
A Distributed Service Composition Protocol for
Pervasive Environments

Dipanjan Chakraborty
Ph.D Student

UMBC
dchakr1@cs.umbc.edu

Yelena Yesha
Professor
UMBC

yeyesha@cs.umbc.edu

Anupam Joshi
Associate Professor

UMBC
joshi@cs.umbc.edu

Abstract— Service composition in pervasive environments en-
ables users to utilize services in the environment to solve complex
queries. Current work in development of service composition
architectures focuses on wired-networked environments where
solutions are centralized and tailored towards a reliable network
and fixed service topology. In this paper, we present an alternate
and novel design architecture of a broker-based distributed ser-
vice composition protocol for pervasive environments. We present
simulation results by comparing our protocol to a centralized
architecture for composition. Results show that our distributed
broker-based composition architecture perform better than the
centralized solution in terms of composition efficiency, broker
arbitration efficiency and composition radius.

Key Words: Mobile Service, Service Composition, Discov-
ery, architecture, Ad-hoc Networks, Broker

I. I NTRODUCTION

Service composition refers to the technique of creating
complex services with the help of smaller, simpler and easily
executable services or components. By “Service”, we refer
to any software component, data, or hardware resource on
a device that is accessible by others. For example, we can
consider a Bluetooth-enabled PDA carrying music files to be
a service providing songs in various formats.

The spurt of e-services on the web has increased the im-
portance of service composition. Service Composition enables
us to integrate existing services to satisfy complex requests
(requests that require cooperation of multiple services) by
clients. There has been research [19], [12], [3] in trying to
leverage the wide array of e-services available over the wired
network to be able to provide more customized, complex
services to e-customers. However, in the future, along with
services in the fixed network infrastructure, we would also be
able to access services present in the various mobile devices in
our vicinity. Service composition protocols also need to take
advantage of the services/resources available in the pervasive
environment.

Research in Service composition has predominantly fol-
lowed two directions. One direction of research tries to
define rich languages [10], [14], [11] to describe services
and workflows appropriately. The other direction of research
aims in developing architectures [20], [12], [13], [18], [4]
that enable service composition. These architectures assume
a workflow specification of a composite service and perform
the task of discovering, integrating and executing the services.

In this paper, we focus on service composition architectures
since we believe that it is critically important in a pervasive
environment and requires a different approach from wired
service composition architectures.

Current service composition platforms [3], [12], [15] have
been designed with the inherent assumption that the e-services
are resident in the fixed network infrastructure. Thus, they
are running on a relatively stable platform and can access
each other using relatively high bandwidth communication
channels. The composition platforms are based on a cen-
tralized manager or Broker that manages the various issues
like service path creation [7], delegation of service discovery
to the proper discovery manager, appropriate combination of
different services and management of the information flow
between service components. In pervasive computing envi-
ronments, firstly, the centralized design approach of wired-
network based composition engines is prone to single point of
failure, especially since all nodes are mobile and unreliable.
Secondly, service topology (distribution of services on various
ad hoc nodes) changes due to mobility. Service composition
architectures should be able to utilize the spatial distribution
of services to optimize service integration and execution.
Fault management strategy has to take into consideration
network level disconnection, service discovery failures, and
service execution failures. These issues call for an alternate
design approach of service composition systems for pervasive
environments.

We have developed a distributed broker-based protocol for
service composition in pervasive/ad hoc environments. In a
nutshell, our protocols works like this: For each composite re-
quest, our protocol elects a Broker from within a set of nodes.
The source node delegates the responsibility of composition
(i.e. discovery, integration and execution) to the elected Broker.
The elected Broker utilizes a distributed service discovery
architecture [5] to discover services. It then integrates and
executes services needed for a composite request. Our protocol
is decentralized and immune to central point of failure. The
Broker election mechanism has the capability of balancing
the total load on the system appropriately within the set
of cooperating nodes. We use a checkpoint-based source-
monitored fault tolerance mechanism to detect execution-level
faults. We present simulation experiments to demonstrate the
effectiveness of our protocol.



