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Abstract

Title of Dissertation: Speech Input in Multimodal Environments:  

Effects of Perceptual Structure on Speed, Accuracy,

 and Acceptance

Michael A. Grasso, Doctor of Philosophy, 1997 

Dissertation Directed By:  Dr. Timothy W. Finin, Professor 

    Computer Science and Electrical Engineering 

    Dr. David S. Ebert, Assistant Professor 

    Computer Science and Electrical Engineering 

 A framework of complementary behavior has been identified which maintains 

that direct manipulation and speech interface modalities have reciprocal strengths and 

weaknesses. This suggests that user interface performance and acceptance may increase 

by adopting a multimodal approach that combines speech and direct manipulation. Based 

on this concept and the theory of perceptual structures, this work examined the 

hypothesis that the speed, accuracy, and acceptance of a multimodal speech and direct 

manipulation interface would increase when the modalities match the perceptual structure 

of the input attributes. 

 A software prototype to collect histopathology data was developed with two 

interfaces to test this hypothesis. The first interface used speech and direct manipulation 

in a way that did not match the perceptual structure of the attributes, while the second 

interface used speech and direct manipulation in a way that best matched the perceptual 

structure. A group of 20 clinical and veterinary pathologists evaluated the prototype in an 



experimental setting using repeating measures. The independent variables were interface 

order and task order, and the dependent variables were task completion time, speech 

errors, mouse errors, diagnosis errors, and user acceptance. 

 The results of this experiment support the hypothesis that the perceptual structure 

of an input task is an important consideration when designing multimodal computer 

interfaces. Task completion time improved by 22.5%, speech errors were reduced by 

36%, and user acceptance increased 6.7% with the computer interface that best matched 

the perceptual structure of the input attributes. Mouse errors increased slightly and 

diagnosis errors decreased slightly, but these were not statistically significant. There was 

no relationship between user acceptance and time, suggesting that speed is not the 

predominate factor in determining approval. User acceptance was related to speech 

recognition errors, suggesting that recognition accuracy is critical to user satisfaction. 

User acceptance was also shown to be related to domain errors, suggesting that the more 

domain expertise a person has, the more he or she will embrace the computer interface. 
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1. Introduction

For many applications, the human-computer interface has become a limiting

factor. One such limitation is the demand for intuitive interfaces for non-technical users, 

a key obstacle to the widespread acceptance of computer automation [Landau, Norwich, 

and Evans 1989]. In addition, data entry has become the bottleneck of many applications 

in the field of medical informatics. This is due to hands-busy or eyes-busy restrictions 

during tasks such as patient care and microscopy.

An approach that addresses both of these limitations is to develop interface 

techniques using automated speech recognition. Speech is a natural form of 

communication that is pervasive, efficient, and can be used at a distance. However, 

widespread acceptance of speech as a human computer interface has yet to occur. This 

effort seeks to cultivate the speech modality by evaluating the use of speech in 

multimodal environments. To characterize the complementary behavior of speech and 

direct manipulation, several questions relating to the effects of reference visibility, 

reference predictability, reference number, and task integration are discussed. The 

specific focus of this effort is an empirical study of the effect of perceptual structure on 

the speed, accuracy, and acceptance of a multimodal speech and direct manipulation

interface.

1
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1.1 Speech Recognition Systems 

Speech recognition systems provide computers with the ability to identify spoken 

words and phrases. Note that speech recognition focuses on word identification, not word 

understanding. The latter is part of natural language processing, which is a separate 

research area. This can be compared to entering characters into a computer using a 

keyboard. The computer can identify the characters which are typed. However, there is 

no implicit understanding by the computer as to what these characters mean.

1.1.1 Historical Perspective 

The first speech recognition system was developed in 1952 on an analog 

computer using discrete speech to recognize the digits 0 through 9 with a speaker-

dependent template matching algorithm [Davis, Biddulph, and Balashek 1953]. 

Recognition accuracy was reported to be 98%. Later that decade, a system with similar

attributes was developed that recognized consonants and vowels [Dudley and Balashek

1958]. In the 1960s, research in speech recognition moved to digital computers, which 

became the basis for speech recognition technology to the present day [Lea 1993].

Despite rapid progress early on, limitations in computer architectures prevented 

any significant commercial speech recognition system development. Even though the 

data transfer rate of speech is only about 50 bits per second, the computational

requirements associated with extracting this information are enormous. Over the last 

decade, a number of commercial systems have been successfully developed [Voice 
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Processing Magazine 1993]. However, since true natural language processing is still 

several years away, a successful speech-driven system must allow for restrictions in the 

current technology. These restrictions include speaker dependence, continuity of speech, 

and vocabulary size [Bergeron and Locke 1990; Peacocke and Graf  1990]. 

1.1.2 Speaker Dependence 

Speaker-dependent systems are those which require some type of user training 

before they can be put to use. Speech recognition systems typically use a pattern 

matching algorithm, where the spoken words are compared with predefined templates to 

find the best match. Before this can occur, the user must create templates by saying each 

word in the vocabulary two or three times. Representative word phrases may also be read 

aloud, to identify how certain words will be spoken in context. A speech model consists 

of all the templates for a given vocabulary. Each operator of a speaker-dependent system

must create a speech model by training the system to recognize his or her way of saying 

every word in the vocabulary. Depending on the vocabulary size, training can take from a 

few minutes to several hours. 

Speaker-independent systems use generic models to recognize speech from any 

user. Generic models are created by combining existing templates from a variety of 

speakers. This approach is advantageous in that it does not require individual operators to 

train the system to recognize their voices. However, because the templates are not user-

specific, accuracy rates are usually lower. 
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An alternative is the speaker-adaptive approach, which uses a generic model to 

eliminate initial training and then automatically generates user-specific models for each 

operator over time. Although initial training is eliminated, recognition accuracy is 

diminished until the system develops an adequate user-specific model.

1.1.3 Continuity of Speech 

Continuous speech systems can recognize words spoken in a natural rhythm.

Although this approach seems more desirable at first glance, continuous speech is harder 

to process because of the difficulty of identifying word boundaries - as in "youth in Asia" 

and "euthanasia."  Variability in articulation, such as the tendency to drop consonants or 

blur distinctions between them - as in "want it" and “wanted" - can result in further 

misunderstanding. To increase accuracy, speech models for continuous speech systems

include information on representative word combinations and context rules. 

Isolated word systems require a deliberate pause between each word. Pausing 

after each word is unnatural and can be tiring. However, accuracy rates are usually higher 

with isolated word systems than with systems using continuous speech. Isolated systems

are therefore thought to work best with vocabularies that consist mainly of individual 

command words. 

1.1.4 Vocabulary Size

The vocabularies of various speech recognition systems can range from 20 to 

more than 40,000 words. Large vocabularies cause difficulties in maintaining accuracy, 
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but small vocabularies restrict the speaker. In addition, large vocabularies are likely to 

contain ambiguous words, which in speech recognition systems are words with pattern-

matching templates that the computer will treat as similar - such as the words "tree" and 

"three."

Grammar rules can be added to impose constraints on the allowable sequences of 

words. These are especially important to offset technical limitations due to continuous 

speech or large vocabularies. A tightly constrained grammar is one in which only a small

number of words can legally follow any given word, based on context of phrase structure. 

Keeping the list of candidate words small can increase recognition accuracy and decrease 

latency time during pattern matching, especially with large vocabularies. However, too 

many grammar rules can reduce the naturalness of communication.

1.1.5 Human Factors of Speech Interfaces 

Along with technical characteristics of speech recognition systems, it is important

to understand the human factors of speech as an interface modality. A criticism by 

Newell is that some researchers act as if the only bars to widespread adoption of speech 

interfaces are these technical limitations. Only occasional consideration is given to dialog 

design and other aspects necessary for an effective and efficient human interface [Newell 

1992]. These comments highlight the importance of studying speech recognition 

interfaces as a human-computer interaction problem.
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Speech is a unique modality with several profound qualitative differences from

traditional user interface channels. The most significant is that speech is temporary. Once 

uttered, auditory information is no longer available to the user. This may place extra 

memory burdens on the user and severely limit the ability to scan, review and cross-

reference information. A related limitation is that it is hard to represent spatial 

information, since the fleeting nature of speech makes it difficult to observe and 

manipulate the relative position of objects. 

Speech can be used at a distance which makes it ideal for hands-busy and eyes-

busy situations. It is omnidirectional and therefore can communicate with multiple users. 

However, this has implications related to privacy, security and may add to environmental

noise in the workplace. 

Finally, more than other modalities, there is the possibility of anthropomorphism

when using speech recognition. It has been documented that users tend to overestimate

the capabilities of a system if a speech interface is used and that users are more tempted

to treat the device as another person [Jones, Hapeshi, and Frankish 1990].

1.2 Direct Manipulation 

Direct manipulation interfaces, made popular by the Apple Macintosh and 

Microsoft Windows graphical user interfaces, are based on a number of principles 

[Shneiderman 1993].
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Visual display of objects of interest. 

Selection by pointing, instead of typing. 

Rapid, incremental, and reversible actions. 

Immediate and continuous feedback of results and actions. 

The display in a direct manipulation interface should indicate a complete image of 

the application’s environment, including its current state, what errors have occurred, and 

what actions are appropriate. A virtual representation of reality is created, which can be 

manipulated by the user. For example, the typical word processor today can display a 

document in its final form with fonts, graphics, and other characteristics exactly as they 

will appear when printed. Another example is the file manager that displays directories as 

a tree structure and files as icons. 

In a direct manipulation environment, the computer is operated by direct 

engagement with the user interface. The commands themselves are physical actions, such 

as pointing, clicking, dragging, and sliding. For example, to delete a file, the user points 

to its icon and drags it to the trash can. Once the file is deleted, the user is given 

immediate confirmation by the fact that the file icon is no longer on the screen or that the 

trash can now appears to have something in it. 

This approach has several potential advantages. The direct manipulation interface 

is based on intuitive metaphors with a consistent look-and-feel that enhances a user's

ability to learn another program quickly. A hierarchy of menus makes available options 
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clear and minimizes the need to learn cryptic command languages. Users can 

immediately see the results of their actions, making error detection more natural and 

minimizing the need for error messages. Finally, users may gain more confidence and are 

more in control since they initiate commands by physical actions. 

In contrast to this, arguments have been made that direct manipulation interfaces 

are inadequate for supporting transactions fundamental to applications such as word 

processing, CAD, and database queries [Buxton 1993; Cohen and Oviatt 1994]. These 

comments were made in reference to the limited means of object identification and how 

the non-declarative aspects of direct manipulation can result in an interface that is too 

low-level. Shneiderman [1993] points to ambiguity in the meanings of icons and 

limitations in screen display space as problems with direct manipulation.

1.3 The Problem 

It has been suggested that direct manipulation and speech recognition interfaces 

have complementary strengths and weaknesses which could be leveraged in multimodal

user interfaces [Cohen and Oviatt 1994; House 1995; Cohen 1992]. By combining the 

two modalities, the strengths of one could be used to offset the weaknesses of the other. 

For simplicity, speech recognition will deal with the identification of spoken words, not 

necessarily natural language recognition, and direct manipulation will deal with mouse

input.
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The complementary advantages of direct manipulation and speech recognition 

are summarized in Table 1. Note that the advantages of one are the weaknesses of the 

other. For example, direct engagement provides an interactive environment which is 

thought to result in increased user acceptance and allow the computer to become

transparent as users concentrate on their tasks [Shneiderman 1983]. However, the 

computer can only become totally transparent if the interface allows hands-free and eyes-

free operation. Speech recognition interfaces provide this, but intuitive physical actions 

no longer drive the interface. 

Direct Manipulation Speech Recognition

Direct engagement Hands/eyes free operation 

Simple, intuitive actions Complex actions possible 

Consistent look and feel Reference does not depend on location 

No reference ambiguity Multiple ways to refer to entities 

Table 1: Complementary Strengths of Direct Manipulation and Speech 

One of the key strengths of direct manipulation is that these physical commands

are based on simple actions. One example of this are visual database interfaces based on 

the direct manipulation modality. An early example of a visual database interface is 

Query-by-Example [Zloof 1977], developed at IBM. Such interfaces rely on visual 

representations of the database structure, possibly with sliders and other mouse-driven

interface objects to input query information [Ahlberg, Williamson, and Shneiderman

1992]. However, this method works best with databases consisting of well-formed

ordinal data. Since the interface is directly tied to the actual underlying format of the 
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database, it is considered too low level [Cohen and Oviatt 1994]. In contrast to this, the 

declarative nature of speech recognition interfaces and their ability to use anaphoric 

references should make them more appropriate for complex actions. 

The consistent look and feel of direct manipulation interfaces is believed to 

provide a foundation for allowing novices to learn the basic functionality of these 

programs quickly by generalizing the commonality between applications. The limitation

of this approach is its increased dependence on the visual display of information. When

there are only a few interface objects, it is easy to arrange them in a consistent manner.

However, this approach quickly breaks down when there are dozens of interface objects 

to manipulate. Speech interfaces do not have such limitations, but the abstract 

characteristic of speech makes it difficult to employ the concept of look-and-feel in the 

same way. 

Direct manipulation interfaces do not have problems with reference ambiguity.

When the user selects an object, the computer will not misinterpret this selection as some

other object. The down side to this is that there is only one way to reference an object. A 

problem with direct manipulation stated earlier is that not all objects have easily 

distinguishable references. In other words, while selecting an object is unambiguous to 

the computer, the actual meanings of these references may be obscure to the user. Speech 

interfaces have the opposite characteristic. Since objects can be referred to in multiple

ways, the meanings of various references should be less ambiguous to the user. However, 
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due to recognition errors or grammar limitations, there is a greater chance the 

computer may not recognize this reference correctly.

Taking these observations into account, Cohen and Oviatt [1994] made the 

following statement with respect to the complementary benefits of direct manipulation

and natural language. Note that this dissertation deals with the identification of words 

through speech recognition, not necessarily natural language interaction. 

Theoretically, direct manipulation should be beneficial when the objects 

to be manipulated are on the screen, their identity is known, and there are 

not too many objects from which to select. Natural language interaction 

with computers offers potential benefits when users need to identify 

objects, actions, and events from sets too large to be displayed and/or 

examined individually and when users need to invoke actions at future 

times that must be described.

For example, direct manipulation interfaces are believed to be best used for 

specifying simple actions when all references are visible and the number of references are 

limited, while speech recognition interfaces are better at specifying more complex actions 

when references are numerous and not visible. This is summarized in Table 2. 
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Direct Manipulation Speech Recognition

Visible References Non-Visible References 

Limited References Multiple References

Simple Actions Complex Actions 

Table 2: Proposed Applications for Direct Manipulation and Speech 

Based on these observations, a series of questions have been proposed to evaluate 

the effect of reference visibility, reference number, and task integration on the speed, 

accuracy and acceptance of direct manipulation and speech recognition systems. Such 

empirical results can be used to assist with the integration of speech with direction 

manipulation in multimodal environments. Due to time constraints, only the question on 

task integration was evaluated as part of this dissertation. 

