(X,thur) or eq(X,fri)).

fact is_weekend(X) <-
(eq(X,sat) or eq(X,sun)).

There are two possible defaults for hypothesizing a person is at work: (i) today is a workday, and (ii)

today is a weekend and the person working overtime. The context broker cannot hypothesize a person is at

work if it believes either an owned car of the person is parked at home, or the person is travelling out of town.

There are two possible defaults for hypothesizing a person is at home: (i) today is a weekend day, and (ii)

an owned car of the person is parked at home. The context broker cannot hypothesize a person is at home if

it believes either the person is working overtime, or the person is travelling out of town.

Context Broker B2’s Argumentation Behavior

In order for agents to engage in an argument-based dialog, they must communicate by following a pre-defined

protocol. The communication behavior of context broker B2 is defined based on the Fatio Argumentation

Protocol. Algorithm 1 defines this behavior in terms a computational procedure.

This algorithm takes three input arguments:KB – the context broker’s knowledge base,R – the reasoner

built on the Theorist system, andM – a message queue object for sending and receiving ACL messages.

The algorithm begins with the initialization of the reasoner (line 1). While the communication message

queue between the team members is open (line 2), context broker B2 continues to monitor for incoming ACL

messages. If the locution of a received message is “assert”, then the statement described in the message is

evaluated for consistency by calling the utility function CANJUSTIFY.

The CANJUSTIFY function returns true if the statement is consistent with the belief in the knowledge

base and returns false otherwise. This function uses the Theorist reasoner to determine if the input statement

is consistent.

72

Algorithm 1 Context broker B2’s argumentation behavior
B2-ARGUMENTATION-BEHAVIOR(KB,R,M)

1: LOAD-KNOWLEDGE(KB,R)
2: while ISOPEN(M) = TRUE do
3: c← RECEIVE(M, assert)
4: if CANJUSTIFY(M,R, c) = TRUE then
5: “adoptc because it is consistent”
6: else
7: error “cannot adoptc because it is inconsistent”
8: end if
9: end while

CANJUSTIFY(M,R, c)

1: if TYPEOF(c) = fact then
2: FACT(c,R)
3: end if
4: result← PREDICT(c,R)
5: if result = YES then
6: returnTRUE
7: else ifresult = NO && TYPEOF(c) = fact then
8: RETRACT(R,c)
9: returnFALSE

10: else ifresult = NO && TYPEOF(c) = hypothesisthen
11: SEND(M, question(c))
12: z ← RECEIVE(M, justify)
13: return CANJUSTIFY(M,R, z)
14: end if

73

There are two types of statements: fact and hypothesis. Fact statements are propositions that an agent is

willing to believe without any justification. Hypothesis statements are propositions that an agent is willing

to believe only if they can be justified. In the context of the Theorist system, the fact statements are Theorist

“fact” formulaes, and the hypothesis statements are Theorist “default” formulaes.

A key part of the CANJUSTIFY function is to decide when the context broker should adopt a statement that

is asserted by the other agent, and when to question the other agent for the justifications of the statement. If the

statement is type of “fact”, it is temporarily added to the reasoner (line 2). The Theorist “predict” command

is called to check if the statement is consistent (line 4). If the “predict” command returns “yes”, it implies

the current statementc is consistent with respect to the context broker’s current belief. The function exits by

returning “true” (line 6). On other hand, if the “predict” command return “no”, it implies the statement is

inconsistent with respect to the context broker’s current belief.

If the inconsistent statement is type of “hypothesis”, context broker B2 would give an opportunity to the

sender agent to argue for a justification of the statement. The context broker sends a question message to the

sender agent (line 11). If the sender agent replies with a justification, then the new justification is checked

by recursively calling the CANJUSTIFY function (line 12-13). If the inconsistent statement is type of “fact”,

context broker B2 retracts the statement that was added to the reasoner and exits the function by returning

“false” (line 8-9).

A Walk Through

In this section, I describe the dialog between context broker B1 and B2 in an attempt to resolve inconsistent

information. This dialog is based on the previously described use case scenario. In this example, the following

are facts believed by both context broker B1 and B2:

• Harry is a person, and he is the organizer of meeting M1.

• The day on which the dialog takes place is a Monday, which is a workday.

The following are defaults that are believed by the individual context brokers:

• B1 believes Harry is likely to be absent from meeting M1; B2 believes Harry is likely to be present at

meeting M1.

• B1 believes Harry’s car is parked at home; B2 has no knowledge about the location of Harry’s car.

74

Figure 13: An argument-based dialog between two context brokers. When context broker B2 detects the
statement asserted by context broker B1 is inconsistent, it requests context broker B1 to provide justification.
At the end of the dialog, context broker B1 convinces context broker B2 to accept its original assertion.

• B1 believes Harry is at home because his car is parked at home, and B2 believes Harry is at work

because today is a workday.

Figure 13 is a UML sequence diagram of the dialog between context broker B1 and B2. The argument

begins when context broker B2 detects the statement asserted by context broker B1 is inconsistent with its

current beliefs. Through a series exchange of “question-justify” messages, eventually, context broker B2 is

convinced that Harry is likely be absent from meeting M1 because his car is parked at home. Figure 14 shows

the underlying reasoning of context broker B2 in a Theorist command line session.

75

SICStus 3.11.2 (x86-win32-nt-4): Wed Jun 2 19:48:46 WEDT 2004
Licensed to umbc.edu
| ?- thconsult demomtg1.
yes
| ?- fact today(mon).
yes
| ?- predict organizer_absent(harry,m1).
no
| ?- predict organizer_present(harry,m1).
Yes, organizer_present(harry,m1) is in all extensions.
Explanations are:
1: [organizer_always_present(harry,m1),
at_work_on_workday(harry)].
yes
| ?- predict at_home(harry).
no
| ?- fact owned_car_at_home(harry).
yes
| ?- predict owned_car_at_home(harry).
Yes, owned_car_at_home(harry) is in all extensions.
Explanations are:
1: [].
yes
| ?- predict at_home(harry).
Yes, at_home(harry) is in all extensions.
Explanations are:
1: [at_home_bec_owned_car_is_at_home(harry)].
yes
| ?- predict organizer_absent(harry,m1).
Yes, organizer_absent(harry,m1) is in all extensions.
Explanations are:
1: [absent_organizer_is_at_home(harry,m1),
at_home_bec_owned_car_is_at_home(harry)].
yes
| ?- predict organizer_present(harry,m1).
no
| ?- halt.

Figure 14: A command line session of context broker B2’s argumentation reasoning in the Theorist system.

Chapter VI.

PRIVACY PROTECTION

Privacy is a key issue in the future pervasive computing systems [68, 16, 10, 47]. Ubiquitous sensors will

acquire information about the users, and share it with different agents in the environment. In CoBrA, part of a

context broker’s responsibility is to protect the privacy of the users when sharing their contextual information.

CoBrA adopts a policy-based approach to protect privacy. Policies are defined using the SOUPA policy

ontology. Using this ontology, CoBrA allows the users to control the granularity of the information that a

context broker can share with other agents. I chose to use the SOUPA policy ontology because it supports

policy reasoning using description logic. For this reason, the CoBrA’s policy reasoning implementation can

exploit the use of an “off-the-shelf” description logic reasoner (i.e., Racer [48]).

However, at the same time, the use of the SOUPA policy ontology brings about tradeoffs in policy ex-

pressiveness. In particular, the ontology does not support the definition of variables and rule conditions that

are logical expressions (e.g., conjunctions and disjunctions). Without these constructs, for example, users

cannot define conditional policy rules or define meta-policies for policy managements [58]. Nevertheless, I

believe it is a sensible choice to choose a simple policy language because it allows the re-use of the existing

DL-reasoners, which are well-developed and have scalable performance. In the future, when the OWL stan-

dards for representing rules becomes available [54], CoBrA’s policy representation could be replaced with a

new ontology to enhance the expressiveness of privacy policy rules.

76

77

A. Background

Policy is an emerging technique for controlling and adjusting low-level system behaviors by specifying high-

level rules [100]. The use of policy is common in computing systems that feature security or privacy protec-

tion [104]. In typical policy-based systems, policy rules are defined using declarative policy languages that

are distinct from the actual system programming languages. A key advantage of using declarative languages

to express policies is that the defined policies are more suitable for humans to view and edit. In addition,

by separating the logic (i.e., policy rules) from the control (i.e., programming implementations) of the sys-

tem implementations, policy-based security and privacy protection systems are typically more flexible and

adaptable than other non-policy-based systems [100].

Different research works in the policy domain often share a common vision on the use of policy, i.e., using

high-level policy rules to control low-level system behaviors. However, they usually adopt different repre-

sentation languages to define policies. The choice of a representation language can affect the expressiveness

and the flexibility of the policy language. For example, the Ponder policy language [35] has a representation

that is similar to a typical procedural language, and therefore it is less expressive than other policy languages

that are represented using markup languages (e.g., XML and RDF) or Semantic Web languages (e.g., RDFS

[14], DAML+OIL [31], and OWL [101]). The P3P (Platform for Privacy Preferences) language [33] has

representations in both XML and RDF. Allowing for more expressive constructs, the KAoS policy language

[13] is more expressive than the previous two languages. It is defined using the DAML+OIL language. The

Rei policy language [58] and the privacy policy language in the e-Wallet system [47] both adopt the OWL

language as the representation language for policies.

Policy languages that are represented using the Semantic Web languages are defined in terms of ontolo-

gies. Different ontology organizations require different computing approaches to reason and analyze policies.

The design of the KAoS policy ontology suggests the use of a description logic inference engine to analyze

policy rules. The Rei policy ontology, on the other hand, requires the use of a Frame Logic (F-Logic) based

meta-interpreter to compute policy restrictions and constraints. The policy analysis mechanism in the e-

Wallet system exploits the XSLT technology to translate policy rules from RDF to JESS rules, and then it use

a JESS rule engine to compute policy restrictions.

The SOUPA policy language is similar to those ontology-based policy languages described previously. It

also uses a Semantic Web language to represent policies. The SOUPA policy ontology is similar to Rei in

modeling a policy as a set of rules that define restrictions on actions (e.g., an action with certain properties is

78

permitted or forbidden). However, it has limited support for meta-policy reasoning (e.g., conflict resolution)

and speech acts (e.g., delegation and revocation) [58]. While the SOUPA policy language uses a different

representation than the KAoS policy languages, but they share a similar policy reasoning mechanism. They

both exploits the use of description logic reasoning.

B. Privacy Protection Issues

Privacy is about the control of information – who has the access to what information. In a pervasive comput-

ing environment, people express concerns about their privacy because hidden sensors are embedded in their

everyday living environment, and the information acquired by these sensors are often shared by different

service agents. Granted that the pervasive computing services will greatly enhance people’s computing expe-

riences. However, I believe people will abandon the most useful services if they are unable to take control of

their private information.

