
A PERVASIVE COMPUTING ONTOLOGY FOR
USER PRIVACY PROTECTION IN THE CONTEXT BROKER ARCHITECTURE

Harry Chen, Tim Finin, and Anupam Joshi
Department of Computer Science & Electrical Engineering

University of Maryland, Baltimore County

July 12, 2004

TR-CS-04-08

A Pervasive Computing Ontology for User Privacy
Protection in the Context Broker Architecture

Harry Chen, Tim Finin, and Anupam Joshi

Department of Computer Science & Electrical Engineering
University of Maryland, Baltimore County

{hchen4,finin,joshi }@csee.umbc.edu

Abstract. Privacy protection is a key requirement for the future pervasive com-
puting systems. This paper describes the design and implementation of a privacy
protection framework that exploits the SOUPA policy ontology and its associated
policy reasoning algorithm. The SOUPA policy ontology expressed in the Web
Ontology Language OWL allows users to define policy rules to permit or forbid
actions that attempt to access the users’ private information. Central to the pol-
icy reasoning algorithm is the use of a Description Logic inference engine that
reasons over the OWL-DL constructs of the policy ontology. We also show the
feasibility of this framework through a prototype of the Context Broker Architec-
ture (CoBrA).

1 Introduction

Privacy will be a great concern in the future pervasive computing systems. A vast
amount of user information will be acquired and shared by different devices, services,
and agents to provide users with relevant information and tailored services. Researchers
[12, 3, 1, 11, 9] believe that in order to develop successful pervasive computing systems,
we must also develop adequate infrastructures to protect the privacy of the users.

In this paper, we describe the design of a privacy protection framework and its
implementation in the Context Broker Architecture (CoBrA). CoBrA [4] is a broker-
centric agent architecture for supporting pervasive context-aware systems in smart spaces,
e.g., smart meeting rooms, intelligent homes, and smart vehicles. Central to this archi-
tecture is an intelligent broker agent calledcontext brokerthat maintains a share model
of context for all computing entities and provides privacy protections for the users in the
associated space. CoBrA uses the Web Ontology Language OWL to defined ontologies
for supporting knowledge sharing, data fusion, and context reasoning.

CoBrA adopts a policy-based approach to protect user privacy. Policies are defined
using the SOUPA policy ontology [6]. Using this ontology, users can define customized
policy rules to permit or forbid different computing entities to access their private in-
formation. To compute the permissions defined by a user policy, the context broker is
implemented with a policy reasoning algorithm. This algorithm exploits the use of a
Description Logic (DL) inference engine and the DL constructs of the OWL language
to decide whether an action for accessing some user private information is permitted or
forbidden.

We believe the SOUPA policy language defined using the OWL-DL constructs can
be used to develop intelligent agents that can provide user privacy protection in a per-
vasive context-aware environment. To show the feasibility of this privacy protection
framework, we have implemented a CoBrA prototype that can support privacy protec-
tion use cases in an intelligent meeting room environment.

The rest of this paper is organized as follows. In Section 2, we review other policy
languages that are designed for privacy protection. In Section 3, we describe the SOUPA
policy ontology and its associated policy reasoning algorithm. In Section 4, we describe
the privacy protection implementation in CoBrA and the supported use case scenarios.
Conclusions and future works are given in Section 5.

2 Related Works

Policy is an emerging technique for controlling and adjusting the low-level system be-
haviors by specifying high-level rules [13]. The use of policy is common in computing
systems that feature security or privacy protection [14]. In typical policy-based sys-
tems, policy rules are defined using declarative policy languages that are distinct from
the actual system programming languages. A key advantage of using declarative lan-
guages to express policies is that the defined policies are more suitable for humans to
view and edit. In addition, by separating the logics (i.e., policy rules) from the con-
trols (i.e., programming implementations) of the system implementations, policy-based
security and privacy protection systems are typically more flexible and adaptable than
other non-policy-based systems [13].