Relying on anecdotal arguments, expected results are that simple actions on a 

limited number of visible references would favor direct manipulation and complex

actions on numerous, non-visible references would favor speech recognition. Intuitively, 

it is clear that direct manipulation interfaces are adversely affected by references which 

are not visible, since you must be able to see a reference in order to select it. In the same

way, it is clear that speech recognition systems do not have this limitation, since any item

can be referenced regardless of whether it is visible or not. Also, the declarative nature of 

speech recognition interfaces should allow the specification of more complex operations. 

However, this dissertation hypothesizes that this model of complementary behavior is 

only true under certain conditions related to the characteristics of the reference attributes 

and the type of interface task. 
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These original observations focused mainly on reference visibility. There are 

other attributes that may impact the speed, accuracy, and acceptance of both direct 

manipulation and speech recognition interfaces. The number of references is alluded to, 

however, only in the context of limiting visibility, such as when there are so many

references that they all cannot be visible at the same time.

Also, regardless of reference attributes, the speed, accuracy, and acceptance may

be impacted by how well the control structure of the input device matches the perceptual 

structure of the input task (whether the input attributes are perceived as integral or 

separable). It was reported that the performance of a unimodal, graphical interface 

improves when the structure of the perceptual space matches the control space of the 

input device [Jacob et al. 1994]. An appropriate follow-on question - and the focus of this 

study - is the effect of perceptual structure on multimodal tasks. A summary of reference 

attributes and interface tasks is in Table 3. 
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 Reference Attributes

Visible The references are directly observable by the user and not 

obscured by other screen objects. 

Numerous The number of valid references available to the user are many.

Predictable The references are sorted or otherwise familiar to the user. 

Distinguishable The references can be easily differentiated from each other. 

 Interface Tasks

Integral The input attributes cannot be attended to individually. 

Simple The task is implicit based on reference selection. 

Spatial The task is based on dimensional input. 

Declarative The task requires a description or anaphoric reference. 

Computational The task requires the input of numbers or formulas.

Table 3: Reference Attributes and Interface Tasks 

1.4 Significance of this Study 

There are three areas in which this research will contribute in a significant way to 

the understanding of speech recognition interfaces in human-computer interaction. 

1. Replace anecdotal arguments with scientific evidence. 

2. Identify situations where speech is the preferred modality.

3. Increase our understanding of speech in multimodal environments.

4. Address the data entry bottleneck in medical informatics.

The literature is filled with anecdotal arguments about the applicability of speech 

recognition interface. Shneiderman [1992] points out four such areas: when the hands are 

busy, the eyes are busy, mobility is required, and in harsh environments. Cohen and 
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Oviatt [1994] suggest a similar set of conditions: when the user’s hands or eyes are 

busy, only a limited keyboard or screen is available, the user is disabled, pronunciation is 

the subject matter of computer use, and when natural language interaction is preferred. 

The first area where this research will contribute is to help replace these anecdotal 

arguments on the applicability of speech and the complementary advantages of direct 

manipulation and speech recognition with scientific evidence. Such a framework for 

research in human-computer interaction has been identified by Shneiderman [1993] as a 

foundational approach. By emphasizing controlled experiments which yield more

objective and reliable results, arguments about “user friendly systems” are replaced with 

a more scientific approach. 

The second area where this research will contribute is by identifying those 

situations where speech is the preferred interface modality. Note that the anecdotal 

arguments on the applicability of speech, while intuitive, have a particular bias. That is, 

they imply that speech is always a second choice that is only appropriate when traditional 

keyboard and screen interfaces are impractical. While acknowledging this bias, Bradford 

[1995] states that there are almost certainly applications where speech is the more natural 

medium and calls for comparative studies to determine where and when speech functions 

most effectively as a user interface. Cohen and Oviatt [1994] state that no principled 

methods exist which can predict those circumstances where speech will be the most

effective, efficient, or the preferred interface modality. Still others point out that there is 

still a lack of theoretical work and empirical results [Carbonell 1994], and the need for 
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rigorous scientific investigation into the applicability of speech as an interface medium

[Damper 1993]. 

The third area where this research will contribute is by increasing our 

understanding as to when and under what conditions speech can be integrated with 

mouse input in multimodal environments. Cole et al. [1995] note the role that spoken 

language should ultimately play in multimodal systems is not well understood and calls 

for the development of theoretical models from which predictions can be made about the 

strengths, weaknesses, and overall performance of different types of unimodal and 

multimodal systems. The focus of this research is user perception of the input task based 

on the theory of perceptual structures. Such research is needed to understand how people 

select and integrate different modalities in the context of different types of human-

computer interaction [Oviatt and Olsen  1994]. 

The objective of this dissertation was to the study the effect of the perceptual 

structure of multidimensional input tasks on the speed, accuracy and acceptance of 

multimodal direct manipulation and speech recognition systems. Such empirical results 

can be used to assist with the integration of speech in multimodal environments.

The fourth area where this research will contribute is by addressing the data entry 

bottleneck in medical informatics [Grasso and Grasso 1994; Dillon, McDowell, Norcio, 

DeHaemer 1994; McMillan and Harris 1990]. Histopathologic data collection in animal

toxicology studies was chosen as the application domain for user testing. It includes 

several significant hands-busy and eyes-busy restrictions. It is based on a highly 
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structured, specialized, and moderately sized vocabulary based on an accepted medical

nomenclature. These and other characteristics make it a prototypical data collection task, 

similar to those required in biomedical research and clinical trials. Also, the input tasks 

mainly involve reference identification, with little declarative, spatial, or computational

data entry required, which should eliminate any built-in bias toward either modality.

1.5 Research Questions 

The three proposed studies are based on the following three research questions. 

Included with each research question is a summary of the literature review from Section 

1, predicted results, and null hypotheses for statistical evaluation. 

Only question number one on task integration has been studied as part of this 

doctoral research project. The other two questions were discussed, but not studied. This 

was to ensure that this research effort was completed in a reasonable amount of time.
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Question 1 

What multidimensional tasks can best be integrated with multimodal speech and 

direct manipulation?

Literature

The performance of multidimensional, unimodal input tasks is affected by 

whether the dimensions are perceived as integral or separable. Users are more

likely to switch from one modality to another when there is a change in 

functionality or context. 

Predicted Results 

The speed, accuracy, and acceptance of multidimensional, multimodal input will 

increase when the attributes of the task are perceived as separable, and for 

unimodal input will increase when the attributes are perceived as integral. 

Null Hypothesis 1 

The integrality of input attributes has no effect on the speed of the user. 

Null Hypothesis 2 

The integrality of input attributes has no effect on the accuracy of the user. 

Null Hypothesis 3 

The integrality of input attributes has no effect on acceptance by the user. 
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Question 2

How does the lack of visible references affect the speed, accuracy, and acceptance 

of speech and direct manipulation interfaces? 

Literature

Direct manipulation interfaces perform better with visible references while speech 

interfaces perform better with non-visible references. 

Predicted Results 

Decreasing visibility has a negative impact on the speed, accuracy, and 

acceptance of both direct manipulation and speech interfaces. The negative 

impact on speech interfaces is greater than or equal to that of direct manipulation,

except when those references have a high degree of predictability. 

Null Hypothesis 4 

Reference visibility has no effect on the speed of the user. 

Null Hypothesis 5 

Reference visibility has no effect on the accuracy of the user. 

Null Hypothesis 6 

Reference visibility has no effect on acceptance by the user. 
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Question 3

How does increasing the number of references affect the speed, accuracy, and 

acceptance of speech and direct manipulation interfaces? 

Literature

Direct manipulation interfaces perform better with fewer references while speech 

interfaces perform better when there are numerous references. 

Predicted Results 

Increasing the number of references has a negative impact on the speed, accuracy, 

and acceptance of both direct manipulation and speech interfaces. The negative 

impact on speech interfaces is greater than or equal to that of direct manipulation,

except when those references have a high degree of predictability. 

Null Hypothesis 7 

The number of references has no effect on the speed of the user. 

Null Hypothesis 8 

The number of references has no effect on the accuracy of the user. 

Null Hypothesis 9 

The number of references has no effect on acceptance by the user. 



2. Literature Survey 

This chapter contains a review of literature regarding this research effort. Related 

work in multimodal interfaces using direct manipulation and speech recognition is 

covered. An overview of research concerning key reference attributes and interface tasks 

is included. Motivations for the application of speech interfaces in the biomedical area 

are presented. Background information on the target application of data collection in 

animal toxicology studies is given. The chapter concludes with an outline of preliminary

work in biomedical speech interfaces. 

2.1 Multimodal Speech Recognition Interfaces 

Several research efforts have attempted to develop multimodal interfaces using 

direct manipulation and speech recognition. Three of these are described below. While

each has a different area of emphasis, all three are feasibility studies centered around the 

development and testing of a multimodal interface to demonstrate proof-of-concept. In 

their conclusions, they all call for empirical evaluations to refine and evaluate these 

interface techniques. 

Two approaches to multimodal interfaces are presented - synergistic and 

integrated. Both are shown graphically in Figure 1. In a synergistic interface, each 

modality can perform the same set of tasks. No new functionality is added to the 

interface, except that the user can select the input device which is most convenient at any 
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given time. One example of this is navigation under Microsoft Windows, where either 

the mouse or the keyboard can be used to switch to the other windows. In contrast to this, 

an integrated interface is different in that there are certain tasks which can only be carried 

out by using both input devices together. The advantage here is that the functionality of 

the interface is extended with integrated tasks like “point-and-speak.” 

Speech Tasks

Mouse Tasks

Synergistic

Speech or Mouse

Tasks

Extended

Functionality

With Integrated

Speech and

Mouse Tasks

Figure 1: Synergistic versus Integrated Interface Tasks 

2.1.1 Multimodal Access to the World-Wide Web 

One effort at the Oregon Graduate Institute sought to evaluate spoken language as 

an alternative interface to multimedia applications [House 1995]. Specifically, a 
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multimodal interface to the World-Wide Web [CERN] was developed. The basic 

architecture of the system was a remote recognition-capable Web server with speech 

recognition software and speech-capable HTML (Hypertext Markup Language) 

documents. The local Web browser was extended to digitize the user’s utterances and 

send them to the server for speech recognition and processing. 

It was noted that, while the mouse-based interface can be credited with much of 

the popularity of the Web, there are inherent limitations. These limitations focus on 

difficulty in performing complex commands and access to documents that cannot be 

reached by a visible link. The latter - access to non-visible references - was the focus of 

their effort, and was motivated by the framework for complementary behavior between 

natural language and direct manipulation suggested by Cohen [1992]. 

Speech and direct manipulation were both used to develop an interface with a 

synergistic interaction style that allowed either modality to perform the same set of tasks 

[Lefebvre, Duncan, and Poirier 1993]. The user could then select the input device that 

best suits the task at hand. Speech recognition and direct manipulation were used as 

complementary modalities. As a result, speech input was believed to allow access to 

information that was not directly available with mouse-based systems, such as navigating 

to HTML links that were not visible. 

The main advantage of using speech is that all references are potentially 

available, even when they are not visible. One question not raised was the need for 

predictability when selecting non-visible references. For example, will users have a 
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difficult time selecting a non-visible reference if they do not know, or cannot predict, 

what those references are? This may be especially true with the World-Wide Web, as 

users navigate through unfamiliar documents searching for information.

Another difficulty is the use of multiple labels like “Click here,” which can result 

in reference ambiguity. In addition, the use of Postscript, and other presentation-based 

encodings which assume a single display format, limit the ability to use speech output on 

the Web [Ramon 1995]. These factors highlight the need to enforce document

development guidelines [Conte 1994] before speech-driven Web access can become

commonplace.

2.1.2 Integrated Multimodal Interface 

An alternative approach is to use natural language and direct manipulation to 

develop what has been called an integrated user interface. In one such effort, Cohen 

[1992] attempted to not simply provide two or more separate modalities with the same

functionality, but to integrate them to produce a more productive interface. For example,

along with traditional unimodal operations like “point-and-click,” there can be integrated 

ones like “point-and-speak.” The guiding principle in this research was to use the 

strengths of one modality to overcome the weaknesses of the other. 

For simplicity, the term “natural language” was used independent of the 

transmission medium - keyboard, speech, or handwriting. Even though meaningful

differences exist between spoken, keyboard, and written interaction [Oviatt and Cohen 
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1991; Kassel 1995], those differences were not germane to the key point about 

modality integration. Note also that this dissertation deals with speech recognition, not 

natural language, both of which have distinct characteristics [Shneiderman 1980]. 

However, there is enough overlap between the two for this research to provide relevant 

background material.

Based on this objective, a prototype multimodal system was developed using an 

integrated direct manipulation and natural language interface. Several examples were 

cited where the combination of language and mouse input together were thought to be 

more productive than either modality alone. For example, natural language allowed the 

use of anaphoric references (pronouns). However, the exact meaning of these references 

can be ambiguous. Following Webber’s arguments [1986], the prototype used icons to 

explicitly display what it believed the valid references were, given the current context. 

The combination of anaphoric reference with pointing used the unambiguous nature of 

pointing to overcome this error-prone aspect of natural language processing. 

A second example of integration introduced by Cohen was with the use of time.

One might assume that direct manipulation would be better than speech for dealing with 

time by using a slider bar as a graphical rendition of a time line. However, this is not 

always the case. Finding timed events with a slider can be an extremely slow linear 

search process, especially if there is a large range of time intervals to scan. If the 

granularity of the slider is too large, selecting the exact time event may not be possible. 

Also, sliders typically allow the selection of only one time point. To overcome these 
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limitations, the prototype used natural language to describe the times of interest. The 

prototype then composed a menu of all time points selected with the slider set to the first 

one found. Here, natural language was used to overcome a weakness in direct 

manipulation - the selection of unknown objects (in this case, time points) from a large 

set.

Using the mouse to disambiguate the context of speech input has also been 

explored by the Boeing Company [Salisbury et al. 1990]. Their motivation was that 

human communication is multidimensional and that conversations include more than just 

spoken words. The combination of graphics and verbal data to complete or disambiguate

the other was termed “talk and draw.” Within this framework, operators would input 

requests by speaking commands while simultaneously selecting graphical objects with a 

mouse to determine the context of these commands.

2.1.3 Multimodal Window Navigation 

A project at the Massachusetts Institute of Technology used speech as an 

auxiliary channel to support window navigation [Schmandt, Ackerman, and Hindus 

1990]. Xspeak provided a speech interface to X Windows by allowing navigational tasks 

usually performed with a mouse to be controlled by speech instead. The effort was 

developed with the assumption that speech input is more valuable when it is combined

with other input devices and that most successful speech recognition systems have small

vocabularies, are speaker-dependent, and use discrete speech. 
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The X Windows system uses a spatial metaphor to organize applications on a 

monitor in three dimensions. However, it uses a two-dimensional device for window 

navigation, namely the mouse. When there are many overlapping windows, it can be 

difficult to reach some applications directly with the mouse. Xspeak was therefore 

designed to improve navigation in this type of environment. Each window is associated 

with a voice template. When the word represented by a template is spoken, the window is 

moved to the foreground and the mouse pointer is moved to the middle of the window. 

Window navigation can be viewed as a hands-busy task. Using Xspeak, users can 

manage a number of windows without removing their hands from the keyboard. 

Initial testing revealed that while speech was not faster than the mouse for simple

change-of-focus tasks, the advantage shifted toward speech if the desired window was 

partly or completely hidden. Another observation was that the users most inclined to 

choose speech input increased the number of overlapping windows or the degree of 

overlap.