In CoBrA, the following privacy protection issues are considered: how policy can be used to control the

sharing of users’ private information, and how users can control the granularity of the information that the

system shares.

To protect privacy using policy, an obvious approach is to define a global privacy policy. One policy

applies to all users in a space. The context broker of the space enforces this policy whenever it shares users’

information. However, this is an inadequate solution. In reality, because different users can have different

privacy preferences – e.g., some users may be more comfortable to share their private information with the

systems than the others, it would be difficult to capture all privacy preferences of different users in a single

global policy. For this reason, the privacy protection of a context broker must allow users to define policies

of their own privacy preferences.

Users desire privacy protection because they are concerned about the possible misuse of their information.

However, this does not necessary imply that the users desire all of their information to be hidden from

the context-aware systems. Completely prohibiting context-aware systems to share their information would

hinder the systems’ ability to provide relevant services and information. A good example of this situation

is the sharing of a user’s location information. In a smart meeting room, a context broker constantly tracks

a person’s location, and context-aware agents often acquire this information from the context broker. For

example, while a person is located in a meeting room, she may desire the context broker to share the details

79

of her location only with the agents that she trusts. When some untrusted agent asks for this information, she

desires the sharing of information to only reveal general knowledge of her whereabouts.

C. The Policy Ontology

The SOUPA policy ontology is designed based on the following principle:policies are rules for regulating

the permissions for computing entities to perform actions. In a pervasive computing environment, policies are

defined by the human users to permit or forbid computing entities to perform different types of actions. An

action can be an invocation to a computing procedure to acquire user information or to access some service in

the computing environment. For example, actions can be system calls to low-level API’s, remote procedures,

or web service interfaces, and actions also can be queries to some persistent data repository or communication

messages that are sent to agents in the system.

An action is defined with the following properties:

• Actor : an agent that performs the action.

• Recipient: an agent that receives the effect after the action is performed.

• Target: a physical or an abstract object that the action applies to.

• Location: a place at where the action is performed.

• Time: time at which the action is performed.

• Instrument : a physical or an abstract thing that the actor uses to perform the action.

To regulate the performance of an action, a user can define policy rules to eitherpermit or forbid the

action to be performed. In a pervasive computing system, the enforcement of a policy can be the duty of a

pre-established central authority or part of the obligation of a self-governing agent.

Policies are documents. All defined policies possess similar attributes that describe typical written docu-

ments (e.g., meta-data about the documents). The set of typical policy document attributes include the author

who created the policy, the creation time of the policy, the version information of the policy, and the expected

policy enforcer of the policy.

In a policy document, it is often infeasible to define policy rules for every possible actions of a domain.

For example, in a location-aware system, different agents may be interested to know the whereabouts of a

80

Figure 15: The SOUPA policy ontology defines the vocabularies for describing rules that permit or forbid
agents to perform actions. The policy ontology imports the SOUPA action and time ontologies.

user. It would be infeasible for the user to explicitly enumerate location sharing rules for every agent in the

system. A solution to this problem is to define meta-policy reasoning behavior that can help agents to reason

about action permissions even when policy rules are not defined. The SOUPA policy ontology defines the

following meta-policy reasoning behavior:

• Conservative: by default, assume all actions are forbidden. If no explicit rules are defined to regulate

an action, then assume the action is forbidden.

• Liberal : by default, assume all actions are permitted. If no explicit rules are defined to regulate an

action, then assume the action is permitted.

The OWL representation of the policy ontology is defined in a single ontology document under the

XML namespacehttp://pervasive.semanticweb.org/ont/2004/06/policy# . This ontol-

ogy imports the SOUPA time and action ontologies for representations of time and actions, respectively.

Hereafter, I use the prefixpol: , tme: , andact: as the XML namespace shorthand for the SOUPA policy,

time, and action ontology, respectively.

The OWL classpol:Policy represents a set of all policy documents. An individual of this class rep-

resents a policy document for regulating the permissions for agents to perform different actions. For a given

pol:Policy class individual, the propertiespol:creator , pol:policyOf , andpol:enforcer

81

describe the agent who creates the policy, the agent whom this policy applies to, and the agent who enforces

the defined policy rules, respectively. For describing the time when a policy document is created, the on-

tology defines thepol:createdOn property, and the range of which is thetme:InstantThing class.

The individuals of thetme:InstantThing class are temporal descriptions of the time instants [24].

To describe policy rules, the ontology defines the propertypol:permits for expressing permissions

and the propertypol:forbids for expressing prohibitions. The domains of both properties are thepol:-

Policy class. The range of thepol:permits property is thepol:PermittedAction class, and

the range of thepol:forbids property is thepol:ForbiddenAction class. Both action classes are

subclasses of theact:Action class, but the set of individuals of each classes are disjointed.

Thepol:defaultPolicyMode property is a meta-policy construct for specifying the policy reason-

ing behavior of a policy-enforcing agent. This property has domainpol:Policy and rangepol:Mode .

Thepol:Mode class is an enumerated class, which consists of two pre-defined class individuals –pol:-

Conservative andpol:Liberal .

The OWL classact:Action represents a set of all actions. Within the SOUPA action ontology, six

basic action properties are defined. They areact:actor , act:recipient , act:target , act:-

location , act:time , andact:instrument . The meanings of these properties are described in the

previous section. Note that in the action ontology document, the ranges of these properties are unspecified,

and they are intended to be specified in the subclasses that extend theact:Action class.

D. A Policy Reasoning Algorithm

This section describes an algorithm for reasoning with the SOUPA policy ontology. The algorithm describes

a procedure that can be implemented by a self-governing agent to compute its right to perform a specific

action or implemented by a centralized authority to answer queries about the rights of other agents to perform

actions.

An agent capable of reasoning with the SOUPA policy ontology is assumed to have the following compo-

nents: (i)KB: a knowledge base that stores the agent’s world knowledge in RDF triples (SOUPA ontologies,

contextual information, user policies, etc.), (ii)RDL: a Description Logic inference engine that support the

OWL-DL reasoning, (iii)faction(I): a function that maps an agent’s intentionI (i.e., an action that an agent

intends to perform) into a set of RDF triples, and (iv)fpolicy(A): for a given action descriptionA, this func-

82

Algorithm 2 Computes the permission to perform an intended actionI

COMPUTE-PERMISSION(KB,RDL, I)

1: perm← UNDECIDED
2: A← faction(I)
3: P []← fpolicy(A)
4: if length[P] = 0 then
5: P [1]← ∗global policy∗
6: end if
7: for i = 1 to length[P] do
8: permtmp ← UNDECIDED
9: DO-CLASSIFICATION(RDL,KB, P [i], A)

10: T []← L IST-INDIVIDUAL -CLASS-TYPES(RDL, A)
11: if CONTAINS(T , PermittedAction) = TRUE and

CONTAINS(T , ForbiddenAction) = TRUE then
12: error “inconsistent policy”
13: else ifCONTAINS(T , PermittedAction) = FALSE and

CONTAINS(T , ForbiddenAction) = FALSE then
14: permtmp ← USE-POLICY-DEFAULT-BEHAVIOR(P [i])
15: else ifCONTAINS(T , PermittedAction) = TRUE then
16: permtmp ← PERMIT
17: else ifCONTAINS(T , ForbiddenAction) = TRUE then
18: permtmp ← FORBID
19: end if
20: if permtmp = PERMIT andperm = FORBID then
21: error “inconsistent policy”
22: else ifpermtmp = FORBID andperm = PERMIT then
23: error “inconsistent policy”
24: else
25: perm← permtmp

26: end if
27: FORGET-ASSERTIONS(RDL,P [i])
28: end for
29: returnperm

USE-POLICY-DEFAULT-BEHAVIOR(policy)

1: behavior ← POLICY-DEFAULT-BEHAVIOR(policy)
2: if behavior = CONSERVATIVE then
3: returnFORBID
4: else ifbehavior = LIBERAL then
5: returnPERMIT
6: end if

83

tion outputs a list of user policy documents that each of which contains some rule that regulates the execution

of the action.

The outputs of thefaction(I) andfpolicy(A) functions are expressed in the SOUPA ontologies or ontolo-

gies that extend SOUPA. Users are assumed to be responsible to provide agents their policy documents.

The objective of the algorithm is to help a policy-enforcing agent to effectively decide, for a given set of

associated user policies and an intended action, whether the execution of the action is permitted or forbidden

by the policies. Exception conditions may occur while the agent is performing policy reasoning. First, an

exception can occur when there is no available user policy in theKB. Second, an exception can occur when

the rules in a user policy neither permit nor forbid the execution of an action. Lastly, an exception can occur

when one or more user polices contain conflicting rules that simultaneously permit and forbid the execution

of an action.

In this algorithm, the first exception is handled by assuming the existence of a global policy, which is

adopted by the policy-enforcing agent by default. To handle the second exception, the algorithm uses the

meta-policy construct (i.e.,pol:defaultPolicyMode) to decide the permission of an action when it is

not regulated by any policy rules. For the last exception, the algorithm delegates the exception handling task

to the upper-level agent implementation by “flagging” the detection of policy inconsistency.

Algorithm 2 defines a procedure called COMPUTE-PERMISSION. It takesKB, RDL andI as the inputs

and returns a value that represents the computed permission to perform an actionA. Note thatA is the

output offaction(I). Let P TYPE be an enumeration type, which has a set of valuesPERMIT, FORBID,

andUNDECIDED. The values ofP TYPE represent all possible computed permission values that can be

returned by COMPUTE-PERMISSION.

In Algorithm 2, the procedure DO-CLASSIFICATION (line 9) is called to execute the associated DL classi-

fication functions ofRDL, and the procedure LIST-INDIVIDUAL -CLASS-TYPES (line 10) is called to return

the names of all ontology classes of which the actionA is an instance after the classification is made. The

utility procedure USE-POLICY-DEFAULT-BEHAVIOR (line 14) helps the agent to compute permissions when

actions are not explicitly regulated by any policy rules. After computing the action permission for each user

policy, the procedure FORGET-ASSERTIONS(line 27) is called to execute the associated DL functions to

remove all assertions about the current policy from the inference engine, so that the inference of different

policy documents can be computed independently.

84

E. Privacy Protection Applications

I prototyped a context broker to demonstrate privacy protection. In the prototype, the context broker im-

plements the policy reasoning algorithm described in the previous section and is customized to support the

protection of two types of private information: (i) personal profiles and (ii) location information. Personal

profiles consist of information that describes a person’s contact information, social networks, professional

backgrounds, and personal devices. Location information is information that describes the whereabouts of a

person.

