
1

Towards Distributed Service Discovery in
Pervasive Computing Environments

Dipanjan Chakraborty, Anupam Joshi, Yelena Yesha, Tim Finin
Department of Computer Science and Electrical Engineering,

University of Maryland Baltimore County,
Baltimore, MD 21250

Email: �dchakr1, joshi, yeyesha, finin�@cs.umbc.edu

Abstract

The paper proposes a novel distributed service discovery protocol for pervasive environments. The protocol
is based on the concepts of peer-to-peer caching of service advertisements and group-based intelligent forwarding
of service requests. It does not require a service to be registered with a registry or lookup server. Services are
described using the Web Ontology Language (OWL). We exploit the semantic class/subClass hierarchy of OWL to
describe service groups and use this semantic information to selectively forward service requests. OWL-based service
description also enables increased flexibility in service matching. We present simulation results that show that our
protocol achieves increased efficiency in discovering services (compared to traditional broadcast-based mechanisms)
by efficiently utilizing bandwidth via controlled forwarding of service requests.

keywords: Service Discovery Architecture, Pervasive Computing, MANET, OWL, Semantic De-
scription, Peer-to-Peer, Advertisements

I. INTRODUCTION AND MOTIVATION

Service discovery is a well-recognized challenge in distributed environments [41], [9], [14],
[17], [25], [28], [32]. With the decreasing cost and form factor of computing devices, the increase
in the information being kept on these devices, and the increasing prevalence of short range ad-hoc
wireless networks, service discovery will play an important role in Pervasive Computing environ-
ments. Pervasive Computing environments are comprised of handheld, wearable and embedded
computers, besides regular desktop clients and servers. These are connected by some combination
of wireless ad-hoc networks and wireless infrastructure based networks such as WLANs. In such
environments, the cohort of computing elements participating in any distributed system dynami-
cally changes with time. In other words, a user (her computing device(s) to be precise), sponta-
neously networks with different devices as she and other users change locations over a period of
time. This is not to say that all elements in this distributed scenario must be mobile – only that no
particular set of devices/computers is available to form the stable core of a distributed system at all
times. For instance, in environments such as shopping malls, conference venues or smart-offices,
some devices (e.g. Desktops/Laptops, IP phones, Point of Sale terminals, Projectors, Coffee ma-
chines) are static while other devices (Cell phones, Handhelds etc) are mobile. In the extreme case,
Pervasive Computing environments include MANETs (Mobile Ad hoc Networks) where all nodes
are mobile and dynamically change their locations. Examples of such environments can be found
in the mobile devices used by emergency response services, by soldiers in battlefields, by people
walking on streets etc.

We envisage that in the near future, static, mobile, and embedded devices will provide cus-
tomized information, services and computation platforms to peers in their vicinity. The primary

This work was supported in part by NSF Awards IIS 9875433, IIS 0209001, CCR 0070802, ACI 0203958, and the DARPA
DAML program under contract F30602-97-1-0215

2

goal of applications for pervasive computing environments is to perform the task given by the user
by exploiting the resources or services that are present in the neighborhood. Some requests need a
single service, which is directly available in the vicinity, whereas some other requests need multi-
ple services or information sources to be integrated to obtain the desired result. In either case, we
need a flexible service discovery infrastructure that is tailored towards pervasive environments[10].

Of course, there are issues related to security and privacy in such environments. Other colleagues
in our group are building distributed trust and belief based systems for security and privacy in
pervasive environments [2], [29], [45]. There is also a question of payments for services offered in
this environment. This is outside the scope of our present work, but is being actively researched in
the m-commerce and economics domains.

There has been considerable academic and industrial research effort in service discovery in the
context of wired as well as partly wired/wireless networked services. Two important aspects of
service discovery are the discovery architecture and the service matching mechanism. Protocols
like Jini [1], Salutation and Salutation-lite [41], UPnP [26], UDDI [46], Service Location Pro-
tocol [23] have been developed to facilitate applications to discover remote services residing on
stable networked machines in the wired network. Some of these protocols (e.g. UPnP) can also
be used by mobile devices to discover networked services using wireless networking technologies
like 802.11 (a, b or g). The general architecture of these protocols is as follows: a service adver-
tises and registers itself to a service register that keeps track of networked services. Services can
de-register at any point of time. Most of the communication happens over IP-type networks, and
the discovery protocol relies on multicasts and broadcasts for important functions such as the dis-
covery of the registry. In summary, these architectures are primarily centralized/semi-centralized,
registration-oriented and have an implicit assumption that the underlying network is stable and is
capable of providing reliable communication. Clearly, service discovery in pervasive computing
environments requires a decentralized design approach where a node should not depend on some
other node(s) to advertise/register services. Each service should be autonomous and be able to
advertise its presence. Moreover, the discovery should also adapt itself to reflect the changes in the
vicinity. A discovery protocol should be able to utilize the underlying network efficiently.

Existing service matching techniques in the above-mentioned protocols use simple matching
schemas. They use interface descriptions(e.g. Jini) or attributes [1], [41] or even unique-identifiers
(Bluetooth SDP[5]). Service matching is done at a syntactic level. However, syntactic level match-
ing and discovery is inefficient for pervasive environments due to the autonomy of service providers
and the resulting heterogeneity of their implementations and interfaces. For example, we can have
the same service implement different interfaces which could result in the failure of a syntactic
match if the service query does not match with any interface. To alleviate this problem, there has
been considerable work to develop languages [30], [6], [21] to express service requirements and
facilitate flexible semantic-level service discovery [11], [50], [19].

Service discovery architectures [24], [3], [2] developed specifically for pervasive environments
are either request broadcast based or advertisement-based. In a broadcast-based 1 solution, a ser-
vice discovery request is broadcast through out the network. If a node contains the service, it
responds with a service reply. The protocol, under ideal conditions of a fully-connected network
without message losses, offers high reliability in discovering a service. However, it suffers from the
following disadvantages. First, global broadcast scales poorly with increasing network diameter
and network size. Second, it utilizes resources and computation power on all nodes of the network
including nodes that do not even have the service or nodes that may not even fall in the route to
the desired service. This extra processing is essentially redundant. Third, it utilizes significant

�Broadcast-based protocol is also referred to as Request-broadcast based protocol in some parts of the paper

3

network bandwidth (since the request traverses to all nodes through all paths possible) and hence
creates a large load on the network.

The other solution is for the services to advertise themselves to all the nodes. Each node in-
terested in discovering services cache the advertisements. The advertisements are matched with
service requests and a result is returned. In this solution, the cache size increases with the number
of services. Many of the nodes have limited memory and are unable to store all the advertisements.
Soon the cache gets filled up. This is also inefficient in terms of bandwidth usage, since the whole
network has to be periodically flooded with advertisements. There are solutions that offers both
advertisements and broadcast of requests, but nevertheless do not address the problems of network
load, network-wide reachability and scalability.