2.2 Reference Attributes 

The following section discusses how reference visibility, reference number, and 

reference predictability can affect the performance of speech interfaces. 
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2.2.1 Reference Visibility 

It has been suggested that speech input is better than mouse input when selecting 

non-visible references. However, due to the fleeting nature of spoken words, the impact

of non-visible references on the cognitive costs of the user must be considered. For 

example, the less feedback or prompting a program provides, the more a user has to 

remember, and the more performance may suffer. The following studies suggest that the 

lack of visible references has a negative cognitive impact on both speech and direct 

manipulation interfaces. 

An experiment was conducted at the University of Maryland College Park to 

demonstrate the utility of speech input for command activation during word processing 

[Karl, Pettey, and Shneiderman 1992]. It was believed that speech would be superior to 

the mouse with respect to the activation of commands. Also, word processing was 

considered a hands-busy, eyes-busy  application, since the user would have to interrupt 

typing of text in order to execute word processing commands. Speech-activated 

commands were found to be faster than mouse-activated commands and to have similar

error rates. Speech showed the greatest advantages during command-intensive tasks as 

opposed to typing-intensive tasks.

One unexpected result was that subjects made significantly more memorization

errors when using speech. For one of the tasks, not all of the information could be 

displayed on the screen at one time. This meant that the participants had to memorize

symbols and page up and down while using speech-activated commands. The researchers 
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observed a less-than-expected performance increase for this task using speech. When

questioning the users, at least half noted that it was harder to memorize and recall 

descriptions when using voice input. Memorization problems did not interfere with 

mouse users performing the same task. This finding might explain why the use of 

graphics to display the visual context in which the various grammatical rules applied was 

shown to improve the speed and accuracy of speech recognition [Wulfman  et al. 1993]. 

Another study observed increased cognitive requirements while retrieving hidden 

information with a mouse [Wright, Lickorish, and Milroy 1994]. To conserve space, a 

common practice is to remove information from computer displays that readers will only 

need intermittently. This information is often accessible by a single mouse click. The 

study demonstrated that this practice impairs one's memory for other task components

due to increased cognitive costs. These findings suggest that software should be designed 

with additional memory support for users with small screens and also help to explain the 

success of icon bars and ribbon displays which give people immediate access to the 

functions they frequently use. 

A related study empirically evaluated the effect of various user-interface 

characteristics on data entry performance for clinical data [Poon and Fagan 1994]. The 

characteristics tested were 1) displaying results as one long scrolling list or as a series of 

pages, 2) using dynamic palettes which pop-up when needed and are customized to the 

particular data collection event or fixed palettes, and 3) showing all findings or just those 

which are relevant in the current context. 
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Intuitively, one can argue that the use of scrolling, dynamic palettes, and 

showing relevant results allows for greater flexibility and better management of screen 

space. However, all three had a negative impact on performance due to increased 

memory requirements on the user. The study found that paging, fixed palettes, and 

showing all results provided better performance. With these characteristics, users could 

memorize the screen position of various objects and the need for commands to explicitly 

invoke or dismiss dynamic palettes was eliminated. Also, by showing all results, not just 

relevant ones, users were more confident of their findings and spent less time with 

follow-up questions. 

The use of scrolling, dynamic palettes, and relevant findings resulted in a user 

interface with more variation than their counterparts. This, in turn, increased the 

cognitive costs on the user and decreased performance. A similar conclusion was reached 

by Mitchell and Shneiderman [1989]. This effort set out to show that dynamic or adaptive 

menus would perform better than fixed menus. Instead, they discovered that frequent 

changes to the menu order have a negative effect on users. They concluded that stability 

and predictability in menus was the preferred approach. 

2.2.2 Vocabulary Size

It has been suggested that the more references there are (or the larger the 

vocabulary), the better suited an application may be to speech recognition [Cohen and 

Oviatt 1994]. While this might be the case, there seems to be little evidence to support 
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this. Consider the task of selecting an item out of a list, or a 1-out-of-N task. For small

lists, Welch [1977] showed that the entry of numbers using a keyboard is faster and less 

error prone than entry by speech. This was later confirmed by Damper [1993]. 

In contrast to this, increasing vocabulary size had an interesting effect in the 

synergistic multimodal window navigation project described earlier [Schmandt,

Ackerman, and Hindus 1990]. When there were fewer windows, the mouse performed

better than speech. However, the more windows there were (or the larger the vocabulary), 

the more speech outperformed direct manipulation. There is another reference attribute to 

consider other than the size of the vocabulary or the lack of visibility. Note that 

increasing the number of references did not adversely affect the performance of the 

speech interface. However, since each window was given a name by the user, there 

should also have been a high degree of predictability within the vocabulary. 

Dillon evaluated the effect of vocabulary size among nurses during a hands-busy 

data entry task. He showed that a larger inclusive vocabulary can lead to far fewer non-

recognized phrases [Dillon, Norcio, DeHaemer 1993]. Although one vocabulary was 

larger than the other, both were functionally equivalent. The larger vocabulary contained 

alternative word choices while the smaller one used a minimal set. With both 

vocabularies, the user still had the same number of functional tasks to consider. This 

suggests that broadening a vocabulary to accommodate alternative phrases should 

increase the performance of a speech interface. However, it does not imply that 

increasing vocabulary size by adding functionality of a vocabulary will do the same.
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2.3 Multimodal Input Tasks 

An area of growing interest is to identify the best ways to integrate speech into 

multimodal environments. Research here includes those conditions where people are 

likely to integrate two input modalities as well as what advantages can be leveraged. Two 

such efforts are presented. The first studied how the perceptual structure of the input 

attributes can affect the performance of multidimensional input tasks. An overview on the 

perception of structure is given as background material. The second examines those 

conditions under which a person is likely to combine two modalities.

In this section, it is important to understand the difference between “integral” and 

“integrated,” since they sound similar but have different connotations. The term,

“integral,” is used in the theory of perceptual structure to characterize the relationship 

between the dimensions of a structure as indivisible. This can refer to the structure of an 

input device or an input task. The term, “integrate” is used to describe the combining of 

two modalities and using them in concert. 

2.3.1 Theory of Perceptual Structures 

Structures abound in the real world and are used by people to perceive and 

process information. Structure can be defined as the way the constituent parts are 

arranged to give something its peculiar nature. It is not limited to shape or other physical 

stimuli, but is an abstract property transcending any particular stimulus. Information and 
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structure are essentially the same in that they are the property of a stimulus which is 

perceived and processed. 

Perception occurs in the head, somewhere between the observable stimulus and 

response. Perception consists of various kinds of processing that have distinct costs, so 

the response is not just a simple representation of the stimulus. By understanding and 

capitalizing on the underlying structure, it is believed that a perceptual system could 

reduce these costs and gain advantages in speech and accuracy. 

Garner documented that the dimensions of a structure can be characterized as 

integral or separable and that this relationship may affect performance under certain 

conditions [Garner 1974; Garner and Felfoldy 1970]. The dimensions of a structure are 

integral if they cannot be attended to individually, one at a time; otherwise, they are 

separable.

A structured system is one that contains redundancy. The following examples

illustrate that the principle of redundancy is pervasive in the world around us. A crude, 

but somewhat useful method for weather forecasting is that the weather today is a good 

predictor of the weather tomorrow. An instruction cache can increase computer

performance because the address of the last memory fetch is a good predictor of the 

address of the next fetch. Consider a visual picture on a video screen. The adjacent pixels 

are usually similar to each other. Without this structure, the video screen would be 

perceived as meaningless noise or snow. 
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The next two examples are from Pomerantz and Lockhead [1991]. Consider 

two sequences: XOXOXOXOXO and OXXXOOXOXO. Each has five Xs and five Os 

and each is equally likely to occur from the 1,024 possible patterns. Yet the first pattern 

is considered better than the second, because of inferred subsets. The first pattern has 

fewer inferred alternatives than the second because it is perceived as more regular and 

predictable than the second. The goodness of a pattern is correlated with redundancy. 

Good stimuli are perceived as being in small subsets. The more redundancy, the smaller

the subset. Given two subsets, each created from different total sets of the same size, if 

one subset is smaller, it has more redundancy. Also, by observing a single stimuli, we 

may be able to infer what the subset is. For example, given the letter E, one may infer the 

subset included letters of the alphabet. 

There are two ways to introduce structure into a system. One is to present the 

stimuli in a nonrandom order, such as repeating a sequence of five circles in the same

order. The other is to correlate the dimensions of a structure, such as an increase in circle 

size corresponding to an increase in its color or lightness.

The introduction of structure can improve performance, as shown by the 

following example. Consider a set of five circles that vary in size, and a set of twenty-

five circles that vary in size and lightness. The one-dimensional circles are a 1 x 5 set 

while the two-dimensional circles are a 5 x 5 set. The 1 x 5 set should have performance

advantages, due to its smaller size. However, by adding structure, this advantage is 

eliminated. Structure can be added by correlating the two attributes of the 5 x 5 set. In 
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this arrangement, an increase in size corresponds to an increase in lightness for each of 

the five sizes. The result is that the 5 x 5 set would now have only five valid choices, just 

like the 1 x 5 set. 

2.3.2 Integrality of Input Devices 

Speech and the mouse as input devices have significantly different control 

structures. The following study suggests that this can have a measurable impact on 

performance based on whether the control structure of each device matches the 

perceptual structure of the input task. Therefore any consideration of the advantages of 

one modality over the other should take into account these differences. 

In this study, the researchers tested the hypothesis that performance improves

when the perceptual structure of the task matches the control structure of the input device 

[Jacob et al. 1994]. A two-dimensional mouse and a three-dimensional tracker were used 

as input devices. Two input tasks with three inputs each were used, one where the inputs 

were integral (x location, y location, and size) and the other where the inputs were 

separable (x location, y location, and color). Common sense might say that a three-

dimensional tracker is a logical superset of a two-dimensional mouse and therefore is 

always as good and sometimes better than a mouse. Instead, the results showed that the 

tracker performed better when the three inputs were perceptually integral, while the 

mouse performed better when the three inputs were separable. 
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The theory of perceptual structures, integral and separable, was originally 

developed by Garner [1974]. The structure has to do with how the dimensions of the 

input task combine perceptually. This theory was extended with the hypothesis that the 

perceptual structure (or how these dimensions are perceived) of an input task is key to the 

performance of multidimensional input devices on multidimensional tasks. 

Consider the graphical input tasks in Table 4. Both use three attributes. However, 

Garner [1974] has shown that the attributes of the first graphical task are integral. That is, 

all three dimensions are in the same perceptual space. With the other graphical task, the 

three attributes are in separate perceptual spaces. This effort focused on multidimensional

input on unimodal input devices. For multimodal environments, an appropriate follow-on 

question is the effect of integral and separable tasks using two or more input modalities

in concert. Along with the graphical tasks, Table 4 contains integral and separable tasks 

from the biomedical application domain used in this dissertation. 

Domain Task Type Input Attributes 

Graphical Integral Location and size of a screen object 

Separable Location and color of a screen object 

Biomedical Integral Qualifier and morphology (marked inflammation)

Separable Site and qualifier (follicle marked)

Table 4: Integral and Separable Input Attributes 

2.3.3 Integrating Input Modalities 

A number of related studies were performed to examine how people might

integrate input from different devices in a multimodal computer interface. The first study 
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used a simulated service transaction system with verbal, temporal, and computational

input tasks using both structured and unstructured interactions [Oviatt and Olsen 1994]. 

Participants were free to use either handwriting, speech, or both during testing. The 

following results were reported. As shown in Table 5, digits were more likely written 

than text, proper names were more likely written than other textual content, and 

structured interactions were more likely written than unstructured interactions. 

Task Written Spoken

Verbal/Temporal 13.0% 87.0%

Verbal/Temporal & Computational 18.0% 82.0%

Textual 9.7% 90.3%

Textual & Computational 14.7% 85.3%

Proper Names 21.5% 78.5%

Structured 6.9% 93.1%

Unstructured 18.9% 81.1%

Table 5: Ratio of Written to Total Input 

The most significant factor in predicting the use of integrated multimodal speech 

and handwriting was contrastive functionality. Here, the two modalities were used in a 

contrastive way to designate a shift in context or functionality, such as original input 

versus corrected, data versus command, digits versus text, or digits and referring 

description. Of all the transactions using writing and speech, 57% were due to one of the 

contrastive patterns identified in Table 6. Also shown in Table 6 is the tendency toward 
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certain combinations, such as written data and spoken command versus spoken data 

with written command.

Task Occurrence

Written Input and Spoken Correction 50%

Spoken Input and Written Correction 50%

Written Data and Spoken Command 73%

Spoken Data and Written Command 27%

Spoken Text and Written Digits 85%

Written Text and Spoken Digits 15%

Table 6: Contrastive Pattern of Modality Use 

A related study examined the use of spoken and written input while interacting 

with an interactive map system [Oviatt 1996]. Input modality (speech, writing, 

multimodal) and map display format (structured, unstructured) were manipulated in a 

simulated environment to measure performance errors, spontaneous disfluencies, and task 

completion time. With the previous study predicting users would prefer multimodal to 

unimodal interfaces, this study explored whether there were performance advantages as 

well. A simulated service transaction system was used by participants to assist with map-

based tasks. 

The study revealed that increased length of spoken utterances and unstructured 

displays resulted in more disfluencies. Speech-only input also resulted in more

performance errors and increased task completion time. Participants revealed a 
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preference to using speech and writing for complementary functions. This was backed 

up by quantitative data showing the greatest speed advantages of multimodal input that 

used pen-based pointing and gestures to identify location and speech for other data input. 

The two key points in this section on multimodal input tasks are the positive 

relationship of contrastive functionality to multimodal interaction and the application of

the theory of perceptual structures to multidimensional, unimodal input tasks. These 

findings were used to develop the dissertation hypothesis that multidimensional,

multimodal input tasks will exhibit increased speed, accuracy, and acceptance when the 

input attributes are perceived separable. When the attributes are integral, unimodal input 

would be more beneficial. 

2.4 Motivations of Speech in Medical Informatics 

Automated speech recognition can address two key concerns in human-computer

interaction: the demand for ease of use and constraints on the user’s ability to work with 

the keyboard or mouse. The technology is still limited, however, with most successful 

systems using small to medium-size vocabularies with well-defined grammar rules. In the 

area of medical informatics, the main applications of speech recognition systems

described in the literature are for 1) template-based reporting, 2) natural language 

processing, 3) multimodal integration of speech with other methods of input, and 4) data 

entry in hands-busy environments. The first two reflect the need for more intuitive 
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interfaces. The latter two deal with limitations of traditional input using the keyboard 

or mouse.

2.4.1 Template-Based Reporting 

Template-based reporting systems have been used in radiology, pathology, 

endoscopy, and emergency medicine. They have large vocabularies, recognize discrete 

speech, and are speaker-adaptive systems designed to generate template-based reports 

using fill-in forms, trigger phrases, and free-form speech. Turnaround time is decreased 

and accuracy is increased by eliminating the need for dictation and transcription by 

clerical personnel. 

