
Pervasive Enablement of Business Processes

Dipanjan Chakraborty1 Hui Lei
University of Maryland Baltimore County IBM T. J. Watson Research Center

dchakr1@csee.umbc.edu hlei@us.ibm.com

Abstract

People are an important part of many business
processes. Current workflow-based implementations of

business processes constrain users to the desktop

environment; require them to periodically check for
pending tasks; and do not support direct or synchronous

people-to-people interaction. On the other hand, the wide

spectrum of people collaboration tools ranging from
telephones to instant messaging and to email have no

provision for structured collaboration and are separate

from business processes. We have designed and
implemented a system, dubbed PerCollab, that integrates

workflow and collaboration technologies. It allows people
to participate in business processes from anywhere using

a traditional collaboration mechanism. It proactively
engages users in business processes by pushing

interaction to a convenient device of the users. PerCollab

uses an extended BPEL to formally define business
processes with human partners and exploits dynamic user

context to solve the personal mobility problem. Our

prototype implementation integrates a variety of
collaboration tools: instant messaging, email and e-

meeting.

1. INTRODUCTION

A business process is “a procedure where documents,
information or tasks are passed between participants
according to defined sets of rules to achieve or contribute
to an overall business goal” [24]. Participants of a
business process may be human beings, Web services or
other software agents. In particular, human beings form a
very important part of many business processes. A great
number of large-scale as well as small-scale business
processes like product planning, software design, service
after sales, travel request approval and candidate
evaluation require the engagement of human participants.

Mechanisms concerned with the modeling and
execution of business processes are generally referred to
as Workflow Management Systems (WFMS) [3,5,13]. A
WFMS provides formalisms (e.g. Petri nets [13], task

1This work was performed while the author was visiting IBM Watson
Research.

graphs [3]) through which business processes are defined.
It also includes a corresponding workflow engine that
carries out automatic scheduling and activation of
component tasks according to the defined business
process. Most existing workflow systems are based on the
desktop computing paradigm. They employ a workplace
metaphor to present tasks that are to be claimed and
performed by human participants. Such tasks differ from
tasks that are performed by software agents and are
referred to as staff activities. A workplace-based user
interface has a number of disadvantages: (1) Users are
constrained to the desktop computing environment. They
don’t have access to business processes when they are
away from their desktop; (2) A workplace essentially
adopts a pull-based approach, where the user is burdened
to periodically inspect his workplace to check out pending
staff activities; (3) WFMS allow for indirect and
asynchronous people-to-people communication only, but
not direct and synchronous exchanges among human
participants. The latter form of interaction is in fact very
common in business environments.

On the other hand, a large array of collaboration and
communication tools exist that support direct people-to-
people interaction. Tools range from hardware devices
like cell phones, pagers and iPAQs to software systems
like Short Messaging Service (SMS), Instant Messaging
(IM), email and e-meetings. These heterogeneous
modalities offer flexibility and extra opportunities in
human collaboration. In particular, they allow for
synchronous interaction and proactive engagement of
people in collaboration by pushing communication
messages to them. However, current collaboration tools
have their own limitations: (1) They support ad hoc,
unstructured collaboration only. There is no built-in
mechanism for enforcing any policies or structures on the
collaboration process; (2) Collaboration tools are not
integrated with business processes. People have to
explicitly switch back and forth between business
processes and collaboration tools and manually move data
between the two.

Our work seeks to address the respective limitations
in workflow systems and collaboration tools by
effectively integrating the two. Specifically, we want to
enable people to engage in business processes anytime
and anywhere, using any traditional communication
mechanism. Further, we want to add orchestration support
to collaboration tools by mediating them with a workflow

engine. The integration of WFMS and heterogeneous
communication tools, however, presents the challenge of
personal mobility. Although a person typically has
multiple communication tools, he may have access to
only a subset of them at a particular time. Depending on
the circumstance, he may also have a preference on which
of the available tools to use. Thus there is a need to
dynamically select an appropriate device or modality to
engage the user for a particular interaction.

We have designed and implemented a system,
dubbed PerCollab, that integrates business processes and
ubiquitous collaboration and communication mechanisms.
We have extended BPEL [1], a widely accepted business
process definition language for Web services, to
accommodate human participants. A business process
defined in the extended language can be translated to
standard BPEL and executed by a BPEL engine. The
BPEL engine engages human partners through an
Interaction Controller (IC), which serves as a proxy for all
interacting human entities. The Interaction Controller
selects the most appropriate collaboration modality to
reach a user, based on user context information such as
location, activity and preferences. To illustrate the
features and benefits of our system, we present the
following scenario for the business process of travel
request approval. The process involves two roles: an
employee and a manager. Each role player uses a
convenient communication tool to participate in the
process.

