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Abstract 
Information retrieval technology has been central to the 
success of the Web.  For semantic web documents or 
annotations to have an impact, they will have to be com-
patible with Web based indexing and retrieval technol-
ogy.  We discuss some of the underlying problems and 
issues central to extending information retrieval systems 
to handle annotations in semantic web languages.  We 
also describe three prototype systems that we have im-
plemented  to explore these ideas. 

1. Introduction 
 
Information retrieval technology has been central to the 
success of the Web.  Web based indexing and search 
systems such as Google and Yahoo have profoundly 
changed the way we access information.  For the seman-
tic web technologies [4][5] to have an impact, they will 
have to be compatible with Web search engines and in-
formation retrieval technology in general.  We discuss 
several approaches to using information retrieval systems 
with both semantic web documents and with text docu-
ments that have semantic web annotations.   

One vision of the Semantic Web is that it will be 
much like the Web we know today, except that docu-
ments will be enriched by annotations in machine under-
standable markup.  These annotations will provide meta-
data about the documents as well as machine interpret-
able statements capturing some of the meaning of the 
documents’ content. We describe initial experiments that 
demonstrate how existing IR systems can be coaxed into 
supporting this scenario using a technique we call swan-
gling to encode RDF triples as word-like terms. 

In an alternate vision, semantic web content will exist 
in separate documents that reference and describe the 
content of conventional web documents. Here too it may 
be desirable to use conventional systems such as Google 
to index and retrieve these documents. We discuss how 
the swangling technique can also be used to add asser-
tions to RDF documents in a way that is compatible with 
many standard search engines. 

A final approach to using IR engines for SWD docu-
ments is to build custom indexing and retrieval engines 
specifically designed to work with semantic web docu-

ments as opposed to conventional ones.  We describe 
Swoogle, a prototype crawler-based search engines for 
RDF documents.  This system allows users to retrieve 
indexed RDF documents based on the RDF classes and 
properties they use and also uses the Haircut information 
retrieval engine to retrieve documents using character-
based n-grams. 

The next section will motivate the ability to index and 
search for documents consisting of or annotated with 
semantic web content.  Section Three will lay out the 
landscape of possible ways to adapt information retrieval 
systems to the Semantic Web and Section Four will de-
scribe three different prototype systems we have built to 
explore the problem.  The fifth section summarizes this 
work and speculates on what the future may bring. 
 

2. Motivation 
 

The Semantic Web has lived its infancy as a clearly de-
lineated body of Web documents. That is, by and large 
researchers working on aspects of the Semantic Web 
knew where the appropriate ontologies resided and 
tracked them using explicit URLs. When the desired Se-
mantic Web document was not at hand, one was more 
likely to use a telephone to find it than a search engine. 
This closed world assumption was natural when a hand-
ful of researchers were developing DAML 0.5 ontolo-
gies, but is untenable if the Semantic Web is to live up to 
its name. Yet simple support for search over Semantic 
Web documents, while valuable, represents only a small 
piece of the benefits that will accrue if search and infer-
ence are considered together. We believe that Semantic 
Web inference can improve traditional text search, and 
that text search can be used to facilitate or augment Se-
mantic Web inference. Several difficulties, listed below, 
stand in the way of this vision. 

Current Web search techniques are not directly suited 
to indexing and retrieval of semantic markup. Most 
search engines use words or word variants as indexing 
terms. When a document written using some flavor of 
SGML is indexed, the markup is simply ignored by many 
search engines. Because the Semantic Web is expressed 
entirely as markup, it is thus invisible to them. Even 
when search engines detect and index embedded markup,   



they do not process the markup in a way that allows the 
markup to be used during the search, or even in a way 
that can distinguish between markup and other text. 

Current Web search techniques cannot use semantic 
markup to improve text retrieval.  Web search engines 
typically rely on simple term statistics to identify docu-
ments that are most relevant to a query. One might con-
sider techniques such as thesaurus expansion or blind 
relevance feedback to be integration of inference into the 
retrieval process, but such inference is simple compared 
with what is possible using semantic markup. One would 
like the presence of semantic markup in either the query 
or the documents retrieved to be exploitable during 
search to improve that search. 

Likewise, text is not useful during inference. To the 
extent that it is possible to automatically convert text to a 
semantic representation, such resulting representations 
can be used during inference.  However, semantic inter-
pretation is difficult at best, and unsolved in the general 
case. We would like a way to exploit relevant text during 
inference, without needing to analyze the semantics of 
that text. 

There is no current standard for creating or manipulat-
ing documents that contain both HTML text and semantic 
markup. There are two prime candidates for such hybrid 
documents.  First, semantic markup might be embedded 
directly in an HTML page.  Unfortunately, while we call 
approaches like RDF and OWL semantic markup, they 
are typically used not as markup but rather as stand-alone 
knowledge representation languages that are not directly 
tied to text. Furthermore, embedding RDF-based markup 
in HTML is non-compliant with HTML standards up to 
and including HTML 4.0.  This issue is currently under 
study by a W3C task force [23]. 