Reaction to this approach has been mixed. For autopsy pathology, it was noted 

that a greater degree of computer literacy is required and that the need for typed input is 

not eliminated [Klatt 1991]. When applied to endoscopy, the process took longer than 

standard dictation and nevertheless collected less information [Massey, Geenen, and 

Hogan 1991]. These problems were attributed to the fact that therapeutic endoscopic 

procedures are complex and not suited to a template-based reporting format. The free-

form speech method, in which single words are printed as they are spoken, was found to 

be too slow to be useful [Dershaw 1988]. This was probably due to increased 

computational requirements associated with larger vocabularies (up to 40,000 words). On 

the positive side, the formality of the process seemed to provide other benefits. One 

researcher noted that 80% of emergency room reports were adequately completed with a 
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speech recognition system, as compared with 30% when reports were dictated or 

handwritten records were used [Hollbrook 1992]. 

2.4.2 Natural Language Processing 

A group at Stanford University studied the use of speech as an improved interface 

for medical systems. Initial work focused on the development of three prototype speech-

driven interfaces [Issacs et al. 1993] along with research on how clinicians would like to 

speak to a medical decision-support system [Wulfman et al. 1993]. It was noted that the 

use of template-based dictation with fill-in forms worked well only when the 

documentation task was limited to a few standardized reports. Template-based reporting 

may be inadequate in clinical domains, because the required documentation is less 

standardized. At the same time, current speech recognition technology does not permit

the processing of free-form natural language. Methods that circumvent shortcomings in 

the current technology while maintaining the flexibility and naturalness of speech are 

being explored. 

Three prototype systems were developed that were more complex linguistically 

than template-based reporting, and the typical entries could not easily be selected from a 

simple presentation of menus. The systems had a speaker-independent vocabulary of 

more than 38,000 words using continuous speech. In addition, Windows-based graphics 

were used as control and feedback mechanisms for the various grammatical rules in the 

system. This use of graphics to display the visual context in which the various 
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grammatical rules applied was shown to improve the speed and accuracy of 

recognition except when the grammar was complex. Overall, the evidence suggests that 

graphical guidance can be used effectively when the vocabulary is sufficiently 

constrained.

2.4.3 Speech in Multimodal Environments 

A different approach for speech recognition is to develop multimodal systems that 

use speech in combination with other input devices. The goal in this case is not to replace 

the keyboard or mouse but to simplify or accelerate the input process. One such system,

designed to assist in the collection of stereological data, combined speech input with a 

digitizing pad [McMillan and Harris 1990]. Each data set consisted of an object name

recorded by voice, followed by X and Y coordinates entered with a digitizing pad. The 

system was used for boundary analysis and histomorphometry of bone and skin. It had a 

small speaker-dependent vocabulary (less than 50 words) for object names and voice 

commands, and recognized discrete speech. The system allowed a user to choose 

between a small set of control words and about 20 object names. The combination of 

speech and a digitizing pad was shown to accelerate the data collection process. 



43

2.4.4 Hands-Busy Data Collection 

Several efforts used a speech-driven approach to facilitate the collection of data in 

a hands-busy environment. This has been a key motivation for the application of speech 

in the medical area as well as in other domains. Hands and eyes-busy data collection was 

also the principal motivation behind the preliminary work described below. 

One study examined the feasibility of using speech recognition to record clinical 

data during dental examinations [Feldman and Stevens 1990]. Systems of this type would 

eliminate the need for a dental assistant to record results. Speech input was shown to be 

slower. However, when the time needed to transfer results recorded by the dental 

assistant into the computer was considered, the speech method was considered faster. 

Speech input also had more errors, although the difference was not statistically 

significant. Overall, the study suggested that speech recognition may be a viable 

alternative to traditional charting methods.

Another effort designed a speech interface for an anesthetist’s record keeping 

system [Smith et al. 1990]. Anesthetists are responsible for recording information on 

drugs administered during medical procedures. Due to hands-busy limitations, a long 

interval typically exists between an event and its recording, which can compromise the 

completeness and accuracy of the manual record. By using speech input, this data can be 

collected during the medical procedure, while the anesthetist’s hands are busy. The 

system used a vocabulary of around 300 words. Preliminary testing showed an accuracy 

rate of 96%, even in a noisy operating room.
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Hands-busy data collection has also been applied to the analysis of bone 

scintigraphic data [Ikerira et al. 1990]. Such diagrams are analyzed to study metastases of 

malignant tumors. A speech system was developed to allow doctors to enter the results of 

image readings into the computer while looking at the images instead of the terminal. In 

580 voice-entered reports, response time was shortened in comparison with dictation or 

writing by hand. 

2.5 Data Collection in Animal Toxicology Studies 

Data entry has become the bottleneck of many scientific applications designed to 

collect and manage information related to experimental studies. In animal toxicology 

studies, this is true because of the need to collect data in hands-busy or eyes-busy 

environments. For example, during microscopy, the operator's hands and eyes are 

occupied with the process of examining tissue slides. During necropsy, gross 

observations and organ weights must be collected while the operator's hands are busy and 

soiled. With in-life data collection, technicians record daily observations while handling 

animals. An ancillary data collection issue is that it may not be practical to keep 

computer equipment in animal rooms and laboratories, where it is most convenient to 

record observations. 

Large volumes of pathology data are processed during animal toxicology studies. 

These studies are used to evaluate the long-term, low-dose effects of potentially toxic 

substances, including carcinogens. This information must be collected, managed, and 
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analyzed according to Good Laboratory Practice regulations for animal studies [U.S. 

FDA 1978]. Since the 1970's, several systems have been developed to automate this 

process [Cranmer et al. 1978; Faccini and Naylor 1979]. Procedures for manual data 

entry were set up. Others included interfaces to clinical chemistry and hematology

analyzers to automate data collection [Daly et al. 1989]. Today, however, the collection 

of microscopic, gross, and in-life observations is still a limiting factor, due to hands-busy 

and eyes-busy restrictions. 

Several software systems have been developed in this area, such as the 

Toxicology Data Management System (NCTR, Jefferson, AK), Starpath (Graham Labs, 

San Antonio, TX), and Labcat (Innovative Programming Associates, Princeton, NJ). 

These and other applications deal with specific information management and analysis 

issues. However, automation at the source of data collection through speech recognition 

has yet to be fully explored. Speech is a natural means of communication that would 

address the data entry bottlenecks which can occur with standard data collection 

processes. The highly structured and moderately sized vocabulary (as opposed to 

free-form and large vocabulary) required by these applications can easily be supported by 

current speech recognition systems. Automating at the source of data collection has the 

potential to greatly reduce transcription and data validation costs that consume 25 to 33 

percent of the total cost of bringing new drugs to market [Green 1993]. 
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2.6 Preliminary Work 

Preliminary work by the author in this area includes a feasibility study of voice-

driven data collection [Grasso and Grasso 1994]. The objective was to determine the 

feasibility of using voice recognition technology to enable hands-free and eyes-free 

collection of data related to animal toxicology studies. A prototype system was 

developed to facilitate the collection of histopathology data using only speech input and 

computer-generated speech responses. After testing the prototype system, the results 

were evaluated to determine the feasibility of this approach and provide a basis for

implementing voice-driven systems that support microscopic, gross, and in-life data 

collection.

2.6.1 Materials

The hardware for this study consisted of an IBM-compatible 486/33 computer

with Microsoft Windows 3.1 (Redmond, WA). Software was developed under Microsoft 

Windows using Borland C++ 3.1 and the Borland Object Windows Library 1.0 (Borland 

International, Inc., Scotts Valley, CA). Watcom SQL for Windows 3.1 (Watcom

International Corporation, Waterloo, Ontario, Canada) was the relational database 

chosen. The Verbex 6000 AT31 Model 0637 Voice Input Module with 3 megabytes of 

memory, 40 MHz processor, and text-to-speech synthesis was used for voice recognition 

and computer-generated voice responses (Verbex Voice Systems, Inc., Edison, NJ). 
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Two separate interfaces were developed for data collection. One used the 

keyboard, mouse and computer monitor with standard interface objects such as dialog 

boxes, push buttons, and pulldown menus. The other used only speech input and 

computer-generated speech responses with no visual feedback. Note that these were two 

distinct user interfaces and that speech-driven capabilities were not merely added to the 

Windows user interface. Simply adding speech to an existing user interface has been 

shown to decrease system integrity or cause integration discontinuity [Wulfman et al. 

1988].

The grammar was a continuous-speech, speaker-dependent vocabulary of 900 

words, based on the Pathology Code Table [1985]. The list of possible words and phrases 

was divided into functional subsets for navigation, voice response, error correction, 

nomenclature terms, and data collection. 

2.6.2 Methods

An informal series of four tests was conducted. In each test, the subject was either 

a pathology assistant, medical technologist or software engineer. The first test was to 

train the system to recognize each user's voice by reading each word twice, followed by 

reading representative words in context. 

The second test was used to validate the accuracy of the voice recognition system

apart from the application. Each user was asked to read a series of 100 randomly

generated phrases. The number of correctly recognized phrases was used to compute the 
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recognition accuracy. If a phrase was accidentally read incorrectly, it was not counted 

as an error, and the user was given a second chance to read the phrase again. Invariably, 

users needed to repeat the training for specific words that the system was not recognizing 

consistently. If retraining was successful, these were not counted as errors. 

In the next test, each user was asked to navigate to various animals and enter 

several microscopic observations. Here, voice recognition was not used. Instead, the 

keyboard and mouse were used for input and a computer monitor for visual responses. 

This test was to allow the users to familiarize themselves with the environment and 

provide a comparison for data entry using voice input. 

The final test required each user again to navigate to various animals and enter 

several microscopic observations. This time, however, the mouse, keyboard, and monitor

could not be used. Instead, each user relied on voice input and computer-generated voice 

output.

2.6.3 Results and Discussion 

Overhead associated with training was a limiting factor. Roughly four to eight 

hours were required for each user to train on the entire vocabulary of 900 terms. The 

mean recognition rate was 97% in the accuracy test. In the last test, most participants felt 

uncomfortable at first when entering observations without any visual feedback. This was 

due in part to difficulty in understanding computer-generated speech. After a few practice 

runs, they were entering data without assistance. However, many felt the system should 
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provide more feedback during data collection - be it visual or audible. The mean

recognition rate in this test was also 97%. These accuracy rates were determined under 

controlled conditions, so they should be viewed as a best-case scenario. 

The initial training requirements are a potential hindrance to the acceptance of a 

system of this type. In a time when few people, if any, read the user's guide, it is difficult 

to envision a pathologist spending hours training the system to recognize his or her voice. 

An alternative that warrants further study is a speaker adaptive approach. Here, instead of 

training the system, operators would use a set of generic voice recognition templates,

which would automatically be adapted for each person with continued use. 

Another interesting observation has to do with word conflicts in the vocabulary. 

Such conflicts can occur with short, similar sounding words like "tree" and "three". It 

was initially believed that a vocabulary of complex medical terms would be immune to 

such problems. However, there were some conflicts with phrases like "inferior vena 

cava" and "superior vena cava". 

The area of computer feedback requires additional research. Since the system

operated in an eyes-busy environment, there could be no visual computer feedback. 

Several areas were anticipated where audible confirmation would be appropriate, such as 

when a word was recognized by the system or when an observation was saved in the 

database. However, occasionally there were moments of "dead air time" when the 

computer was involved in a large database transaction or the speech recognizer was 

parsing a complex phrase. Here, it might have helped to provide additional audible 
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feedback so the user knew when the computer was busy, similar to displaying an 

hourglass cursor on the computer monitor when a program is busy. This is not always 

easy to do. For instance, a software application can only determine when a recognizer 

event ended, not when it began, which makes it difficult to know when to transmit a busy 

signal.

As testing of the prototype progressed, it was concluded that prohibiting all visual 

feedback was too restrictive. Audible feedback is at least 10 times slower than reading, 

which limits the amount of information that can be given to the user. Most of the time,

data entry would progress with audible feedback alone. There will, however, be times

when the user would be better served by looking up at a monitor to evaluate the state of 

the system, especially during error detection and resolution. 

2.6.4 Conclusion

A prototype voice-driven data collection system for histopathology data using 

only voice input and computer-generated voice responses was developed and tested. 

Under controlled conditions, the overall accuracy rate was 97%. Additional work is 

needed to minimize training requirements and improve audible feedback. It was 

concluded that this architecture could be considered a viable alternative for data 

collection in animal toxicology studies with reasonable recognition accuracy. Two papers 

were published based on this work in Computers in Biology and Medicine [Grasso and 

Grasso 1994] and M.D. Computing [Grasso 1995]. 



3. Methodology

The general research hypothesis stated that speed, accuracy, and acceptance of a 

multimodal, multidimensional, human-computer interface will improve when the 

attributes are perceptually separable, and will improve for a unimodal interface when the 

attributes are perceptually integral. A set of software tools was developed to simulate a 

prototypical biomedical data collection task in order to test the validity of this hypothesis. 

The experiment was designed using repeated measures, with the order of conditions 

counterbalanced across all subjects. The following aspects of the experiment are 

discussed: independent variables, dependent variables, subjects, procedure, materials,

analysis, and schedule. 

3.1 Independent Variables 

The two independent variables were interface (baseline, perceptually structured) 

and task order (slide group 1, slide group 2). The input task was to enter histopathologic 

observations consisting of three input attributes: topographical site, qualifier, and 

morphology. It was assumed that the qualifier/morphology (QM) relationship was 

integral, since the qualifier was used to describe or modify the morphology, such as 

marked inflammation. The site/qualifier (SQ) relationship was assumed to be separable, 

since the site identifies where in the organ the tissue was taken from, such as alveolus

lung, not alveolus marked. The site/morphology (SM) relationship was assumed to be 

51
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separable for the same reason. Based on these assumptions and the general research 

hypothesis, Table 7 predicted which modality would lead to improvements in the 

computer-human interface. 

Data Entry Task Perception Modality

(SQ) Enter Site and Qualifier Separable Multimodal

(SM) Enter Site and Morphology Separable Multimodal

(QM) Enter Qualifier and Morphology Integral Unimodal

Table 7: Predicted Modalities for Computer-Human Interface Improvements 

The three input attributes (site, qualifier, morphology) and two modalities

(speech, mouse) yielded a possible eight different user interface combinations for the 

software prototype as shown in Table 8. Also in this table are the predicted interface 

improvements for entering each pair of attributes (SQ, SM, QM) identified with a “+” or 

“-” for a predicted increase or decrease, respectively. For testing, the third alternative was 

selected as the Perceptually Structured interface, because the choice of input devices was 

thought to best match the perceptual structure of the attributes. The fifth alternative was 

the Baseline interface, since the input devices least match the perceptual structure of the 

attributes. The third and fifth alternatives were selected over other equivalent ones, 

because they both required two speech inputs, one mouse input, and the two speech 

inputs appeared adjacent to each other on the computer screen. 
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Modality Site Qual Morph SQ SM QM Interface

1. Mouse M M M - - +

2. Speech S S S - - +

3. Both M S S + + + Perceptually Structured

4. Both S M M + + + 

5. Both S S M - + - Baseline

6. Both M M S - + - 

7. Both S M S + - -

8. Both M S M + - -

Table 8: Possible Interface Combinations for the Software Prototype 

3.2 Dependent Variables 

The dependent variables for the experiment were speed, accuracy, and 

acceptance. The first two were quantitative measures while the latter was subjective. 