During the execution of a customer support

application ODS, it comes to a decision point that
Michael, the technician, should be sent to visit a customer

site. In order to comply with the corporate policies, ODS
instantiates a travel request approval process via the Web

Service interface of PerCollab. The instantiation specifies

Michael as the requesting employee and his manager
George as the approval manager. Because Michael is

currently logged on the Instant Messaging (IM) system,

PerCollab starts an IM session with him prompting him to
fill out a Travel Request Form. The different fields of the

form such as Purpose, Destination and Cost Estimate are

presented to him as individual IM messages so that he can
answer them one by one.

According to the process, PerCollab now needs to

contact George for approval. However, George is in a
meeting and does not want to be interrupted. PerCollab

thus sends him an email message stating that he has to

review a Travel Request Form from Michael and also fill
out a Travel Approval Form. George finds the message in

his mailbox after the meeting. He happily grants the

travel request by filling out the Travel Approval Form
and including it in a reply email message to PerCollab.

In the next step of the process, Michael needs to be
notified of the approval. Although he has logged off IM,

he has his SMS-enabled cell phone with him. Therefore,

PerCollab sends him an SMS message stating that his

travel request had been granted. PerCollab exits the
travel request approval process and returns to the calling

ODS application with the completion status. ODS then

continues.
We can observe five salient features from the above

scenario: (1) Business processes (e.g., travel request
approval) are seamlessly integrated with and accessible
from a range of collaboration tools; (2) Staff activities in
business processes are proactively pushed to users; (3)
Dynamic user context information is exploited to select an
appropriate collaboration modality for engaging the users;
(4) Coordination policies and structure can be imposed to
synchronous, realtime-style people-to-people
collaboration; (5) Collaboration processes can be
instantiated programmatically and collaboration results
fed back to the calling application.

The rest of the paper is organized as follows. Section
2 discusses several considerations that contributed to the
design of PerCollab. Section 3 provides a high-level
overview of PerCollab and the interoperation of various
components. Section 4 presents extensions of the BPEL
language that enables us to explicitly model human
participants as a part of the business process. Section 5
describes the details of the various system components.
Section 6 presents our prototype implementation. Section
7 discusses related work and Section 8 summarizes our
paper.

2. DESIGN RATIONALE

A number of considerations have influenced the
design of PerCollab. Among them are integration of
WFMS and ad hoc collaboration tools, provision of an
orchestration formalism, personal mobility and context
awareness.

As WFMS inherently involve multiple human participants
carrying out parts of the business process, it is natural to
explore how to synergize people-to-people collaboration
tools and WFMS. While both technologies are geared
towards supporting collaboration among people in
organizations, they differ in their modes of operation and
are mostly complementary. Workplace-based

Web

Service

Web

Service

Web

Service

BPEL

Process

Figure 1: Process-centric BPEL model

collaboration advocated by WFMS is well orchestrated
and structured whereas ad hoc collaboration tools support
unstructured collaboration. There is no control on the
information being exchanged using ad hoc collaboration
tools. Workplace-based collaboration is pull-based and
only supports asynchronous collaboration

Ad hoc collaboration tools on the other hand support
both synchronous and asynchronous collaboration and are
primarily push-based. By integrating with ad hoc
collaboration tools, WFMS allow users to participate in
business processes anytime and anywhere, in a manner
sensitive to their context. Further, a push-based
interaction paradigm reduces demand for user attention
and can potentially increase user productivity. Ad hoc
collaboration tools on the other hand would also benefit
from explicit process support in WFMS and provide more
value-added features to their users.

Like traditional WFMS, PerCollab requires a
process-orchestration formalism. For maximal acceptance
and interoperability, we chose Business Process
Execution Language (BPEL) [1] as the underlying
framework for defining business processes. BPEL is a
language for orchestrating Web services, which provide a
standard framework for Enterprise Application
Integration (EAI). BPEL specifies the potential execution
order of operations from a collection of Web services, the
data shared between these Web services, which partners
are involved and how they are involved in the business
process, joint exception handling for collections of Web
services, and other issues involving how multiple services
participate. BPEL adopts a process-centric view to define
a business process, as illustrated in Figure 1. It considers
the process as a coordinator of the whole business
process; all Web services coordinate with each other

Generated
BPEL

Policies

xBPEL
Policies

xBPEL
Translator

BPEL
Engine

Context
Service Location

Connectivity
Activity

Preferences

Interaction
Controller

Address
Book

Web
Services
Web

Services
Web

Service
Partners

IM
Adapter

SMS
Adapter

Email
Adapter

IM
Server

SMS
Gateway

Email
Server

Invoking
Applications

Figure 2: System Architecture

through the process. On the other hand, BPEL assumes all
participants (or partners) are Web services and does not
provide explicit support for human participants. We have
augmented BPEL with additional constructs to
accommodate human participants in a business process.
More specifically, we provide constructs to explicit model
interactions between processes and persons and between
persons.