II. BACKGROUND

Service discovery and service composition is an important
and active area of research [2], [8] and has been studied
widely in the context of wired-networked services. Most of the
research in realizing service composition systems for wired-
networked services has a centralized architecture for service
integration and execution management. We are aware of sys-
tems like eFlow [3], CMI [19], Ninja Service Composition
Architecture [12], Sheng’s framework [1] on declarative web
service composition based on state charts that broadly address
various problems related to service composition in the context
of wired services. Due to lack of space, we are unable to
present details of these systems.

There has been very limited work in the development of dis-
tributed protocols for service composition in ad hoc/pervasive
environments. In prior work [17], we developed a middleware
to handle composite requests from mobile devices using wired
networked resources. Our middleware platform took into ac-
count mobility related issues like disconnections, bandwidth
and resource constraints on mobile devices while trying to
process a composite query from the device. The protocol
can be considered as a “one-step” progress to enable mo-
bile devices to compose services. However, it depends on
the wired infrastructure for services. Moreover, middleware-
oriented protocols are essentially semi-centralized and hence
unsuitable for ad hoc environments. Basu et. al [16] has
described a hierarchical task-graph based approach to do
service composition in ad hoc environments. In their work,
a composite service is represented as a task-graph with leaf
nodes representing atomic services. Different sub trees of the
graph are computed in a distributed manner in a MANET
(Mobile Ad hoc Network). Service composition is coordinated
by the source of the request. Even though the domain of the
problem is the same as our’s, the approaches are very different.
In their approach, the coordinator uses global search across the
whole network to do composition. This has a high network
load on the system. We believe that the coordinator should be
able to utilize the service topology and do the composition.
To be precise, the coordinator node should be able to consider
the spatial distribution of the services to optimize the cost of
composition. Thus, our protocol does not have any restriction
on the location of the coordinator and we use a distributed
algorithm to decide the best coordinator for a request. Our
protocol allows distributed execution of a composite service
once the coordinator has been decided. Moreover, their ap-
proach uses a broadcast-based service discovery mechanism
while we use a more efficient distributed service discovery
mechanism [5] imposing lesser network load.

There is a plethora of work in trying to define languages
to represent composite services in a workflow-oriented or
semantic manner. This class of work in service composition,
nonetheless important is not an issue of this paper. For the
purposes of this paper, the composite service can be repre-
sented in any of these languages. Examples of such work
include DAML-S[10], WSFL[14], XLANG[9], BPEL[11] etc.

In particular, we have used DAML-S to represent composite
services.

III. PROTOCOL

Our composition protocol uses an efficient distributed ser-
vice discovery infrastructure to discover services that is de-
scribed in detail in a separate publication [5]. The discovery
protocol uses intelligent selective forwarding technique and
localized broadcasting combined with peer-to-peer caching
to discover services in a MANET. We believe that a truly
distributed service composition protocol should utilize the
topology of the ad hoc network and the spatial distribution
of the services present on them. To achieve this, our protocol
executes aBroker Arbitration phase that decides the most
capable node to act as the coordinator orBroker for a certain
request. Thus, each request may be assigned to a different
Broker. The protocol rapidly adapts to topology changes and
network as well as service failures. We define some key terms
in the protocol:

1) Request Source (RS):Mobile device from where a
particular composite request originates. Note that a node
is referred to as theRequest Source only with respect to
the request that it has originated.

2) Service Provider (SP): Mobile device that contains
services that are accessible from other peer nodes.

3) Broker: The device that handles manages the discovery,
integration and execution of a composite request. This
node can itself be theRequest Source or a Service
Provider for another composite request.

4) Description-level Service Flow (DSF):Declarative de-
scription of a composite service or a composite request.
We use DAML-S to specify a composite service. It
simply consists of a list of service descriptions along
with the desired flow of execution that constitutes the
composite service.

5) Execution-level Service Flow (ESF):A complete spec-
ification of the composite service with execution-level
details required to invoke the services in the SPs.

6) Atomic Service: A service that resides on a single SP
and can be invoked from other devices. This service may
consist of further components, but the components must
reside on the same SP to make the serviceatomic.