The SOUPA and the CoBrA ontologies are used to express this information. The typical profile informa-

tion is expressed using vocabularies from the SOUPA agent and person ontologies. The SOUPA space, time,

and location ontologies are used to express people’s location contexts. Since the prototype applications are

built for a smart meeting scenario at UMBC, the CoBrA ontologies are used to express the information about

the specific people, rooms, events, and services.

Using the CoBrA Demo Toolkit (see Chapter VII.), the prototype demonstrates the following privacy

protection scenarios:

• A context broker has knowledge about a user’s profile information (e.g., contact information or daily

schedule). In the privacy policy, the user defines different classes of information recipients that are

either permitted or forbidden to acquire this information. When an agent queries the context broker

for the user’s profile information, the context broker shares the matching information only if the policy

permits the agent to receive this information.

• A context broker has knowledge about a user’s location. This knowledge consists of information about

the specific room that the user is located in and the associated arrival and departure time interval. When

different agents queries the context broker for the user’s location information, the context broker either

reveals or hides the matching location information based on the privacy policy of the person.

• A context broker has knowledge about the different locations that a user has been to during a partic-

ular interval (i.e., the context broker has a history record of the user’s location context). The specific

locations described in the history record are a mixed set of spatial things (e.g, rooms, buildings, univer-

sity campus, cities, states or countries). In the privacy policy, the user specifies the types of locations

that are permitted or forbidden to be shared. When an agent queries the context broker for the user’s

location history, the context broker only shares the records that are permitted by the policy.

85

• A context broker has knowledge a user’s location. The specific location described in this knowledge

is a type of room. In the privacy policy, the user specifies the granularity of the location information

that the context broker can share with other agents. For example, the policy rule might say “only share

my location information if the described location is more general than the conceptbuilding”. When an

agent queries the context broker for the user’s location information, the context broker will not reveal

the name of the particular room in which the user is located. However, it will share the name of the

building, the university campus, the state, or the country that spatially subsumes that particular room.

In the rest of this section, I describe an example of the privacy policy and the policy reasoning implemen-

tation of a context broker.

1. An Example of the Privacy Policy

A privacy policy is typically defined by importing the vocabularies from the SOUPA policy and action on-

tologies. Sometimes a privacy policy may also import specific classes (domain actions, geo-spatial concepts,

etc.) from a domain ontology. The example policy described in this section imports the SOUPA and CoBrA

ontologies vocabularies (see Chapter IV.).

The policy representation of the follow examples are expressed using the N3 language [11]. A full

RDF/XML representation of the policy is available athttp://cobra.umbc.edu/ont/2004/05/

harrychen-policy .

Policy Rule 1

<http://umbc.edu/˜hchen4/hchen.pol> a pol:Policy;
pol:policyOf [a per:Person; per:name "Harry Chen"ˆˆxsd:string]
pol:defaultPolicyMode pol:Conservative;

Rule 1: all individuals of CLS1 are permitted actions#
pol:permits ha:CLS1;

ha:CLS1 a :Class;
:intersectionOf (

ebact:ShareContactInfo
[:allValuesFrom ha:PersonTimFininKnows; :onProperty act:recipient]) .

ha:PersonTimFininKnows a :Class;
:intersectionOf (

per:Person
[:hasValue <http://www.cs.umbc.edu/˜finin>; :onProperty per:knows]) .

...

The beginning of this policy defines the policy’s owner and the default policy mode. Rule 1 expresses that

action classCLS1 is of typepol:PermittedAction . The context broker is permitted to perform actions

that are instants of this class, e.g., sharing Harry’s contact information with people that Tim Finin knows.

86

Action classCLS1 is defined usingowl:intersection , an OWL-DL construct for defining complex

classes. The set of individuals ofCLS1are in the class intersection betweenebact:ShareContactInfo

class and a restriction class. This restriction class has defined restriction on the propertyact:recipient ,

and which requires all range values of the property to be individuals of the classPersonTimFininKnows .

Policy Rule 2

<http://umbc.edu/˜hchen4/hchen.pol> a pol:Policy;
pol:policyOf [a per:Person; per:name "Harry Chen"ˆˆxsd:string]
pol:defaultPolicyMode pol:Conservative;

...

Rule 2: all individuals of CLS2 are permitted actions#
pol:permits ha:CLS2;

ha:CLS2 a :Class;
:intersectionOf (

ebact:ShareLocationInfo
[:allValuesFrom ebm:EbiquityMember; :onProperty act:recipient]
[:onProperty act:target; :someValuesFrom ha:MyRestrictedLocationContext]) .

ha:MyRestrictedLocationContext a :Class;
:intersectionOf (

loc:LocationContext
[:onProperty loc:boundedWithin; :someValuesFrom ha:foo-a1]) .

ha:foo-a1 a :Class;
:oneOf (ebgeo:ITE210A ebgeo:ITE325B ebgeo:UMBCMainCampus) .

...

Rule 2 expresses a different class of actions that the context broker is permitted to perform. This rule gives

the context broker the permission to share Harry’s location information with the members of the eBiquity

research group. However, the policy restricts the kind of location information can be shared with the eBiquity

group members. Information can be shared if it only reveals that Harry is located in any one of the following

places: Room ITE201A, Room ITE325B, or UMBC Main Campus.

Like theCLS1 class, theCLS2 class is also defined as an intersection class.CLS2 is a set of individuals

that are in the class intersection betweenebact:ShareLocationInfo and two other restriction classes.

One of the restriction classes has defined restriction on the propertyact:recipient , and which requires

all of the range values point to theebm:EbiquityMember class. The other restriction class has defined

restriction on the propertyact:target , and which requires some of the range values point to thefoo-a1

class. Thefoo-a1 class is an enumerated class, which consists of three differentspc:SpatialThing

individuals defined in the CoBrAebgeo namespace.

Policy Rule 3

<http://umbc.edu/˜hchen4/hchen.pol> a pol:Policy;

87

pol:policyOf [a per:Person; per:name "Harry Chen"ˆˆxsd:string]
pol:defaultPolicyMode pol:Conservative;

...

Rule 3: all individuals of CLS3 are forbidden actions#
pol:forbids ha:CLS3.

ha:CLS3 a :Class;
rdfs:comment "Share my location information with untrusted service agent";
:intersectionOf (

ebact:ShareLocationInfo
[:allValuesFrom ha:UntrustedServiceAgent; :onProperty act:recipient]) .

ha:UntrustedServiceAgent a :Class; rdfs:subClassOf agt:Agent;
:oneOf (

<http://www.orbitz.com#locTrack> <http://www.foobar.com#whereRu>
<http://www.foofoobar.com#abc>) .

...

Rule 3 expresses a policy rule that forbids the context broker to share Harry’s location information with a

group of untrusted agents. TheCLS3 class is a set of actions that the context broker is forbidden to perform.

CLS3 is defined in a similar way asCLS1 and CLS2. This class is an intersection class between

ebact:ShareLocationInfo and a restriction class. The restriction class has defined restriction on the

propertyact:recipient , and which requires all of the range values point to theUntrustedService-

Agent class.UntrustedServiceAgent is an enumeration class of three differentagt:Agent indi-

viduals.

The interpretation of this rule is that if any of the three agents asks the context broker for Harry’s location,

regardless of the granularity of the location information, the context broker will always refuse to share this

information.

Policy Rule 4

<http://umbc.edu/˜hchen4/hchen.pol> a pol:Policy;
pol:policyOf [a per:Person; per:name "Harry Chen"ˆˆxsd:string]
pol:defaultPolicyMode pol:Conservative;

...

Rule 4: all individuals of CLS4 are permitted actions#
pol:permits ha:CLS4

ha:CLS4 a :Class;
:intersectionOf (

ebact:ShareLocationInfo
[:allValuesFrom per:Person; :onProperty act:recipient]
[:onProperty act:target; :someValuesFrom ha:MyRestrictedLocationContext2]) .

ha:MyRestrictedLocationContext2 a :Class;
:intersectionOf (

loc:LocationContext
[:onProperty loc:boundedWithin; :someValuesFrom ha:PlaceMoreGeneralThanITE]) .

ha:PlaceMoreGeneralThanITE a :Class;
:intersectionOf (

rcc:RCCSpatialRegion
spc:LandBasedRegion
[onProperty spc:spatiallySubsumes; :allValuesFrom ebgeo:ITE]) .

88

Rule 4 expresses a policy rule that permits the context broker to share Harry’s location with any person,

however, a special restriction is imposed on the location granularity. The policy rule permits Harry’s location

information to be shared if the information only reveals that Harry is located in a place that is no more specific

than the ITE building – e.g., it is okay to reveal that Harry is on the UMBC campus, but it is not okay to reveal

that Harry is located in a particular room in the ITE building.

TheCLS4class is also defined as an intersection class. This class is in the intersection betweenebact:-

ShareLoocationInfo and two other restriction classes. One of the restriction classes has defined re-

striction on the propertyact:recipient . The restriction requires all of the range values of theact:-

recipient property point to theebm:EbiquityMember class. The other restriction class has defined

restriction on the propertyact:target . The restriction requires some of the range values point to the

MyRestrictedLocationContext2 class.

The MyRestrictedLocationContext2 class is a class that represents a special type of location

context. The individuals of this class areloc:LocationContext individuals with a restrictedloc:-

boundedWithin property. This property restriction requires some of the range values point to thePlace-

MoreGeneralThanITE class.

2. Policy Reasoning Walk-Through

The policy reasoning in the context broker prototype has two parts. One part is an implementation of the

policy reasoning algorithm (i.e., Algorithm 2) for computing the permissions to perform actions. The other

part is a procedure for adjusting information granularity. The implementation requires all policies for pri-

vacy protection and all contextual information involved in knowledge sharing to be expressed in the OWL

language.

Policies and information are communicated between the context broker and the other agents via FIPA

ACL. The content message representation is expressed in RDF/XML. To acquire contextual information,

agents send query messages to the context broker. The contents of those query messages are expressed using

the RDQL language.

The context broker stores the user-defined policies in the same persistent knowledge base that stores the

users’ contextual information (see Chapter V.). Since all policies are represented as RDF statements, the

implementation manages these policies the same way as it manages the contextual knowledge. The Jena

Ontology API is used to manipulate and access the stored user policies.

89

Figure 16: The interactions between the context broker and other agents during a privacy protection process.
Before the context broker shares any person’s information with the other agents, it uses the person’s policy to
compute whether or not the information can be shared.