Since PerCollab integrates multiple collaboration
tools into business processes, personal mobility becomes
an issue. As people move from place to place, their
connectivity and accessibility to various collaboration
tools may change. Depending on the circumstance, some
types of tools may also be more preferable than others.
Our system design was presented with the challenge of
selecting the most appropriate device on which to engage
a user in a business process. Such device binding should
be granular enough as the choice of an appropriate device
may change in the course of a business process. This also
entails the need to support inter-modal collaboration so
that people using different collaboration modalities are
able to participate in the same business process.

We advocate exploiting a person’s context
information to proactively select the appropriate
collaboration modality [25]. The best means of engaging
a particular person at a particular time depends on a lot of
factors: the person’s location, activity, connectivity and
personal preferences. Such attributes are often referred to
as user context. By automatically obtaining information
on dynamic user context, the system can make intelligent
selection decisions on a per-interaction basis. Proactive
use of context reduces burden placed on users and
potentially increases user productivity and thereby the
efficiency of business processes.

3. SYSTEM OVERVIEW

Our PerCollab system enables people to participate in
a business process via a convenient
communication/collaboration mechanism. Figure 2 shows
the overall architecture of PerCollab. It includes the
xBPEL Translator, the BPEL Engine, the Interaction
Controller (IC), the Context Service, and an extensible set
of Modality Adapters.

We use the xBPEL language, an extension of BPEL,
to formally specify business processes with human
participants. The xBPEL Translator is responsible for
translating process definitions (policies) in xBPEL to
those in standard BPEL, which are then executed on the
BPEL Engine [16]. Each business process has a Web
service interface, defined in the Web Service Description
Language (WSDL) that is used by invoking applications
to instantiate the process. An invoking application can be
a standalone business application, another business
process, or some user interface mechanism that accepts

user commands. The BPEL business process during
instantiation accepts configuration parameters such as
actual bindings of human participants to user IDs, and a
list of modalities acceptable to the invoking application.
The list of acceptable modalities is considered in
conjunction with individual users’ personal preferences in
determining the appropriate collaboration modality.

The BPEL engine dispatches tasks meant for Web
service partners and human partners. Tasks meant for
Web service partners are routed to the corresponding
services by the engine directly. Tasks meant for human
partners are routed to the IC. The IC acts as a proxy to
represent all human participants. It leverages the user
context information supplied by the Context Service to
select the access mechanism that is most convenient for a
particular human participant. The IC also employs an
extensible set of Modality Adapters that suffice as access
points for specific communication devices and
collaboration modalities. The primary job of a Modality
Adapter is to interpret tasks being sent by the IC and
present it in a modality-specific format. Adapters use
device-specific platforms, servers or gateways to
communicate with the specified human partner instance.

4. BUSINESS PROCESS DEFINITION

In this section, we present our extensions to BPEL to
explicitly accommodate human participants in business

processes. The process-centric model of BPEL uses the
BPEL business process (Figure 1) as a mediator for
communication with its business partners. In our
extension, called xBPEL, we distinguish two kinds of
business partners: (1) Web service partners: partners that
are Web services or agents having a Web service
interface; (2) human partners: partners that represent
human participants, which don’t have a predefined Web
service interface. The BPEL Engine governs the business
process and communicates with its partners to fulfill
business tasks. Staff activities, or tasks meant for human
partners, fall into one of two categories: (1) one-way

activities: notification-type activities for alerting human
partners; (2) two-way activities: request-response type
activities where human participants have to provide a
reply back to the business process. We have introduced
the following three additional types of constructs in
xBPEL:

Human Partner: used to define a human entity as a
participant in a business process
Process-to-People: used to model communication
between the human partners and the BPEL process

 Readers not familiar with BPEL and its operation can skip this section
without any loss in continuity.

People-to-People: used to model direct
communication between the human participants. This
set of constructs supports a simpler description of
direct people-to-people interaction that could also be
modeled using process-to-people constructs.