Existing solutions have mostly considered the service matching and the discovery architecture as
two decoupled fields. This paper introduces a novel approach (dubbed Group-based Service Dis-
covery or GSD) that combines the two by utilizing semantic service descriptions used in service
matching to develop an efficient, distributed, scalable and adaptive service discovery architecture
for pervasive computing environments. Our architecture is based on the concept of peer-to-peer
caching of service descriptions, bounded advertising of services in the vicinity and efficient selec-
tive forwarding of service discovery requests using functional group information being propagated
with service advertisements. Functional grouping of services enables our architecture to encom-
pass a broad range of discovery techniques ranging from simple broadcast to directed unicast,
thus making it highly adaptable to the requirements of the network. Our solution exploits the
semantic capabilities offered by the Web Ontology Language (OWL)[21] to effectively describe
services/resources present on nodes in the ad hoc environment. Furthermore, the services present
on the nodes are classified into several groups based on the class-subclass hierarchy present in
OWL. A service thus belongs to a hierarchy of groups starting from the parent group called “Ser-
vice”. This group information is used to selectively forward a service request to other devices
where there are greater chances of the service being discovered. Semantic grouping of services is
not uncommon in the service matching research and has been used to enable functionally similar
or “near” matches [11], [34]. We use the information to enable semantic matching and build a
highly integrated yet distributed and an efficient discovery infrastructure.

We have implemented GSD and extensively compared its worst case and average case perfor-
mance with traditional broadcast-based solution for service discovery. We provide results com-
paring GSD and broadcast-based service discovery with respect to average response time, average
response hops, discovery efficiency, average network load and several other parameters. Our re-
sults show that GSD scales very well with respect to increasing network and increasing request load
on the system. Our experiments also show that discovery efficiency of GSD is almost as good as
discovery efficiency of broadcast-based solutions and in fact performs better than broadcast-based
solutions with respect to other parameters like response time and network load.

We will use the term MANET (Mobile Ad hoc Network) and Pervasive Computing Environment
interchangeably in the rest of the paper. MANET represents the extreme of the pervasive comput-
ing spectrum. Our system is designed to handle this extreme case and our simulations are done
on a MANET. The remaining part of the paper is organized as follows: In section II we provide
a brief description of the ontology and the functional grouping of services. Section III describes
our protocol in detail. Section IV describes the various salient features of our protocol. Section
V presents our experimental results. We survey other related works in section VI and conclude in
section VII.

4

II. GROUP-BASED SEMANTIC SERVICE DESCRIPTION

We have chosen OWL to define an ontology to describe services/resources in a MANET. There
are couple of reasons for choosing an ontology-based approach to describe services. (1) The se-
mantics of OWL can be used to describe services in different nodes and also to enable semantic
matching support with those service descriptions. Any resource or service is described in terms of
classes and properties. In addition, OWL provides rules for describing further constraints and re-
lationships among resources including cardinality, domain and range restrictions as well as union,
disjunction, inverse and transitivity. These axioms can be easily exploited to create an ontology
describing services and service groups. (2) OWL, which is based on eXtensible Markup Language
(XML) [52] and Resource Description Framework [30] is also being used as a standard to describe
information/service on the wired infrastructure and the Web. This makes our service description
interoperable with other semantic web infrastructures.

Service

Software

Input/
Output

Computation
Require-

Input
No-Input

Printer

InkJet Laser

Hardware

Fig. 1. Hierarchical Grouping of Services

We have leveraged our prior work in development of the DReggie Ontology [11] that con-
tains a comprehensive ontology for describing services in terms of its capabilities, inputs, outputs,
platform constraints, and device capabilities of the device on which it is residing etc. Using the
class/subClassOf axiom of OWL, we have incorporated a preliminary grouping of different pos-
sible services in a MANET primarily based on service functionality. A significant advantage of
our discovery architecture is that the ontology is extensible and one can modify it without alter-
ing the discovery mechanism. The discovery mechanism would take into account the modifica-
tion. Due to space restrictions, we are unable to provide the ontology. However, it is available
at http://daml.umbc.edu/ontologies/dreggie-ont.owl. The generic class Ser-
vice is functionally classified into two main sub-groups: Hardware and Software Service. Each
sub-group is further classified in this manner till we reach a very specific service. For exam-
ple, a color printer service may be classified under Service/ Hardware/Input-output-type-Service/
Printer-Service. Figure 1 shows the functional hierarchy.

III. SERVICE DISCOVERY PROTOCOL

Our protocol (GSD) is based on the concepts of (1) Bounded advertising of services in the vicin-
ity (2) Peer-to-Peer dynamic caching of service advertisements (3) Service group-based selective
forwarding of discovery requests. Our protocol also has multiple user-controlled parameters that

5

determine the extent of bounds for advertising, service caching and discovery request propagation.
In this section we describe these key aspects of our protocol in detail.

A. Service Advertisements and Peer-to-Peer Caching

Each Service Provider (SP) periodically advertises a list of its services to all the nodes in its
radio range. An advertisement message consists of the following fields:

�Packet-type, Source-Address, Service-Description, Service-Groups, Other-Groups, Hop-Count,
Lifetime, ADV DIAMETER�

A monotonically increasing identifier called broadcast-id along with the source-address uniquely
identifies a broadcast and detects duplicate advertisements. Please note that this identifier is dif-
ferent from source sequence numbers maintained by nodes in traditional ad-hoc routing literature.
Sequence numbers refer to a single message identifier whereas broadcast-id refers to a broadcast
event that may generate multiple messages. The Service-description and Service-groups contain
information about the local service(s) and their corresponding service groups.

Additionally, each node receiving the advertisement can forward it to all other nodes in its radio
range. The field ADV DIAMETER determines the number of hops each advertisement travels.
Each node increments the Hop-Count when it forwards an advertisement that is in turn used to
compute whether the advertisement can be forwarded any further. Figure 2 shows the pseudo code
for sending advertisements.

Function SendAdvertisement(..) :-

1. After each ADV_TIME_INTERVAL period do {
2. Initialize Adv_Message;
3. Adv_Message[Service-Description]=GetLocal_ServiceInfo(Service_Cache);
4. Adv_Message[Service-Groups]=GetLocal_ServiceGroupInfo(Service_Cache);
5. Adv_Message[Other-Groups]=GetVicinity_GroupInfo(Service_Cache);
6. Adv_Message[Hop-Count]=0;
7. Adv_Message[Lifetime]=ADV_LIFE_TIME;
8. Adv_Message[Adv_Diameter]=ADV_DIAMETER;

9. Transmit Advertisement to all nodes in the radio range;
10. }

Fig. 2. Pseudo Code of the Process of Advertising Services in the Vicinity

Each node on receipt of an advertisement stores it in its Service Cache. Each entry in the Service
Cache contains the following fields:

�Source-Address, Local, Service-Description, Service-Groups, Other-Groups, Lifetime�

Apart from storing advertisements, a Service Cache also stores descriptions of local services in
the node(identified by the local field in each cache entry). The field Other-Groups contain a list
of the groups that the corresponding Source-Address (sender of the advertisement) has seen in
its vicinity. We follow a least-remaining-lifetime replacement policy to replace entries when the
cache is full. However, we are aware of work in predictive cache modeling [13] and profile-driven
caching [36], [15] that can be used in our architecture to model the cache replacement strategy.
However, since cache replacement policies are not the focus of this paper, we chose a simple
uniform cache replacement strategy for all the protocols. Figure 3 displays the pseudo code of the
peer-to-peer caching and advertisement forwarding process.