The second way to bind HTML to semantic markup is 
to create a pair of documents, one containing HTML, the 

other containing the corresponding semantic markup.  
The two files are bound by placing in each a pointer to 
the URI of the other, either by URI naming convention, 
or by concurrent retrieval (i.e., as part of a single transac-
tion). While this method makes it difficult to associate 
semantic markup with specific components of the HTML 
page, it is possible to implement using today’s standards. 
Whichever approach is taken to binding semantic markup 
to HTML, the current lack of a standard has made it dif-
ficult to exploit the relationship between the two. 

One of the stated objectives of the semantic web is to 
enhance the ability of both people and software agents to 
find documents, information and answers to queries on 
the Web.  While there has been some research on infor-
mation retrieval techniques applied to documents with 
markup [1][2][3][7][13], combining retrieval with ontol-
ogy browsing [9], the role of explicit ontologies in in-
formation retrieval tasks [19], and on question answering 
as a retrieval task [18], much of it can be seen as incre-
mental extensions to familiar paradigms.  Our goal is 
more ambitious and offers, we think, a new paradigm for 
information retrieval that mixes and interleaves search, 
retrieval and understanding. 

To explore the tight integration of search and infer-
ence, we propose a framework designed to meet the fol-
lowing desiderata: 

• The framework must support both retrieval-driven 
and inference-driven processing. 

• Retrieval must be able to use words, semantic 
markup, or both as indexing terms. 

• Web search must rely on today’s broad coverage, 
text-based retrieval engines. 

• Inference and retrieval should be tightly coupled; 
improvements in retrieval should lead to improve-
ments in inference, while improvements in inference 
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Figure 1. Integration of inference and retrieval over semantic markup. Arrows represent data flow. 



should lead to improvements in retrieval. 
In the following subsections, we first describe the por-
tions of the framework that use semantic markup, then 
show how text processing can be mixed in to increase 
system capabilities and improve performance. 
 

2.1 Processing of Semantic Markup 
 
Imagine we are concerned only with retrieval and infer-
ence over semantic markup.  We would like the ability to 
operate some sort of inference engine, to identify facts 
and rules needed by the inference engine to reach its de-
sired conclusions, to search the Semantic Web for such 
facts and rules, and to incorporate the results of the 
search into the inference process.  Figure 1 shows the 
basic architecture of such a system. 

Input to the system is some sort of Semantic Web 
query. If the user’s goal is retrieval, this might simply be 
semantic markup encoding the concepts being sought 
(e.g., using XML-QL [10] or XIRQL [15]). Alterna-
tively, if the goal is inference, the query might be a 
statement the system is to prove. In either case, the query 
is submitted to the inference engine. For retrieval, the 
inference engine may choose to perform limited forward 
chaining on the input (as a text retrieval engine might 
perform thesaurus expansion). For proof, the inference 
engine will generate a partial proof tree (or more accu-
rately, one in a sequence of partial proof trees), using its 
local knowledge base to the extent possible. The infer-
ence engine produces a description of the semantic 
markup to be sought on the Web. 

Because we want to use a traditional Web search en-
gine for the retrieval, we cannot simply use the output of 
the inference engine as a search query. Rather, we must 
first encode the semantic markup query as a text query 
that will be recognized by a search engine. We call this 
process swangling, for ‘Semantic Web mangling.’1 
Technical details about swangling, and its application to 
Web pages prior to indexing, are discussed further below 
in Section 4. The result is a bag of words, recognizable as 
indexing terms by the target Web search engine(s), that 
characterize the desired markup. 

The query is submitted to one or more Web search 
engines. The result will be a ranked list of Web pages, 
which either contain semantic markup themselves, or 
refer to companion pages that do. Some number of these 
pages must be scraped to retrieve their semantic markup. 
Control over how many pages to scrape, and over 
whether to scrape additional pages or to issue a new Web 
query, resides with the inference engine. 
                                                                 
1 Mangling is the technical term for a technique used in C++ 

and other object-oriented compilers in which the types of a 
method’s arguments and return value are encoded in the in-
ternal function name. 

Only some of the semantic markup retrieved through 
this process will be useful for the task at hand. Some will 
not come from an appropriate trusted authority. Some 
will be redundant. Some will be irrelevant. Thus, before 
it is asserted into the inference engine’s knowledge store, 
the semantic markup gleaned from each page must be 
filtered. The result will be a collection of facts and rules, 
which are likely to further the inferences being pursued, 
or serve as valuable relevance feedback terms. These 
facts and rules are passed to the inference engine, which 
may then iterate the entire process. 

 

2.2 Using Text 
 

The process described in the previous subsection 
makes no use of text, except to the extent that the result 
of markup swangling is a set of text terms. However, 
there is no reason that we cannot include appropriate text 
in the Web query.  Adding text will influence the order-
ing of search results, possibly biasing them toward pages 
that will be most useful for the task at hand. Figure 2 
shows how text can be included in the framework. First, 
a text query can be sent directly to the search engine 
(augmented by swangled markup, if such is available). 
Second, the extractor can pull text as well as markup out 
of retrieved pages. As with semantic markup, extracted 
text may be filtered or transduced in various ways before 
being used.  Potentially useful filters include translation, 
summarization, trust verification, etc.  