BPEL uses the construct <partner> to declare a Web
service that participates in the business process.
Following this convention, we introduce the construct
<humanPartner> to declare a human participant. A
humanPartner essentially defines a role, which represents
distinct functions played by a group of people in the
business process. Examples of roles are manager,
developer, interviewer etc. A humanPartner can be bound
to one or more instances of actual users or human
participants at the instantiation time of the business
process. These are referred to as humanPartner instances

or humanPartner bindings. We also allow for
specification of constraints on the admission of
humanPartner instances to a certain role. An example
definition of the construct defining a role of “approver” is
as follows:

<humanPartner name=”manager” role=”approver” >

<admissionConstraints>

<disjointWith role=”travelRequester”/>

<minCardinality=1/>

<maxCardinality=1/>

</admissionConstraints>

</humanPartner>

We also introduce one process-to-people construct and
two people-to-people constructs. The process-to-people
construct is <interact>. It models the interaction between
a human partner and the BPEL process. Since the BPEL
model is process-centric, this construct alone can be used
to indirectly model any people-to-people collaboration.
We show an example of the interact construct below:

<interact name=”submitTravelRequest”

humanPartner=”travelRequester”

promptData=”$Please fill out the Travel Request Form”

replyData=”travelRequestForm” />

The humanPartner attribute of the <interact> construct
denotes the human partner that the process interacts with.
The attribute promptData defines the message that the
process sends to the humanPartner. It may contain a string
literal or a typed WSDL message. We differentiate a
string literal from a WSDL message by prefixing the
former by a ‘$’. The attribute replyData defines the
desired response from the human partner. In a one-way
activity, the replyData is set to NULL.

The two people-to-people constructs are <notify> and
<converse>. The former defines a one-way
communication from a humanPartner sender to another

humanPartner receiver. The latter defines a two-way
request-response between the two humanPartners. We
provide examples of the two constructs below:

Notify Construct:-
<notify name=”sendRequestlForm”

sender=”travelRequester”

receiver=”manager”

promptData=”$Please fill out the Travel Request Form”

senderData=”travelRequestForm” />

Converse Construct:-
<converse name=”travelRequest”

sender=”travelRequester”

receiver=”manager”

promptData=”$Please fill out the Travel Request Form”

senderData=”travelRequestForm”

receiverData=”approvalForm” />

Figure 3 shows snippets of the xBPEL policy for the
travel request approval business process that was alluded
to in Section 1. The role players in the example are the
travel requester and the manager. Lines 4 –6 describe the
human participants using our extension to BPEL. Lines
15 – 43 describe the structure of the collaboration. We
observe that using standard BPEL constructs, we can
manipulate the data that is being exchanged in the
collaboration. Lines 23 – 29 automatically approve the
travel request if the ‘estimatedCost’ of travel is less than
$800. The process contacts the manager only if it cannot
approve the request automatically. However, if the
business process dictates that the requests are sent to the
manager, then we could specify the policy using the
<converse> construct directly. We observe that BPEL
also enables exporting the collaboration result to the
calling application.

4.1 XBPEL TRANSLATION

We use the xBPEL Translator to convert xBPEL
policies to standard BPEL policies for execution on the
BPEL engine. The xBPEL Translator primarily performs
the following functions:

Transform all people-to-people constructs into
process-to-people constructs. This is done since
BPEL follows a process-centric model and all
communication between partners actually are
mediated by the business process.
Transform all process-to-people constructs to
<invoke> constructs in standard BPEL, using the
Interaction Controller Web service as a proxy for all
human partners.
Automatically generate the WSDL definition for the
resultant BPEL policy. The WSDL definition can
then be used by other applications to instantiate the
business process.

The IC is a Web service acting as a gateway to
human partners. Hence its input and output parameters
should be declared as WSDL messages, in accordance
with the WSDL schema [10]. A WSDL message consists
of several parts representing fields of the message. Each
message part is associated with an XML schema data
type. The xBPEL variables (e.g., the values of the
promptData and replyData attributes in an <interact>
construct) are also WSDL messages, representing
messages communicated to and from human partners.

xBPEL variables may have different message parts (and
hence a different message type) depending on the xBPEL
policy (e.g. lines 10 – 12 of Figure 3). However, the input
and output messages of the IC must have a predefined,
generic type. Thus when transforming an <interact>
statement to an invoke operation on the IC, we need to
convert between disparate xBPEL variables and generic
IC messages.

We address this type conversion problem through
message serialization. Specifically, the input message of

1.<?xml version="1.0" encoding="UTF-8"?>
2. <process>
 …………………………
3. <partners>
4. <humanPartner name="travelRequester" role="traveller">
5. <admissionConstraints> <disjointWith role=”approver”/> <minCardinality value="1" /> </admissionConstraints>
6. </humanPartner>
 …………………………..