Speed was recorded both by the experimenter and the software prototype. It was 

defined as the time it takes a participant to complete each of the 12 data entry tasks and 

was recorded to the nearest millisecond. The actual speed was determined by analysis of 

timing output from the prototype, recorded observations of the experimenter, and review 

of audio tapes recorded during the study. 

Three measures of accuracy were recorded both by the experimenter and the 

software prototype: speech errors, mouse errors, and diagnosis errors. Speech recognition 

errors were counted when the prototype incorrectly recognized a spoken utterance by the 

participant. This was either because the participant was misunderstood by the prototype 

or the participant spoke a phrase that was not in the vocabulary. Mouse errors were 
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recorded when a participant accidentally selected an incorrect term from one of the 

lists displayed on the computer screen and later changed his or her mind. Diagnosis 

errors were identified as when the input of a participant did not match the most likely 

diagnosis for each tissue slide. The actual number of errors was determined by analysis of 

diagnostic output from the prototype, recorded observations of the experimenter, and 

review of audio tapes recorded during the study. 

User acceptance data was collected using a subjective questionnaire containing 13 

bi-polar adjective pairs which has been used in other human computer interaction studies 

[Casali, Williges, and Dryden 1990; Dillon 1995]. The adjectives are listed in Table 9 

and the actual survey can be found in the Appendices in Section 6.3. The questionnaire 

was given to each participant after testing was completed. An acceptability index (AI) 

was defined as the mean of the scale responses, where the higher the value, the lower the 

user acceptance. 
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1. fast slow 

2. accurate inaccurate 

3. consistent inconsistent 

4. pleasing irritating 

5. dependable undependable 

6. natural unnatural 

7. complete incomplete

8. comfortable uncomfortable

9. friendly unfriendly 

10. facilitating distracting 

11. simple complicated

12. useful useless 

13. acceptable unacceptable 

Table 9: Adjective Pairs used in the User Acceptance Survey 

3.3 Subjects

Twenty subjects from among the biomedical community participated in this 

experiment as unpaid volunteers between January and February 1997. Each participant 

reviewed 12 tissue slides, resulting in a total of 240 tasks for which data was collected. 

The target population was veterinary and clinical pathologists, graduate students and 

post-doctorates from the Baltimore-Washington area. Since the main objective was to 

evaluate different user interfaces, participants did not need a high level of expertise in 

animal toxicology studies, but only to be familiar with tissue types and reactions. The 

participants came from the University of Maryland Medical Center (Baltimore, MD), the 

Baltimore Veteran Affairs Medical Center (Baltimore, MD), the Johns Hopkins Medical 

Institutions (Baltimore, MD), the Food and Drug Administration Center for Veterinary 

Medicine (Rockville, MD), and the Food and Drug Administration Center for Drug 
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Evaluation and Research (Gaithersburg, MD). To increase the likelihood of 

participation, testing took place at the subjects’ facilities. 

The 20 participants were distributed demographically as shown in Table 10, based 

on responses to the pre-experiment questionnaire found in the Appendices in Section 6.1. 

The sample population consisted of professionals with advanced degrees, ranged in age 

from 33 to 51 years old, and were roughly equal in the number of males and females.

Fifteen were from an academic institution, and most were U.S. born, native English 

speakers. The majority indicated they were comfortable using a computer with all but 3 

ranking themselves with a 4 or higher in computer and mouse experience. Only 1 subject 

had any significant speech recognition experience. 

 Highest Degree D.V.M.  11 Ph.D.  6 M.D.  3 

Institution JHMI 8 UMMC 7 BVAMC 3 FDA 2

 Age Mean  40 Stdev  6.8 

 Gender Male  11 Female  9 

 National Origin US  13 Europe  4 India  2 Canada  1 

 Native Language English  16 Other  4 

Computer Experience Mean  5 Stdev  1.1 

 Mouse Experience Mean  5 Stdev  1.5 

Speech Experience Mean  1 Stdev  0.9 

Table 10: Subject Demographics 

The subjects were randomly assigned to the experiment using a within-group 

design. Half of the subjects were assigned to the perceptually-structured-interface-first, 

baseline-interface-second group and were asked to complete six data entry tasks using the 
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perceptually structured interface and then complete six tasks using the baseline 

interface. The other half of the subjects were assigned to the baseline-interface-first, 

perceptually-structured-interface-second group and completed the tasks in the reverse 

order.

Also counterbalanced were the tissue slides examined. The slides came from the 

National Center for Toxicological Research (Jefferson, AK). Two groups of six slides 

with roughly equivalent difficulty were randomly assigned to the participants. This 

resulted in 4 groups based on interface and slide order as shown in Table 11. For 

example, subjects in group BIP2 used the baseline interface with slides 1 through 6 

followed by the perceptually structured interface with slides 7 through 12. The actual 

slide diagnoses are shown in Table 12. 

Group Interface Order Slide Order 

B1P2 Baseline, Perceptually Structured 1-6, 7-12 

B2P1 Baseline, Perceptually Structured 7-12, 1-6

P1B2 Perceptually Structured, Baseline 1-6, 7-12

P2B1 Perceptually Structured, Baseline 7-12, 1-6

Table 11: Subject Groupings for the Experiment 

Repeated measures (a within-groups design) is common among human computer

interaction studies evaluating two or more input devices or other interface characteristics 

[Karl, Pettey, and Shneiderman 1992; Margono and Shneiderman 1993; Sears and 

Shneiderman 1991; Oviatt 1996]. Repeated observations on the same subject over time is 

a more efficient use of resources, since less participants are needed. Also, the estimation
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of time trends is more precise, because measurements on the same subject tend to be 

less variable than measurements on different subjects [Keul 1994]. 

Group Slide Diagnosis (Organ, Site, Qualifier, Morphology) 

1 1 Ovary, Media, Focal, Giant Cell 

2 Ovary, Follicle, Focal, Luteoma

3 Ovary, Media, Multifocal, Granulosa Cell Tumor

4 Urinary Bladder, Wall, Diffuse, Squamous Cell Carcinoma

5 Urinary Bladder, Epithelium, Focal, Transitional Cell Carcinoma

6 Urinary Bladder, Transitional Epithelium, Focal, Hyperplasia 

2 7 Adrenal Gland, Medulla, Focal, Pheochromocytoma

8 Adrenal Gland, Cortex, Focal, Carcinoma

9 Pituitary, Pars Distalis, Focal, Cyst 

10 Liver, Lobules, Diffuse, Vacuolization Cytoplasmic

11 Liver, Parenchyma, Focal, Hemangiosarcoma

12 Liver, Parenchyma, Focal, Hepatocelluar Carcinoma

Table 12: Tissue Slide Diagnoses 

3.4 Procedure

Each subject was tested individually in a laboratory setting at the participant’s 

place of employment or study. Participants were first asked to fill out the pre-experiment

questionnaire found in the Appendices in Section 6.1. The subjects were told that the 

objective of this study was to evaluate several user interfaces in the context of collecting 

histopathology data and was being used to fulfill certain requirements in the Ph.D. 

Program of the Computer Science and Electrical Engineering Department at the 

University of Maryland Baltimore County. They were told that a computer program
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would project images of tissue slides on a computer monitor while they enter 

observations in the form of topographical sites, qualifiers, and morphologies.

After reviewing the stated objectives, each participant was seated in front of the 

computer and had the head-set adjusted properly and comfortably, being careful to place 

the microphone directly in front of the mouth, about an inch away. Since the system was 

speaker-independent, there was no need to enroll or train the speech recognizer. 

However, a training program was run, to allow participants to practice speaking typical 

phrases in such a way that the speech recognizer could understand. The objective was to 

become familiar speaking these phrases with reasonable recognition accuracy. 

Participants were encouraged to speak as clearly and as normally as possible. 

Next, each subject went through a training session with the actual test program to 

practice reading slides and entering observations. Participants were instructed that this 

was not a test and to feel free to ask the experimenter about any questions they might

have.

The last step before the actual test was to review the two sets of tissue slides. The 

goal was to make sure participants were comfortable reading the slides before the test. 

This was done to help ensure the experiment was measuring data input and not the ability 

of the subjects to read slides. During the review, participants were encouraged to ask 

questions about possible diagnoses. 

For the actual test, participants entered two groups of six histopathologic 

observations in an order based on the group they were randomly assigned to. They were 
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encouraged to work at a normal pace that was comfortable for them and to ask 

questions before the actual test began. After the test, the user acceptance survey was 

administered as a post-experiment questionnaire. A summary of the experimental

procedure can be found in Table 13. 

 Step Task

1 Pre-experiment questionnaire and instructions 

 2 Speech training

 3 Application training

 4 Slide review

5 Evaluation and quantitative data collection 

6 Post-experiment questionnaire and subjective data collection

Table 13: Experimental Procedure 

3.5 Materials

A prototype computer program was developed for the experiment using Microsoft 

Windows 3.11 (Microsoft Corporation, Redmond, WA) and Borland C++ 4.51 (Borland 

International, Inc., Scotts Valley, CA). Some software components from the preliminary

study described earlier were used in this effort. About 1,500 lines of code were written 

for two software programs. The first, pe_test, supported the speech training task and the 

second, sm_test, was used for the evaluation and data collection task. 

The PE500+ was used for speech recognition (Speech Systems, Inc, Boulder, 

CO). The hardware came on a half-sized, 16-bit ISA card along with head-mounted
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microphone and speaker, and accompanying software development tools. Software to 

drive the PE500+ was written in C++ with the SPOT application programming interface. 

The Voice Match Tool Kit was used for grammar development. The environment

supported speaker-independent, continuous recognition of large vocabularies, constrained 

by grammar rules. 

The software and speech recognition hardware were deployed on a portable PC-

III computer with a 12.1 inch, 800x600 TFT color display, a PCI Pentium-200

motherboard, 32 MB RAM, and 2.5 GB disk drive (PC Portable Manufacture, South El 

Monte, CA). This provided a platform that could accept ISA cards and was portable 

enough to take to the participants’ facilities for testing. 

The main data entry task for the experiment was for subjects to view microscopic

tissue slides and enter histopathologic observations. To minimize hands-busy or eyes-

busy bias, no microscopy was involved. Instead, the software projected images of tissue 

slides on the computer monitor while participants entered observations in the form of 

topographical sites, qualifiers, and morphologies. The software provided prompts and 

directions to identify which modality was to be used for which inputs. A sample screen is 

shown in Figure 2. 

The default operating mode for the PE500+ speech recognizer is called push-to-

speak. In the push-to-speak mode, the user holds down a mouse button or foot pedal 

when speaking, so the recognizer knows when to  process incoming utterances. The push-

to-speak mode tended to have a higher recognition accuracy rate, but needed to be 
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avoided so as not to introduce additional effects into the experiment. Therefore, a 

software driver was developed that allowed the recognizer to operate in a voice-activated 

mode. Here, the PE500+ is always listening for speech input. Instead of having the user 

press and release a button, the start and end of an utterance was determined by signal 

amplitude levels, length of signal, and length of silence. 

3.6 Statistical Analysis 

Basic assumptions about the distribution of data were used to perform the 

statistical analysis. The Central Limit Theorem states that for a normal population with 

mean  and standard deviation , the sample mean observed during data collection is 

normally distributed with mean  and standard deviation  / n
1/2

, provided the number of 

observations n in the sample is sufficiently large and the sample mean is genuinely 

unbiased by the random allocation of conditions [Noether 1976]. Several null hypotheses 

were derived from the general research hypothesis stating that there was no difference 

between the subject groups (i.e, that the experimental manipulation did not effect the 

results). Testing each null hypothesis was done by computing the probability of obtaining 

that result. If the probability indicates that the result did not occur simply by chance, then 

the null hypothesis could be safely rejected [Johnson 1992]. 
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Figure 2: Sample Data Entry Screen 

As stated earlier, a within-groups experiment, fully counterbalanced on input 

modality and slide order was performed. The data collected consisted of pairs of

measurements taken on the same subjects, with the results analyzed as a single sample of 

differences. The F test and t test were used to determine if different samples came from

the same population, for example, the baseline-interface-first and the baseline-interface-

second groups. Finally, regression analysis was used to identify relationships between 

any of the dependent variables. 
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3.7 Schedule and Deliverables 

The success of these research objectives was demonstrated by completing and 

delivering the following items. The deliverables and work schedule are shown in Table 

14 and Table 15. The schedule is based on a one-year effort, broken into three major

parts: planning, operation, and interpretation [Basili 1986]. Included in experiment setup 

is a pilot study to evaluate the experimental procedures on a limited number of subjects. 

This allowed for changes to the experiment without biasing the pool of test subjects. 

Task Duration

Experiment design and software development 2 months

Pilot study 1 month

Retooling 1 month

Experiment operation 4 months

Analysis of results and publication development 4 months

Table 14: Research Schedule 

Deliverables

The software prototype evaluated in the study 

Data gathered from user testing (written, tape recorded, or video taped) 

A Ph.D. Dissertation covering this effort in detail 

One or more reports or publications based on this research 

Table 15: Deliverables 



4. Experimental Results 

The experimental results include task completion times, speech errors, mouse

errors, diagnosis errors, and the subjective questionnaire scores. 

4.1 Task Completion Times 

For each participant, a summary of the task completion times is shown in Table 

16 as the time to complete the 6 baseline interface tasks, the time to complete the 6 

perceptually structured interface tasks, and time improvement (baseline interface time - 

perceptually structured interface time). The group designation was described in Table 11. 

For example, B1P2 means the subject used the baseline interface with slides 1 through 6 

followed by the perceptually structured interface with slides 7 through 12. The mean

improvement for all subjects was 41.468 seconds. A t test on the time improvements was 

significant (t(19) = 4.791, p < .001, two-tailed). A single-factor ANOVA comparing the 

baseline and perceptually structured interface times as shown in Table 17 was significant 

(F(1,38) = 4.719, p < .05, two-tailed). A comparison of mean task completion times is in 

Figure 3 and a detailed listing of times is in the Appendices in Section 6.9. 
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Time for Time for Perceptually Time

Subject Group Baseline Tasks Structured Tasks Improvement

1 B1P2 314.670 181.530 133.140 

 2 B2P1 195.230 147.770 46.460

 3 P1B2 172.190 130.228 41.962

 4 P2B1 122.537 96.888 25.649

 5 B1P2 196.192 123.021 73.171

 6 B2P1 120.725 106.499 14.226

 7 P1B2 355.640 271.330 84.310

 8 P2B1 185.867 127.708 58.159

 9 B1P2 129.732 104.522 25.210

 10 B2P1 159.777 134.786 24.991

11 P1B2 322.795 220.524 102.271 

 12 P2B1 128.140 103.809 24.331

 13 B1P2 111.828 129.733 -17.905

 14 B2P1 189.546 135.226 54.320

 15 P1B2 153.241 132.205 21.036

 16 P2B1 116.496 120.176 -3.680

 17 B1P2 160.161 152.416 7.745

 18 B2P1 209.695 133.907 75.788

 19 P1B2 173.782 140.059 33.723

 20 P2B1 169.341 165.892 3.449

Table 16: Times for the Baseline and Perceptually Structured Interfaces 
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Comparison of Mean Task Completion Times
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Figure 3: Comparison of Mean Task Completion Times 

An analysis of variance (ANOVA) was performed to show that the interface order 

(baseline, perceptually structured) and task order (slide group 1, slide group 2) had no 

significant effect on the results. A single-factor ANOVA comparing the baseline-first-

group and base-interface-second groups is shown in Table 18 was not significant (F(1,18) 

= 0.123, p = 0.730, two-tailed). A single factor ANOVA comparing the perceptually-

structured-interface-first and perceptually-structured-interface-second groups shown in 

Table 19 was not significant (F(1,18) = 0.723, p = 0.406, two-tailed). A single factor 

ANOVA comparing the slide-group-one-first and slide-group-one-second groups shown 

in Table 20 was not significant (F(1,18) = 3.440, p = 0.080, two-tailed). A single factor 
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ANOVA comparing the slide-group-two-first and slide-group-two-second groups 

shown in Table 21 was not significant (F(1,18) = 1.650, p = 0.215, two-tailed). 