To reason about the policies, the implementation uses the Racer inference engine [48]. The context broker

does not directly invoke the DL inference commands of Racer. It uses the DIG inference API provided by

Jena to interact with Racer. In Jena, all ontology classes and instances are stored in a class object called

Model . An instance of this class can be viewed as a database of the context broker. By itself, theModel

class does not provide any ontology inference support. To reason with the stored information, a reasoner

must be attached to theModel object. When a reasoner is used, all queries sent to theModel object are

automatically processed by the underlying inference procedures of the reasoner. In the Jena API, there is

a special reasoner calledDIGReasoner , which provides DL inference support by loading data into an

external Racer engine and calling the appropriate DL inference commands over Racer. The context broker

implementation uses this reasoner to support policy reasoning.

The Interactions in Privacy Protection

In the prototype demonstration, the privacy protection of a context broker involves interactions between

multiple agents. Figure 16 shows a UML collaboration diagram of these interactions. Key actors in the

demonstration are context broker B1, information seeking agent A1, and person P1. The demonstration

90

assumes context broker B1 has some contextual knowledge about person P1, and agent A1 seeks to acquire

this information. To protect her privacy, person P1 sends a policy to context broker B1 and requests the

context broker to enforce the defined policy rules when sharing her contextual information. When context

broker B1 receives a query from agent A1, requesting to acquire some contextual information about person

P1, context broker B1 consults person P1’s privacy policy before revealing any information to agent A1.

When building the prototype system, there are two implementation issues: (i) How to match a correct

user policy when the information resulted from agent A1’s query involves multiple people? (ii) What is the

appropriate message to send back to agent A1 when person P1’s policy forbids the matched query result to

be shared?

The solution adopted in the prototype implementation is as the follows. When information resulted from

a query involves multiple people, the policies of all individuals are used to compute whether or not the

information can be shared. For example, if the result of a query describes that Harry Chen is meeting with

Tim Finin in Room 232. Both Harry Chen’s and Tim Finin’s policies are used to decide whether or not this

information can be reveal to the requesting agent.

According the FIPA Query Interaction Protocol [43], when an agent decided not to share some informa-

tion with an information requesting agent, the agent should reply with a FIPA “refuse” message in response

to the request. In other words, according to the protocol, when context broker B1 refused to share person

P1’s information with agent A1, it should reply with a “refuse” message. However, in the context of privacy

protection, the sending of this response message is inappropriate because it may cause undesired information

leakage. For example, let’s assume context broker B1 knows that Harry Chen is located in RM 233, and

agent A1 asks context broker B1 “what’s the location of Harry Chen?” Let’s assume Harry’s policy forbids

his location information to be shared with agent A1, and for that reason, context broker B1 replies with a

“refuse” message. Although no explicit location information is revealed to agent A1, some implicit loca-

tion information can be deduced through reasoning. If agent A1 knows context broker B1 is located on the

UMBC campus and it only maintains people’s location information within the vicinity of the campus, agent

A1 can conclude Harry Chen is located somewhere on the UMBC campus. To address this issue, the “refuse”

communication act is replace by a new communication act called “uncertain”. An informal semantic descrip-

tion of this communication act is the following: the “uncertain” act is performed when the agent does not

have sufficient knowledge to answer a received query. Revealing a context broker does not have sufficient

knowledge to answer a query will prevent other agents from exploiting the hidden knowledge that may be

91

associated with the “refuse” communication action.

Adjusting the Granularity of Information

The prototyped context broker can also support the adjustment of information granularity when protecting

privacy. User policies may define rules to control the granularity of the information that the context broker is

permitted to share. For example, Rule 4 described in the previous section is an example of this type of policy

rule. In this rule, the policy permits the context broker to share Harry’s location information with any person

as long as the information only reveals that Harry is located in a place that is more general than the concept

of “building”.

Figure 17: A UML diagram that describes the context broker’s behavior when adjusting information granu-
larity for privacy protection.

The granularity adjustment procedure is implemented based on an algorithm described in Figure 17.

This algorithm extends the policy reasoning algorithm described previously with additional agent behaviors.

The algorithm begins when the context broker receives a query from another agent. After executing the

query (which is represented in RDQL), the context broker finds the matched results (which is represented in

92

RDF/XML). From the query results, the context broker determines the policies that should be used in privacy

protection. After loading the policies and the query results into the Racer engine, the context broker com-

putes whether or not the sharing of this information is permitted. If it is permitted, then the context broker

shares this information. Otherwise, the context broker tries to adjust the granularity of the information. If

the granularity of the information can be successfully adjusted, then the context broker re-computes the per-

mission. Otherwise, the context broker sends an “uncertain” message to the sender agent and the granularity

adjustment procedure terminates.

Figure 18: The context broker exploits spatial reasoning to generalize the actual location of a person and
shares this information without violating the user defined policy.

Figure 18 shows an example of the granularity adjustment procedure. In this example, the context broker

exploits the use of a spatial ontology to adjust the granularity of Harry’s location information. Harry’s policy

forbids any location information that is more detail than the concept of “ITE Building” to be shared. When

the Location Sensor tells the context broker that Harry is located in Room ITE210, based on the defined

spatial ontology, the context broker is able to conclude additional location information about Harry’s location

(e.g., Harry is also located in ITE Building, UMBC Campus, and the state of Maryland). When the Meeting

Agent asks for the whereabouts of Harry during 8:00-13:00, the context broker replies that Harry is located

93

in UMBC. It does not reveal the more specific knowledge that it has about Harry’s location – i.e., Harry is

located in ITE210. When the Meeting Agent asks whether or not Harry is located in the ITE Building at

12:20, the context broker replies with an “uncertain” message.

Chapter VII.

IMPLEMENTATIONS

To evaluate the feasibility of the Context Broker Architecture, I have developed a number of different proto-

type systems to simulate the use of a context broker in a smart meeting room environment. The objective is to

show (i) the use of CoBrA can help to reduce the efforts in developing a pervasive context-aware system, (ii)

a context broker can be implemented based on the existing FIPA agent and semantic web technologies, and

the tools for testing and monitoring a context broker can be integrated into the mainstream software develop-

ment environment (e.g., Eclipse IDE), and (iii) new context-aware applications can be built on the existing

resource-limited mobile devices by exploiting the broker-centric design of CoBrA.

A. EasyMeeting

EasyMeeting is an extension to Vigil [106], a third generation pervasive computing infrastructure devel-

oped at UMBC. Security is the main focuses in Vigil. While the research development behind Vigil shows

great promisespromise in building flexible and secure smart spaces [106, 26], it lacks the necessary support

for context-awareness and privacy protection [22]. To improve upon the previous system, a context bro-

ker is added to provide support for context modeling and reasoning (see Figure 19). The development of

EasyMeeting was a join work between me and a number of other eBiquity group members [23].

1. Services

EasyMeeting’s implementation provides context-aware services for assisting speakers and audiences during

presentations. We have developed sixedsix services:

94

95

Figure 19: In EasyMeeting the Context Broker shares its contextual knowledge with the MajorDemo agent.
Using this knowledge, MajorDemo selects and then invokes appropriate Vigil services to provide relevant
services and information to the speakers and audiences.

1. Speech Recognition ServiceThis service can be invoked to perform speech recognition on a set of pre-

defined voice input vocabularies (e.g., “yes”, “no”, “show Harry’s presentation”) and generate CCML

(Centaurus Capability Markup Language) [59] commands for controlling other Vigil services. In this

service, the underlying voice recognition procedure is implemented using the IBM WebSphere Voice

Server SDK and Voice XML.

2. Presentation ServiceThis service can be invoked to display PowerPoint presentations on an overhead

projectprojector in the room. The presentation file is fetched from a URL that a client has specified.

It defines a set of CCML commands for controlling the flow of a displaying presentation (e.g., “next”,

“back”, “stop”, “start”). Exploiting the Speech Recognition Service, users can control their presenta-

tions via speech commands.

3. Lighting Control Service This service can be invoked to adjust the lighting conditions in a meeting

room. The underlying lighting control mechanism is implemented using the X10 technology. Lights

are wired to X10 Lamp Modules. Using the light control API, this service can control the lights to be

turned on or off, or to be dimmer or brighter.

4. Music ServiceConnected to a pair of speakers and using an existing MP3 music player software, this

service can be invoked to play audio music files that are accessible on the Web. A typical use of this

96

service is to continuously play background music while participants are waiting for a meeting to begin.

5. Greeting ServiceThis service can be invoked to play a specified greeting message. The played audio

file is dynamically generated from a client specified greeting message (e.g., “Welcome to the eBiquity

Group, President Hrabowski”). The underlying text-to-speech procedure is implemented using the

IBM WebSphere Voice Server SDK and Voice XML.

6. Profile Display ServiceThis service can be invoked to instruct all subscribed web browsers to display

any URL (e.g., some user’s home page). The intended use of this service for displaying speaker profiles

on the handheld devices that individual audiences carry. This is useful for helping audiences to learn

about the background of the speaker that is currently presenting.

In EasyMeeting, the context broker provides a shared model of context for all agents and services. In par-

ticular, it is responsible for acquiring and maintaining consistent knowledge about (i) the location of meeting

participants, (ii) the event schedule of a meeting, (iii) the presentations that are scheduled for the meeting,

(iv) the profiles of the presentation speakers, and (v) the state of a meeting. To acquire this knowledge, the

context broker explores different sources of information that is published on the Semantic Web and that is

provided by the sensor agents (e.g., the Bluetooth Sensing Agent).

The role of a MajorDemo agent is to decide when and what services should be provided to the meeting

participants. It relies on the context broker to provide information about the meeting context and uses the

registered Vigil services to facilitate different meeting related tasks. In order to simultaneously interact with

the Vigil services and the context broker, this agent is implemented with a hybrid design that bridges the

API’s for invoking services in Vigil and for communicating with the agents in CoBrA.

2. Use Case

The following is a typical EasyMeeting use case: Room 338 is a smart meeting room. On January 8th, 2004, a

presentation is scheduled to take place from 1:00-2:30 PM in this room. Moments before the event starts, the

room’s Context Broker acquires the meeting’s schedule from the Semantic Web and concludes the meeting is

about to take place in the Room 338. As the meeting participants begin to arrive, the room’s Bluetooth Sensing

Agent detects the presences of different Bluetooth enabled devices (e.g., cellphones, PDA’s). Because each

device has a unique device profile that is represented in some standard device ontologies, the sensing agent

can share this information with the Context Broker.

97

Based on the user profile information stored in the knowledge base of the context broker (e.g., who owns

what devices), without knowing any evidence to the contrary, the context broker concludes the owners of the

detected devices are also located in the Room 338. Among the arrived participants, Harry the speaker and

President Hrabowski the distinguished audience are two people that are listed in the meeting schedule. The

Context Broker shares the location information of these listed participants with the subscribed MajorDemo

agent.