7. </partners>
8. <variables>
9. <variable name="travelRequestForm">
10. <message name="travelRequestForm">
11. <part name="purpose" type="xsd:string"/> ………….. <part name="estimatedCost" type="xsd:string"/>
12. </message>
13. </variable>
 ………………………….
14. </variables>
15. <sequence name="travelSequence">
16. <receive name="processInstantiation"
17. partner="processInstantiator" portType="tns:processInstantiationPort" operation="processInstantiate"
18. variable="processInstantiationVar" createInstance="yes">
19. </receive>
20. <interact humanPartner="travelRequester" promptData="$Please fill out the Travel Request Form"
21. replyData="travelRequestForm" />
22. <switch>
23. <case condition=”bpws:getVariableData(‘travelRequestForm’,’estimatedCost’) < 800”>
24. <sequence>
25. <assign>
26. <copy> <from expression=”approved” /> <to variable=”approvalForm” part=”decision” /> </copy>
27. </assign>
 ………………………………..
28. </sequence>
29. </case>
30. <otherwise>
31. <sequence>
 <!-- Manager fills out an approval form -->

32. <interact humanPartner="manager" promptData="travelRequestForm" replyData="approvalForm" />
33. </sequence>
34. </otherwise>
35. </switch>
 <!-- Send the approval/rejection back to the travel requester -->

36. <interact humanPartner="travelRequester" promptData="approvalForm" replyData="NULL" />
 <!-- Reply is fed back to the business process -->

37. <assign >
38. <copy> <from variable="approvalForm" part="decision"/> <to variable="collabOutputVar" part="msgType"/> </copy>
39. </assign>
40. <reply name="structProcessReply" partner="processInstantiator" portType="tns:processInstantiationPort"
41. operation="processInstantiate" variable="processOutputVar">
42. </reply>
43. </sequence>
44. </process>

Figure 3: Travel request approval policy with interact constructs

the IC contains two parts called ‘prompt’ and ‘reply’ that
are of type xsd:string. When processing an <interact> in
xBPEL, we use XML serialization to convert the
promptData and replyData variables to strings and assign
them to the ‘prompt’ and ‘reply’ parts of the IC input
message respectively. Note that on input, the replyData

variable does not contain any values in its parts. It is
serialized and passed to the IC so that the latter knows the
fields that make up the message and can prompt the
human partner accordingly.

Similarly, the output message of the IC contains one
part called ‘reply’. Upon returning from the invocation of
the IC, ‘reply’ contains the serialized form of the
replyData with the message parts filled in. We employ a
message de-serialization web service to retrieve parts of
the serialized message and assign them to corresponding
parts of the replyData variable. In summary, each
<interact> statement is converted into BPEL code that
performs the following:

Serialize the xBPEL promptData and replyData

variables in the <interact> construct and assign them
to corresponding parts of the IC input message;
Invoke IC operation for engaging human partner
instances;
De-serialize the message returned from the IC and
assign it to the xBPEL replyData variable.

People-to-people constructs (<notify>, <converse>) are
first converted to suitable <interact> constructs, which
are then further processed as described above to generate
standard BPEL statements. We provide an example
translation of the <converse> statement into appropriate
<interact> statements.

The <converse> statement:

<converse name=”travelRequestApproval”

sender=”travelRequester”

receiver=”manager”

promptData=”$Please fill out the Travel Request Form”

senderData=”travelRequestForm”

receiverData=”approvalForm” />

Generated <interact> statements:

<interact name=”submitTravelRequest”

humanPartner=”travelRequester”

promptData=”$Please fill out the Travel Request Form”

replyData=”travelRequestForm” />

<interact name=”getApproval”

humanPartner=”manager”

promptData=”travelRequestForm”

replyData=”approvalForm” />

<interact name=”notifyDecision”

humanPartner=”travelRequester”

promptData=”approvalForm”

replyData=”NULL” />

5. SYSTEM COMPONENTS

An important component in PerCollab is the BPEL
Engine. The BPEL Engine executes the business process
and engages human partners and Web services through
various forms of exchanges. The Interaction Controller
forms an intermediary to support the pervasive
engagement of human participants in the business
process. Other components of PerCollab are the
extensible set of Modality Adapters, the xBPEL
Translator and the Context Service. All communication
messages are defined as WSDL messages. We discuss
various system components in the following subsections.