Single Factor ANOVA Comparing the Baseline and Perceptually Structured 

Interface Groups

Group Count Sum Mean Variance

Baseline 20 3687.585 184.379 4891.456 

Perceptually Structured 20 2858.229 142.911 1731.705 

Source of Sum of Degrees of Mean

Variation Squares Freedom Square F Value P Value

Between Groups 17195.784 1 17195.784 5.193 0.028

Within Groups 125840.054 38 3311.580

Total 143035.838 39

Table 17: ANOVA for Baseline and Perceptually Structured Interfaces 

Single Factor ANOVA for the Baseline Interface Group

Group Count Sum Mean Variance

Baseline-First 10 1787.556 178.756 3453.106 

Baseline-Second 10 1900.029 190.003 6803.022 

Source of Sum of Degrees of Mean

Variation Squares Freedom Square F Value P Value

Between Groups 632.509 1 632.509 0.123 0.730

Within Groups 92305.146 18 5128.064

Total 92937.655 19

Table 18: Single Factor ANOVA for Baseline Groups 
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Single Factor ANOVA for the Perceptually Structured Interface Group

Group Count Sum Mean Variance

Perceptually-Structured-First 10 1508.819 150.882 3009.633 

Perceptually-Structured-Second 10 1349.410 134.941 505.016 

Source of Sum of Degrees of Mean

Variation Squares Freedom Square F Value P Value

Between Groups 1270.561 1 1270.561 0.723 0.406 

Within Groups 31631.837 18 1757.324

Total 32902.399 19

Table 19: Single Factor ANOVA for Perceptually Structured Groups 

Single Factor ANOVA for Slide Group 1

Group Count Sum Mean Variance

Slide-Group-One-First 10 1806.929 180.693 4700.170 

Slide-Group-One-Second 10 1380.569 138.057 577.196 

Source of Sum of Degrees of Mean

Variation Squares Freedom Square F Value P Value

Between Groups 9089.142 1 9089.142 3.445 0.080 

Within Groups 47496.294 18 2638.683

Total 56585.436 19

Table 20: Single Factor ANOVA for Slide Group 1 Groups 
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Single Factor ANOVA for Slide Group 2

Group Count Sum Mean Variance

Slide-Group-Two-First 10 1489.446 148.945 1634.229 

Slide-Group-Two-Second 10 1868.870 186.887 7090.527 

Source of Sum of Degrees of Mean

Variation Squares Freedom Square F Value P Value

Between Groups 7198.129 1 7198.129 1.650 0.215 

Within Groups 78522.803 18 4362.378

Total 85720.932 19

Table 21: Single Factor ANOVA for Slide Group 2 Groups 

4.2 Errors

Three types of user errors were recorded: speech recognition errors, mouse errors, 

and diagnosis errors. A summary of error rates for each participant is shown in Table 22. 

A detailed listing of errors is in the Appendices in Section 6.10, Section 6.11, and Section 

6.12. For speech errors, the baseline interface had mean of 5.35 and the perceptually 

structured interface had mean of 3.40. The reduction in speech errors was significant 

(paired t(19) = 2.924, p < .01, two-tailed). For mouse errors, the baseline interface had 

mean of 0.35 and the perceptually structured interface had mean of 0.45. Although the 

baseline interface had fewer mouse errors, these results were not significant (paired t(19) 

= 0.346, p = .733, two-tailed). For diagnosis errors, the baseline interface had mean of 

1.95 and the perceptually structured interface had mean of 1.90. Again, although the rate 

for the perceptually structured interface was slightly better, these results were not 
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significant (paired t(19) = 0.181, p = 0.858, two-tailed). A comparison of mean error 

rates by task is shown in Figure 4. 

--- Speech Errors --- --- Mouse Errors --- -- Diagnosis Errors - 

Perceptually Perceptually Perceptually 

Subject Group Baseline Structured Baseline Structured Baseline Structured

1 B1P2 8 1 1 0 2 1 

2 B2P1 7 6 0 0 2 3 

3 P1B2 7 1 2 0 2 1 

4 P2B1 3 1 0 0 0 0 

5 B1P2 2 4 0 0 3 3 

6 B2P1 8 2 0 0 2 4 

7 P1B2 10 4 0 0 6 4 

8 P2B1 8 4 0 0 4 5 

9 B1P2 2 1 0 1 0 0 

10 B2P1 2 2 0 0 2 2 

11 P1B2 7 8 0 0 1 3 

12 P2B1 4 3 2 0 1 0 

13 B1P2 6 9 1 5 1 3 

14 B2P1 4 2 0 0 1 1 

15 P1B2 5 6 0 0 4 3 

16 P2B1 3 1 1 0 1 2 

17 B1P2 4 2 0 0 1 0 

18 B2P1 7 4 0 0 2 0 

19 P1B2 6 2 0 1 2 2 

20 P2B1 5 3 0 0 3 1 

Table 22: Baseline and Perceptually Structured Error Rates 
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Comparison of Mean Errors
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Figure 4: Comparison of Mean Errors

4.3 Acceptability

For analyzing the subjective scores, an acceptability index (AI) was defined as the 

mean scale response for each question across all participants. A lower AI was indicative 

of higher user acceptance. The overall AI was 3.81 for the baseline interface and 3.72 for 

the perceptually structured interface, with 10 of 13 questions showing improvement. The 

results were not significant (p = .187) using a 2x13 ANOVA with repeated measures,

comparing the 2 interfaces for the 13 questions. However, one subject’s score was more

than 2 standard deviations outside the mean AI (subject 17). With this outlier removed,

the baseline interface AI was 3.99 and the perceptually structured interface was 3.63, 
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which was a modest 6.7% improvement. All 13 questions showed improvement, and 

the result was significant using the 2x13 ANOVA as shown in Table 23 (p = .014). A 

comparison of these values is shown in Figure 5 and a summary of all acceptability 

scores is in the Appendices in Section 6.9.

Two-Factor ANOVA With Replication for Acceptability Index

SUMMARY Q1 Q2 Q3 Q4 Q5 Q6 Q7 Q8 Q9 Q10 Q11 Q12 Q13 Total

Baseline Interface

Count 19 19 19 19 19 19 19 19 19 19 19 19 19 247

Sum 75 74 68 84 80 91 91 76 71 73 57 70 75 985

Average 3.95 3.89 3.58 4.42 4.21 4.79 4.79 4.00 3.74 3.84 3.00 3.68 3.95 3.99

Variance 3.27 1.99 2.48 3.37 2.51 2.73 1.95 2.11 2.20 2.70 2.89 4.12 2.27 2.75

Perceptually Structured Interface

Count 19 19 19 19 19 19 19 19 19 19 19 19 19 247

Sum 62 66 66 75 78 82 85 74 57 70 48 66 67 896

Average 3.26 3.47 3.47 3.95 4.11 4.32 4.47 3.89 3.00 3.68 2.53 3.47 3.53 3.63

Variance 3.20 2.26 2.15 3.50 2.88 2.23 2.82 2.54 2.67 2.67 1.60 3.49 2.26 2.77

Total

Count 38 38 38 38 38 38 38 38 38 38 38 38 38 

Sum 137 140 134 159 158 173 176 150 128 143 105 136 142 

Average 3.61 3.68 3.53 4.18 4.16 4.55 4.63 3.95 3.37 3.76 2.76 3.58 3.74 

Variance 3.27 2.11 2.26 3.40 2.62 2.47 2.35 2.27 2.51 2.62 2.24 3.71 2.25 

ANOVA

Source of Variation SS df MS F P-Value F Critical

Sample 16.034 1 16.034 6.054 0.014 3.861 

Columns 113.862 12 9.489 3.582 0.000 1.773 

Interaction 5.255 12 0.438 0.165 0.999 1.773 

Within 1239.579 468 2.649

Total 1374.731 493

Table 23: Two-Factor ANOVA for AI 
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Acceptability Index by Question
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Figure 5: Comparison of Acceptability Index by Question 

4.4 Correlation

The relationship between the dependent variables was analyzed using the Pearson 

correlation coefficient. These are time (T), speech errors (SE), mouse errors (ME), 

diagnosis errors (DE), and acceptability index (AI) from the baseline group, perceptually 

structured group, and both groups together. A summary of these coefficients is in Table 

24. Representative graphs are shown in Figure 6, Figure 7, and Figure 8. 
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Variables Sample Size r value Significant p value

Baseline Interface x Perceptually Structured Interface

Baseline T x Perceptually Structured T 20 0.893 p < .001, two-tailed

Baseline SE x Perceptually Structured SE 20 0.223

Baseline ME x Perceptually Structured ME 20 0.122

Baseline DE x Perceptually Structured DE 20 0.667 p < .001, two-tailed

Baseline AI x Perceptually Structured AI 20 0.678 p < .001, two-tailed

T x SE

Baseline T x Baseline SE 20 0.322

Perceptually Structured T x Perceptually Structured SE 20 0.536 p < .05, two-tailed

T x SE 40 0.471 p < .01, two-tailed

T Improvement x Total SE 20 0.339

T x ME

Baseline T x Baseline ME 20 0.163

Perceptually Structured T x Perceptually Structured ME 20 0.641 p < .01, two-tailed

T x ME 40 0.313 p < .05, two-tailed

T Improvement x Total ME 20 0.225

T x DE

Baseline T x Baseline DE 20 0.082

Perceptually Structured T x Perceptually Structured DE 20 0.228

T x DE 40 0.131

T Improvement x Total DE 20 0.091

T x AI

Baseline T x Baseline AI 20 -0.120

Perceptually Structured T x Perceptually Structured AI 20 0.018

T x AI 40 -0.021

T Improvement x Total AI 20 -0.134

AI x SE

Baseline AI x Baseline SE 20 0.264

Perceptually Structured AI x Perceptually Structured SE 20 0.353

AI x SE 40 0.324 p < .05, two-tailed

Total AI x Total SE 20 0.543 p < .05, two-tailed

AI x ME

Baseline AI x Baseline ME 20 -0.489 p < .05, two-tailed

Perceptually Structured AI x Perceptually Structured ME 20 -0.039

AI x ME 40 -0.187

Total AI x Total ME 20 -0.237

AI x DE

Baseline AI x Baseline DE 20 0.425 p < .05, two-tailed

Perceptually Structured AI x Perceptually Structured DE 20 0.394

AI x DE 40 0.407 p < .01, two-tailed

Total AI x Total DE 20 0.419

Table 24: Pearson Correlation Coefficients for Dependent Variables 
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No Correlation for Time and Acceptability Index
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Figure 6: No Correlation Between Time and Acceptability Index 
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Figure 7: Correlation Between Average AI and Total Speech Errors 
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Correlation Between Average AI and Total Diagnosis Errors
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Figure 8: Correlation Between Average AI and Total Diagnosis Errors 



5. Discussion and Conclusion 

The results of this experiment support the hypothesis that the perceptual structure 

of an input task is an important consideration when designing multimodal computer

interfaces. For multimodal speech and direct manipulation biomedical interfaces, the 

speed, accuracy, and acceptance of multidimensional input tasks improved when the 

attributes were perceived as separable. For unimodal interfaces, speed, accuracy, and 

acceptance improved when the inputs were perceived as integral. This chapter reviews 

the research findings, identifies possible relationships, summarizes the results, and 

outlines future research directions. 

5.1 Findings

Three null hypotheses were identified before the study began. Two of the null 

hypotheses were rejected in favor of predicted results. One of the null hypotheses was 

rejected in part, in favor of predicted results. 

The first null hypothesis stated: (H10) The integrality of input attributes has no 

effect on the speed of the user. As reported in Section 4.1, a significant improvement in 

task completion time was observed when integral input attributes used the same modality

and separable attributes used different modalities. The improvement in total time was 

41.468 seconds, or about 22.5% (t(19) = 4.791, p < .001, two-tailed). Of the 20 

participants, 18 saw improvement with the perceptually structured interface.

78
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Strengthening this finding was a significant ANOVA that times from the baseline and 

perceptually structured groups were from different populations. ANOVA also showed 

that interface order (baseline, perceptually structured) and task order (slide group 1, slide 

group 2) had no significant effect on the results. The null hypothesis was rejected in 

support of an alternate hypothesis based on the predicted results: (H1A) The speed of 

multidimensional, multimodal interfaces will increase when the attributes of the task are 

perceived as separable, and for unimodal interfaces will increase when the attributes of 

the task are perceived as integral.

The second null hypothesis stated: (H20) The integrality of input attributes has no 

effect on the accuracy of the user. As reported in Section 4.2, there were 1.95 less speech 

errors with the perceptually structured group, or a 36% improvement, with 16 of the 20 

subjects having less errors using the perceptually structured interface. The reduction in 

speech errors was significant (paired t(19) = 2.924, p < .01, two-tailed). Mouse errors 

were slightly lower with the baseline group and diagnosis errors were slightly lower with 

the perceptually structured group, but these were not significant. 

The reason why mouse errors did not follow predicted results was possibly 

because there were few such errors recorded. Across all subjects, there were only 16 

mouse errors compared to 175 speech errors. A mouse error was recorded only when a 

subject clicked on the wrong item from a list and later changed his or her mind, which 

was a rare event. 
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There were 77 diagnosis errors, but these also did not follow predicted results. 

Diagnosis errors were really a measure of a subject’s expertise in identifying tissue types 

and reactions. The findings suggest that there is no relationship between perceptual 

structure of the input task and the ability of the user to apply domain expertise. However, 

this cannot be concluded, since efforts were made to avoid measuring a subject’s ability 

to apply domain expertise by allowing subjects to review the tissue slides before the 

actual test. 

The null hypothesis was accepted in part: (H2'0) The integrality of input 

attributes has no effect on accuracy of the user, regarding mouse errors and applying 

domain expertise. The null hypothesis was rejected with respect to speech errors in 

support of the modified alternate hypothesis: (H2'A) With respect to speech input, the 

accuracy of multidimensional, multimodal interfaces will increase when the attributes of 

the task are perceived as separable, and for unimodal tasks will increase when the 

attributes of the task are perceived as integral.

The third null hypothesis stated: (H30) The integrality of input attributes has no 

effect on acceptance by the user. As reported in Section 4.3, once the outlier was 

removed, the overall AI was 3.97 for the baseline group and 3.70 for the perceptually 

structured group. This was a moderate improvement of 6.7%, which was significant 

(2x13 ANOVA, p < .05). The null hypothesis was rejected in support of predicted results 

based on the alternate hypothesis: (H3A) The acceptance of multidimensional, 

multimodal interface will increase when the attributes of the task are perceived as 
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separable, and for unimodal tasks will increase when the attributes of the task are 

perceived as integral.