Knowing that President Hrabowski has a distinguished audience role, the MajorDemo agent invokes the

Greeting Service to greet him. At 1:00 PM, the Context Broker informs the MajorDemo agent that all listed

keyparticipants have arrived and that the presentation can start. Knowing all the lights in the meeting are

currently switched on and the background music is also playing, the agent invokes the Dim Light Method on

the the Light Control Service and the Stop Music Method on the Music Service.

As Harry walks to the front of the meeting room, he speaks to the system using a wireless microphone,

“load Harry’s presentation”. The voice command is received by the Voice Recognition Service and a cor-

responding CCML command is generated. The MajorDemo agent sends this text string command to the

Presentation Service along with the URL at which Harry’s presentation can be downloaded (this informa-

tion is provided by the Context Broker). As the Presentation Service loads Harry’s PowerPoint slides, the

MajorDemo agent invokes the Profile Display Service to show Harry’s home page. A few seconds later, all

LCD displays sitting on the conference table start showing Harry’s biosketch and his profile. Using the same

wireless microphone, Harry speaks to the system to control his presentation.

B. CoBrA Demo Toolkit

CoBrA Demo Toolkit is a set of software applications for demonstrating the key features of a context broker.

Building on the existing FIPA and semantic web technologies, this toolkit showcases the use of ontologies

for context modeling and knowledge sharing, the use of logical inference for context reasoning, and the use

of policy for privacy protection.

This toolkit has three key components: (i) Context Broker – a context broker prototype built on the JADE

agent library, (ii) ScriptPlay – a configurable JADE agent that facilities the CoBrA demo scripts, and (iii)

CoBrA Eclipse Viewer (CEV) – an Eclipse Plug-in for monitoring the Context Broker’s knowledge base and

behavior.

98

1. Context Broker Agent

The implementation of the Context Broker agent consists of 63 Java class files. The core behavior of this agent

is defined in a set of Java classes called “behavior classes”. These classes are subclasses of the abstract JADE

agent behavior classes (SimpleBehaviour , CyclicBehaviour , etc.) [6]. The behavior classes define

how the agent publishes its services, acquires contextual information from sensors and the Web, reasons about

context and policy, and shares knowledge with other agents.

All behavior classes are contained within a single JADE agent class (i.e., ContextBroker), which is a

subclass of thejade.core.Agent class. In this class, the behaviors are registered with an internal

behavior scheduler. This scheduler manages the run-time execution of different behavior. Through the

ContextBroker class, the behavior classes share a common set of resources (i.e., knowledge base, rea-

soners, and other miscellaneous data structures).

The knowledge base of the Context Broker agent is a Jena ontology model [18]. It is backed by a MySQL

database. The knowledge stored in this model is represented as RDF triples. The Jena API provides the

necessary API for maintaining this ontology model, as well as the API for querying the ontology model.

Different ontology reasoners can be attached to the knowledge base (e.g., RDF-S and OWL reasoners). Most

reasoning behaviors of the Context Broker agent use the Jena OWL reasoner for reasoning over the OWL

language semantics. Some others use customized Jena rule-based reasoners to reason over ontology semantics

that are not part of the OWL language (e.g., the SOUPA time and spatial ontologies).

Some behavior classes also usesuse external rule-based systems (e.g., Jess and Prolog) for context rea-

soning. In these reasoning implementations, the behaviors fetch the RDF triples from the knowledge base

and transform them into the native representations of the rule-base systems. Some transformation procedures

are implemented based on a set of ad-hoc rules, and some others exploit the use of XSLT (XSL Transforma-

tions) technology. For example, the XSLT technology is used in transforming the RDF representation of the

contextual information into Theorist formulaesformulas when a reasoning behavior needs to use the Theorist

system to resolve inconsistent information.

The privacy protection behavior uses the Racer reasoner for reasoning with policy rules. The behavior

exploits the Jena API to communicate with the Racer reasoner via the DIG inference [55]. When reasoning

about a person’s privacy policy, the behavior fetches the policy rules from the knowledge base and loads the

rules into a specially constructed Jena model that is attached with a DIG reasoner. Action instants and other

required ontologies are also loaded into the model. Through DL classification, the behavior decides whether

99

a given action instant is permitted or forbidden to perform.

The Context Broker implementation uses the FIPA ACL as the standard language for communication.

The toolkit has a pre-defined set of communication protocols for knowledge sharing and action executions.

The content of all knowledge sharing messages are expected to be expressed in the RDF/XML language, and

the content of all query messages are expected to be expressed in RDQL language. The SOUPA and CoBrA

ontologies are the standard ontologies for describing information in the message content.

The implementation provides a Java property file for configuring various run-time parameters of the agent.

These include the service description used to publish services in a local FIPA Directory Facilitator, ontologies

used in context reasoning, and administrative information for access the local MySQL database.

2. ScriptPlay Agent

The implementation of the ScriptPlay agent consists of 21 Java class files. Like the Context Broker agent’s

implementation, the ScriptPlay agent’s behavior is also defined in a set of JADE agent behavior classes.

These behaviors are registered with the internal scheduler of theScriptPlayAgent class, which extends

the jade.core.Agent class.

A key function of this agent is to allow developers to introspectinspect? the underlying behavior of a con-

text broker. This includes examining the correctness in logical inference and privacy protection, inspecting

the accurate representation of various contextual knowledge, and the proper enforcement in privacy protec-

tion. Through different introspectionmight not be the word you want, check the dictionary processes, the

ScriptPlay agent helps the developers to understand different runtime behaviors of a context broker.

An introspection process is carried out in a sequence of message exchange between the Context Broker

agent and the ScriptPlay agent. There are three kinds of communication messages: inform messages, query

messages, and control messages. The inform messages are messages that contain information that the Script-

Play wants to share with the Context Broker agent (e.g., information about a person’s location or a meeting

schedule). The query message are messages that contain queries that the ScriptPlay wants the Context Broker

agent to answer (e.g., what’swhat is the location context of Harry during 8-9 AM?). The control messages

are messages that the ScriptPlay agent sends to request the Context Broker to perform certain actions (e.g.,

clear your current knowledge base).

The communication messages used in different introspection processes can be grouped into an XML

script file. Each script file can be viewed as a configuration file for the ScriptPlay agent. Depending on

100

Figure 20: A screenshot of the ScriptPlay agent’s GUI interface. Through this GUI, a user can select to
use different introspection script files, step through an introspection process, and review the communication
messages exchanged between the ScriptPlay agent and the Context Broker.

101

the script file that is loaded into the agent, the ScriptPlay agent dynamically configures itself to support the

corresponding introspection process.

The current implementation provides a number of different introspection script files. They include the

following:

• A script file for examining the temporal reasoning of the Context Broker. It tests if the agent can

correctly infer various types of temporal relations associated with time intervals and time instants.

• A script file for examining the spatial reasoning of the Context Broker. It tests if the agent can correctly

infer the spatial subsumption relations between different spatial entities. The spatial entities may be

expressed in either geo-metric or symbolic representations.

• A script file for examining the policy reasoning of the Context Broker. It tests if the agent can correctly

enforce the user-defined privacy policy when sharing a person’s location context or profile information.

• A script file for testing the Context Broker’s ability to detect inconsistent location information about a

person or a device. A set of location context information is sent to the agent with conflicting spatial

and temporal descriptions. It tests if the agent can correctly detect inconsistency based on spatial and

temporal reasoning.

For user interactions, the ScriptPlay agent provides a graphical user interface (GUI). Through this GUI,

a user can change the introspection script file to be used, step through the introspection process, and review

communication messages exchanged between the ScriptPlay agent and the Context Broker. Figure 20 shows

a screen shot of this GUI interface.

3. CoBrA Eclipse Viewer

CoBrA Eclipse Viewer is an Eclipse Plug-in for monitoring the Context Broker’s knowledge base and be-

havior. CEV also can be used as an ontology browser for exploring ontologies expressed using the OWL

language. Ontologies may be stored on a local file system, a remote web server, or a persistent relational

database system. The CEV implementation was inspired “the Spider for Eclipse” program developed by

Kent Beck and Erich Gamma (http://www.javaspider.org/).

The GUI of CEV consists of three view panels (see Figure 21): Object Navigator, Object Explorer,

and Console. In the Object Navigator view, the user can browse an opened knowledge base in a tree-view

102

Figure 21: A screenshot of the CoBrA Eclipse Viewer. CEV can be used to monitor the Context Broker’s
knowledge base and behavior. It also can be used as an ontology browser for exploring ontologies expressed
using the OWL language.

103

structure. The nodes in the tree represent different ontology concepts (i.e., OWL classes and class instants).

By double clicking on a class instant node (i.e., any node with an “I” icon), the user can explore its associated

ontology properties in the Object Explorer view.

In the Object Explorer view, the ontology concepts are displayed as a graph with directed arcs. The graph

structure is similar to the RDF graph [70]. The nodes in the graph represent RDF resources, and each node

can be viewed as a subject or an object resource. The associated predicates of a subject resource are listed

right below the subject node. The predicates are linked to the associated object resources via direct arcs. For

example, in Figure 21, the node “Maryland” is a subject resource and the text labels listed right below the

node are the associated predicate resources. The predicate “isDisconnectedFrom” is linked to the object node

“California” via a directed arc.

The Console view is a logging window for monitoring the Context Broker’s behavior. For debugging and

inspecting the internal reasoning and execution of the agent, this view shows the logging messages that are

produced by the logging thread of the Context Broker. The underlying logging function is supported by the

Log4J logging system (http://logging.apache.org).

C. CoBrA Text Messaging Commands

CoBrA Text Messaging Commands (CTMC) is a text messaging interface for mobile users to interact with

a Context Broker. Built on the existing text messaging technology, the users can use cellphones to ask the

Context Broker questions and invoke actions by sending SMS messages. The design of the CTMC system was

inspired by the Upoc (http://www.upoc.com/) and Dodgeball (http://www.dodgeball.com/)

services.

A typical CTMC use case is as the follows. Harry enters a smart meeting room. The Context Broker

detects Harry’s presentspresence. Knowing he is the host of the meeting, the Context Broker infers the kind

of services that are relevant to the tasks of a meeting host and sends the corresponding CTMC commands

of these services to Harry’s cellphone. This set of commands includes presentation set-up controls, room

temperature and lighting condition controls, and meeting scheduler controls. Feeling kind of warm in the

room, Harry adjusts the room temperature by sending the appropriate CTMC command to the temperature

service. Wondering if any of the participants are running late for the meeting, Harry sends a notification

request command to the meeting scheduler.

104

In the current prototype implementation, I have developed CTMC commands for searching the talk events

that are scheduled at the UMBC eBiquity group meetings and the commands for requesting follow-up re-

sources of the talks (e.g., presentation slides, white papers). Talk announcements and follow-up resources are

typically published on the eBiquity web site in both HTML and OWL representations. The Context Broker

monitors these publish ontology documents and uses this information to answer the incoming CTMC search

queries and requests.