Different research works in the policy domain often share a common vision on
the usage of policy, i.e., using high-level rules to control low-level system behaviors.
However, they usually adopt different representation languages to define policies. The
choice of the policy representation language can affect the expressiveness and the flexi-
bility of the defined policy language. For example, the Ponder policy language [8] has a
representation that is similar to a typical procedure language, and therefore it is less ex-
pressive than other policy languages that have representations in meta-languages (e.g.,
XML and RDF) or Semantic Web languages (e.g., RDFS, DAML+OIL, and OWL).
The P3P language has representations in both XML and RDF [7]. Allowing for more
expressive constructs, the KAoS policy language is defined using DAML+OIL [2]. The
Rei policy language [10] and the privacy policy language in the e-Wallet system [9]
both adopt the OWL language as the representation language for policies.

The policy languages that are represented using the Semantic Web languages are
usually defined in terms of ontologies. Different ontology organizations require differ-
ent computing approaches to reason and analyze the defined policies. The design of
the KAoS policy ontology suggests the use of a description logic inference engine to
analyze policy rules. The Rei policy ontology, on the other hand, requires the use of an
F-Logic based meta-interpreter (i.e., Rei/F-OWL) to compute the defined policy restric-
tions and constraints. The policy analysis mechanism in the e-Wallet system exploits the
XSLT technology to translate policy rules from RDF to JESS rules and use a JESS rule
engine to compute policy restrictions.

The SOUPA policy language described in this paper is similar to those ontology-
based policy languages. It also exploits a Semantic Web language as the representation
of policies. The SOUPA policy ontology is similar to Rei in modeling a policy as a set of
rules that define restrictions on actions (e.g., an action with certain properties is permit-
ted or forbidden), but the SOUPA policy ontology has limited support for meta-policy
reasoning (e.g., conflict resolution) and speech acts (e.g., delegation and revocation).
While the SOUPA and KAoS policy languages is represented using different Seman-
tic Web languages, but they have similar policy reasoning mechanisms, both of which
exploits the DL constructs of the corresponding ontology language.

3 The SOUPA Policy Ontology

3.1 About SOUPA

SOUPA (Standard Ontology for Ubiquitous and Pervasive Applications) [6] is a set
of ontologies for supporting knowledge representation and knowledge sharing in the
pervasive computing systems. The SOUPA project begins in November 2003 and is
part of an ongoing effort of the Semantic Web in UbiComp Special Interest Group, an
international group of researchers from academia and industry that is using the OWL
language for pervasive computing applications and defining ontology-driven use cases
demonstrating aspects of the ubiquitous computing vision.

The policy ontology described in this paper is part of the SOUPA ontology (version
2004-06). In addition to the policy ontology, SOUPA also includes ontologies for rep-
resenting intelligent agents with associated beliefs, desires, and intentions, time, space,
events, user profiles, and actions (see alsohttp://pervasive.semanticweb.
org).

3.2 The Design of the Policy Ontology

The SOUPA policy ontology is designed based on the following concept:policies are
rules that regulate the permissions for computing entities to perform actions. In a per-
vasive computing environment, policies are defined by the human users to permit or
forbid computing entities to perform different types of actions. The notion of an action
can represent an invocation to some type of computing procedures to acquire user in-
formation or to access services in the computing environment. For example, actions can
be calls to some low-level system API’s, remote procedures, or web service interfaces,
and actions also can be queries to some persistent data repository or communication
messages to agents in the system.

We define an action with the following properties:

– Actor: an agent1 that performs the action.
– Recipient: an agent that receives the effect after the action is performed.
– Target: a physical or an abstract object that the action applies to.

1 Hereafter, the term “agent” will be used to represent an individual or a group of human agents,
software agents, or any other types computing entities.

– Location: a place at where the action is performed.
– Time: a time at which the action is performed.
– Instrument: a physical or an abstract thing that the actor uses to perform the action.

When regulating the performance of actions, users can define policy rules to either
permitor forbid actions to be performed. In a pervasive computing system, the enforce-
ment of a policy can be the duty of a pre-established central authority or the obligation
of all self-governing agents.

Policies are documents. All defined policies possess similar attributes that describe
typical written documents (e.g., meta-data about the documents). The set of typical
policy document attributes include the author who created the policy, the creation time
of the policy, the version information of the policy, and the expected policy enforcer of
the policy.