One difficult aspect of collecting subjective data on user acceptance was that the 

prototype being tested was not a complete system. Subjects could view tissue slides on 

the screen, but were limited in other ways. The prototype allowed only one visual plane 

of the original slide to be examined, while pathologists typically require four such images

to make a diagnosis. The zoom feature was limited. Also the 800x600 TFT panel was not 

the ideal computer monitor for viewing detail required to make diagnoses. A more

complete system was developed as described under Preliminary Work in Section 2.6. 

While adding these and other features to this system was possible, they might have 

interfered with the independent variables being manipulated in the actual experiment.

Nevertheless, it seemed difficult for some to subjectively evaluate a software prototype 

with limited functionality.

Another difficulty was with speech recognition accuracy. From informal testing 

during software development, the PE500+ accuracy rate was greater than 95% using 

push-to-speak mode but only about 80% using voice-activated mode. During the actual 

experiment, accuracy was 53% for the baseline interface and 64% for the perceptually 

structured interface. As described earlier, the voice-activated mode was used to avoid 

unwanted side effects when pressing a button to speak. However, this decreased accuracy 

frustrated some of the subjects, one of which compared it to yelling at your three-year-

old: it doesn’t always work. 
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The perceptual structure of the input attributes used in this experiment might

have been more subjective than originally anticipated. While most subjects who stated a 

preference selected the perceptually structured interface, some selected the baseline 

interface. In written comments, they viewed the morphology as the main term with the 

site and qualifier both modifying it. Using these assumptions, the baseline interface 

actually becomes more perceptually structured, since it uses separate modalities for the 

QM and SM input tasks and a single modality for SQ. 

5.2 Relationships

The Pearson correlation coefficients, shown in Table 24, reveal possible 

relationships between the dependent variables. The following discussion examines why 

such relationships may exist. 

5.2.1 Baseline Interface versus Perceptually Structured Interface 

The positive correlation of time between the baseline interface and perceptually 

structured interface was anticipated. It was probably due to the fact that a subject who 

works slowly (or quickly) will do so regardless of the interface. The positive correlation 

of diagnosis errors between the baseline and perceptually structured interface suggests 

that a subject’s ability to apply domain knowledge was not affected by the interface. 

Again, this was probably due to the fact that subjects were allowed to review the slides 



83

before the actual test. The lack of correlation for mouse errors makes sense, since very 

few mouse errors were recorded. 

The lack of correlation for speech errors was notable. If there was a positive 

correlation, it would imply that a subject who made errors with one interface was 

predisposed to making errors with the other. Having no correlation agrees with the 

finding that the user was more likely to make speech errors with the baseline interface, 

where the interface did not match the perceptual structure of the input task. 

5.2.2 Relationships to Task Completion Time 

One would expect that an increase in speech errors would result in an increase in 

task completion time, since it takes time to correct errors. Two of the coefficients in this 

group showed a positive correlation that was significant. They were time verses speech 

errors for the perceptually structured interface and time versus speech errors for both 

interfaces. The other two showed a positive correlation that was not significant, but was 

close.

Again, one would expect that an increase in mouse errors would result in an 

increase in task completion time. Two of the coefficients in this group did show a 

significant positive correlation and two did not. However, due to the relatively few

mouse errors which were recorded, nothing was inferred from these results. 

No correlation was observed between task completion time and diagnosis errors. 

Normally, one could assume that a lack of domain knowledge would lead to a higher task 
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completion time. For this experiment, subjects were allowed to review slides before 

the actual test. This was to ensure that the experiment was measuring data entry time and 

other attributes of user interface performance, and not the ability of participants to read 

tissue slides. Finding no correlation suggests that this goal was accomplished.

No correlation was observed between task completion time and the acceptability 

index. This result was similar to what was observed by Dillon [1995], who saw no 

correlation between time and acceptance, except with expert users. However, unlike 

Dillon, additional analysis found no correlation between time and acceptance with expert 

users. This was not necessarily a contradiction, because these two studies identified 

experts in different ways. Dillon identified a subject as an expert or novice based on a 

retrospective review of that person’s work experience and education. Here, expertise was 

an independent variable. In contrast to that approach, this dissertation considered 

expertise a dependent variable and measured it prospectively, where expertise was 

inversely proportionate to the number of domain errors observed during the experiment.

5.2.3 Relationships with Acceptability Index 

Between the acceptability index and speech errors, a significant positive 

correlation was observed for two of the four groups. This suggests than an increase in 

speech errors increases the likelihood the user will not be pleased with the interface. No 

correlation was found between the acceptability index and mouse errors. Again, this was 
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most likely due to the lack of recorded mouse errors. Note that for the acceptability 

index, a lower score corresponds to higher user acceptance. 

A significant positive correlation was observed between the acceptability index 

and diagnosis errors. Three of the four showed this correlation, with the fourth being 

close. What this finding suggests is that the more domain expertise a person has, the more

he or she is likely to approve of the computer interface. 

5.3 Summary

A research hypothesis was proposed for multimodal speech and direct 

manipulation biomedical interfaces. It stated that multimodal multidimensional interfaces 

work best when the input attributes are perceived as separable, and that unimodal

multidimensional interfaces work best when the inputs are perceived as integral. This 

was based on previous research that extended the theory of perceptual structure [Garner 

1972] to show that performance of multidimensional, unimodal, graphical environments

improves when the structure of the perceptual space matches the control space of the 

input device [Jacob et al. 1994]. Also influencing this dissertation was the finding that 

contrastive functionality can drive a user’s preference of input devices in multimodal

interfaces [Oviatt and Olsen 1994] and the framework for complementary behavior 

between natural language and direct manipulation [Cohen 1992]. 

The results of this experiment support the hypothesis when using a multimodal

interface on multidimensional biomedical tasks. Task completion time, accuracy, and 
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user acceptance all increased when a single modality was used to enter attributes 

which were integral and two modalities were used to enter attributes which were 

separable. A software prototype was developed with two interfaces to test this 

hypothesis. The first was a baseline interface that used speech and mouse input in a way 

that did not match the perceptual structure of the attributes, while the second interface 

used speech and mouse input in a way that best matched the perceptual structure. 

A group of 20 clinical and veterinary pathologists evaluated the interface in an 

experimental setting, where data on task completion time, speech errors, mouse errors, 

diagnosis errors, and user acceptance was collected. Task completion time improved by 

22.5%, speech errors were reduced by 36%, and user acceptance increased 6.7% for the 

interface that best matched the perceptual structure of the attributes. Mouse errors 

decreased slightly and diagnosis errors increased slightly for the baseline interface, but 

these were not statistically significant. There was no relationship between user 

acceptance and time, suggesting that speed is not the predominate factor in determining

approval. User acceptance was shown to be related to speech recognition errors, 

suggesting that recognition accuracy is crucial to user satisfaction. User acceptance was 

also shown to be related to domain errors, suggesting that the more domain expertise a 

person has, the more he or she will embrace the computer interface. 
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5.4 Future Research Directions 

With respect to future directions, additional studies on domain expertise and 

minimizing speech errors would be helpful. This effort successfully reduced the rate of 

speech errors by applying certain principles based on perceptual structure. Others have 

reported a  reduction in spoken disfluencies by applying other user interface techniques 

[Oviatt 1996]. Also, noting the strong relationship between user acceptance and domain

expertise, additional research on how to build domain knowledge into the user interface 

may be helpful. 

As outlined under Research Questions, in Section 1.5, other experimental studies 

were proposed to further evaluate the framework for complementary behavior between 

speech and direct manipulation. This includes studies on the effect of the reference 

number, reference predictability, and reference visibility on the speed, accuracy, and 

acceptance of speech and direct manipulation interfaces. Additional research on speech 

input in multimodal environments, like this study, would also be of interest. 

Preliminary work, described in Section 2.6, listed several areas of future research 

for speech interfaces in hands-busy, eyes-busy biomedical environments. Some of these, 

such as reducing speech training requirements, are being addressed by new technology. A 

key area warranting further study is how to improve audible feedback in eyes-busy tasks 

to reduce dependence on visual displays. A possible research goal could be to develop a 

fully functional speech-driven system incorporating results from the preliminary study 

and this dissertation that can be evaluated in production environments.
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5.5 Conclusion

In conclusion, this study demonstrated that matching a multidimensional

multimodal interface to the perceptual structure of the input attributes can increase the 

performance, accuracy, and user acceptance of the interface. User acceptance was 

influenced more by accuracy than speed. In addition, factors unrelated to the software 

itself affected acceptance, such as the level of domain expertise. It is hoped that these 

empirical results add to our understanding of how best to incorporate speech into 

multimodal environments and help in the development of systems to collect and manage

biomedical information.
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6. Appendices

Memoranda, questionnaires, vocabulary, transcripts, and experimental data are 

included here. 
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6.1 Sample Memorandum to Request for Volunteers 

To: Veterinary Pathologists

From: Michael Grasso

University of Maryland Baltimore County 

 grasso@cs.umbc.edu

Date: December 10, 1996 

Subj: Volunteers Needed for Biomedical Software Study 

I am a doctoral student in Computer Science at the University of Maryland 

Baltimore County. My dissertation centers on the acceptance and efficiency of computers

using a spoken language interface in biomedical environments.

Part of my research is to evaluate several user interfaces in the context of 

collecting histopathology data. I need up to 40 participants who can volunteer about 45 

minutes of their time between now and March 1997. The participants should be clinical 

or veterinary pathologists, graduate students, residents, or post-doctorates who feel 

comfortable with tissue types and reactions. Note that since the main objective is to 

evaluate different user interfaces, participants do not need a high level of expertise in this 

area.

The test is relatively simple and lasts only about 45 minutes. Each participant will 

be asked to enter histopathologic observations as the software projects images of tissue 

slides on a computer monitor. Testing will take place at your facility, so not travel is 

involved.

I’ll call in the near future to see if you might be able to help. In the meantime, if 

you have questions, you can reach me by e-mail (grasso@cs.umbc.edu, 410-455-3000). 

Also, feel free to talk my advisors at UMBC, Dr. Finin (finin@cs.umbc.edu, 410-455-

3522) and Dr. Ebert (ebert@cs.umbc.edu, 410-455-3541). 

Thanks for taking the time to consider this. Your assistance in this project will be 

greatly appreciated. 
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6.2 Pre-Experiment Questionnaire 

Pre-Experiment Questionnaire Subject # ____ 

Answer the following questions and rate your level of computer experience by circling 

the appropriate number for the scaled items below. 

1. Occupation: ________________________________________________________

2. Education (Highest Degree and Major) :______________________________________ 

3. Age:_______________________________ 4. Gender: _______________________

5. National Origin: ________________________________________________________

6. Native Language: _______________________________________________________

Level of Computer Experience 

7. none high proficiency 

1 2 3 4 5 6 7 

Level of Experience using a Computer with a Mouse 

8. none high proficiency

1 2 3 4 5 6 7 

Level of Experience using a Computer with Speech Recognition 

9. none high proficiency

1 2 3 4 5 6 7 

Informed Consent
I have read the above instructions, and I have answered all questions to my

satisfaction. I understand that my responses may be recorded and that only the 

investigator and I will have access to these results by name. I agree to participate in this 

research project. 

Name:________________________________ Signature: ________________________

Date: ________________________________ Investigator: ______________________
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6.3 Post-Experiment Questionnaire 

Post-Experiment Questionnaire Subject # ____ Group ____ 

For each interface, rate your satisfaction by circling the appropriate number for the scaled 

items below. Select number 4 if neutral. 

 Interface 1 Interface 2

1) fast slow fast slow 

1 2 3 4 5 6 7 1 2 3 4 5 6 7 

2) accurate inaccurate accurate inaccurate 

1 2 3 4 5 6 7 1 2 3 4 5 6 7 

3) consistent inconsistent consistent inconsistent 

1 2 3 4 5 6 7 1 2 3 4 5 6 7 

4) pleasing irritating pleasing irritating 

1 2 3 4 5 6 7 1 2 3 4 5 6 7 

5) dependable undependable dependable undependable 

1 2 3 4 5 6 7 1 2 3 4 5 6 7 

6) natural unnatural natural unnatural 

1 2 3 4 5 6 7 1 2 3 4 5 6 7 

7) complete incomplete complete incomplete

1 2 3 4 5 6 7 1 2 3 4 5 6 7 

8) comfortable uncomfortable comfortable uncomfortable

1 2 3 4 5 6 7 1 2 3 4 5 6 7 

9) friendly unfriendly friendly unfriendly 

1 2 3 4 5 6 7 1 2 3 4 5 6 7 

10) facilitating distracting facilitating distracting 

1 2 3 4 5 6 7 1 2 3 4 5 6 7 

11) simple complicated simple complicated

1 2 3 4 5 6 7 1 2 3 4 5 6 7 

12) useful useless useful useless 

1 2 3 4 5 6 7 1 2 3 4 5 6 7 

Overall Evaluation: 

13) acceptable unacceptable acceptable unacceptable 

1 2 3 4 5 6 7 1 2 3 4 5 6 7 

Comments: If you like, you can write additional comments on the back of this form.
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6.4 Pathology Nomenclature 

Organs

Adrenal Gland 

Heart

Liver

Lung

Ovary

Pituitary

Spleen

Urinary Bladder 

Sites

Alveolus

Coronary Artery 

Cortex

Epithelium

Follicle

Lobules

Media

Medulla

Parenchyma

Pars Distalis 

Red Pulp 

Transitional Epithelium

Wall

Severity Qualifiers

Marked

Mild

Minimal

Moderate

Count Qualifiers

Confluent

Multiple

Single

Distribution Qualifiers

Diffuse

Focal

Multifocal

Morphologies

Carcinoma

Cyst

Giant Cell 

Granulosa Cell Tumor

Hemangiosarcoma

Hematopoietic Cell Proliferation Erythrocytic 

Hepatocellular Carcinoma

Hyperplasia

Inflammation

Luteoma

Pheochromocytoma

Squamous Cell Carcinoma

Spindle Cell 

Transitional Cell Carcinoma

Vacuolization Cytoplasmic
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6.5  Perceptually Structured Interface Vocabulary 

S -> { Select OBS+ | Press Continue | Press Zoom } 

OBS+  -> QUAL_LIST+ MORPH_LIST+ 

QUAL_LIST+ == Marked Mild Minimal Moderate 

Confluent Multiple Single 

Diffuse Focal Multifocal

MORPH_LIST+ -> {Carcinoma | Cyst | Giant Cell | Granulosa Cell Tumor | 

 Hemangiosarcoma |

Hematopoietic Cell Proliferation Erythrocytic | 

Hepatocellular Carcinoma | Hyperplasia | 

Inflammation | Luteoma | Pheochromocytoma | 

Squamous Cell Carcinoma | Spindle Cell | 

Transitional Cell Carcinoma | 

 Vacuolization Cytoplasmic}



95

6.6 Baseline Interface Vocabulary 

S -> { Select OBS+ | Press Continue | Press Zoom } 

OBS+  -> SITE_LIST+ QUAL_LIST+ 

SITE_LIST+ -> {Alveolus | Coronary Artery | Cortex | Epithelium | 

Follicle | Lobules | Media | Medulla | Parenchyma | 

Pars Distalis | Red Pulp | Transitional Epithelium | 

 Wall}

QUAL_LIST+ == Marked Mild Minimal Moderate 

Confluent Multiple Single 

Diffuse Focal Multifocal
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6.7 Perceptually Structured Interface Transcript 

Following is a transcript from subject 12 using the perceptually structured interface 

showing elapsed time in seconds along with the device used, the action, and comments.