The list of the supported CTMC commands:

qMEETING the user asks the Context Broker to list the title and the ID of today’s meeting events. If no event

is scheduled today, then the Broker answers no meeting event found.

qSPEAKER [meeting-ID] the user asks the Context Broker to send a short description of the meeting

speaker, which includes the speaker’s name, associated institution, and professional title, the number

of publications that the speaker has made, and the names of the research projects that the speaker is

currently involved in.

qINFO [meeting-ID] the user asks the Context Broker to send time, location, and status information

about a meeting.

qFOLLOWUP [meeting-ID] [email-address] the user requests the Context Broker to forward

documents and resources that are associated with the meeting to a designated email address. When

the command is received, the Context Broker sends a brief event description, the number of people

who attended the meeting, and any posted PowerPoint presentations to the designated email address.

In the current implementation, when a user sends a CTMC command via SMS, the message is relayed to

an email address of the Context Broker through an intermediate SMS routing service. This service is provided

through an existing cellular network provider. Periodically, the Context Broker checks the designated email

account for any incoming CTMC commands. Once a command is received and processed, the result is sent

back to the user’s cellphone via the SMS routing service. Figure 22 shows a UML diagram of this process.

105

Figure 22: A UML collaboration diagram that shows an instant of the CTMC execution process.

Chapter VIII.

CONCLUSIONS

Context-awareness is an important aspect of the ubiquitous computing vision. It enables computing systems

to provide relevant services and information based on the situational needs of the users. Through an un-

derstanding of context, computing systems will no longer require the users to give explicit instructions at

every step during their interaction with the systems. By exploiting context, context-aware systems will weave

themselves into the background of our everyday life.

I believe the intelligence of context-aware systems will be limited if the systems are unable to effectively

represent and reason about contexts, and users will abandon the most useful context-aware services if they

are unable control the sharing of their private information. I developed CoBrA, a new broker-centric agent

architecture for supporting pervasive context-aware systems. CoBrA differs from other similar systems in

using ontologies expressed in the OWL language for context representation and modeling, rule-based logical

inference for context reasoning, and declarative policies for privacy protection.

From the prototype systems that I have implemented, I showed CoBrA is a feasible architecture to support

context-aware systems. In particular, CoBrA helped to reduce the time and effort to rapidly prototype the

EasyMeeting system. The use of SOUPA and CoBrA ontologies helped context-aware services to represent

context and share knowledge. Using the CoBrA Demo Toolkit, I successfully demonstrated a policy-based

approach for privacy protection.

106

107

A. Lessons Learned

CoBrA can help developers to build context-aware systems. My research showed that (i) the use of Co-

BrA can reduce the effort and time to rapidly prototype context-aware applications, (ii) ontologies expressed

using the OWL language can provide a uniformed solution for context representation and reasoning, knowl-

edge sharing, and meta-language definitions, and (iii) the use of logical inference can improve the reasoning

capability of a context-aware system.

1. CoBrA Improves Rapid Prototyping

Prior to CoBrA, defining context representations and context reasoning procedures are the necessary tasks

of building a new context-aware system. These tasks are often time consuming because context modeling

is an iterative process that requires the special knowledge of a domain expert [36]. The greater the number

of systems that need to be implemented, the more time and effort would be required to develop the context

representation and the reasoning procedures.

I showed that CoBrA can improve rapid prototyping by reducing the time and effort required to define

context representations and context reasoning procedures. In EasyMeeting, different context-aware services

use different contextual information and require different context reasoning support. Because CoBrA pro-

vides a set of common ontologies, the development of these services can reuse the existing representation of

context. As the context broker plays the role in maintaining a shared model of context, the implementation of

different context-aware services can reply on the context broker to provide the needed contextual information.

In addition, the context reasoning of these services also can be simplified because the context broker provides

the logical inference to detect and resolve inconsistent information.

2. Context-Aware Systems Needs Ontology

The use of ontologies expressed in the OWL langauge distinguishes CoBrA from other infrastructures that are

also aimed to support context-aware systems [21]. In the past, the use of programming data structures (e.g.,

Java classes) to model context often tightly couples the context representation with the system implemen-

tation. The resulting system often has a rigid implementation and is difficult to maintain. Because context

models that are represented with programming objects lack declarative semantics, they cannot effectively

support knowledge sharing and context reasoning. In CoBrA, these issues are addressed by exploiting the

108

use of ontologies.

I showed that ontologies expressed using the OWL language can provide a uniform solution for context

representation and reasoning, knowledge sharing, and policy definition. Using OWL, various types of contex-

tual information can be expressed as ontologies with declarative semantics. By sharing a common ontology,

independently developed context-aware systems are enabled to communicate and share knowledge.

The OWL langauge also provides a specification for building context reasoners (e.g., the context broker’s

temporal, spatial, and policy reasoners). Because the reasoners are built on a standard specification, they can

be reused by different systems to support context reasoning.

I demonstrated the use of the SOUPA policy ontology for privacy protection. It showed that the OWL

language is suitable for defining new special purpose meta-languages. In the past, meta-languages typically

do not share a common root of representation (e.g., the Ponder policy language has a procedure-oriented

representation [35], and the Web Service Description Language has an XML-based representation [27]).

Without a shared representation, it is difficult to integrate the functions of different meta-languages in a single

system. The OWL language can help address this issue. From the prototype implementations, I showed that

the OWL language can be used to express a policy language and its associated policy reasoning can integrate

with the ontology vocabularies that are developed for other domain purposes (e.g., ontologies for describing

people’s profile and location context).

3. Logical Inference Helps to Enable Context-Awareness

In order to understand context, computing systems must be given the ability to interpret sensing informa-

tion and maintain a consistent model of this information. Logical inference is a means to enable context-

awareness. Through reasoning, the computing systems can derive conclusions about the acquired contextual

information and find evidences to argue against inconsistent information that is acquired from the external

sources.

CoBrA showed the use of rule-based logical inference to enable context-awareness. In particular, it

demonstrated the use of ontology reasoning and domain heuristics reasoning to support context interpretation.

I showed that a rule-based implementation of context reasoning allows a context-aware system to exploit

logical inference features (e.g., assumption-based reasoning, argumentation) that were not directly available

in the procedure-based implementations.

The ability to detect and resolve inconsistent information is of great importance to a context-aware system.

109

Using the Theorist system, I showed the assumption-based reasoning technique can be used to help a context

broker to resolve inconsistent information. Because the assumptions used to interpret context are represented

in logical rules, an argumentation behavior can be implemented to enable a team of context brokers to resolve

inconsistent information through dialogs.

B. Future Works

The CoBrA prototypes demonstrated the reasoning and knowledge sharing features of a context broker. How-

ever, the current context broker implementation can provide and process only contextual information that is

associated the meeting domain. Part of the future works is to increase the breadth of a context broker’s

knowledge and expand its context reasoning capability.

One way to increase a context broker’s knowledge is to broaden its source of context. The more infor-

mation that the context broker can acquire and reason with, the more context knowledge that it can derive.

To demonstrate this idea, I propose a new CoBrA sensing infrastructure be developed. The goal is to create

a flexible middleware system to facilitate the dynamic discovery of context sensors and the invocation of

sensing procedures.

This new infrastructure will have the following key components: (i) context sensing ontology, (ii) sensing

service registry, and (iii) service composition manager. The context sensing ontology is a set of ontologies

for describing the sensor profiles (e.g., the sensor type, device interfaces) and capabilities (e.g., the kind of

contextual information that the sensor can provide, the scores that estimate the accuracy of acquired sensing

data), and the service interface of the sensors (i.e., ontologies that describes the usage of the sensors). This

ontology is used by a context broker to discover sensors and to interact with their sensing interfaces. The

sensing service registry is a directory service for publishing and discovering sensing services. The actual

implementation of this service registry may utilize some of the existing service discovery architecture (e.g.,

UDDI [78] or Jini [102]). The service composition manager is a specialized agent that facilities sensing

service composition based on the needs of the context broker. When the context broker is unable to discover

a single service that would supply a desired type of contextual information, it sends a service composition

request to the service composition manager. The manger will attempt to fulfill the request through service

composition.

As the source of context increases, the context broker will be forced to reason with and maintain addi-

110

tional amounts of contextual knowledge. In theory, the existing rule-based implementation could be extended

to support the increasing context reasoning tasks. However, the rule-based implementation has certain weak-

nesses. First, it might not scale well when the number of conditional parameters increases in the logical

inference rules. Second, because building context reasoning rules often requires the special knowledge of do-

main experts, it might be difficult to effectively define reasoning rules for all possible contexts that a system

will use.

To address this issue, part of the future works is to explore alternative approaches for context reasoning.

I believe probabilistic approaches could be used to supplement the weaknesses of the rule-based approach.

For example, the context broker’s implementation could exploit the use of a two-state hidden Markov model

(HMM) for inferring the location of a person and an indicator of whether or not a person is in motion [65].

Krumm and Horvitz [65] show that their probabilistic approach can be used to infer over the location data

collected from an indoor Wi-Fi network. In their experiments, the probabilistic reasoner is able to determine

the location of a person with a median error of 1.5 meters and decide whether or not a person is in motion

with a classification accuracy of 87%.

I believe using a probabilistic approach to infer context will add certain flexibility to the implementation.

Unlike the rule-based systems, probabilistic systems are typically more adaptive to the changes of the en-

vironment. In an open and dynamic environment, the developers of a smart space cannot always anticipate

all possible changes that could occur in the space. By adding probabilistic reasoning into CoBrA, we give

developers more flexility in choosing to use different types of context reasoning.

Privacy protection is part of a context broker’s responsibility. Before sharing a user’s information, the

context broker consults the privacy policy to see if the client agent is permitted to acquire this information.

The information is shared only if the policy grants the permission. While the present approach can effectively

enforce policy on the context broker, however, it cannot enforce policy on the client agent once the user’s

information has been shared.

A possible solution to this problem is to introduce a reputation ranking system. This system will monitor

the knowledge sharing behavior of different agents. Based on their compliance with the user-defined policies,

the system will increase or decrease the reputation value of the agents. A simple ranking strategy might be that

whenever an agent shares information, the system increases the agent’s reputation value if no privacy policy

rule has been violated, and decrease the value if one or more policy rules have been violated. An actual

implementation of this system may include a trust evaluation model [56] for building reputation ranking

111

based on different types of trust (e.g., trust that results from role-based relationships between two agents and

trust that ensues from the direct interactions between two agents).

BIBLIOGRAPHY

[1] Gregory D. Abowd, Anind K. Dey, Robert Orr, and Jason A. Brotherton. Context-awareness in wear-

able and ubiquitous computing. InISWC, pages 179–180, 1997.