Our composition protocol essentially consists of four
phases. (1) The RS initiates aBroker Arbitration Phase that
analyzes the composite request and elects a node to act as
the Broker for that request. The composite request is then
delegated to the Broker from the RS. (2) This is followed by
theService Discovery Phase where the Broker uses the under-
lying discovery infrastructure to discover required SPs for the
composition. (3) This is followed by theService Integration
Phase where the Broker computes service-to-node bindings for
the composite request. An Execution-level Service Flow (ESF)
is computed from the Description-level Service Flow (DSF) of
the composite request. (4) TheService Execution Phase phase
executes the composite service following the ESF. This phase
handles execution-level faults by employing checkpoint-based



monitoring of the execution. In the following subsections, we
describe the different phases in greater detail.

A. Broker Arbitration Phase

This phase is initiated by the RS. The composite request
is parsed to generate a list of the required services. The RS
queries nodes in its vicinity (with controlled broadcast) to
determine their suitability to act as Broker for the composite
request. It supplies them with the enumerated list of services.
Each node computes apotential value for itself based on its
own resources as well as the Service Providers (SP) located
in the local vicinity of itself. The services located in the
local vicinity are obtained from the discovery infrastructure
(explained in the section III-B). This potential value is returned
to the RS. The RS selects the Broker with the maximum
potential value after it has obtained sufficient replies or after a
certain timeout. The local resources considered by the potential
function include number of matching local services, battery
life and current processing load on the node. The potential
function uses remote service advertisements cached by a node
to approximate the number of services in its neighborhood. In
future, we aim to incorporate node density as well as service
density into the potential function. Service density may be
different from node density since there may be more than 1
(or even 0) services on a node.

Yes

Computation
over

No

Yes

No

Timeout/Replies
Received

RS receives
Composite
Request

RS queries neighboring
nodes for their potential

values

No. of Replies
>=Min_Replies

No. of Tries >
MAX_TRIES?

Arbitration
Failure

RS computes Broker
Platform from the data

collected

RS sends DSF to the
elected Broker

Fig. 1. Flow Diagram of Broker Arbitration Phase

The Description-level Service Flow (DSF) of the composite
request is sent to the elected Broker using the underlying rout-
ing protocol. Figure 1 shows the flow diagram of this phase.
We have used a service-based routing protocol developed by us
[6] to do routing. In short, our routing protocol is on-demand
and uses the path formed during service discovery to send data.
In [6], we have shown that integrating routing with discovery
in MANETs increase system efficiency.

In this phase, each composite request in the system thus
may be assigned a separate Broker. This makes the architecture
immune to central point of failure and the judicious choice of
Brokers has the potential of distributing the load appropriately
within different devices. Formally, we denote U(B�) as the

utility value of each potential Broker for a composite request
S.

����� � ��������� ������� ������ ������

where�����)= Number of service advertisements cached by
��; �����)=number of services belonging to the composite
request that are present in the cache of��; ����)=battery life
of ��; ����)=Current number of requests being processed by
��. A Broker�� is selected based on the following equation.

��� such that��� ������ � ������

B. Service Discovery Phase

Our composition protocol utilizes our previously developed
service discovery infrastructure [5] (referred to as GSD) to dis-
cover services. It also uses the information provided by the in-
frastructure during the Broker Arbitration Phase. GSD is based
on the concepts of peer-to-peer caching of advertisements of
services and group-based selective forwarding of requests. The
selective forwarding uses DAML-based semantic information
present in the service requests and service descriptions. Each
node advertises its own services via localized broadcast to
limited vicinity. These service advertisements are cached by
peer nodes. Service discovery requests are matched with the
cached descriptions of services for possible match. Service
discovery requests are also selectively forwarded (in case of a
mismatch) to a set of neighbors based on certain service-group
information that is propagated along with the advertisements.