Time Device Action Comment

0 Mouse Press button to begin test. 

3 Mouse Click on “media”

7 Speech “Select marked giant cell” 

14 Mouse Click on “press continue” button 

20 Mouse Click on “follicle”

29 Speech “Select moderate hyperplasia” Recognition error 

36 Speech “Select moderate hyperplasia” 

42 Mouse Click on “press continue” button 

44 Mouse Click on “media”

50 Speech “Select moderate inflammation”

57 Mouse Click on “press continue” button 

61 Mouse Click on “wall” 

65 Speech “Select marked squamous cell carcinoma”

71 Mouse Click on “press continue” button 

74 Mouse Click on “epithelium”

81 Speech “Select moderate transitional cell carcinoma”

89 Mouse Click on “press continue” button 

94 Mouse Click on “transitional epithelium”

96 Speech “Select marked transitional cell carcinoma”

104 Mouse Click on “press continue” button 
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6.8 Baseline Interface Transcript 

Following is a transcript from subject 12 using the baseline interface showing elapsed 

time in seconds along with the device used, the action, and comments.

Time Device Action Comment

0 Mouse Press button to begin test. 

15 Mouse Click on “medulla” Incorrect action 

20 Speech “Select medulla mild”

21 Mouse Click on “pheochromocytoma”

27 Mouse Click on “press continue” button 

35 Speech “Select cortex marked” Recognition error 

39 Mouse Click on “pheochromocytoma”

42 Speech “Select cortex marked”

51 Mouse Click on “press continue” button 

70 Speech “Select pars distalis moderate”

76 Mouse Click on “granulosa cell tumor”

77 Mouse Click on “press continue” button 

82 Speech “Select lobules marked”

88 Mouse Click on “vacuolization cytoplasmic”

89 Mouse Click on “press continue” button 

97 Speech “Select parenchyma moderate” Recognition error 

 101 Mouse Click on “hemangiosarcoma”

 103 Speech “Select parenchyma moderate”

109 Mouse Click on “press continue” button 

114 Speech “Select parenchyma marked” Recognition error 

118 Mouse Click on “hepatocellular carcinoma”

 124 Speech “Select parenchyma marked”

128 Mouse Click on “press continue” button 
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6.9 Task Completion Time Scores 

Subject Task 1 Task 2 Task 3 Task 4 Task 5 Task 6 Total Improvement

Baseline 1 22.410 72.170 50.090 49.490 58.000 62.510 314.670

Interface 2 28.080 16.300 62.740 37.960 30.210 19.940 195.230

3 54.650 48.279 32.571 20.267 21.750 18.675 196.192

4 10.051 16.203 15.983 30.813 24.277 23.398 120.725

5 11.808 21.476 23.124 25.375 24.332 23.617 129.732

6 49.323 25.320 25.925 26.309 15.983 16.917 159.777

7 17.851 18.510 18.509 20.487 20.762 15.709 111.828

8 56.463 15.928 18.564 20.872 26.639 51.080 189.546

9 32.626 43.775 26.309 18.510 25.485 13.456 160.161

10 28.213 69.550 45.097 20.845 18.520 27.470 209.695

11 25.046 33.669 29.824 20.926 24.552 38.173 172.190

12 11.973 20.432 13.786 14.061 24.497 37.788 122.537

13 76.621 103.643 63.109 58.605 35.976 17.686 355.640

14 17.576 52.673 28.946 28.89 38.997 18.785 185.867

15 68.162 64.702 54.156 28.616 66.514 40.645 322.795

16 27.737 23.453 25.925 12.742 18.675 19.608 128.140

17 43.995 21.311 13.292 37.568 23.014 14.061 153.241

18 22.519 14.171 18.4 20.871 13.182 27.353 116.496

19 50.476 30.483 14.61 41.633 16.862 19.718 173.782

20 49.539 15.189 17.966 31.806 29.067 25.774 169.341

Perceptually 1 24.06 37.74 21.03 40.15 36.47 22.08 181.530 133.140

Structured 2 10.93 22.68 34.88 32.9 23.34 23.04 147.770 47.460

Interface 3 17.071 15.873 16.807 17.741 35.042 20.487 123.021 73.171

4 13.292 26.529 17.026 22.19 16.313 11.149 106.499 14.226

5 12.852 14.006 22.245 15.104 15.269 25.046 104.522 25.210

6 14.115 33.395 27.627 25.430 16.917 17.302 134.786 24.991

7 40.645 12.029 18.070 26.419 17.081 15.489 129.733 -17.905

8 18.016 8.184 12.248 55.859 15.159 25.760 135.226 54.320

9 18.839 66.624 19.279 14.445 15.434 17.795 152.416 7.745

10 26.068 18.801 21.060 27.194 21.477 19.307 133.907 75.788

11 22.245 42.622 13.896 16.642 23.014 11.809 130.228 41.962

12 11.754 15.709 28.945 13.732 14.280 12.468 96.888 25.649

13 31.033 58.385 44.489 42.402 75.248 19.773 271.330 84.310

14 22.355 14.225 13.457 12.578 24.936 40.157 127.708 58.159

15 49.268 52.179 20.432 37.843 31.967 28.835 220.524 102.271

16 14.446 28.396 13.731 14.665 17.960 14.611 103.809 24.331

17 20.597 24.991 26.09 28.286 15.928 16.313 132.205 21.036

18 23.783 15.159 21.805 19.993 18.400 21.036 120.176 -3.680

19 29.275 26.804 22.079 15.160 19.223 27.518 140.059 33.723

20 26.292 25.391 18.245 22.143 55.721 18.100 165.892 3.449
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6.10 Speech Errors 

Subject Task 1 Task 2 Task 3 Task 4 Task 5 Task 6 Total

Baseline 1 0 2 2 2 1 1 8

Interface 2 1 0 3 0 2 1 7

3 5 2 0 0 0 0 7

4 0 0 0 1 1 1 3

5 0 0 0 0 1 1 2

6 4 2 1 1 0 0 8

7 1 2 2 1 2 2 10

8 2 0 1 1 1 3 8

9 2 0 0 0 0 0 2

10 1 3 2 0 0 1 7

11 3 3 0 0 1 0 7

12 1 0 3 0 0 0 4

13 0 2 1 2 1 0 6

14 0 0 0 0 3 1 4 

15 4 0 1 0 0 0 5

16 0 1 0 0 1 1 3

17 0 0 0 3 1 0 4

18 0 0 0 0 0 1 1

19 2 1 0 2 0 1 6

20 2 0 0 1 1 1 5

Total 28 18 16 14 16 15 107

Perceptually 1 1 0 0 0 0 0 1

Structured 2 0 1 3 2 0 0 6

Interface 3 0 0 0 0 1 0 1

4 0 1 0 0 0 0 1

5 1 0 1 1 0 1 4

6 0 1 0 1 0 0 2

7 2 0 1 0 1 0 4

8 0 0 0 3 0 1 4

9 0 1 0 0 0 0 1

10 2 0 1 1 0 0 4

11 2 3 0 0 1 2 8

12 0 0 0 0 0 3 3

13 0 0 3 4 0 2 9

14 0 2 0 0 0 0 2

15 1 4 0 0 1 0 6

16 0 1 0 0 0 0 1

17 0 1 0 1 0 0 2

18 1 0 1 0 1 1 4

19 0 1 1 0 0 0 2

20 1 1 0 0 1 0 3

Total 11 17 11 13 6 10 68
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6.11 Mouse Errors 

Subject Task 1 Task 2 Task 3 Task 4 Task 5 Task 6 Total

Baseline 1 0 0 0 0 1 0 1

Interface 2 0 0 0 0 0 0 0

3 2 0 0 0 0 0 2

4 0 0 0 0 0 0 0

5 0 0 0 0 0 0 0

6 0 0 0 0 0 0 0

7 0 0 0 0 0 0 0

8 0 0 0 0 0 0 0

9 0 0 0 0 0 0 0

10 0 0 0 0 0 0 0

11 0 0 0 0 0 0 0

12 1 0 0 1 0 0 2

13 0 0 0 1 0 0 1

14 0 0 0 0 0 0 0

15 0 0 0 0 0 0 0

16 1 0 0 0 0 0 1

17 0 0 0 0 0 0 0

18 0 0 0 0 0 0 0

19 0 0 0 0 0 0 0

20 0 0 0 0 0 0 0

Total 4 0 0 2 1 0 7 

Perceptually 1 0 0 0 0 0 0 0

Structured 2 0 0 0 0 0 0 0

Interface 3 0 0 0 0 0 0 0

4 0 0 0 0 0 0 0

5 0 0 0 0 0 0 0

6 0 0 0 0 0 0 0

7 0 0 0 0 0 0 0

8 0 0 0 0 0 0 0

9 0 0 1 0 0 0 1

10 0 0 0 0 0 0 0

11 0 0 0 0 0 0 0

12 0 0 0 0 0 0 0

13 0 0 3 0 0 2 5

14 0 0 0 0 0 0 0

15 0 0 0 0 0 0 0

16 0 0 0 0 0 0 0

17 0 0 0 0 0 0 0

18 0 0 0 1 0 1 2

19 1 0 0 0 0 0 1

20 0 0 0 0 0 0 0

Total 1 0 4 1 0 3 9 
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6.12 Diagnosis Errors 

Subject Task 1 Task 2 Task 3 Task 4 Task 5 Task 6 Total

Baseline 1 0 1 0 0 1 0 2

Interface 2 0 1 0 0 0 1 2

3 1 0 0 0 0 1 2

4 0 0 0 0 0 0 0

5 0 1 1 0 1 0 3

6 0 1 0 0 1 0 2

7 1 1 1 1 1 1 6

8 1 0 0 1 1 1 4

9 0 0 0 0 0 0 0

10 0 0 0 1 1 0 2

11 0 0 0 1 0 0 1

12 0 1 0 0 0 0 1

13 0 0 0 0 1 0 1

14 0 0 0 0 0 1 1

15 1 1 0 0 1 1 4

16 0 1 0 0 0 0 1

17 0 0 0 1 0 0 1

18 0 0 0 0 0 1 1

19 1 1 0 0 0 0 2

20 1 1 0 0 0 1 3

Total 6 10 2 5 8 8 39

Perceptually 1 0 1 0 0 0 0 1

Structured 2 1 0 1 0 1 0 3

Interface 3 0 1 0 0 0 0 1

4 0 0 0 0 0 0 0

5 0 1 0 0 1 1 3

6 1 0 1 1 0 1 4

7 0 0 1 1 1 1 4

8 1 1 0 1 1 1 5

9 0 0 0 0 0 0 0

10 0 1 0 1 0 0 2

11 0 0 0 1 1 1 3

12 0 0 0 0 0 0 0

13 1 1 0 0 0 1 3

14 0 1 0 0 0 0 1

15 1 1 0 0 1 0 3

16 0 1 0 0 0 1 2

17 0 0 0 0 0 0 0

18 0 0 0 0 0 0 0

19 0 0 0 1 1 0 2

20 0 0 0 0 0 1 1

Total 5 9 3 6 7 8 38
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6.13 Acceptability Scores 

Subject 1 2 3 4 5 6 7 8 9 10 11 12 13 AI[subject]

Baseline 1 2 2 2 2 2 3 4 2 2 2 1 1 2 2.08

Interface 2 6 3 5 4 5 5 4 3 5 4 2 4 5 4.23

3 3 3 2 3 3 3 3 3 3 3 2 2 2 2.69

4 2 2 2 2 2 3 3 3 2 2 2 2 2 2.23

5 3 4 5 4 5 3 5 3 3 3 5 3 3 3.77

6 2 3 2 4 3 6 6 5 4 5 5 7 4 4.31

7 4 5 5 6 5 7 7 6 4 6 2 4 4 5.00

8 5 4 4 5 4 5 4 4 3 4 4 3 4 4.08

9 2 3 1 1 1 3 5 2 2 1 1 1 2 1.92

10 2 4 5 5 5 4 4 3 4 4 4 4 4 4.00

11 7 6 6 7 6 6 7 6 4 6 2 6 6 5.77

12 5 2 2 4 3 4 3 4 4 4 3 2 3 3.31

13 3 3 2 6 6 3 4 5 2 3 2 4 3 3.54

14 7 7 4 7 7 7 7 7 7 7 6 7 7 6.69

15 6 5 5 5 5 4 5 4 6 2 2 3 5 4.38

16 2 3 2 2 3 4 3 2 2 3 2 2 3 2.54

17* 1 1 1 1 1 1 1 1 1 1 1 1 1 1.00

18 6 5 5 4 5 7 5 4 6 3 6 2 5 4.85

19 4 5 4 7 5 7 6 5 4 6 1 6 6 5.08

20 4 5 5 6 5 7 6 5 4 5 5 7 5 5.31

AI[question] 3.80 3.75 3.45 4.25 4.05 4.60 4.60 3.85 3.60 3.70 2.90 3.55 3.80 3.84

Perceptually 1 2 2 2 2 2 3 4 3 2 3 2 1 2 2.31

Structured 2 5 6 5 4 6 5 5 4 5 4 3 5 5 4.77

Interface 3 7 3 3 6 3 3 7 2 3 3 2 2 2 3.54

4 2 2 2 2 2 3 3 3 2 2 1 2 2 2.15

5 3 4 3 3 4 5 5 3 3 4 3 3 3 3.54

6 3 2 3 4 3 6 4 5 4 6 5 7 4 4.31

7 1 4 4 6 6 7 7 7 3 4 2 4 5 4.62

8 3 3 5 3 4 5 5 5 3 3 2 3 3 3.62

9 2 3 2 2 2 2 3 2 1 1 1 1 2 1.85

10 2 4 5 5 5 4 4 3 4 4 4 4 4 4.00

11 6 6 6 7 6 6 7 6 4 6 2 6 6 5.69

12 3 2 2 2 2 2 2 2 2 2 2 2 2 2.08

13 4 4 3 6 6 4 4 5 2 4 2 4 4 4.00

14 7 7 4 7 7 7 7 7 7 7 6 7 7 6.69

15 2 2 2 2 3 4 3 4 1 2 2 2 3 2.46

16 2 3 2 1 3 3 3 2 1 2 2 2 2 2.15

17* 4 4 4 4 4 4 4 4 4 4 4 4 4 4.00

18 2 3 2 4 3 4 2 3 1 3 2 2 3 2.62

19 4 2 6 4 6 5 6 4 4 6 2 4 5 4.46

20 2 4 5 5 5 4 4 4 5 4 3 5 3 4.08

AI[question] 3.30 3.50 3.50 3.95 4.10 4.30 4.45 3.90 3.05 3.70 2.60 3.50 3.55 3.65

* Note that subject 17 was considered an outlier and removed during analysis.
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