[2] Philip E. Agre. Changing places: Contexts of awareness in computing.Special Issue on Context-Aware

Computing. Human-Computer Interaction, 16(2-4), 2001.

[3] Jalal Al-Muhtadi, Roy Campbell, Apu Kapadia, Dennis Mickunas, and Seung Yi. Routing through the

mist: Privacy preserving communication in ubiquitous computing environments. InProceedings of the

International Conference of Distributed Computing Systems (ICDCS 2002), Vienna, Austria, 2002.

[4] Abhaya Asthana, Mark Cravatts, and Paul Krzyzanowski. An indoor wireless system for personalized

shopping assistance. InIEEE Workshop on Mobile Computing Systems and Applications, Santa Cruz,

CA, US, 1994.

[5] Sean Bechhofer, Frank van Harmelen, Jim Hendler, Ian Horrocks, Deborah L. McGuinness, Peter F.

Patel-Schneider, and Lynn Andrea Stein.OWL Web Ontology Language Reference, w3c recommen-

dation 10 february 2004 edition, February 2004.

[6] Fabio Bellifemine, Giovanni Caire, and Tiziana Trucco.JADE Programmer’s Guide. TILAB and

University of Parma, 2004.

[7] Victoria Bellotti and Abigail Sellen. Design for privacy in ubiquitous computing environments. InPro-

ceedings of the Third European Conference on Computer Supported Cooperative Work (ECSCW’93),

pages 77–92. Kluwer, 1993.

[8] Massimo Benerecetti, Paolo Bouquet, and Matteo Bonifacio. Distributed context-aware systems.Hu-

man Computer Interaction. Special issue on Context-aware computing, 16:213–228, 2001.

112

113

[9] Frazer Bennett, Tristan Richardson, and Andy Harter. Teleporting - Making Applications Mobile. In

Proceedings of 1994 Workshop on Mobile Computing Systems and Applications, Santa Cruz, Decem-

ber 1994.

[10] Alastair R. Beresford and Frank Stajano. Location privacy in pervasive computing.IEEE Pervasive

computing, 2(1), January–March 2003.

[11] Tim Berners-Lee.Primer: Getting into RDF & Semantic Web using N3, 2003.

[12] Paul V. Biron and Ashok Malhotra.XML Schema Part 2: Datatypes, 2001.

[13] Jeffrey M. Bradshaw, Andrzej Uszok, Renia Jeffers, Niranjan Suri, Patrick J. Hayes, Mark H. Burstein,

A. Acquisti, Brett Benyo, Maggie R. Breedy, Marco M. Carvalho, David J. Diller, Matt Johnson,

Shriniwas Kulkarni, James Lott, Maarten Sierhuis, and Ron Van Hoof. Representation and reasoning

about daml-based policy and domain services in kaos.Proceedings of The Second International Joint

Conference on Autonomous Agents and Multi Agent Systems (AAMAS2003), 2003.

[14] Dan Brickley and R.V. Guha. Rdf vocabulary description language 1.0: Rdf schema. InW3C Recom-

mendation. RDF Core Working Group, 2004.

[15] Dan Brickley and Libby Miller.FOAF Vocabulary Specification, revision 1.47 edition, Sept 2003.

[16] Roy Campbell, Jalal Al-Muhtadi, Prasad Naldurg, Geetanjali Sampemane1, and M. Dennis Mickunas.

Towards security and privacy for pervasive computing. InProceedings of International Symposium on

Software Security, Tokyo, Japan, 2002.

[17] Licia Capra, Wolfgang Emmerich, and Cecilia Mascolo. Reflective middleware solutions for context-

aware applications.Lecture Notes in Computer Science, 2192, 2001.

[18] Jeremy Carroll, Ian Dickinson, Chris Dollin, Dave Reynolds, Andy Seaborne, and Kevin Wilkinson.

Jena: Implementing the semantic web recommendations. Technical Report HPL-2003-146, Hewlett

Packard Laboratories, 2003.

[19] Paul Castro and Richard Muntz. Using context to assist in multimedia object retrieval applications.

In Proceedings of the ACM Workshop on Multimedia Intelligent Storage and Retrieval Management,

1999.

114

[20] Guanling Chen and David Kotz. A survey of context-aware mobile computing research. Technical

Report TR2000-381, Dartmouth College, Computer Science, Hanover, NH, Nov 2000.

[21] Harry Chen, Tim Finin, and Anupam Joshi. An ontology for context-aware pervasive computing

environments.Special Issue on Ontologies for Distributed Systems, Knowledge Engineering Review,

18(3):197–207, 2004.

[22] Harry Chen, Tim Finin, and Anupam Joshi. Semantic web in in the context broker architecture. In

Proceedings of PerCom 2004, March 2004.

[23] Harry Chen, Filip Perich, Dipanjan Chakraborty, Tim Finin, and Anupam Joshi. Intelligent agents meet

semantic web in a smart meeting room. InProceedings of the Thrid International Joint Conference on

Autonomous Agents & Multi-Agent Systems, July 2004.

[24] Harry Chen, Filip Perich, Tim Finin, and Anupam Joshi. SOUPA: Standard ontology for ubiquitous

and pervasive applications. InProceedings of the First International Conference on Mobile and Ubiq-

uitous Systems: Networking and Services, 2004.

[25] Harry Chen and Sovrin Tolia. Steps towards creating a context-aware agent system. Technical report,

Hewlett Packard Labs, 2001.

[26] Amit Choudhri, Lalana Kagal, Anupam Joshi, Tim Finin, and Yelena Yesha. PatientService : Elec-

tronic Patient Record Redaction and Delivery in Pervasive Environments. InFifth International Work-

shop on Enterprise Networking and Computing in Healthcare Industry (Healthcom 2003), June 2003.

[27] Erik Christense, Francisco Curbera, Greg Meredith, and Sanjiva Weerawarana.Web Services Descrip-

tion Language (WSDL) 1.1 (W3C Note 15 March 2001). W3C, 2001.

[28] Michael H. Coen. Building brains for rooms: Designing distributed software agents. InProceedings

of Ninth Conference on Innovative Applications of Artificial Intelligence, pages 971–977, 1997.

[29] Michael H. Coen. Design principles for intelligent environments. InProceedings of AAAI/IAAI 1998,

pages 547–554, 1998.

[30] Philip Cohen, Hector Levesque, and Ira Smith. On team formation. In Ghita Holmstrm-Hintikka and

Raimo Tuomela, editors,Comteporary Action Theory, volume 2. Kluwer Academic Publishers, 1997.

115

[31] Dan Connolly, Frank van Harmelen, Ian Horrocks, Deb McGuinness, Peter F. Patel-Schneider, and

Lynn Andrea Stein.DAML+OIL Reference Description, march 2001 edition, 2001.

[32] Simon Cox, Paul Daisey, Ron Lake, Clemens Portele, and Arliss Whiteside. Geography markup

language (gml 3.0). InOpenGIS Documents. OpenGIS Consortium, 2003.

[33] Lorrie Cranor, Marc Langheinrich, Massimo Marchiori, Martin Presler-Marshall, and Joseph Reagle.

The Platform for Privacy Preferences 1.0 (P3P1.0) Specification, jan 2002.

[34] Nadine Cullot, Christine Parent, Stefano Spaccapietra, and Christelle Vangenot. Ontologies : A con-

tribution to the DL/DB debate. InProceedings of the First International Workshop on Semantic Web

and Databases, 2003.

[35] Nicodemos Damianou, Naranker Dulay, Emil Lupu, and Morris Sloman. The ponder policy specifica-

tion language.Lecture Notes in Computer Science, 1995:18–??, 2001.

[36] Anind K. Dey. Providing Architectural Support for Building Context-Aware Applications. PhD thesis,

Georgia Institute of Technology, 2000.

[37] P. Dourish. Seeking a foundation for context-aware computing.Human-Computer Interaction, 2001.

http://citeseer.nj.nec.com/dourish01seeking.html .

[38] Edd Dumbill. Finding friends with xml and rdf. InIBM developerWorks, XML Watch. xmlhack.com,

June 2002.

[39] Thomas Erickson. Some problems with the notation of context-aware computing.Communications of

the ACM, pages 102–104, 2004.

[40] Irfan A. Essa. Ubiquitous sensing for smart and aware environments.IEEE Personal Communications,

pages 46–49, October 2000.

[41] Tim Finin, Yannis Labrou, and James Mayfield. KQML as an agent communication language.Software

Agents, pages 291–316, 1997.

[42] Foundation for Intelligent Physical Agent.FIPA Device Ontology Specification, pc00091a edition,

2001.

[43] Foundation for Intelligent Physical Agents.FIPA Query Interaction Protocol Specification, 2002.

116

[44] The Foundations for Intelligent Physical Agents.FIPA Abstract Architecture Specification, sc00001l

edition, December 2002.

[45] Ernest J. Friedman-Hill.Jess, The Expert System Shell for the Java Platform. Sandia National Labo-

ratories, version 6.1a4 edition.

[46] Erich Gamma, Richard Helm, Ralph Johnson, and John Vlissides.Design Patterns. Addison-Wesley

Professional, 1995.

[47] Fabien L. Gandon and Norman M. Sadeh. Semantic web technologies to reconcile privacy and context

awareness.Web Semantics Journal, 1(3), 2004.

[48] Volker Haarslev and Ralf M̈oller. Racer system description. InProceedings of the International Joint

Conference on Automated Reasoning 2001, 2001.

[49] Nicholas Hanssens, Ajay Kulkarni, Rattapoom Tuchinda, and Tyler Horton. Building agent-based

intelligent workspaces. InProceedings of ABA Conference, June 2002. To Appear.

[50] Albert Held, Sven Buchholz, and Alexander Schill. Modeling of context information for pervasive

computing applications. InProceedings of the 6th World Multiconference on Systemics, Cybernetics

and Informatics (SCI2002), 2002.

[51] Ken Hinckley, Jeffrey S. Pierce, Mike Sinclair, and Eric Horvitz. Sensing techniques for mobile

interaction. InUIST, pages 91–100, 2000.

[52] Jerry R. Hobbs. A daml ontology of time.http://www.cs.rochester.edu/ ∼ferguson/

daml/daml-time-20020830.txt , 2002.

[53] Ian Horrocks. FaCT and iFaCT.Description Logics, 1999.

[54] Ian Horrocks, Peter F. Patel-Schneider, Harold Boley, Said Tabet, Benjamin Grosof, and Mike Dean.

SWRL: A Semantic Web Rule Language – Combining OWL and RuleML. W3C, 2004.

[55] HP Labs 2.HOWTO Use Jena and DIG Reasoners, 2004.