C. Service Integration Phase

The DSF specification of the composite service is converted
into an ESF in this phase. This phase deals with combining the
discovered services meaningfully and filtering out unnecessary
components or services based on execution-level cost estimate
of the composed service. More specifically, corresponding to
each service description in the composite request, an actual
service is discovered. The network load created due to the
discovery process is controlled by regulating the number of
hops within which the service discovery is performed. There
could be multiple instances of the same service existing in
the environment. Our protocol currently selects the nearest
available service. However, it can easily be modified to in-
corporate other cost factors. A new Execution-level Service
Flow is constructed that contains information on the actual
service, its node binding etc. It also contains control flow
related information and actual network parameters (number
of hops, bandwidth etc) that would affect the flow. This phase
ends when all the required services have been instantiated in
the ESF. Figure 2 describes the pseudo code of the operation
of the protocol during the discovery and integration phase.

D. Service Execution Phase

The Broker goes into this phase after it has discovered
all the services and a complete ESF has been constructed.
In this phase, the Broker coordinates the execution of the
services in the order specified by the ESF. The execution of
the individual services occurs in a distributed manner at the



For each service Si in DSF {
broadCast_Diameter=MIN_DIAMETER;
service_discovered=FALSE;
no_retries=0;
while(!service_discovered &&

no_retries<=MAX_RETRIES) {
Call GSD to discover Si;
if Si has been discovered{

ESF+=Invocation Details of S_i;
service_discovered=TRUE;
}

else {
broadCast_Diameter+=BROADCAST_INCREMENT;
no_retries++;
}

}
}

Fig. 2. Pseudo code of Service Discovery and Integration Phase

nodes hosting those services. The Broker uses the underlying
routing protocol [6] to transmit information received from the
previously executed service in the ESF to the next service.
Invocation information for services (e.g. node address, actual
service name, arguments etc) is obtained from the ESF. We
observe that the execution of each composite request follows
a “star” pattern for data and control flow. In other words, the
data flows from one node to another node through the Broker.
Thus we call it “star” execution pattern. In our next phase, we
aim to incorporate “mesh-based” formation of the execution
pattern to the ESF where the data would directly flow from
one service provider to the next service provider. We use a
checkpoint-based source monitored fault tolerance scheme to
detect node failures and hence failures of services residing
in those nodes (if they are part of a composite request). We
describe the process in the next section.

1) Checkpoint-based Fault Tolerance: The basic solution
to address faults in composition is for the source to restart the
whole process if any service has failed during the execution.
This solution is unable to utilize the partial results obtained
so far. The energy and bandwidth spent in computing part of
the query is also lost. In ad hoc environments, services are
not stable. So it is critically important to be able to utilize the
results of the partial execution.

We use checkpoints at the RS with a service-level granular-
ity of one to commit partial executions in the composition. The
RS maintains an execution state for each request it generates.
The Broker coordinating a composition updates the RS with
the “execution-state” as well as the partial result obtained after
a service has been executed. The source times out in absence
of an update from the current Broker. It then re-computes
the ESF by pruning the part that has already been executed
and committed. This request is treated as a new composition
request in the environment and adequate actions are taken.
This solution however, imposes additional overhead of trans-
mitting checkpoints in a MANET. We are currently analyzing
the effect of our checkpointing algorithm on the network
bandwidth. Thus, in case of failures of SPs or Brokers, our

protocol adapts to the changes dynamically and tries to utilize
the available resources in the new environment. We assume
that the RS would not fail before successful completion of the
composition. This is a reasonable assumption, since the RS
would ideally want to keep itself turned on till it receives a
reply.

IV. EXPERIMENTS

20 30 40 50 60 70 80 90 100
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

C
o

m
p

o
si

tio
n

 E
ff
ic

ie
n

cy
 (

sc
a

le
 o

f 
1

)

Density of Required Services(%)

Effect of Service Density on Composition Efficiency

Broker−based Composition
Fixed Source−based Compostion

Fig. 3. Comparison of Composition Efficiency with respect to Service
Density

We implemented our protocol on the well-known ad-hoc
network simulator Glomosim [21] under various service densi-
ties, mobility and topologies. We compared our protocol to the
often-used Fixed-Source based Composition protocol where all
the composite requests generated in the system are sent to one
fixed node that acts as the composition engine. We considered
composite requests of various orders (in terms of number of
distinct atomic services required). We define service density as
the percentage of nodes containing one or more of the services
that are required in a composite request. In this paper, we
present results for composite requests having an order of three
with density ranging from 20 to 100%. Simulation was carried
over a set of 64 nodes, following random way-point mobility
with speed of 2m/s and stoppage time of 5s. We considered
a broadcast control hop count of 1 for the Broker Arbitration
Process and underlying GSD protocol.