In a typical policy document, it is often infeasible to define explicit policy rules for
every individual actions in a domain application. For example, in a location-aware sys-
tem, a vast number of different agents may be interested to know the whereabouts of a
user, it would infeasible for the user’s policy to explicitly enumerate location informa-
tion sharing rules for every one of the agents in the system. A solution to this problem is
to define meta-policy reasoning behavior that can help the agents to reason about action
permissions even when policy rules are not defined. The design of this policy ontology
defines the following meta-policy reasoning behavior:

– Conservative: by default, assume all actions are forbidden. If no explicit rules are
defined to regulate an action, then assume the action is forbidden.

– Liberal : by default, assume all actions are permitted. If no explicit rules are defined
to regulate an action, then assume the action is permitted.

3.3 The Representation of the Policy Ontology

The OWL representation of the policy ontology is defined in a single ontology docu-
ment under the XML namespacehttp://pervasive.semanticweb.org/ont/
2004/06/policy# . This ontology imports the SOUPA time and action ontologies
for representations of time and actions, respectively. For better readability, hereafter,
we use the prefixpol: , tme: , andact: as the XML namespace shorthands for the
SOUPA policy, time, and action ontology, respectively.

The OWL classpol:Policy represents a set of all policy documents. An individ-
ual of this class represents a policy document that regulates the permissions for agents
to perform different actions. For a givenpol:Policy class individual, the properties
pol:creator , pol:policyOf , andpol:enforcer describe the agent who cre-
ates the policy, the agent whom this policy applies to, and the agent who enforces the
defined policy rules, respectively. For describing the time when a policy document is
created, the ontology defines thepol:createdOn property, and the range of which is
the tme:InstantThing class. The individuals of thetme:InstantThing class
are temporal descriptions of the time instants [6].

To describe policy rules, the ontology defines the propertypol:permits for
expressing permissions and the propertypol:forbids for expressing prohibitions.

Fig. 1. The SOUPA policy ontology defines the vocabularies for describing rules that permit or
forbid agents to perform different types of actions. The policy ontology imports the SOUPA
action and time ontology for representations of action and time.

The domains of both properties are thepol:Policy class. The range of thepol:-
permits property is thepol:PermittedAction class, and the range of thepol:-
forbids property is thepol:ForbiddenAction class. Both action classes are
subclasses of theact:Action class, but the set of individuals of each classes are
disjointed.

The pol:defaultPolicyMode property is a meta-policy construct for speci-
fying the policy reasoning behavior of a policy-enforcing agent. This property has do-
main pol:Policy and rangepol:Mode . The pol:Mode class is an enumerated
class, which consists of two pre-defined class individuals –pol:Conservative
andpol:Liberal .

The OWL classact:Action represents a set of all actions. Within the SOUPA
action ontology, six basic action properties are defined. They areact:actor , act:-
recipient , act:target , act:location , act:time , andact:instrument .
The intended meanings of these properties are described in the previous section. Note
that in the action ontology document, the respective range of these properties are un-
specified, and they are intended to be specified in the subclasses that extend theact:-
Action class. We shall see some examples in Section 4.

3.4 An Algorithm for Policy Reasoning

In this section, we describe an algorithm for reasoning with the SOUPA policy ontol-
ogy. The algorithm describes a procedure that can be implemented by a self-governing
agent to compute its right to perform a specific action or implemented by a central-
ized authority to answer queries about the rights of other community agents to perform
different actions.

Definitions. For an agent who is capable of reasoning with the SOUPA policy ontology,
it is assumed to have the following components: (i)KB: a knowledge base that stores the
agent’s world knowledge in RDF triples (SOUPA ontologies, contextual information,
user policies, etc.), (ii)RDL: a Description Logic inference engine that support the
OWL-DL reasoning, (iii)faction(I): a function that maps an agent’s intentionI (i.e.,
an action that an agent intends to perform) into a set of RDF triples, and (iv)fpolicy(A):
for a given action descriptionA, this function outputs a list of user policy documents
that each of which contains some rule that regulates the execution of the action.

We assume the outputs produced by thefaction(I) and fpolicy(A) functions are
expressed in the SOUPA ontologies and ontologies that extend from SOUPA. We also
assume the users are responsible to provide the agent with their policy documents.