6

Function P2PCacheAndForwardAdvertisement(..) :-

1. if (Duplicate(Adv_Message))
2. then discard Adv_Message;
3. else {
4. Serv_Cache=Initialize_Entry_in_Service_Cache(..);
5. Serv_Cache[Source-Address]=Adv_Message[Source-Address];
6. Serv_Cache[local]=0;
7. Serv_Cache[Service-Description]=Adv_Message[Service-Description];
8. Serv_Cache[Service-Groups]=Adv_Message[Service-Groups];
9. Serv_Cache[Other-Groups]=Adv_Message[Other-Groups];
10. Serv_Cache[Lifetime]=Adv_Message[Lifetime];

11. if (Adv_Message[Hop-Count]<Adv_Message[ADV_DIAMETER]) {
12. Increment_HopCount (Adv_Message);
13. Retransmit_Advertisement (Adv_Message);
14. }
15. }

Fig. 3. Pseudo Code for Peer-to-Peer Caching and Forwarding of Service Advertisements

The advertisement frequency, advertisement diameter and advertisement lifetime are user-controlled
parameters that enables GSD to be adapted to the necessities of the device and the environment.
Thus, devices in relatively static environments may choose to have a low advertisement frequency
with a high advertisement diameter whereas the reverse can be applied towards highly mobile
scenarios where devices have low availability. We follow the policy of passive pushing of adver-
tisements rather than active pulling of descriptions from nodes. Passive pushing enables a device
to detect changes in the environment by the receipt of a new advertisement, thus making the de-
tection process simple, efficient and localized to the device. Active pulling of information on the
other hand has greater chances of collision of messages at the receiving node.

B. Advertising Service Groups

Apart from advertising its own services, GSD also uses the same advertisements to advertise
functional group information of services a node has seen in its vicinity. The field Other-Groups
in an advertisement contains an enumerated list of the service groups of all the non-local services
seen by sender node. This information is obtained from the advertisements stored by the node in its
service cache (line 5 in Figure 2). Figure 4 shows the pseudo code for the function that computes
this information.

Function GetVicinity_GroupInfo(Service_Cache) :-

1. Other-Groups={};
2. For each Entry S in the Service_Cache do {
3. If (S is not local){
4. for (each group Gi belonging to S[Service-Groups] or S[Other-Groups]) {
5. if (Gi is not in Other-Groups) then
6. Add Gi to Other-Groups
7. }
8. }
9. }
10. return Other-Groups;

Fig. 4. Algorithm to Determine the Service Groups Present in the Vicinity of a Device

7

We observe that this service group information gets propagated from one node to another and
may potentially cover the whole network (if the network is partition free). Functional group in-
formation provides a good abstraction to represent services and are enough to divert a discovery
request towards the appropriate region. They also provide a good measure to aggregate the service
descriptions and hence save on network bandwidth.

S1(G1) Service S1 belongs to Group
G1

[S1(G1) - - >N1]

S2(G2)S1(G1)

N1 N2 N3

N4

[S1(G1) - - >N1]

Service Cache Entry at N2

Local Service at Node 2

(a)

Service Advertisement

[S1(G1) - - >N1]

[S2(G2),G1 - - >N2]

S2(G2),G1 - - >N2
S2(G2)S1(G1)

N1 N2 N3

N4

[S1(G1) - - >N1]

Service Cache Entry
at N3

Local Service at
Node 2

(b)

Service
Advertisement

Service S1 belongs to
Group G1

S1(G1)

Fig. 5. Service Advertisements and propagation of service group information. Figure 5(a): Advertisements being sent
by node N1. Figure 5(b): Service Group information being propagated by node N2 during its advertisement phase.

Figure 5 shows an example of propagation of service advertisements and the associated service
group information for a simple ad-hoc network. We note that with an increase in the diversity
of services in a pervasive environment, the different functional groups of services would also in-
crease. Each device has a maximum limit of the number of service groups it keeps for a certain
neighboring node. Currently, the limit is set to the size of the hierarchical tree. However, for
memory constrained devices, our protocol allows lower values for the maximum number of stored
service-groups. Section III-C explains actions taken when a node does not have enough group
information to forward a discovery request.

C. Request Routing

A service discovery request originates from a Request Source (RS) whose application layer re-
quests the service. A request consists of an ontology based description of the service requested,
and optionally includes descriptions of service groups to which the requested service belongs. The
request is matched with the services present in the local cache of the RS (that might also be a SP).
A service discovery request is formed on a local cache miss and contains the following fields:

�Packet-type, BroadcastId, Service-Description, Request-Groups, Source-Address, Last-Address,
Hop-Count�

The field Request-Groups contains the service group(s) to which the requested service belongs.
Hop-Count, a user-controlled parameter specifies the maximum propagation limit for the request.
We use the information regarding Other-Groups present in the service cache of each node to se-
lectively forward a discovery request in case of a local cache miss. Recall from the previous
subsection that each entry in the service cache of a node contains a field Other-Groups. Thus, if
the request belongs to one of those groups, then there is a chance that the requested service might

8

be available near the node that sent the advertisement. Consequently, instead of broadcasting the
request, GSD selectively forwards the request to those nodes.

S4(G3)

S5(G3)

S3(G2)

[S2(G2),G1 - - > N1]
……

S2(G2)S1(G1)

SP N1 N2 N3

Service Discovery
Request

[…...] Service Cache Entries

[S1(G1) - - > SP]
…...

Service Cache
Entries at N3

RS

[S3(G2),G1,G2 - - > N2]
[S4(G3) - - > N4]
[S5(G3) - - > N5]

……...