Figures 3 and 4 show the effect of service density on the
efficiency of composition and broker arbitration. Composition
efficiency refers to the fraction of composite requests that
were successfully instantiated and executed. Broker Arbitra-
tion efficiency refers to the fraction of composite requests
for which a Broker was assigned and the task was received
by the assigned Broker. We observe that our Broker-based
composition protocol outperforms the Fixed-Source based
solution by approximately 60%. We also see that the efficiency
increases with increasing service density. This is expected,
since with increasing service density, we increase the chances
of the services being discovered in the vicinity and executed.
Our protocol performs better since it utilizes the services in
the local vicinity of the RS and also assigns Brokers based on



20 30 40 50 60 70 80 90 100
0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

B
ro

ke
r 

A
rb

itr
a

tio
n

 E
ff
ic

ie
n

cy
 (

sc
a

le
 o

f 
1

)

Density of Required Services(%)

Effect of Service Density on Broker Arbitration Efficiency

Broker−based Composition
Fixed Source−based Compostion

Fig. 4. Comparison of Broker Arbitration Efficiency with respect to Service
Density

the current network topology. Broker Arbitration Efficiency
is also high in our protocol since the assigned Brokers are
located near the RS. Hence, Broker acknowledgements (from
the source) have to travel lesser hops. Thus, there are lesser
acknowledgement message losses leading to greater arbitration
efficiency.

Figure 5 compares our protocol with the centralized protocol
with respect to composition radius. Composition radius is
defined as the average number of hops needed by a Broker
to discover all the required services for a particular composite
request. The lesser the composition radius, the lesser is the
network overhead in communication. Our protocol shows that
it performs better in locating nearby nodes that contain the
required services. This is more due to the topology-sensitive
placement of the Broker in the Broker Arbitration Phase.
This is also corroborated in figure 6 where we compare the
percentage of discovered services that were found locally in
the assigned Broker node. This result shows that our Broker
placement strategy achieves better utilization of the service
topology.

20 30 40 50 60 70 80 90 100
0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

1.1

1.2

A
ve

ra
g

e
 C

o
m

p
o

si
tio

n
 R

a
d

iu
s

Density of Required Services(%)

Comparison of Composition Radius between the two protocols

Broker−based Composition
Fixed Source−based Compostion

Fig. 5. Comparison of the Protocols in terms of Composition Radius

20 30 40 50 60 70 80 90 100
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

F
ra

ct
io

n 
of

 a
to

m
ic

 s
er

vi
ce

s 
di

sc
ov

er
ed

 lo
ca

lly

Density of Required Services(%)

Effect on Service Discovery by Broker−based Composition and Fixed−node based Composition 

Broker−based Composition
Fixed Source−based Compostion

Fig. 6. Comparison of the Protocols in terms of Locally Discovered Services

V. CONCLUSIONS

In this paper, we have presented a Broker-based distributed
Service Composition protocol for MANETS. Our protocol is
decentralized and efficiently utilizes the spatial locality of the
services. Each composite request is independently assigned a
Broker. The Broker Arbitration mechanism uses a controlled
broadcast-based scheme to collect information from nearby
nodes. Broker Selection is based on a utility value for each
node. The utility value takes into account services present in
the node, computation and energy resources and most impor-
tantly, service topology of the surrounding vicinity. Service
composition is carried out in a distributed manner utilizing the
resources/services surrounding the assigned Broker. We have
compared our protocol to a Fixed-node based Composition
protocol where all the requests are sent to a preconfigured
node in the system. Simulation results show that our protocol
performs better in terms of composition efficiency and broker
arbitration efficiency. We also show that our protocol achieves
better results in terms of composition radius and utilizing
spatial locality of the required services participating in a
composition.