5.1 INTERACTION CONTROLLER

The IC receives specification of individual staff
activities from the BPEL Engine and forwards responses
from human partners back to the engine. A staff activity
specification contains information about the human
partner instance intended to carry out the activity and the
relevant messages. The IC exports itself as a Web service.
Hence its invocation is no different from any regular Web
service and does not necessitate any changes to the BPEL
Engine. Upon receiving a staff activity specification, the
IC obtains context information of the partner instance
from the Context Service and determines an appropriate
collaboration modality for the partner instance. It uses an
Address Book to look up the modality-specific address
(e.g., telephone number, email address, IM identifier)
based on the user name. It then establishes
communication with the corresponding Modality Adapter
and supplies it with all the information regarding the staff
activity. Communication is either notification-based (for
one-way activities) or request-response based (for two-
way activities). For request-response based
communication, the IC also provides the Modality
Adapter with the message format representing the reply
desired.

We have experimented with two communication
paradigms between the IC and the Modality Adapters. In
a synchronous communication paradigm, the IC opens a
communication session with a Modality Adapter and
blocks until the communication has been completed and
the reply received. This paradigm entails a multi-threaded
structure of the IC. In an asynchronous communication
paradigm, the IC communicates staff activity information
to a Modality Adapter via events. The Modality Adapter
later on establishes a callback to the IC returning the
response from the partner instance.

5.2 CONTEXT SERVICE

The Context Service, described in detail in a separate
publication [17], allows context-aware applications to
obtain user context information without having to worry
about the details of context derivation and context
management. It supports both synchronous query and
asynchronous callback context functions, and allows for
easy incorporation of new types of context data into the
Context Service. The Context Service provides both
dynamic user context information and static user
preferences. Dynamic context information currently
available from the Context Service includes IM online
status, activities and contact means derived from calendar
entries, desktop activities, as well as user location
reported from a variety of sources such as cellular
providers, wireless LANs, GPS devices and RIM
blackberry devices. The static user preferences include
those used to determine the appropriate collaboration
modality for a mobile user. Such preferences are
represented as rules. Each rule specifies the modalities
that may be used under a particular condition. The rule
condition is in terms of the user’s dynamic context
variables such as location and activity and static attributes
such as the identity of the corresponding party. Each rule
is optionally associated with a priority value to help
resolving conflicts between rules.

5.3 MODALITY ADAPTERS

Modality Adapters allow disparate collaboration
mechanisms to be plugged into our system in an
extensible manner. They expose a uniform interface to the
Interaction Controller and encapsulate the details of
invoking individual collaboration modalities. A Modality
Adapter performs three kinds of functions. (1) It interacts
with a particular modality server, initiating and
terminating modality-specific connections to human
partner instances as necessary; (2) It pushes staff activities
to partner instances and funnels communication between
the IC and partner instances. It further masks

disconnections and retransmissions during the
communication; (3) It interprets WSDL messages from
the IC and presents them to partner instances in a
modality-appropriate manner. It also constructs WSDL
messages based on modality-specific input from partner
instances.

We distinguish three types of collaboration
modalities: connection-oriented, connectionless, and
space-sharing. Connection-oriented modalities support
two-way, synchronous collaboration. Examples of such
modalities are instant messaging and cell phones.
Connectionless modalities support one-way,
asynchronous collaboration. Examples include email and
SMS. Space-sharing modalities, such as e-meetings, bring
all the partner instances of a business process into one
shared discussion space (e.g., an electronic whiteboard). It
then uses this shared discussion space to execute staff
activities. While the first two types of modalities engage
human partners on a per-interaction basis, the nature of
space-sharing modalities dictate that they are most
appropriate as access media for the entire duration of the
business process.

We have implemented Modality Adapters with
different designs based on the type of the modality.
Adapters for connection-oriented modalities employ a
dispatcher and a collection of worker threads. Each
worker thread maintains one connection session. A
connection is established only if the corresponding
partner instance is online or available on the modality
server. Adapters for connectionless modalities are based
on a state-machine model with state transitions triggered
by communication messages from the partner instance.
No connection setup and termination are needed in this
case as the partner instance does not have to be connected
for the communication to take place.

Adapters for space-sharing modalities require another
design. We illustrate this using the example of an e-
meeting. To bring all human participants to the e-meeting,
we first use a context-sensitive modality (e.g., instant
messaging, email) to send an ‘invite’ message to them,
giving the address of the e-meeting. Subsequently, all
invitees enroll themselves in the e-meeting. To schedule
and execute all staff activities that make up a business
process, a hidden e-meeting attendee is used to control
what goes onto the electronic whiteboard. The e-meeting
Modality Adapter and the whiteboard controller
coordinate with each other using a deadlock-free protocol
with two shared queues: a request queue and a response
queue. As shown in Figure 4, the e-meeting Modality
Adapter receives specification for the next staff activity
from the IC and places it in the request queue (Step 1).
The whiteboard controller is awaken by new items in the
request queue and engages the correct human partner
(Step 2). The whiteboard controller performs all necessary

Figure 4: Operation of the e-Meeting
modality adapter

(4)

(3)

(1)

(2)

Enroll

Invitation

e-Meeting

Adapter

e-Meeting

Whiteboard

Response

Queue

Request

Queue

Human
Partner

Human
Partner 1

(5)

message conversion, collects response from the partner
instance and places it in the response queue (Step 3). The
e-meeting Modality Adapter retrieves this result, sends it
to the IC and awaits further activities (step 5). Since the e-
meeting adapter may be involved in multiple meeting
sessions simultaneously, data in the request and response
queues are properly tagged with session identifiers.