Exception Handling. The objective of the algorithm is to help a policy-enforcing agent
to effectively decide, for a given set of associated user policies and an intended action,
whether the execution of the action is permitted or forbidden by the policies. Exception
conditions may occur while the agent is performing policy reasoning. First, an exception
can occur when there is no available user policy in theKB. Second, an exception can
occur when the rules in a user policy neither permit nor forbid the execution of an action.
Lastly, an exception can occur when one or more user polices contain conflicting rules
that permits and forbids the execution of an action simultaneously.

In this algorithm, the first exception is handled by assuming the existence of a global
policy, which is adopted by the policy-enforcing agent by default. To handle the second
exception, the algorithm makes use of the meta-policy construct (i.e.,pol:default-
PolicyMode) to decide the permission of an action when it is not regulated by any
policy rules. For the last exception, the algorithm delegates the exception handling task
to the upper-level agent implementation by “flagging” the detection of policy inconsis-
tency.

The Algorithm. Algorithm 1 defines a procedure called COMPUTE-PERMISSION.
It takesKB, RDL and I as the inputs and returns a value that represents the com-
puted permission to perform an actionA. Note thatA is the output offaction(I). Let
P TYPE be an enumeration type, which has a set of valuesPERMIT, FORBID, and
UNDECIDED. The values ofP TYPE represent all possible computed permission
values that can be returned by COMPUTE-PERMISSION.

In Algorithm 1, the procedure DO-CLASSIFICATION (line 9) is called to execute the
associated DL classification functions ofRDL, and the procedure LIST-INDIVIDUAL -
CLASS-TYPES (line 10) is called to return the names of all ontology classes of which
the actionA is an instance after the classification is made. The utility procedure USE-
POLICY-DEFAULT-BEHAVIOR (line 14) helps the agent to compute permissions when
actions are not explicitly regulated by any policy rules. After computing the action
permission for each user policy, the procedure FORGET-ASSERTATIONS(line 27) is
called to execute the associated DL functions to remove all assertions about the current
policy from the inference engine, so that the inferences of each policy document are
independent.

Algorithm 1 Computes the permission to perform an intended actionI

COMPUTE-PERMISSION(KB,RDL, I)

1: perm← UNDECIDED
2: A← faction(I)
3: P []← fpolicy(A)
4: if length[P] = 0 then
5: P [1]← ∗global policy∗
6: end if
7: for i = 1 to length[P] do
8: permtmp ← UNDECIDED
9: DO-CLASSIFICATION(RDL,KB, P [i], A)

10: T []← L IST-INDIVIDUAL -CLASS-TYPES(RDL, A)
11: if CONTAINS(T , PermittedAction) = TRUE and

CONTAINS(T , ForbiddenAction) = TRUE then
12: error “inconsistent policy”
13: else ifCONTAINS(T , PermittedAction) = FALSE and

CONTAINS(T , ForbiddenAction) = FALSE then
14: permtmp ← USE-POLICY-DEFAULT-BEHAVIOR(P [i])
15: else ifCONTAINS(T , PermittedAction) = TRUE then
16: permtmp ← PERMIT
17: else ifCONTAINS(T , ForbiddenAction) = TRUE then
18: permtmp ← FORBID
19: end if
20: if permtmp = PERMIT andperm = FORBID then
21: error “inconsistent policy”
22: else ifpermtmp = FORBID andperm = PERMIT then
23: error “inconsistent policy”
24: else
25: perm← permtmp

26: end if
27: FORGET-ASSERTATIONS(RDL,P [i])
28: end for
29: returnperm

USE-POLICY-DEFAULT-BEHAVIOR(policy)

1: behavior ← POLICY-DEFAULT-BEHAVIOR(policy)
2: if behavior = CONSERVATIVE then
3: returnFORBID
4: else ifbehavior = LIBERAL then
5: returnPERMIT
6: end if

4 Privacy Protection in CoBrA

At UMBC, a CoBrA prototype has been used to facilitate context-awareness in a smart
meeting room system called EasyMeeting [5]. The goal of this system is to create a
smart meeting room that can provide relevant information and tailored services to the
users of an everyday meeting room. The use of contextual information is an important
element in this meeting room system [5]. In EasyMeeting, a context broker is responsi-
ble to acquire and reason about contextual information that is associated with meeting
events, and then to share its knowledge with other agents to provide context-aware ser-
vices. The type of contextual information used in this system includes the location of
people and devices, the schedule of meeting events, the profiles of the event speakers
and audiences, and the user intentions and beliefs that are inferred by the context broker.