Incorporation of extracted text into the query of a sub-
sequent round of processing corresponds to blind rele-
vance feedback. The framework therefore provides a way 
to include both text and semantic markup as relevance 
feedback terms, even when the original query is homoge-
neous. 

 

3. Three prototype systems 
 
We have explored the problems and approaches to solv-
ing them through three prototype systems.  While these 
systems do not exhaust the space of possibilities, they 
have challenged us to refine the techniques and provided 
valuable experience. 

The first prototype, OWLIR, is an example of a system 
that takes ordinary text documents as input, annotates 
them with semantic web markup, swangles the results 
and indexes them in a custom information retrieval sys-
tem.  OWLIR can then be queried via a custom query 
interface that accepts free text as well as structured at-
tributes.  

Swangler, our second prototype, is a system that anno-
tates RDF documents encoded in XML with additional 
RDF statements attaching swangle terms that are indexi-



ble by Google and other standard Internet search engines.  
These documents, when available on the web, are dis-
covered and indexed by search engines and can be re-
trieved using queries containing text, bits of XML and 
swangle terms.   

Our third prototype is Swoogle, a crawler-based in-
dexing and retrieval system for RDF documents.  It dis-
covers RDF documents and adds metadata about them to 
its database. It also inserts them into a special version of 
the HAIRCUT information retrieval engine [21] that uses 
character n-grams as indexing terms. 

 
3.1 OWLIR 
 

OWLIR [23] is an implemented system for retrieval of 
documents that contain both free text and semantic 
markup in RDF, DAML+OIL or OWL.  OWLIR was 
designed to work with almost any local information re-
trieval system and has been demonstrated working with 
two–HAIRCUT [21] and WONDIR.  In this section we 
briefly describe the OWLIR system; readers are referred 
to Shah [23] for additional details. 

While we have used OWLIR to explore the general is-
sues of hybrid information retrieval, the implemented 
system was built to solve a particular task – filtering Uni-
versity student event announcements.   Twice a week, 
UMBC students receive an email message listing 40-50 
events that may be of interest, e.g., public lectures, club 
meetings, sporting matches, movie screenings, outing, 
etc.  Our goal is to automatically process these messages 
and produce sets of event descriptions containing both 
text and markup.  These descriptions are then further 
processed, enriched with the results of local knowledge 
and inferencing and prepared for indexing by an infor-
mation retrieval system.  A simple form-based query 
system allows a student to enter a query that includes 
both structured information (e.g., event dates, types, etc.) 
and free text.  The form generates a query document in 
the form of text annotated with DAML+OIL markup. 
Queries and event descriptions are processed by reduc-
ing the markup to triples, enriching the structured 
knowledge using a local knowledge base and inferenc-
ing, and swangling the triples to produce acceptable in-
dexing terms.  The result is a text-like query that can be 
used to retrieve a ranked list of events that match the 
query. 

OWLIR defines ontologies, encoded in DAML+OIL, 
allowing users to specify their interests in different 
events. These ontologies are also used to annotate the 
event announcements.  Figure 3 shows a portion of the 
OWLIR Event Ontology, which is an extension to the 
ontologies used in ITTalks [8]. Events may be academic 
or non-academic, free or paid, open or by invitation. An 
event announcement made within the campus is identi-

fied as an instance of one of the natural kind of events or 
subcategories. Instances of subcategories are inferred to 
be a subtype of one of the natural kind of events. 

Text Extraction. Event announcements are currently 
in free text. We prefer that these documents contain se-
mantic markup. We take advantage of the AeroText™ 
system to extract key phrases and elements from free text 
documents. Document structure analysis supports exploi-
tation of tables, lists, and other elements to provide more 
effective analysis.  

We use a domain user customization tool to fine-tune 
extraction performance. The extracted phrases and ele-
ments play a vital role in identifying event types and add-
ing semantic markup. AeroText has a Java API that pro-
vides access to an internal form of the extraction results. 
We have built DAML generation components that access 
this internal form, and then translate the extraction results 
into a corresponding RDF triple model that uses 
DAML+OIL syntax. This is accomplished by binding the 
Event ontology directly to the linguistic knowledge base 
used during extraction.  

Inference System. OWLIR uses the metadata infor-
mation added during text extraction to infer additional 
semantic relations. These relations are used to decide the 
scope of the search and to provide more relevant re-
sponses. OWLIR bases its reasoning functionality on the 
use of DAMLJessKB [17].  DAMLJessKB facilitates 
reading and interpreting DAML+OIL files, and allowing 

 
Figure 3.  OWLIR annotations use terms from a DAML+OIL 
ontology of classes and properties that are useful in describing 
campus events.



the user to reason over that information. The software 
uses the SiRPAC RDF API to read each DAML+OIL file 
as a collection of RDF triples and Jess (Java Expert Sys-
tem Shell) [14] as a forward chaining production system 
to apply rules to those triples.  