6. DEMONSTRATION OF CONCEPT

To validate our design, we have implemented a
prototype of PerCollab. Our implementation is in Java
and runs on WebSphere Application Server (WAS)
version 5.0. It uses a standard BPEL engine from IBM’s
AlphaWorks [16], the Context Service developed in an
earlier project [17], and the newly developed Interaction
Controller and the xBPEL Translator. It currently
supports the collaboration modalities of email, instant
messaging and e-meeting. We use Sametime 3.0 Client
Toolkit [19] and Lotus Notes 6.0 [20] to communicate
with the corresponding modality servers. We have tested
our system using a standalone driver application. The
application instantiates various business processes by
calling their Web service interfaces, which were
generated automatically by the xBPEL Translator.

We use the example of the travel request approval
business process to demonstrate the workings of our
implementation. The xBPEL policy for this process was
given in Figure 3. The role players in the demonstration
are George, the manager, and Michael, the travel
requester. The BPEL process itself is represented by ID

Collab Administrator. We demonstrate the operations
with modalities of instant messaging and email.

The screen shots in Figure 5 show the collaboration
being carried out through instant messaging and email.
The business process on being instantiated contacts
Michael instructing him to fill up a Travel Request Form
(Figure 5A). George then receives a notification of
Michael’s request and is instructed to fill up the Approval
Form (Figure 5B). Finally, Michael receives a notification
regarding acceptance or rejection of his request.

7. RELATED WORK

Related work ranges from workflow systems,
orchestration formalisms for business processes, peer-to-
peer collaboration platforms, to unified communication
frameworks.

Existing workflow systems [3,4,5,6,7] engage human
participants through workplace-type user interfaces. Tools
like Websphere Process Choreographer [3] and Dragonfly
[4] focus on the integration of a wide variety of services
and components into the workflow. Human participants
are required to poll their desktop-based workplaces to
claim and accomplish their staff activities. In comparison,
our PerCollab system pushes staff activities to human
participants via an appropriate communication
mechanism. It allows people to participate in business
processes in a more ubiquitous, flexible and user-friendly
manner. Various formalisms have been developed for
modeling business processes [3,13,14]. Because the Web

(A) (B)

Figure 5: Travel request approval through instant messaging

services framework has shown great promise as a
standard platform for enterprise application integration,
there have been a lot of recent interests in defining
languages for orchestrating Web services. The Web
Services Flow Language (WSFL) [10] and XLANG [11]
are two earlier efforts from IBM and Microsoft
respectively. BPEL combines the two and is emerging as
an industry standard. We augmented BPEL with support
for human participants.

The last few years have seen a proliferation of
collaboration technologies, including software systems
like email, instant messaging, e-meetings, and discussion
threads, as well as devices like cell phones and pagers.
These tools support either synchronous or asynchronous
peer-to-peer collaboration, but they don’t enforce any
coordination policies or structures. PerCollab adds
process support to these tools by using a BPEL engine to
orchestrate the exchanges between people.

A number of projects have addressed the issue of
personal mobility to support unified communication.
These include the Mobile People Architecture [21],
Universal Inbox [22], and our own Mercury system [25].
These projects provide an extensible framework for
enabling communication across heterogeneous end-points
and route communication to a convenient callee device
based on user preferences. Still, the communication
supported is ad hoc and unstructured. The key aspect that
sets this work apart is the additional orchestration support
we have integrated.

8. CONCLUSIONS

We have presented the design and implementation of
the PerCollab system that effectively integrates workflow
technology and ad hoc collaboration tools. PerCollab
enables human participants to engage in business
processes anytime and anywhere, using a wide range of
collaboration mechanisms. It proactively pushes staff
activities to human partners through a modality that is
sensitive to the user context. It adds process support to
peer-to-peer collaboration tools, making them
interoperable with other services and applications. We
leveraged BPEL as the underlying formalism for defining
business processes and introduced a small set of
constructs into BPEL to support human partners. Our
system employs the Interaction Controller as a proxy for
human participants. It currently integrates the modalities
of email, instant messaging and e-meeting.