Although the feedbacks from the EasyMeeting user experience studies were posi-
tive, many users showed great concerns for privacy [5]. In this rest of this section, we
examine key privacy issues in EasyMeeting, and show how the SOUPA policy ontology
and its associated policy reasoning are incorporated into the new CoBrA prototype to
provide privacy protection.

4.1 Privacy Issues in the EasyMeeting System

In EasyMeeting, let’s assume that users are willing to share some of their personal in-
formation with the computing environment in order to receive tailored meeting services.
One problem is that the users may be unaware that the services, which have received
their private information, may also share the same information with other services. For
example, the speaker of a meeting is willing to share his/her location information and
profile with the context broker, so that the context broker can notify the appropriate
presentation agent to set up his/her presentation. However, the same presentation agent
may in turn share some or all of the speaker’s information with other services without
informing the speaker.

Another problem is that depending on the context of the users, users’ trust in allow-
ing services to access their private information can vary. In other words, users may not
always trust the same service to access their private information. For example, meeting
attendees may be willing to share their contact information and location information
with the smart space services while they are attending the meeting. However, after the
meeting is over, the same meeting attendees may have less trust in allowing the services
to use their contact and location information.

In addition, there is a problem relating to the granularity of the information being
shared. Agents often need to access users’ private information in order to provide rel-
evant services. In a pervasive computing environment, while users want to hide much
of their private information from the untrusted agent, often they cannot completely pro-
hibit all information to be share if they desire to receive context-aware services. In other
words, if the EasyMeeting system is to adopt a privacy protection mechanism, it must
allows users to share information with the computing services at different granularity
levels. This way a balance between protecting user privacy and enabling context-aware
services can be achieved.

For a complete and more elaborate policy example, see also
http://cobra.umbc.edu/ont/2004/05/harrychen-policy

<http://umbc.edu/˜hchen4/hchen.pol> a pol:Policy;
pol:policyOf [a per:Person; per:name "Harry Chen"ˆˆxsd:string]
pol:defaultPolicyMode pol:Conservative;
Rule 1: all individuals of CLS2 are permitted actions#
pol:permits ha:CLS2;
Rule 2: all individuals of CLS3 are forbidden actions#
pol:forbids ha:CLS3.

ha:CLS2 a :Class;
rdfs:comment "Share my location information with the ebiquity group members iff

the location information describes me being in ITE210A, ITE325B or
on the UMBC campus.";

:intersectionOf (
ebact:ShareLocationInfo
[:allValuesFrom ebm:EbiquityMember; :onProperty act:recipient]
[:onProperty act:target; :someValuesFrom ha:MyRestrictedLocationContext]) .

ha:CLS3 a :Class;
rdfs:comment "Share my location information with untrusted service agent";
:intersectionOf (

ebact:ShareLocationInfo
[:allValuesFrom ha:UntrustedServiceAgent; :onProperty act:recipient]) .

ha:MyRestrictedLocationContext a :Class;
:intersectionOf (

loc:LocationContext
[:onProperty loc:boundedWithin; :someValuesFrom ha:foo-a1]) .

ha:foo-a1 a :Class;
:oneOf (ebgeo:ITE210A ebgeo:ITE325B ebgeo:UMBCMainCampus) .

ha:UntrustedServiceAgent a :Class; rdfs:subClassOf agt:Agent;
:oneOf (

<http://www.orbitz.com#locTrack> <http://www.foobar.com#whereRu>
<http://www.foofoobar.com#abc>) .

Fig. 2. An example of the SOUPA policy. This policy permits some of Harry Chen’s location
information to be shared with the members of the eBiquity Group, and forbids any location in-
formation to be shared with the untrusted agents. The action classCLS2 andCLS3 describes the
types of actions that the individual policy rule regulates.

4.2 Protect Privacy Using the Policy Ontology

To address the described privacy issues, we incorporated the use of the SOUPA policy
ontology and its associated reasoning algorithm in the CoBrA prototype. We demon-
strated the use of policies to protect two different types of user information – (i) personal
profiles and (ii) location information. Personal profiles consist of information that de-
scribes users’ the contact information, social networks, professional backgrounds, and
personal devices. Location information is information that describes the whereabouts
of the users.