DAMLJessKB provides basic facts and rules that fa-
cilitate drawing inferences on relationships such as Sub-
classes and Subproperties. We enhance the existing 
DAMLJessKB inference capabilities by applying domain 
specific rules to relevant facts. For example, 
DAMLJessKB does not import facts from the ontology 
that is used to create instances; this limits its capacity to 
draw inferences. We have addressed this issue by import-
ing the base Event ontology and providing relevant rules 
for reasoning over instances and concepts of the ontol-
ogy. This combination of DAMLJessKB and domain 
specific rules has provided us with an effective inference 
engine. 

As an example of the swangling process used in 
OWLIR, consider the markup, expressed here in RDF N3 
notation, describing a movie with the title “Spiderman”: 

 
_j:00255 a owlir:movie; dc:title “Spiderman”. 

 
OWLIR has domain-specific rules that are used to add 
information useful in describing an event.  One rule is 
triggered by a description of a movie event where we 
know the movie title.  This rule requests that the Internet 
Movie Database (IMDB) agent seek additional attributes 
of this move, such as its genre.  The results are added as 
triples, such as the following one (also in N3). 

 
_:j00255 owlir:moviegenre “action”. 

 
This triple is then expanded with wildcards to generate 
seven terms, which are added to the document prior to 
indexing: 

 
j00255.owlir.umbc.edu/event/moviegenre.action 
*.owlir.umbc.edu/event/moviegenre.action 
j00255.*.action 
j00255.owlir.umbc.edu/event/moviegenre.* 
j00255.*.* 
*.owlir.umbc.edu/event/moviegenre.* 
**.action 
 
We conducted experiments with OWLIR to see if se-

mantic markup within documents could be exploited to 
improve retrieval performance. We measured precision 
and recall for retrieval over three different types of 
document: text only; text with semantic markup; and text 
with semantic markup that has been augmented by infer-
ence.  We used two types of inference to augment docu-
ment markup: reasoning over ontology instances (e.g., 
deriving the date and location of a basketball game); and 

reasoning over the ontology hierarchy (e.g., a basketball 
game is a type of sporting event). For example, extracting 
the name of a movie from its description allows details 
about the movie to be retrieved from the Internet Movie 
Database site. A query looking for movies of the type 
Romantic Genre can thus be satisfied even when the ini-
tial event description was not adequate for the purpose. 

We generated twelve hybrid (text plus markup) que-
ries, and ran them over a collection of 1540 
DAML+OIL-enhanced event announcements. 

 
Unstructured 

data (e.g., free 
text) 

Structured 
data with in-
ferred data 

Structured 
data plus free 

text 
25.9% 66.2% 85.5% 

 
Table 1. Mean average precision over twelve 
hybrid queries given to OWLIR. 

 
Indexed documents contain RDF Triples and RDF Triple 
Wildcards. This gives users the flexibility to represent 
queries with RDF Triple wildcards. DAML+OIL cap-
tures semantic relationships between terms and hence 
offers a better match for queries with correlated terms. 

These experiments were run using the WONDIR in-
formation retrieval engine. Preliminary results are shown 
in Table 1 and in Shah et al. [23]. Retrieval times for free 
text documents and documents incorporating text and 
markup are comparable. Including semantic markup in 
the representation of an indexed document increases in-
formation retrieval effectiveness. Additional performance 
benefits accrue when inference is performed over a 
document's semantic markup prior to indexing.  While 
the low number of queries at our disposal limits any con-
clusions we might draw about the statistical significance 
of these results, we are nonetheless strongly encouraged 
by them. They suggest that developing retrieval tech-
niques that draw on semantic associations between terms 
will enable intelligent information services, personalized 
Web sites, and semantically empowered search engines. 
 

3.2 Swangler 
 
Currently the semantic web, in the form of RDF and 
OWL documents, is essentially a web universe parallel to 
the web of HTML documents. There is as yet no standard 
way for HTML (even XHTML) documents to embed 
RDF and OWL markup or to reference them in a stan-
dard way that carries meaning. Semantic web documents 
reference one another as well as HTML documents in 
meaningful ways.  

Some Internet search engines, such as Google, do in 
fact discover and index RDF documents.  There are sev-
eral problems with the current situation that stem from 



the fact that systems like Google treat semantic web 
documents (SWDs) as simple text files.  One simple 
problem is that the XML namespace mechanism is 
opaque to these engines.  A second problem is that the 
tokenization rules are designed for natural languages and 
do not always work well with XML documents.  Finally, 
we would like to take advantage of the semantic nature of 
the markup. 