N4

N5

Request matches at
node N1

{S1(G1)}

Discovery Request
Content

Radio Range of
N3

Fig. 6. Group-based Selective Forwarding of Service Discovery Request

The selective forwarding process is explained in Figure 6 for a simple ad-hoc network. It shows
a sequence of nodes connected to each other with RS being the requesting source and SP being
the service provider where the requested service (S1) is available. For the sake of simplicity, we
only display a linear connection of nodes and do not show other nodes that might be present in the
vicinity. We do not show the exchange of advertisements in the figure. Assuming that each node
has advertised its own services and other remote service groups, Figure 6 shows the partial service
cache entries in each node. For example, the entry

������� ��� � ��

in node N2’s cache means: (1) N2 knows that node N1 has service S2 belonging to group G2.
(2) N2 knows that N1 has seen a service belonging to group G1 in its vicinity. When a request
belonging to group G1 comes to N3, then instead of broadcasting it again to all nodes in its vicinity
(N4, N5), N3 selectively forwards it to node N2. This is because only N2 claims to have seen
a service belonging to group G1 in its vicinity. This process continues in all other nodes until
the request has reached N1 where it finds a direct match of the requested service (present in the
service cache of N1).The request is by default broadcast to other nodes when the algorithm fails to
determine a set of nodes to selectively forward the request to. Figure 7 shows the pseudo code of
the selective forwarding process.

We observe from the above algorithm, that when a node does not have enough information to
selectively forward a request, it broadcasts the request to its neighboring nodes. As a practical
example, a Service Request for a Printer Service could specify its Request-Group to be �NULL�,
or �Input/Output�, or �Input/Output, Hardware�, or �Input/Output, Hardware, Service�. Thus
depending on the amount of Request-Group information, the request would be selectively for-
warded (or broadcast) to other nodes.

We observe that the selective forwarding process might also result in false forwards. The request
might be forwarded to a region where the service is no longer available (due to mobility of nodes)
or has the right group but not the exact service and neither a “near” match. This might result in
the failure to discover a service that simple broadcasting of the request would have succeeded in

9

Function Selective_Forward(..) :-

1. if (Hop-Count of Discovery_Message >0) then {
2. Request-Groups=Discovery_Message[Request-Groups];
3. for (each entry S in Service_Cache} do {
4. If any group Gi in S[Other-Groups] belongs to Request-Groups then {
5. Node N=S[Source-Address];
6. Decrease the Hop-Count of the packet by 1;
7. Forward the Discovery_Message to N;
8. }
9. }

10. if (the request was never forwarded) then {
11. Decrease the Hop-Count of the packet by 1.
12. Broadcast the request to the neighboring nodes.
13. }
14. }

Fig. 7. Algorithm showing the Selective Forwarding Process in GSD

discovering. In section IV we explain how our protocol can be adapted to reduce false forwards.
Moreover, our experiments show that the decrease in efficiency is insignificant.

D. Reverse Routing of Service Reply

Service reply is generated from the node that matches a service discovery request. There are
a couple of approaches to route the reply back to the RS. (1) One can use any standard ad-hoc
routing protocol like AODV [38], TORA [35], DSDV [37] to route the reply back to the RS. (2)
The path traversed by the discovery request could be retraced by the reply using a reverse routing
mechanism. Standard routing protocols try discovering a new route to the destination that involve
steps like route discovery or broadcasting link-state information that generate additional network
load. On the other hand, using the already known route traversed by the request could easily reduce
this additional load. Bhagwat et al. [4] in prior work, and our own recent studies [18] indicate that
integrating routing with service discovery increases system efficiency. Hence, we use the concept
of reverse routing to route the service reply back to the RS. However, reverse routing fails if the
route becomes stale or some of the nodes in the previously established path move away. We detect
such failures and resort to traditional routing using Ad-hoc On-Demand Distance Vector protocol
(AODV) to route the reply from the point of failure to the RS. The node upstream in the path
detects the failure to transmit the reply to the next hop. We illustrate the concept in Figure 8.

Each Request Packet contains a Last-Address field, which contains the address of the node from
which a request is coming. Each node in addition to maintaining the Service Cache also maintains
a Reverse-Route table. Each entry in the Reverse-Route table contains the following fields:

�Source-Address, BroadcastId, Previous-Address�

An entry is added to the table at the time of forwarding the discovery request. The entry is kept
for REV ROUTE TIMEOUT time units. When a service reply corresponding to a request reaches
this node, the table is consulted to determine Previous-Address in the path to the RS to forward the
reply to. The Source-Address and BroadcastId uniquely identifies a service reply that corresponds
to a particular service request.

10

SP

Node1

Node2

Node3

Node

Node

Node6

Node5

Node4

Node4 moves
away

Link Failure

RS

Node3 detects the path failure

Matching
Node

Request
Source

Path discovered by
AODV on reverse path

failure

Original Reverse Route
being used to send

service reply

Fig. 8. Reverse Routing of Service Reply

E. Service Matching

Service matching, even though not the key aspect of this paper is important in enabling flexi-
bility and richness in the discovery process. Apart from representing services using our functional
hierarchical groups, our OWL ontology also provides constructs to describe services in terms of
input/outputs, functional similarity, service capabilities, device/resource requirements etc. Ad-
ditionally, each node in our architecture contains a service matching module that encapsulates
functionalities for matching a service discovery request with a service description. We inherit var-
ious semantic features from OWL (class/subClassOf, unionOf etc) to match services with multiple
request types. This allows the request to be specified in a flexible manner. For example, the same
query can be represented using different requirements to match a certain service. More details of
the service matching algorithm and the ontology can be found in our prior work [11].

We have augmented the service matching module to extract service group related information
from a service advertisement. This is used by the protocol to store service group information
separately in the service cache of each node and facilitate the selective forwarding process.

IV. DISCUSSION OF SALIENT PROTOCOL FEATURES

This section discusses some salient features and presents some theoretical evaluations of GSD
that we believe would help in better understanding the benefits of our protocol. These include
enabling a broad range of discovery mechanisms, adaptability to different pervasive environments,
scalability and network-wide reachability, dynamic self-starting property and network load analy-
sis.

A. Enabling Broad Range of Discovery Mechanisms

GSD by virtue of its hierarchical grouping of services can enable a broad set of discovery mech-
anisms ranging from broadcast to directed unicast of the discovery requests. Service discovery
requests contain information regarding the group(s) to which the service belongs. Thus, at its
limit, this could represent a leaf node group in the hierarchical tree (Figure 1). If the number of
selective forwards at each intermediate node is one, then this results in a directed unicast of the
discovery request.

However, as described in section III, directed unicast in mobile environments may result in false
forwards. The hierarchical grouping of services allows the discovery request to specify parent-

11

groups (that are higher up in the functional hierarchy in Figure 1). This increases the range of
nodes to which the request is selectively forwarded. This is because, higher the service group is in
the tree, the more is the chance of nodes having seen a similar service. At its limit, the request is
in fact broadcast if the service-group specified is the root of the hierarchical tree. Broadcast-based
discovery suits some constrained pervasive environments like office space or environments where
most devices are at one hop distance.

Additionally, by varying the service-group information in the request, GSD also can control the
chances of the protocol in discovering a nearly-matching service. For example, a discovery request
looking for a LaserJet color printer with a service-group value of LaserJet printer would not be
able to discover (or reach) an Inkjet printer service. However, a service-group value of printer (that
is the parent of the class LaserJet printer might be able to discover an Inkjet color printer instead
since it belongs to the same parent group of services called printer.