In our implementation, all user information is described using the SOUPA ontolo-
gies and the COBRA-ONT ontologies [4]. Extending from the general concepts in
SOUPA, COBRA-ONT consists of ontologies that are specially designed for supporting
smart space services for the UMBC eBiquity Group’s weekly meetings.

Fig. 3. The context broker exploits spatial reasoning to develop a less detailed version of the
forbidden location information and shares that information with the meeting agent to maximize
the benefit of knowledge sharing. The spatial reasoning procedure analyzes the spatial hierarchy
that is defined by thespc:spatiallySubsumes property.

Harry Chen’s Privacy Policy. The same set of ontologies for expressing user infor-
mation can also be used in expressing user policy. Figure 2 shows a partial policy of
the person Harry Chen (note: all RDF/OWL ontology meta-data is omitted here for
simplicity). Two rules are defined in this policy. Based on the range definitions in
the SOUPA policy ontology, Rule 1 expresses that the action classCLS2 is type of
pol:PermittedAction , and Rule 2 expresses that the action classCLS3 is type of
pol:ForbiddenAction .

Reason with Harry’s Policy. The policy reasoning procedure of the context broker
implements Algorithm 1. In our implementation, when the context broker receives a
service agent’s request to access a user’s private information (e.g., Harry’s location in-
formation), it will attempt to retrieves the user’s privacy policy (i.e, Harry’s policy)
from its knowledge base. This policy is sent to the context broker priorly by the user’s
personal agent. If no associated policy is found, a default policy is used. Based the
incoming request (i.e., the intention of the requesting agent), the context broker gen-
erates a RDF/OWL description of the action (i.e., an individual of theact:Action
class). Using a DL reasoner2, the action individual is then classified within the SOUPA

2 In our implementation, we use the Jena inference API that is backed by a Racer reasoner
through the DIG inference. See alsohttp://jena.sourceforge.net/how-to/
dig-reasoner.html

and the COBRA-ONT ontologies. If the DL reasoner infers that the action individual
is type ofpol:PermittedAction , then the context broker will answer the request
with the appropriate user information. On the other hand, if the action instance is type
of pol:ForbiddenAction , then the context broker will deny the request.

Proximity in Policy Reasoning. Sometimes simply denying an incoming request to
access user information can be too restrictive. For example, assuming that the context
broker has knowledge that Harry is currently located in the Room ITE-210A on the
UMBC campus, however, it refuses to tell a meeting coordinating agent because Harry’s
policy prohibits the sharing of his location information at the “room” level. In a worse
case scenario, not knowing Harry is at UMBC, the meeting coordinating agent cancels
a meeting that Harry has previously scheduled. To overcome this problem, we have
implemented a proximity reasoning technique that allows the context broker to infer
and share a less detailed version of the forbidden user location information. This can
help to maximize the benefit of knowledge sharing. Figure 3 shows a use case of this
proximity reasoning technique.

5 Conclusions & Future Works

Privacy protection will be a key requirement for the future pervasive computing sys-
tems. The use of policy can be an effective mechanism to allows users to take control of
their private information in an open and dynamic environment. We believe that the Se-
mantic Web languages such as OWL and RDF/RDFS are suitable languages for defin-
ing new policy languages because of their expressive power and support for knowledge
representation and reasoning and knowledge sharing and integration.

In the new CoBrA prototype3, we demonstrated the use of policy to protect user
information that is typically exploited by the smart meeting room applications. We also
showed that the SOUPA policy ontology, which is defined using the OWL-DL con-
structs, and its associated algorithms can be used to develop intelligent agents that can
provide user privacy protection in a pervasive context-aware environment.

In the future, we plan to address the following issues related to policy management
and reasoning: (i) in order to help users to manage their policy, we must design an
intuitive interface for editing and validating the SOUPA policy documents. Possible
solutions may be extending the existing ontology editors (e.g., Protege or OilEd) to
include customized policy editing and validating function, or creating a policy editor
plug-in application for the Eclipse IDE. (ii) We plan to design and implement new
algorithms that will help agents to reason about the dependences among different user
information. Using these algorithms, the context broker can further protect user privacy
by prohibiting information to be shared if it allows others to infer information that is
currently forbidden by the policy. (iii) We plan to develop a Java API for composing,
storing, and reasoning policies expressed in the SOUPA policy ontology. By extending
the Jena API, this new software library can help developers to quickly create policy-
aware agents that adopt the SOUPA policy protection framework.