We have applied the swangling technique to SWDs to 
enrich them with additional RDF statements that add 
swangle terms as additional properties of the documents.  
As with OWLIR, each swangle term encodes one triple 
or a triple with one or more of its components replaced 
with a special don’t care URI (rdf:Resource, in this case).   
For example, the RDF triple 

 
http://www.xfront.com/owl/ontologies/camera/#Digital 
http://www.w3.org/2000/01/rdf-schema#subClassOf 
http://www.xfront.com/owl/ontologies/camera/#Purcha
seableItem 
 

is used to generate the seven possible combinations of the 
subject, predicate and object with a don’t care URL (the 
triple with all don’t care URLs is not used).  The con-
catenation of the URLs in each triple is then hashed and 
converted to a base-32 number.  This example results in 
the seven swangle terms as follows: 

BE52HVKU5GD5DHRA7JYEKRBFVQ 
WS4KYRWMO3OR3A6TUAR7IIIDWA 
2THFC7GHXLRMISEOZV4VEM7XEQ 
HO2H3FOPAEM53AQIZ6YVPFQ2XI 
6P3WFGOWYL2DJZFTSY4NYUTI7I 
N656WNTZ36KQ5PX6RFUGVKQ63A 
IIVQRXOAYRH6GGRZDFXKEEB4PY 
A simple ontology2 is used to provide an RDF vo-

cabulary for annotating the original document with the 
generated swangle terms. 

The RDF files are modified to include the additional 
statements and left on the web for the Google spider to 
discover.  When discovered, Google indexes the contents 
including the swangle terms.  These can be subsequently 
used to retrieve the documents through a simple interface 
that takes user provided triples, swangles them, and com-
poses a query using the resulting terms. 

A Java application was developed that implements 
swangling.  It allows for the swangling of an RDF-based 
semantic web document and outputting the annotated, 
swangled document. The source code and documentation 
for this application are available at the Semantic Web 
Central web site (http://semwebcentral.org/). 
 

                                                                 
2 http://swoogle.umbc.edu/ontologies/swangle.owl 

3.3 Swoogle 
 

Since the current semantic web consists of documents 
encoded in RDF, it is worth considering what a special-
ized indexing and retrieval engine for these semantic web 
documents (SWDs) might be like.  Search engines for 
SWDs could exploit the fact that the documents they en-
counter are designed for machine processing and under-
standing.  Conventional search engines can not do much 
to interpret the meaning of documents because the state 
of the art in natural language processing is not up to the 
task.  Even if it were, the computational cost for inter-
preting billions of documents would be prohibitive in any 
foreseeable future.  SWDs, on the other hand, are en-
coded in languages designed for machine interpretation 
and understanding.  While full processing of their content 
is still a challenging and expensive task, the barriers are 
significantly lower.  In particular, it is relatively easier to 
discover and compute interesting and useful metadata 
about the SWDs, such as their intended use (e.g., as an 
ontology, as instance data or as a mapping between two 
ontologies). 

We have built Swoogle3 [12] as a prototype internet 
indexing and retrieval engine for semantic web docu-
ments encoded in RDF and OWL. The system is intended 
to support human users as well as software agents and 
services. Human users are expected to be semantic web 
researchers and developers who are interested in access-
ing, exploring and querying a collection of metadata for a 
collection of RDF documents automatically discovered 
on the web. Software APIs will support programs that 
need to find SWDs matching certain descriptions, e.g., 
those containing certain terms, similar to other SWDs, 
using certain classes or properties, etc. 

                                                                 
3The Swoogle semantic web indexing and retrieval system can 

be accessed at http://swoogle.umbc.edu/ 

 Swoogle is a crawler based search engine for RDF 
documents available at http://swoogle.umbc.edu/. 



The system consists of a database that stores metadata 
about the SWDs, several distinct web crawlers that locate 
new and modified SWDs, components that compute use-
ful document metadata, components to compute semantic 
relationships among the SWDs, an n-gram based index-
ing and retrieval engine, a simple user interface for que-
rying the system, and agent-based and web service APIs 
to provide useful services.  A key metadata property we 
compute of a SWD is its “rank”.  Like the Page Rank 
[5a] concept, our SWD rank is a measure of the semantic 
web document's “importance” or “popularity”.  We have 
used this measure to order results returned by the re-
trieval engine. This algorithm takes advantage of the fact 
that the graph formed by SWDs has a richer set relations 
that that formed by a collection of simple hypertext 
documents. Some are defined or derivable from the RDF 
and OWL languages (e.g., imports, usesTerm, version, 
extends, etc.) and others by common ontologies (e.g., 
FOAF's knows property). 

We envision the following several broad uses of a re-
trieval system like Swoogle: finding appropriate ontolo-
gies, finding instance data and studying the structure of 
the semantic web. 

Typically, an RDF editor allows a user to load an on-
tology, which she can then use to make assertions. But 
finding the right ontology to load is a problem.  This has 
contributed to the proliferation of ontologies, since de-
velopers ignorant of the extant ontologies just write their 
own.  A user can query Swoogle for ontologies that con-
tain specified terms anywhere in the document (including 
comments); for ontologies that contain specified terms as 
Classes or Properties; or for ontologies that are about a 
specified term (as determined by our IR engine). The 
ontologies returned are ranked according to the Ontology 
Rank algorithm, which seeks to capture the extent to 
which ontologies are being used by the community. We 
believe that this use of Swoogle will both ease the burden 
of marking up data, and contribute to the emergence of 
canonical ontologies. 

The semantic web seeks to enable the integration of 
distributed information. But first, the information must be 
found. A Swoogle user can query for all instance data 
about a specified class, or on a specified subject. The 
triples of the returned SWDs can then be loaded into a 
knowledge base for further querying. 