B. Adaptability

GSD offers users control over several aspects of the protocol like advertisement diameter, max-
imum hop-count of discovery requests and advertisement frequency. This enables our protocol
to easily adapt to the needs of users and pervasive environments. For example, an office en-
vironment can enforce a policy on the devices that the advertisements be broadcast only up to
1 hop. GSD does not impose any restriction on the minimum number of entries in the service
cache of devices. This makes our protocol well-suited for heterogeneous devices with varying
memory constraints. GSD by virtue of its registry-less structure makes a service and a device
autonomous. This is very important in pervasive computing environments since dependence on
other mobile lookup servers/registries makes the protocol prone to faults, due to failure of such
registries/lookup servers. Services announce themselves when they come to a new environment.
Services are expunged from the service caches passively if the advertisement has not been renewed
for a certain time. The registry-less nature of our architecture makes it highly adaptable to changes
in the vicinity due to mobility as well as device unavailability.

C. Scalability and Network-wide Reachability

Request-broadcast based protocols can theoretically cover the whole network. Hence, under
ideal conditions of non-partitioned network and no message loss, request-broadcast based proto-
cols can guarantee the discovery of a service (if present). However, this protocol trades off network
load to increase its discovery space. The network load due to discovery requests increases signif-
icantly with increase in the network size. GSD on the other hand, can theoretically discover any
service in the network with bounded broadcasts.

Consider the network (G) in Figure 9. Let RS= Request Source that is looking for a service
S, SP= an arbitrary service provider having the service S. Let us also assume that it is the only
instance of S present in the network.
� Request-broadcast protocol:. Let D= broadcast diameter. Hence, this protocol can only cover
the nodes within D hops of RS (marked by the circle with RS at its center in Figure 9). Let N= set
of nodes that this protocol can cover. Clearly if SP does not belong to N, then this protocol would
fail to discover S.
� GSD protocol: Let P= an arbitrary node lying on the edge of the network formed by the broad-
cast diameter D from RS. Then, assuming that the network does not have any partition, there will
be at least one path leading from P to SP. This further means, that due to service advertisements,
the group information of the service S will eventually reach the node P through the path. Thus,
in GSD, if the discovery request reaches P, it will be selectively forwarded towards SP and would

12

eventually be able to discover the service. Thus, GSD would essentially cover the whole network
under identical conditions.

This makes our protocol highly scalable with respect to large-scale ad-hoc networks and high re-
quest load. It might appear that advertising increases the total load of our system. Our experiments
show that even with bounded advertising, our protocol scales much better than broadcast-based
service discovery. In fact, GSD performs much better in terms of network load for large networks.

Broadcast
Diameter D P

SP

RS

Advertisements

Path Length = n

Fig. 9. Network-wide Reachability study of GSD

D. Dynamic Self-Starting Property

GSD has a dynamic self-starting property and is not dependent on any bootstrap mechanism or
fixed hosts for startup. Neither is it dependent on the topology, nor the mobility of the nodes for
its stability. Each node maintains a soft state of the services present in its vicinity and hence on
failure, does not need to do any fault-recovery during start-up. It passively collects the information
by listening to advertisements.

E. Network Load Analysis

It might appear that GSD with bounded advertisements and selective forwarding of requests
may impose greater network load (in terms of number of messages) than simple global-broadcast
based protocol. A global broadcast-based protocol does not have any advertisements. However, it
broadcasts the requests to all nodes in the network. In this section, we layout simple equations that
approximatex the network load for each of these protocols for a bounded network.
Let N=number of nodes in the network G. Let us consider that all nodes send out advertisements
in GSD.
Let b= total number of nodes that generate service discovery requests
Let T= total time of observation.
� Broadcast-based Protocol: Let ��= Request Frequency (number of requests/second). All re-
quests are broadcast to the whole network. Let m= total number of messages generated in the
system due to a single service request being broadcast in the network. Thus, in time T, the total
network load generated by Broadcast is

������ � �� �	 �
 � � (1)

13

� GSD Protocol: Let ��= Average Advertisement Frequency (number of advertisements/second)
across all the nodes N in G. Let n= total number of messages generated in a single bounded adver-
tisement from a single node in G. Thus total number of messages generated by advertisements in
time T by all nodes in G is ���	 � �� � �� �
 .
Let p=average number of messages generated in the system due to a single discovery request in
GSD. Observe that p�m. This is because at its worst case, GSD discovery request would be
broadcast through out the network. Total number of messages generated in the network due to
requests in time T is �
�� � � ��� �
 � �.
We observe that total number of messages generated in GSD is a sum total of the request messages
and the advertisement messages. Thus, ���= total network load in G due to GSD is given by

��� � �� � �� �
 � � ��� �
 � � (2)

We also note that for GSD to have lesser network load than Broadcast, ������ ����, or

�� � �	� �� � � � �� � �� (3)

V. EXPERIMENTAL EVALUATION

We simulated the GSD protocol using the ad-hoc network simulator Glomosim [51]. We primar-
ily compare various discovery mechanisms of GSD with simple broadcast-based discovery that has
been predominantly used so far to discover services in ad-hoc/pervasive environments. It is worth
noting again that in a broadcast-based discovery protocol (dubbed as BCast), a service request is
globally broadcast to other nodes in the network until the required service has been discovered.
There are no advertisements and the broadcast request dies down after all nodes have received the
request once.

Clearly, the worst case performance of GSD (in terms of network load) is when the service
request is broadcast to other nodes. This happens when enough service group information to do
selective forwarding is unavailable. We call this protocol GSD-B. We also compare average case
performance of GSD when GSD performs selective forwarding of a request. We call this GSD-S.
We also compare performance of the protocols with varying advertisement diameter. We do not
compare GSD with global advertisement based protocol, since it generates ‘n’ times the load gen-
erated by request broadcast-based protocol (assuming the request rate is same as the advertisement
rate) and hence is a very inefficient solution for large scale networks. We observe that performance
of GSD will deteriorate as the average advertisement diameter is increased. Our experiments show
that an advertisement diameter of 1 provides best results.

We assume a pessimistic evaluation strategy and compare GSD in environments less favorable
to it. A pessimistic evaluation strategy helps us better justify the effectiveness of GSD in more
conducive environments. We impose the following restrictions on the simulation environment:
� Request Source Restriction: The number of request sources sending discovery requests is re-
stricted to 1. This makes b=1 in equation 3. This reduces the additive effect formed due to multiple
request sources and makes it more difficult for the equation to be true, thus favoring BCast.
� ����� Ratio: In equation 3, since the values of m, p, n are not known beforehand, we observe
that a low value of �� and a high value of �� would make BCast more favorable as far as network
load is concerned whereas the vice versa would make GSD more favorable. Hence, in our experi-
ments, we have varied the ratio of ����� from 0.25 to 2.0. This will favor BCast on one end GSD
on the other.
� Density of Matching Services: The more the number of SPs, the greater is the chance of either
protocols discovering the service. Hence, in our experiments, only 10% of the SPs contain the

14

service desired by the discovery request. The initial placement of the matching services were at
the edge of the network.