3 Source codes and other information can be found athttp://cobra.umbc.edu/ .

References

[1] Victoria Bellotti and Abigail Sellen. Design for privacy in ubiquitous computing environ-
ments. InProceedings of the Third European Conference on Computer Supported Cooper-
ative Work (ECSCW’93), pages 77–92. Kluwer, 1993.

[2] Jeffrey M. Bradshaw, Andrzej Uszok, Renia Jeffers, Niranjan Suri, Patrick J. Hayes,
Mark H. Burstein, A. Acquisti, Brett Benyo, Maggie R. Breedy, Marco M. Carvalho,
David J. Diller, Matt Johnson, Shriniwas Kulkarni, James Lott, Maarten Sierhuis, and
Ron Van Hoof. Representation and reasoning about daml-based policy and domain ser-
vices in kaos.Proceedings of The Second International Joint Conference on Autonomous
Agents and Multi Agent Systems (AAMAS2003), 2003.

[3] Roy Campbell, Jalal Al-Muhtadi, Prasad Naldurg, Geetanjali Sampemane1, and M. Den-
nis Mickunas. Towards security and privacy for pervasive computing. InProceedings of
International Symposium on Software Security, Tokyo, Japan, 2002.

[4] Harry Chen, Tim Finin, and Anupam Joshi. An ontology for context-aware pervasive com-
puting environments.Special Issue on Ontologies for Distributed Systems, Knowledge
Engineering Review, 18(3):197–207, 2004.

[5] Harry Chen, Filip Perich, Dipanjan Chakraborty, Tim Finin, and Anupam Joshi. Intelligent
agents meet semantic web in a smart meeting room. InProceedings of the Thrid Interna-
tional Joint Conference on Autonomous Agents & Multi-Agent Systems, July 2004.

[6] Harry Chen, Filip Perich, Tim Finin, and Anupam Joshi. SOUPA: Standard ontology for
ubiquitous and pervasive applications. InProceedings of the First International Conference
on Mobile and Ubiquitous Systems: Networking and Services, 2004.

[7] Lorrie Cranor, Marc Langheinrich, Massimo Marchiori, Martin Presler-Marshall, and
Joseph Reagle. The platform for privacy preferences 1.0 (p3p1.0) specification.
www.w3c.org, jan 2002.

[8] Nicodemos Damianou, Naranker Dulay, Emil Lupu, and Morris Sloman. The ponder policy
specification language.Lecture Notes in Computer Science, 1995:18–??, 2001.

[9] Fabien L. Gandon and Norman M. Sadeh. Semantic web technologies to reconcile privacy
and context awareness.Web Semantics Journal, 1(3), 2004.

[10] Lalana Kagal, Tim Finin, and Anupam Joshi. A policy language for a pervasive computing
environment. InIEEE 4th International Workshop on Policies for Distributed Systems and
Networks, 2003.

[11] Lalana Kagal, Massimo Paolucci, Naveen Srinivasan, Grit Denker, Tim Finin, and Katia
Sycara. Authorization and privacy for semantic web services.AAAI 2004 Spring Sympo-
sium on Semantic Web Services, March 2004.

[12] Marc Langheinrich. Privacy by design – principles of privacy-aware ubiquitous systems.
In G.D. Abowd, B. Brumitt, and S. Shafer, editors,Proceedings of Ubicomp 2001, volume
2201 ofLecture Notes in Computer Science, pages 273–291. Springer, 2001.

[13] Morris Sloman and Emil Lupu. Security and management policy specification.IEEE
Network, Special Issue on Policy-Based Networking, 2002.

[14] Gianluca Tonti, Jeffrey M. Bradshaw, Renia Jeffers, Rebecca Montanari, Niranjan Suri,
and Andrzej Uszok. Semantic web languages for policy representation and reasoning: A
comparison of kaos, rei, and ponder. InProceedings of the 2nd International Semantic Web
Conference (ISWC2003), 2003.