The metadata computed by Swoogle will provide 
structural information about the semantic web, such as 
How connected is it? Which documents refer to an ontol-
ogy? Which ontologies does a document refer to? What 
relationships (importing, using terms etc.) exist between 
two documents. Where is the graph most dense?  

4. Discussion 
 

Our experience in building and evaluating these systems 
has helped us to understand some of the dimensions in-
herent in adapting information retrieval to the semantic 
web.  We will briefly describe them as well as some of 
the related  issues and decisions that arise. 

The first dimension involves what kind of documents 
we expect, i.e., RDF documents encoded in XML (or 
perhaps N3 or some other standard encoding) or text 
documents with embedded RDF markup.  Swoogle and 
Swangler are designed to work only on well formed RDF 
documents whereas OWLIR can handle compound 
documents with both text and RDF intermixed. 

The second dimension concerns how the semantic 
web markup is processed – as structured information 
with an underlying data/knowledge model or as text with 
little or no associated model.  OWLIR and Swangler treat 
markup as structured information and perform inferences 
over it following the semantics of RDF and OWL. The 
resulting data is ultimately reduced to swangle terms 
which, while a lossy transformation, still preserves much 
of the information.  Swoogle has components on both 
ends of this spectrum.  It stores metadata about RDF doc-
uments in its database in a way completely faithful to its 
structure and meaning. This allows it to retrieve docu-
ments based on the set of classes, properties and indi-
viduals mentioned in them or implied by the semantic 
model.  In this way,  Swoogle treats an RDF documents 
as a “bag of URIs” just as a conventional IR systems 
treats a text document as a “bag or words”.  Swoogle also 
treats RDF documents (in their canonical XML encod-
ing) as text documents which are indexed by the HAIR-
CUT retrieval engine. 

The final dimension delineates systems using conven-
tional retrieval components and infrastructure from those 
that use specialized IR systems to handle semantic web 
documents.  Swangler was designed with goal of ena-
bling Google and other Internet search engines to index 
semantic web documents.  OWLIR and Swoogle, on the 
other hand, use special retrieval engines adapted to han-
dle the task of indexing and retrieving documents with 
RDF markup. 

In the remainder of this section, we will introduce and 
discuss some additional issues that have surfaced in our 
work. 

 
4.1 Tokenization 
 

Most search engines are designed to use words as tokens. 
There are two immediate issues that present themselves 
when considering the conversion of RDF triples into 
swangle terms that look like indexing terms to a Web 
search engine – which triples should be selected for 
swangling and what techniques should be used to swan-
gle a selected triple. 



What to swangle. Some search engines, such as 
Google, limit query size.  Care must be taken to choose a 
set of triples that will be effective in finding relevant 
documents.  Some triples carry more information that 
others. For example, every instance is a type of 
owl:thing, so adding triples asserting owl:thingness will 
not be very helpful, especially if the query size is limited. 
OWL and RDF descriptions typically contain anonymous 
nodes (also know as “blank nodes”) that represent exis-
tentially asserted entities.  Triples that refer to blank 
nodes should probably be processed in a special way, 
since including the “gensym” tag that represents the 
blank node carries no information. It might be possible to 
develop a statistical model for OWL annotations on 
documents similar to statistical language models.  Such a 
model could help to select triples to include in a query. 

How to swangle. In the OWLIR system we explored 
one approach to swangling triples.  More experimenta-
tion is clearly needed to find the most effective and effi-
cient techniques for reducing a set of triples to a set of 
tokens that a given information retrieval system will ac-
cept.  The simplest approach would be to decompose 
each triple into its three components and to swangle these 
separately.  This loses much of the information, of 
course.  OWLIR followed an approach which preserved 
more information.  Each triple was transformed into 
seven patterns, formed by replacing zero, one or two of 
its components with a special “don’t care” token.  Each 
of the seven resulting tokens was then reduced to a single 
word-like token for indexing. 

 

4.2 Reasoning and trust 
 

When to reason.  We have a choice about when to rea-
son over Semantic Web markup.  We can reason over the 
markup in a document about to be indexed, resulting in a 
larger set of triples.  We can also reason over a query that 
contains RDF triples prior to processing it and submitting 
it to the retrieval system.  Finally, we can reason over the 
markup found in the documents retrieved.  In OWLIR, 
we chose to reason both over documents as they were 
being indexed and over queries about to be submitted.  It 
is not obvious to us how much redundancy this entails 
nor is it clear if there is a best approach to when to do the 
reasoning. 

How much to reason.  A similar problem arises when 
one considers how much reasoning to do or whether to 
rely largely on forward chaining (as in OWLIR) or a 
mixture of forward and backward reasoning. 

What knowledge to trust.  The information found on 
the Semantic Web will vary greatly in its reliability and 
veracity, just as information on the current Web.  It will 
not do just to inject into our reasoning the facts and 
knowledge from a newly found and relevant document.  
Moreover, we may need to take care not to create an in-
consistent knowledge base.  This problem is being stud-
ied in the context of models of trust on the Web [11][16]. 