[56] Dong Huynh, Nicholas R. Jennings, and Nigel R. Shadbolt. Developing an integrated trust and rep-

utation model for open multi-agent systems. InProceedings of the 7th Workshop on Trust, Privacy,

Deception and Fraud In Agent Societies, 2004.

117

[57] Lalana Kagal, Tim Finin, and Anupam Joshi. A Policy Based Approach to Security for the Semantic

Web. In2nd International Semantic Web Conference (ISWC2003), September 2003.

[58] Lalana Kagal, Tim Finin, and Anupam Joshi. A policy language for a pervasive computing environ-

ment. InIEEE 4th International Workshop on Policies for Distributed Systems and Networks, 2003.

[59] Lalana Kagal, Vlad Korolev, Harry Chen, Anupam Joshi, and Timothy Finin. Centaurus : A framework

for intelligent services in a mobile environment. InProceedings of the International Workshop on

Smart Appliances and Wearable Computing, 2001.

[60] Lalana Kagal, Massimo Paolucci, Naveen Srinivasan, Grit Denker, Tim Finin, and Katia Sycara. Au-

thorization and privacy for semantic web services.AAAI 2004 Spring Symposium on Semantic Web

Services, March 2004.

[61] Lalana Kagal, Massimo Paoucci, Naveen Srinivasan, Grit Denker, Tim Finin, and Katia Sycara. Au-

thorization and privacy for semantic web services.IEEE Intelligent Systems (Special Issue on Semantic

Web Services), 19(4):50–56, July 2004.

[62] Lalana Kagal, James Parker, Harry Chen, Anupam Joshi, and Tim Finin.Handbook of Mobile Com-

puting, chapter Security, Trust and Privacy in Mobile Computing Environments. CRC Press, 2004.

[63] Tim Kindberg and John Barton. A web-based nomadic computing system.Computer Networks,

35(4):443–456, 2001.

[64] Graham Klyne, Franklin Reynolds, Chris Woodrow, Hidetaka Ohto, Johan Hjelm, Mark H. Butler,

and Luu Tran.Composite Capability/Preference Profiles (CC/PP): Structure and Vocabularies (W3C

Working Draft 25 March 2003). W3C, 2003.

[65] John Krumm and Eric Horvitz. LOCADIO: Inferring motion and location from wi-fi signal strengths.

In Proceedings of the First Annual International Conference on Mobile and Ubiquitous Systems: Net-

working and Services, 2004.

[66] Sanjeev Kumar, Philip R. Cohen, and Hector J. Levesque. The adaptive agent architecture: Achieving

fault-tolerance using persistent broker teams. InProceedings of the Fourth International Conference

on Multi-Agent Systems, pages 159–166, 2000.

118

[67] Mik Lamming and Mike Flynn. Forget-me-not: intimate computing in support of human memory. In

Proceedings FRIEND21 Symposium on Next Generation Human Interfaces, 1994.

[68] Marc Langheinrich. Privacy by design – principles of privacy-aware ubiquitous systems. In G.D.

Abowd, B. Brumitt, and S. Shafer, editors,Proceedings of Ubicomp 2001, volume 2201 ofLecture

Notes in Computer Science, pages 273–291. Springer, 2001.

[69] Marc Langheinrich. A privacy awareness system for ubiquitous computing. InProceedings of Ubi-

Comp 2002, 2002.

[70] Ora Lassila and Ralph R. Swick. Resource description framework (rdf) model and syntax specification.

www.w3c.org, feb 1999.

[71] Douglas B. Lenat and R. V. Guha.Building Large Knowledge-Based Systems: Representation and

Inference in the Cyc Project. Addison-Wesley, February 1990.

[72] Gary Look and Howard Shrobe. A plan-based mission control center for autonomous vehicles. In

Proceedings of the 9th International Conference on Intelligent User Interfaces, pages 277–279. ACM

Press, 2004.

[73] Peter McBurney and Simon Parsons. Locutions for argumentation in agent interaction protocols. In

Proceedings of the Third International Joint Conference on Autonomous Agents and Multiagent Sys-

tems, volume 3, 2004.

[74] John McCarthy and Sasa Buvac. Formalizing context (expanded notes). In Sasa Buvač and Łucia

Iwańska, editors,Working Papers of the AAAI Fall Symposium on Context in Knowledge Representa-

tion and Natural Language, pages 99–135, Menlo Park, California, 1997. American Association for

Artificial Intelligence.

[75] Deborah L. McGuinness and Frank van Harmelen.OWL Web Ontology Language Overview. W3C,

2003.http://www.w3.org/TR/owl-features/ .

[76] Brian D. Noble, M. Satyanarayanan, Dushyanth Narayanan, James Eric Tilton, Jason Flinn, and

Kevin R. Walker. Agile application-aware adaptation for mobility. InSixteen ACM Symposium on

Operating Systems Principles, pages 276–287, Saint Malo, France, 1997.

119

[77] Natalya Fridman Noy and Deborah L. McGuinness. Ontology development 101: A guide to creating

your first ontology. Technical Report KSL-01-05, Stanford Knowledge Systems Laboratory, 2001.

[78] Organization for the Advancement of Structured Information Standards.Introduction to UDDI: Im-

portant Features and Functional Concepts, 2004.

[79] Feng Pan and Jerry R. Hobbs. Time in owl-s. InProceedings of AAAI-04 Spring Symposium on

Semantic Web Services, Stanford University, California, 2004.

[80] Peter F. Patel-Schneider, Patrick Hayes, and Ian Horrocks.OWL Web Ontology Language Semantics

and Abstract Syntax (W3C Recommendation 10 February 2004). W3C, 2004.

[81] Filip Perich. A service for aggregating and interpreting contextual information. Technical report,

Hewlett Packard Labs, 2002.

[82] Filip Perich.MoGATU BDI Ontology, 2004.

[83] Stephen Peters and Howie Shrobe. Using semantic networks for knowledge representation in an in-

telligent environment. In1st Annual IEEE International Conference on Pervasive Computing and

Proceedings of the 1st Annual IEEE International Conference on Pervasive Computing and Commu-

nications (PerCom’03), March 2003.

[84] Sadie Plant. On the mobile: the effects of mobile telephones on social and individual life. Technical

report, Motorola, 2000.

[85] David Poole. Explanation and prediction: an architecture for default and abductive reasoning.Com-

putational Intelligence, 5(2):97–110, 1989.

[86] David Poole.Local Users Guide to Theorist. University of British Columbia, 1990.

[87] David Poole. Compiling a default reasoning system into prolog.New Generation Computing, 9(1):3–

38, 1991.

[88] Shelley Powers.Practical RDF. O’Reilly & Associates, 2003.

[89] Nissanka B. Priyantha, Anit Chakraborty, and Hari Balakrishnan. The cricket location-support system.

In Mobile Computing and Networking, pages 32–43, 2000.

120

[90] David A. Randell, Zhan Cui, and Anthony G. Cohn. A spatial logic based on regions and connection.

In Proceedings of the 3rd International Conference on Knowledge Representation and Reasoning,

1992.

[91] Jun Rekimoto. Tilting operations for small screen interfaces. InACM Symposium on User Interface

Software and Technology, pages 167–168, 1996.

[92] Dave Reynolds.Jena 2 Inference Support, April 2004.

[93] Daniel Salber, Anind K. Dey, and Gregory D. Abowd. The context toolkit: Aiding the development of

context-enabled applications. InProceedings of CHI’99, pages 434–441, 1999.

[94] Bill Schilit, Norman Adams, and Roy Want. Context-aware computing applications. InIEEE Work-

shop on Mobile Computing Systems and Applications, Santa Cruz, CA, US, 1994.

[95] William Noah Schilit. A System Architecture for Context-Aware Mobile Computing. PhD thesis,

Columbia University, 1995.

[96] A. Schmidt, K. A. Aidoo, A. Takaluoma, U. Tuomela, K. Van Laerhoven, and W. Van de Velde.

Advanced interaction in context.Lecture Notes in Computer Science, 1707:89–??, 1999.

[97] Albrecht Schmidt, Michael Beigl, and Hans-W. Gellersen. There is more to context than location.

Computers & Graphics Journal, 23(6):893–902, December 1999.

[98] Andy Seaborne.RDQL - A Query Language for RDF (W3C Member Submission 9 January 2004).

W3C, 2004.

[99] B.I.J. Siljee, I.E. Bosloper, and J.A.G. Nijhuis. A classification framework for storage and retrieval of

context. InProceedings of KI-04 Workshop on Modeling and Retrieval of Context, 2004.

[100] Morris Sloman and Emil Lupu. Security and management policy specification.IEEE Network, Special

Issue on Policy-Based Networking, 2002.

[101] Michael K. Smith, Chris Welty, and Deborah McGuinness. Owl web ontology language guide.http:

//www.w3.org/TR/owl-guide/ , 2003.

[102] Sun Microsystems.Jini Architectural Overview: Technical White Paper, 1999.

121

[103] Milind Tambe, Paul Scerri, and David V. Pynadath. Adjustable autonomy for the real world. In

Proceedings of AAAI Spring Symposium on Safe Learning Agents 2002, 2002.

[104] Gianluca Tonti, Jeffrey M. Bradshaw, Renia Jeffers, Rebecca Montanari, Niranjan Suri, and Andrzej

Uszok. Semantic web languages for policy representation and reasoning: A comparison of kaos, rei,

and ponder. InProceedings of the 2nd International Semantic Web Conference (ISWC2003), 2003.

[105] Roy M. Turner. Context-sensitive reasoning for autonomous agents and cooperative distributed prob-

lem solving. InProceedings of the IJCAI Workshop on Using Knowledge in its Context, Chamb́ery,

France, 1993.

[106] Jeffrey Undercoffer, Filip Perich, Andrej Cedilnik, Lalana Kagal, Anupam Joshi, and Tim Finin. A

secure infrastructure for service discovery and management in pervasive computing.The Journal of

Special Issues on Mobility of Systems, Users, Data and Computing, 2003.

[107] Roy Want, Andy Hopper, Veronica Falcao, and Jon Gibbons. The active badge location system. Tech-

nical Report 92.1, Olivetti Research Ltd., ORL, 24a Trumpington Street, Cambridge CB2 1QA, 1992.

[108] Marc Weiser. The computer for the 21st century.Scientific American, 265(30):94–104, 1991.

[109] Michael J. Wooldridge and Nicholas R. Jennings. Intelligent agents: Theory and practice.Knowledge

Engineering Review, 10(2):115–152, June 1995.

[110] Huadong Wu, Mel Siegel, and Sevim Ablay. Sensor fusion for context-understanding. InProceedings

of IEEE Instrumentation and Measurement Technology Conference 2002, 2002.