A. Experimental Model and Evaluation Metrics

Our experimental model consists of mobile service providers (SP) containing one or more ser-
vices connected to each other using an ad-hoc network. The mobility of the nodes was assumed
to follow random-waypoint [27] pattern. We used an application layer packet generation function
to generate service requests at regular time intervals. For the purposes of the simulation, we used
representative services S0 to S99 to represent actual services and groups G1 to G10 to represent
service groups with G10 being equivalent to the parent service group called “Service” at the root
of our hierarchical tree.

All our experiments were carried out with a fixed node density so as to appropriately simulate
the effect of increased network size. The results are an average of experiments run for 3 different
randomization patterns for a total time of 75 minutes with the value of �� ranging from 1 re-
quest/minute to 8 requests/minute. Thus, the plots are averages over a minimum of 225 data points
to a maximum of 1800 data points. Figure 10 represents the various experimental parameters used
and varied in our simulations.

Duration 4500 seconds
Network Area (x,y) (145 X 145m) to (200 X 200m)

No. of Nodes 50,100, 200
Network Diameter 10, 14, 19

Tx Range (Transmission Range) 30m
Tx Throughput 20kbps

Advertisement Interval 15 seconds
Advertisement Timeout 40 seconds

broadcast jitter 10 milliseconds
Mobility Random way-point with 2 m/s speed and 5 s stoppage time

Initial topology uniform topology with nodes equally spaced out in (x,y)
MAX RETRIES to discover a service 4

Advertisement Diameter 1,2
����� 0.25 to 2.0

Fig. 10. Experimental model parameters

We evaluated the protocols with respect to several metrics like average response time, average
response hops, discovery efficiency, average network load, average message processing per node
and other metrics that provide statistics regarding the usage of service groups in GSD. We present
the results in the next subsection.

B. Simulation Results

Average response time for discovery requests is the time from the instant a request is sent out to
the instant a service reply is obtained. We observe in Figure 11 that the average response time of
BCast is at least 2 times higher than the average response times observed in GSD-S and GSD-B.
We also observe in Figure 12 that the average Response Hops or average number of hops traveled
by the response is greater for BCast. Moreover, average response hops in GSD-S seems to be
marginally lower than GSD-B. This shows that our protocol performs better than BCast in terms of
response time and average response hops. We believe that the increase in response time is mostly

15

0.25 0.50 0.75 1.0 1.25 1.50 1.75 2.0
0

0.5

1

1.5

2

2.5

3

A
ve

ra
g

e
 R

e
sp

o
n

se
 T

im
e

 (
se

c)

Request Frequency (Rf) / Advertisement Frequency (Af)

Average Response Time for Discovery Requests with increasing Request Load (N=50)

BCast
GSD−B (Advertisement Diameter=1)
GSD−S (Advertisement Diameter=1)

0.25 0.50 0.75 1.0 1.25 1.50 1.75 2.0
0

0.5

1

1.5

2

2.5

3

A
ve

ra
g

e
 R

e
sp

o
n

se
 T

im
e

 (
se

c)

Request Frequency (Rf) / Advertisement Frequency (Af)

Average Response Time for Discovery Requests with increasing Request Load (N=100)

BCast
GSD−B (Advertisement Diameter=1)
GSD−S (Advertisement Diameter=1)

Fig. 11. Average Response Time statistics for the various protocols

due to the average response hops being about 2 times greater in BCast. The average response
hops decrease in GSD because each request could travel only up to an intermediate node where a
matching service description is available. The discovery request does not need to reach the actual
service provider (as explained in section III-C).

0.25 0.50 0.75 1.0 1.25 1.50 1.75 2.0

0.5

1

1.5

2

2.5

3

A
ve

ra
g

e
 H

o
p

 C
o

u
n

t

Request Frequency (Rf) / Advertisement Frequency (Af)

Average Hop Count for Successful Discovery Requests with increasing Request Load (N=50)

BCast
GSD−B (Advertisement Diameter=1)
GSD−S (Advertisement Diameter=1)

0.25 0.50 0.75 1.0 1.25 1.50 1.75 2.0
0.5

1

1.5

2

2.5

3

A
v
e

ra
g

e
 H

o
p

 C
o

u
n

t

Request Frequency (Rf) / Advertisement Frequency (Af)

Average Hop Count for Successful Discovery Requests with increasing Request Load (N=100)

BCast
GSD−B (Advertisement Diameter=1)
GSD−S (Advertisement Diameter=1)

Fig. 12. Average Response Hops observed for the various protocols

Figure 13 shows the amount of network load generated by the various protocols. Average net-
work load is defined as the average number of messages (advertisements and discovery requests)
processed per node. We observe that network load of GSD-S and GSD-B increases very slowly
with increasing request load. We also observe that BCast performs better for a low value of����� .
This is intuitive since according to equation 3, a low value of ����� favors BCast. However, for
values of ����� � ���� and advertisement diameter of 1, GSD starts performing better. We also
notice similar performance improvements of GSD for advertisement diameter of 2. This shows
that our protocols are very scalable with respect to increasing request load as well as network size.

16

0.25 0.50 0.75 1.0 1.25 1.50 1.75 2.0
0

1000

2000

3000

4000

5000

6000

7000

A
ve

ra
g

e
 N

e
tw

o
rk

 L
o

a
d

 (
m

e
ss

a
g

e
s

p
ro

ce
ss

e
d

 /
 n

o
d

e
)

Request Frequency (Rf) / Advertisement Frequency (Af)

Average Network Load of different protocols with increasing Request Load (N=50)

BCast
GSD−B (Advertisement Diameter=1)
GSD−S (Advertisement Diameter=1)

0.25 0.50 0.75 1.0 1.25 1.50 1.75 2.0
0

1000

2000

3000

4000

5000

6000

7000

A
ve

ra
g

e
 N

e
tw

o
rk

 L
o

a
d

 (
m

e
ss

a
g

e
s

p
ro

ce
ss

e
d

 /
 n

o
d

e
)

Request Frequency (Rf) / Advertisement Frequency (Af)

Average Network Load of different protocols with increasing Request Load (N=100)

BCast
GSD−B (Advertisement Diameter=1)
GSD−S (Advertisement Diameter=1)

0.25 0.50 0.75 1.0 1.25 1.50 1.75 2.0
0

1000

2000

3000

4000

5000

6000

7000

A
ve

ra
g

e
 N

e
tw

o
rk

 L
o

a
d

 (
m

e
ss

a
g

e
s

p
ro

ce
ss

e
d

 /
 n

o
d

e
)