REFERENCES

[1] B. Benatallah, M. Dumas, Q. Sheng, and A. Ngu. Declarative compo-
sition and peer-to-peer provisioning of dynamic web services. In18th
International Conference on Data Engineering., February 2002.

[2] F. Casati, D. Georgakopoulos, and M. Shan editors. Special Issue on
E-Services.VLDB Journal, 2001.

[3] F. Casati, S. Ilnicki, L. Jin, V. Krishnamoorthy, and M. Shan. Adaptive
and dynamic service composition in eflow. Technical Report, HPL-
200039, Software Technology Laboratory, Palo Alto, CA, march 2000.

[4] D. Chakraborty and A. Joshi. Dynamic Service Composition: State-
of-the-Art and Research Directions. Technical report, University of
Maryland Baltimore County, December 2001. TR-CS-01-19.

[5] Anupam Joshi Dipanjan Chakraborty. GSD: A novel group-based service
discovery protocol for MANETS. InIEEE Conference on Mobile and
Wireless Communications Networks, Stockholm, Sweden., September
2002.

[6] Anupam Joshi Dipanjan Chakraborty. An integrated service discovery
and routing protocol for ad hoc networks. Technical Report, TR-CS-03-
23, University of Maryland, Baltimore County, March 2003.

[7] The Ninja Project. UC Berkeley Computer Science Division.http:
//ninja.cs.berkeley.edu.



[8] G. Weikum. Editor. Special issue on infrastructure for advanced e-
services.IEEE Data Engineering Bulletin, 24(1), March 2001.

[9] XLANG. Web Services for Business Process Design. World Wide Web.
http://xml.coverpages.org/xlang.html, 2001.

[10] DARPA Agent Markup Language for Services. World Wide Web,
http://www.ai.sri.com/daml/services/daml-s.pdf.

[11] BPEL4WS. Business Process Execution Language for Web Services.
World Wide Web. http://xml.coverpages.org/bpel4ws.
html, 2002.

[12] R.H. Katz, Eric. A. Brewer, and Z.M. Mao. Fault-tolerant, scalable,
wide-area internet service composition. Technical Report. UCB/CSD-1-
1129. CS Division. EECS Department. UC. Berkeley, January 2001.

[13] Joost N. Kok and Kaise Sere. Distributed service composition. In
Technical Report No. 256. Turku Centre for Computer Science. Finland.,
march 1999.

[14] Web Services Flow Language. World Wide Web,http://xml.
coverpages.org/wsfl.html.

[15] David Mennie and Bernard Pagurek. An architecture to support
dynamic composition of service components. Systems and Computer
Engineering. Carleton University, Canada.

[16] Thomas. D.C. Little Prithwish Basu, Wang Ke. A novel approach for
execution of distributed tasks on mobile ad hoc networks. InIEEE
WCNC. Orlando. Florida, 2002.

[17] Chaitanya Pullela, Liang Xu, Dipanjan Chakraborty, and Anupam Joshi.
Component based architecture for mobile information access. In
Workshop in conjunction with International Conference on Parallel
Processing (ICPP)., August 2000.

[18] Pierre-Antoine Queloz and Alex Villazon. Composition of services
with mobile code. InProc. First International Symposium on Agent
Systems and Applications Third International Symposium on Mobile
Agents. Palm Springs. California., 1999.

[19] H. Schuster, D. Georgakopoulos, A. Cichocki, and D. Baker. Mod-
eling and composing service-based and reference process-based multi-
enterprise processes. InProc. Intl. Conference on Advanced Information
Systems Engineering, Sweden., June 2000.

[20] C. Thompson, P. Pazandak, V. Vasudevan, F. Manola, G. Hansen, and
T. Bannon. Intermediary architecture: Interposing middleware object
services between web client and server. InWorkshop on Compositional
Software Architectures. Monterey. California, 1998.

[21] Mario Gerla Xiang Zeng, Rajive Bagrodia. Glomosim: A library
for parallel simulation of large-scale wireless networks.Proc. 12th
Workshop on Parallel and Distributed Simulations, 1998.