REFERENCES

[1] Business Process Execution Language for Web Services
(BPEL), 2002. http://www106.ibm.com/developerworks/

Webservices /library/ws-bpel/

[2] N. R. Jennings and M. Wooldridge. Agent-oriented software
engineering. Handbook of Agent Technology (ed. J. Bradshaw).

AAAI/MIT Press, 2000.

[3] P. Grefen, K. Aberer, Y. Hoffner, and H. Ludwig.
CrossFlow: Cross-organizational Workflow Management in
Dynamic Virtual Enterprises. International Journal of Computer

Systems, Science, and Engineering, 15(5):277--290, 2001.

[4] IBM Websphere Process Choreographer.
http://www7b.software.ibm.com/wsdd/zones/was/wpc.html

[5] Dragon Fly Workflow Engine.
http://www.dragonflysoftware.com.au

[6] M. Merz, B. Liberman, and W. Lamersdorf. Using Mobile
Agents to Support Interorganizational Workflow-Management.
International Journal on Applied Artificial Intelligence,

11(6):551–572, 1997.

[7] M. Merz, B. Liberman, and W. Lamersdorf. Crossing
Organisational Boundaries with Mobile Agents in Electronic
Service Markets. Integrated Computer-Aided Engineering,

6(2):91–104, 1999

[8] A. Reuter and F. Schwenkreis. Contracts - a low-level
mechanism for building general purpose workflow management-
systems. Data Engineering Bulletin, 18(1):4–10, 1995.

[9] Microsoft NetMeeting Platform.
http://www.microsoft.com/windows/NetMeeting

[10] Erik Christensen, Francisco Curbera, Greg Meredith, and
Sanjiva Weerawarana. Web Services Definition Language 1.1.
Technical report, W3C, 2001. available at
http://www.w3c.org/TR/wsdl.

[11] F. Leymann. Web Services Flow Language (WSFL). white

paper. 2001. http://www- 3.ibm.com/software/solutions/

Webservices/pdf/WSFL.pdf

[12] S. Thatte: XLANG: Web Services for Business Process
Design, Microsoft Corporation, 2001.
http://www.gotdotnet.com/team/xml_wsspecs/xlang-

c/default.htm.

[13] W.M.P. van der Aalst. Petri-net-based Workflow
Management Software. Proceedings of the NSF Workshop on

Workflow and Process Automation in Information Systems:

State of the Art and Future Directions, Athens, Georgia, May

1996.

[14] A. Tripathi, T. Ahmed, and R. Kumar. Specification of
Secure Distributed Collaboration Systems. In Proceedings of

International Symposium on Autonomous Distributed Systems

(ISADS 2003), April 2003.

[15] J. Clark and S. DeRose. XML path language (XPath)
version 1.0. W3C Working Draft, July 1999.

http://www.w3.org/TR/WD-xpath-19990709.

[16] BPEL Engine. http://alphaworks.ibm.com/tech/bpws4j

[17] H Lei, D. Sow, J. Davis II, G. Banaduth and M. Ebling. The
Design and Application of a Context Service. ACM Mobile

Computing and Communications Review (MC2R), 6(4), October

2002.

[18] Eclipse Project by IBM. http://www.eclipse.org

[19] Real-time collaboration with Lotus Sametime. Lotus

Development Corporation White Paper

(2001). http://www.lotus.com/sametime

[20] N. Gandhi, S. Parekh, J. Hellerstein, and D.
Tilbury.Feedback control of a lotus notes server: Modeling and
control design. American Control Conference, 2001.

[21] M. Roussopoulos, P. Maniatis, E. Swierk, K. Lai, G.
Appenzeller and M. Baker. Personal-level Routing in Mobile
People Architecture. Proceedings of the USENIX Symposium on

Internet Technologies and System. October 1999.

[22] B. Raman, R. Katz and A. Joseph. Universal Inbox:
Providing Extensible Personal Mobility and Service Mobility in
an Integrated Communication Network. Proceedings of the

Third IEEE Workshop on Mobile Computing Systems and

Applications. Monterey. CA, December 2000.

[23] H. Wang et. Al. ICEBERG: An Internet-core Network
Architecture for Integrated Communications. IEEE Personal

Communications. 2000.

[24] D. Hollinsworth. The Workflow Reference Model.
Technical Report TC00-1003, Workflow Management
Coalition, http://www.aiai.ed.ac.uk/WfMC/.

[25] H. Lei and A. Ranganathan. Context-Aware Unified
Communication. Proceedings of the 2004 IEEE International

Conference on Mobile Data Management, Berkeley, CA,

January 2004.