Request Frequency (Rf) / Advertisement Frequency (Af)

Average Network Load of different protocols with increasing Request Load (N=50)

BCast
GSD−B (Advertisement Diameter=2)
GSD−S (Advertisement Diameter=2)

0.25 0.50 0.75 1.0 1.25 1.50 1.75 2.0
0

1000

2000

3000

4000

5000

6000

7000

A
ve

ra
g

e
 N

e
tw

o
rk

 L
o

a
d

 (
m

e
ss

a
g

e
s

p
ro

ce
ss

e
d

 /
 n

o
d

e
)

Request Frequency (Rf) / Advertisement Frequency (Af)

Average Network Load of different protocols with increasing Request Load (N=100)

BCast
GSD−B (Advertisement Diameter=2)
GSD−S (Advertisement Diameter=2)

Fig. 13. Average Network Load comparison of the various protocols

Understandably, GSD (both GSD-S and GSD-B) generates greater network load with increasing
advertisement diameter (in terms of average number of messages processed per node). However,
the increase in the network load with increasing request load is very low. Our experiments suggest
that GSD-S with an advertisement diameter of 1 provides best results as far as network load and
response time statistics are concerned. We also observe that the gradient of increase in the load
is much higher in BCast for N=100. This further proves that BCast scales poorly with increasing
network size.

Discovery Efficiency is defined as the fraction of discovery requests that are successful in dis-
covering the required service. One important tradeoff between BCast and GSD-S is that GSD-S
might generate false forwards leading to a discovery failure. Thus, intuitively, BCast should have
a greater discovery efficiency, especially in mobile environments. Figure 15 shows the various
discovery efficiencies we observed for BCast, GSD and GSD-S. The efficiencies are remarkably
similar for N=50. This shows that our protocol performs almost as well as BCast but uses the
network more efficiently and hence is a more scalable and efficient solution.

The efficiency of BCast drops drastically for a greater network (N=100) with high request load.
We believe that this is mostly due to the huge network load generated due to broadcasting of

17

0.25 0.50 0.75 1.0 1.25 1.50 1.75 2.0

800

900

1000

1100

1200

1300

1400

A
ve

ra
g

e
 N

e
tw

o
rk

 L
o

a
d

 (
m

e
ss

a
g

e
s

p
ro

ce
ss

e
d

 /
 n

o
d

e
)

Request Frequency (Rf) / Advertisement Frequency (Af)

Average Network Load Comparison between GSD−S and GSD−B (N=50)

GSD−B (Advertisement Diameter=1)
GSD−S (Advertisement Diameter=1)

0.25 0.50 0.75 1.0 1.25 1.50 1.75 2.0
600

700

800

900

1000

1100

1200

1300

1400

A
ve

ra
g

e
 N

e
tw

o
rk

 L
o

a
d

 (
m

e
ss

a
g

e
s

p
ro

ce
ss

e
d

 /
 n

o
d

e
)

Request Frequency (Rf) / Advertisement Frequency (Af)

Average Network Load Comparison between GSD−S and GSD−B (N=100)

GSD−B (Advertisement Diameter=1)
GSD−S (Advertisement Diameter=1)

Fig. 14. Comparison of GSD-S and GSD-B in terms of Network Load

0.25 0.50 0.75 1.0 1.25 1.50 1.75 2.0
0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

1.1

D
is

co
ve

ry
 E

ff
ic

ie
n

cy
 (

sc
a

le
 o

f
1

.0
)

Request Frequency (Rf) / Advertisement Frequency (Af)

Discovery Efficiency of different protocols with increasing Request Load (N=50)

BCast
GSD−B (Advertisement Diameter=1)
GSD−S (Advertisement Diameter=1)

0.25 0.50 0.75 1.0 1.25 1.50 1.75 2.0
0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

1.1

D
is

co
ve

ry
 E

ff
ic

ie
n

cy
 (

sc
a

le
 o

f
1

.0
)

Request Frequency (Rf) / Advertisement Frequency (Af)

Discovery Efficiency of different protocols with increasing Request Load (N=100)

BCast
GSD−B (Advertisement Diameter=1)
GSD−S (Advertisement Diameter=1)

Fig. 15. Discovery Efficiency comparison of the various protocols

all the requests due to which many of the service requests/responses are dropped or lost due to
collisions. We could not calculate the number of messages being dropped in case of broadcasts,
since Glomosim silently discards broadcast messages if there are collisions. However, Figure 16
gives us a comparison of the increase in the number of discovery requests processed per node for
the various protocols that further corroborates our argument.

It might seem from Figure 13 that GSD-S and GSD-B perform similarly. However, this is not
true. As seen in Figure 14, selective forwarding brings about 50% reduction in total network load.
The difference is not evident due to compression of the plots in Figure 13. Moreover, from Figures
11,12 and 15, we observe that GSD has this performance gain without any significant loss in terms
of response time, response hops and discovery efficiency. However, we do not observe such drastic
differences for advertisement diameter of 2. We attribute this to a higher advertisement diameter
that replicates the same service information across a greater number of nodes, thus reducing the
number of effective selective forwards.

18

0.25 0.50 0.75 1.0 1.25 1.50 1.75 2.0
0

1000

2000

3000

4000

5000

6000

7000

A
ve

ra
g

e
 D

is
co

ve
ry

 R
e

q
u

e
st

s
/

n
o

d
e

Request Frequency (Rf) / Advertisement Frequency (Af)

Average Discovery Requests processed per node for various protocols (N=50)

BCast
GSD−B (Advertisement Diameter=1)
GSD−S (Advertisement Diameter=1)

0.25 0.50 0.75 1.0 1.25 1.50 1.75 2.0
0

1000

2000

3000

4000

5000

6000

7000

A
ve

ra
g

e
 D

is
co

ve
ry

 R
e

q
u

e
st

s
/

n
o

d
e

Request Frequency (Rf) / Advertisement Frequency (Af)

Average Discovery Requests processed per node for various protocols (N=100)

BCast
GSD−B (Advertisement Diameter=1)
GSD−S (Advertisement Diameter=1)

Fig. 16. Average discovery requests processed per node for the various protocols

Figure 17 provides an estimate of the decrease in the average number of selective forward events
in the nodes due to an increase in the advertisement diameter in GSD-S. We observe that that
GSD-S with an advertisement diameter of 2 performs better in reducing the amount of selective
forwards. This follows from our protocol, since an increase in the diameter would cause the service
to be replicated in greater number of nodes, thus increasing its chances of being discovered with
lesser number of selective forwards. However, we would still argue that GSD-S with advertisement
diameter of 1 performs better, since it generates lesser overall network load (Figure 13).