Much of the information found in a document comes 
from somewhere else – typically another document.  Data 
provenance [6] is a term used for modeling and reasoning 
about the ultimate source of a given fact in a database or 

 

 

Web
Search
Engine

Filters Semantic
Markup

Inference
Engine

Local
KB

Semantic
Markup

Semantic
Markup

Extractor

Encoder

Ranked
Pages

Semantic
Web Query

Encoded
Markup

Text
Query

TextFiltersText

 
Figure 2. Text can also be extracted from the query results, filtered, and injected into the query. 



document.  For systems that extract and reason about 
facts and knowledge found on the Semantic Web, it will 
be important to (i) inform our trust model and make bet-
ter decision about the trustworthiness of each fact; and 
(ii) remove duplicate facts from our semantic model. 

 

4.3 Dealing with search engines 
 
Control.  The basic cycle we’ve described involves 
(re)forming a query, retrieving documents, processing 
some of them, and repeating.  This leaves us with a deci-
sion about whether to look deeper into the ranked result 
set for more information to use in reforming our query, or 
to reform the query and generate a new result set.  The 
choice is similar to that faced by an agent in a multiagent 
system that must decide whether to continue reasoning 
with the information it has or to ask other agents for more 
information or for help with the reasoning [20]. We need 
some metric that estimates the expected utility of proc-
essing the next document in the ranked result set. 

Spiders. Web search engines typically do not process 
markup.  So, we need a way to give a search engine spi-
der a preprocessed (swangled) version of a Web page 
when it tries to spider it for indexing.  This can be easily 
accomplished if we have control of the HTTP server that 
serves a page – it checks to see if the requesting agent is 
a spider.  If so, it returns the swangled version of the 
page, otherwise it returns the original source page.  The 
preprocessing can be done in advance or on demand with 
caching.  

Offsite annotation.  The technique described above 
depends on having control over all of the servers associ-
ated with a Semantic Web page.  If this is not the case, 
some work arounds are needed.  One option is to mirror 
the pages on a server that does automatic swangling.  The 
pages should have a special annotation (e.g., in RDF) that 
asserts the relationship between the source and mirrored 
pages. 

Search engine limitations. Web based search engines 
have limitations that must be taken into account, includ-
ing how they tokenize text and constraints on queries.  
We would like swangled terms to be accepted as index-
able terms by typical search engines.  The two retrieval 
systems we used in OWLIR were very flexible in what 
they accepted as a token; tokens could be of arbitrary 
length and could include almost any non-whitespace 
characters.  Many commercial systems are much more 
constrained.  With Google, for example, we were advised 
to keep the token length less than 50 and to include only 
lower and uppercase alphabetic characters.  Many com-
mercial systems also limit the size of a query to a maxi-
mum number of terms.  Google, for example, currently 
has a limit of ten terms in a query.  These limitations, as 

well as others, affect how we have to interface to a given 
retrieval engine. 

 

5. Conclusion 
 

The Semantic Web will contain two kinds of documents.  
Some will be conventional text documents enriched by 
annotations that provide metadata as well as machine 
interpretable statements capturing some of the meaning 
of the documents’ content.  Information retrieval over 
collections of these documents offers new challenges and 
new opportunities.  We have presented a framework for 
integrating search and inference in this setting that sup-
ports both retrieval-driven and inference-driven process-
ing, uses both text and markup as indexing terms, ex-
ploits today’s text-based Web search engines, and tightly 
binds retrieval to inference. While many challenges must 
be resolved to bring this vision to fruition, the benefits of 
pursuing it are clear.  The Semantic Web is also likely to 
contain documents whose content is entirely encoded in 
an RDF based markup language such as OWL.  We can 
use the swangling technique to enrich these documents to 
terms that capture some of their meaning in a form that 
can be indexed by conventional search engines.  Finally, 
there is also a role for specialized search engines that are 
designed to work over collections of RDF documents. 
 

6. Acknowledgements 
 
Partial research support provided by DARPA contract 
F30602-00-0591 and NSF award IIS-0326460.  We ac-
knowledge many contributions from colleagues in the 
UMBC ebiquity research group and in the Distributed 
Information Systems section of the Johns Hopkins Uni-
versity Applied Physics Laboratory. 
 

7. References 
 

[1] Abiteboul, S., Quass, D., McHugh, J. Widom, J. and 
Wiener, J.  ‘The Lorel query language for semistructured 
data.’  International Journal on Digital Libraries 1, 
pages 68-88, April 1997. 
[2] Arocena, G. and Mendelzon, A.  ‘WebOQL: Re-
structuring documents, databases and webs.’  In Interna-
tional Conference on Data Engineering, pages 24-33.  
IEEE Computer Society, 1998. 
[3] Bar-Yossef, Z., Kanza, Y.,  Kogan, Y., Nutt, W. and 
Sagiv, Y..  ‘Quest: Querying semantically tagged docu-
ments on the World Wide Web.’  In Proc. of the 4th 
Workshop on Next Generation Information Technologies 



and Systems, volume NGITS'99, Zikhron-Yaakov (Is-
rael), July 1999. 
[4] Berners-Lee, T. and Fischetti, M.  Weaving the Web: 
The Original Design and Ultimate Destiny of the World 
Wide Web by its Inventor.  Harper, San Francisco. 1999. 
[5] Berners-Lee, T., Hendler, J. and Lassila, O.  ‘The 
Semantic Web.’ Scientific American, May 2001. 
[5a] Brin, Sergey and Lawrence Page, The anatomy of a 
large-scale hypertextual Web search engine, Proceedings 
of the 7th international conference on World Wide Web, 
Elsevier Science Publishers B. V. pp 107-117, Brisbane, 
Australia, 1998. 
[6] Buneman, P., Khanna, S. and Tan, W-C. ‘Why and 
Where: A Characterization of Data Provenance.’ Interna-
tional Conference on Database Theory (ICDT) 2001. 
[7] Chinenyanga, T. and Kushmerick, N.  ‘Elixir: An 
expressive and efficient language for XML   information 
retrieval.’  In SIGIR Workshop on XML and Information 
Retrieval, 2001. 
[8] Cost, R. S., Finin, T., Joshi, A., Peng, Y., Nicholas, 
C., Soboroff, I., Chen, H., Kagal, L., Perich, F., Zou, Y., 
and Tolia, S.  ‘ITTALKS: A Case Study in the Semantic 
Web and DAML+OIL.’ IEEE Intelligent Systems 
17(1):40-47, 2002. 
[9] Davies, J., Weeks, R. and Krohn, U. ‘QuizRDF: 
Search technology for the Semantic Web.’ In WWW2002 
Workshop on RDF and Semantic Web Applications, Ha-
waii, 2002. 
[10] Deutsch, A.,Fernandez, M., Florescu, D., Levy, A. 
and Suciu, D.  ‘XML-QL: A query language for XML.’  
In Proceedings of the Eighth International World Wide 
Web Conference, 1999. 
[11] Ding, L,. Lina Zhou, and Tim Finin, ‘Trust Based 
Knowledge Outsourcing for Semantic Web Agents,’ 
2003 IEEE/WIC International Conference on Web Intel-
ligence (WI 2003), October 2003, Halifax, Canada. 
[12] Ding, L., Tim Finin, Anupam Joshi, Rong Pan, R. 
Scott Cost, Joel Sachs, Vishal Doshi, Pavan Reddivari, 
and Yun Peng, Swoogle: A Search and Metadata Engine 
for the Semantic Web, Thirteenth ACM Conference on 
Information and Knowledge Management (CIKM'04), 
Washington DC, November 2004. 

[13] Egnor, D. and Lord, R.  ‘Structured information re-
trieval using XML.’ In Proceedings of the ACM SIGIR 
2000 Workshop on XML and Information Retrieval, Ath-
ens, Greece, July 2000. 
[14] Friedman-Hill, E.  Jess, the Java expert system shell. 
Sandia National Laboratories. 2000. 
[15] Fuhr, N. and Grojohann, K.  ‘XIRQL: An extension 
of XQL for information retrieval.’  In Proceedings of the 
ACM SIGIR 2000 Workshop on XML and Information 
Retrieval, Athens, Greece, July 2000. 
[16] Golbeck, J., Parsia, B., and Hendler, J. ‘Trust net-
works on the Semantic Web.’ To appear in the Proceed-
ings of Cooperative Intelligent Agents 2003, August 27-
29, Helsinki, Finland.  
[17] Kopena, J. and Regli, W., ‘DAMLJessKB: A tool for 
reasoning with the Semantic Web.’ IEEE Intelligent Sys-
tems 18(3), May/June, 2003.  
[18] Kwok, C., Etzioni, O. and Weld, D.  ‘Scaling ques-
tion answering to the Web. ‘ In Proceedings of WWW10, 
Hong Kong, 2001. 
[19] Mayfield, J. ‘Ontologies and text retrieval.’ Knowl-
edge Engineering Review 17(1):71-75. 2002. 
[20] Mayfield, J., Finin, T., Narayanaswamy, R., Shah, 
C., MacCartney, W.  and Goolsbey, K. ‘The Cycic 
Friends Network: Getting Cyc agents to reason together.’ 
Proceedings of the CIKM Workshop on Intelligent 
Information Agents. 1995. 
[21] Mayfield, J., McNamee, P. and Piatko, C.  ‘The 
JHU/APL HAIRCUT system at TREC-8.’  The Eighth 
Text Retrieval Conference (TREC-8), pages 445-452, 
November 1999. 
[22] Mayfield, J. and Tim Finin, Information retrieval on the 
Semantic Web: Integrating inference and retrieval, SIGIR 
Workshop on the Semantic Web, Toronto, 1 August 2004 
[23] Reagle, J. (ed.), RDF in XHTML. W3C Task Force 
Document, May 2003. 
[24]  Shah, U., Finin, T., Joshi, A., Cost, R. S. and Mayfield, J. 
‘Information Retrieval on the Semantic Web.’  10th Interna-
tional Conference on Information and Knowledge Management, 
November 2002. 

 