0.25 0.50 0.75 1.0 1.25 1.50 1.75 2.0
0

2

4

6

8

10

12

14

16

A
v
e

ra
g

e
 n

u
m

b
e

r
o

f
S

e
le

c
ti
v
e

 F
o

rw
a

rd
in

g
 E

v
e

n
ts

 /
 n

o
d

e

Request Frequency (Rf) / Advertisement Frequency (Af)

Effect of Advertisement Diameter on the average number of selective forward events in GSD−S (N=50)

Advertisement Diameter = 1
Advertisement Diameter=2

0.25 0.50 0.75 1.0 1.25 1.50 1.75 2.0
0

2

4

6

8

10

12

14

16

A
v
e

ra
g

e
 n

u
m

b
e

r
o

f
S

e
le

c
ti
v
e

 F
o

rw
a

rd
in

g
 E

v
e

n
ts

 /
 n

o
d

e

Request Frequency (Rf) / Advertisement Frequency (Af)

Effect of Advertisement Diameter on the average number of selective forward events in GSD−S (N=100)

Advertisement Diameter = 1
Advertisement Diameter=2

Fig. 17. Average Selective Forward events processed per node for GSD-S

We also conducted experiments with a network size of 200. The results we obtain follow similar
patterns as those reported in this paper. We do not present those results due to space restric-
tions. However, they are available at http://www.cs.umbc.edu/˜dchakr1/papers/
ieeetmcGraphs.pdf.

19

VI. RELATED WORK

Service discovery is an important and active area of research [8], [22] and has been studied
widely in the context of web-services. Research in this field has forked along two branches, namely
service description and matching and service discovery architectures.

Service description languages like Web Services Development Language (WSDL) [48], Web
Services Flow Language (WSFL) [49] and DARPA Agent Markup Language for services (DAML-
S) [20] have been developed to describe web services in a flexible manner. The Web Services
Description Language (WSDL) by W3C [48] is an XML format for describing network services
as a set of endpoints operating on document-oriented or procedure-oriented messages. The DAML
project by DARPA and the W3C focus on standardizing OWL as the language for describing
information available on any data source. The information thus may be understood and used by
any class of computers, without human intervention. We have used a OWL-based ontology to
describe our services and our logic behind using OWL is explained in section II.

Service Discovery Architectures like Jini [1], Salutation and Salutation-lite [41], UPnP [26],
Service Location Protocol [23], have been developed over the past few years to efficiently dis-
cover wired infrastructure based services from wired as well as wireless platforms. However, most
of these service discovery infrastructures have a central lookup server type architecture for ser-
vice registration and discovery. Central lookup server/registry-based mechanism for doing service
discovery is inappropriate in ad-hoc/pervasive environments due to the dependence of the whole
infrastructure on a central point/node, which might as well be mobile and unreliable.

Research in the area of service discovery for ad-hoc networks is relatively new. Solutions [24],
[44] primarily utilize the broadcast-driven nature of the underlying ad-hoc network to carry out
service discovery. We have shown in section V that broadcast-driven protocols do not work well in
terms of scalability and efficiency of discovery for large-scale pervasive environments. There has
been work in the field of wired networks to develop server-less peer-to-peer architectures as shown
in [40], [42], [31]. However, some key limitations of such approaches with respect to pervasive
environments are: (1) Traditional P2P networks derive basic boot-strap support from some trusted
hosts that are robust and available. We cannot assume such support in an ad-hoc environment
(2) Underlying protocols to discover resources are essentially broadcast-driven thus potentially
generating significant network load (3) The virtual network topology of these P2P networks do
not use the underlying physical Internet topology effectively, thus affecting their scalability and
efficiency. Service discovery architectures in pervasive environments not only have to utilize the
underlying dynamically changing topology, but also have to be independent of any boot-strap
servers.

There has been work on content-centric networking and content-based message routing archi-
tectures [47], [7] that use publish-subscribe based architectures to route data based on its content.
However, such architectures do not perform well in a distributed ad-hoc environment due to their
centralized/semi-centralized architecture.

The Bluetooth Service Discovery protocol [43] is a peer-to-peer service discovery protocol that
can be used over ad-hoc environments. However, apart from the fact that it supports very rudimen-
tary unique-identifier based matching, the discovery is also driven by broadcast in a piconet. GSD
is targeted towards generalized ad-hoc networks that are a better representation of pervasive en-
vironments. Our prior work enhances the Bluetooth service discovery protocol to include service
description-based reasoning [2] using Prolog. However, it only enhances the service matching part
of Bluetooth and does not address discovery architecture.

Recently, work done by Garcia-Molina et. al [16] addresses resource discovery using routing
indices. They use routing indices to measure the “goodness” of neighbors in answering a query

20

or providing a resource. However, the solution places index values on different paths in the peer-
to-peer system and hence requires huge amount of updating in the event that the paths change
dynamically (as they do in pervasive environments). Our group-based service discovery protocol
does not place any weight on paths; rather it adapts itself depending on the movement of the devices
in the vicinity.

Advertisements in pervasive environments is coming up as a new area of research and our pro-
tocol can benefit by using intelligent schemes for adaptive advertising of services. For exam-
ple, Anand et al. [39] talks about serendipitous advertising and Ratsimor et al. [33] talks about
policy-based advertising that can easily perform better than periodic advertising of services. Our
architecture is extensible and can easily be enhanced to accommodate these protocols.

VII. CONCLUSIONS

In this paper, we have introduced a novel architecture and protocol (GSD) for service discovery
in pervasive computing environments. Service Discovery is done in a peer-to-peer mode rather
than a centralized mode, and we use advertisements to disseminate service information. We use
an ontology based on OWL to describe services and use the Class/SubClass hierarchy of OWL to
group services based on their functionality. We use this group information to intelligently route
service requests. GSD is scalable in terms of request load and network size and highly adaptable
to various pervasive computing environments. We have presented exhaustive experimental results
of performance of GSD in mobile environments for various kinds of request load and network
sizes. Our results show that GSD scales very well with increasing request load and network size
whereas standard broadcast-based solutions used so far for service discovery in ad-hoc networks
do not. Moreover, our protocol provides the same standards of efficiency in discovering services
when compared to Broadcast-based solutions. In fact, for large networks and high request loads,
broadcast-based solutions performs worse than GSD in terms of discovery efficiency. We have
implemented a restricted version [12] of GSD over Bluetooth to supplement our work in the area
of service composition.

REFERENCES

[1] K. Arnold, B. Osullivan, R. W. Scheifler, J. Waldo, and A. Wollrath. The Jini Specification (The Jini Technology). Addison-
Wesley, Reading, MA, June 1999.

[2] S. Avancha, A. Joshi, and T. Finin. Enhanced Service Discovery in Bluetooth. IEEE Computer, 35(6):96–99, June 2002.
[3] D. O. Awduche, A. Gaylord, and A. Ganz. On Resource Discovery in Distributed Systems with Mobile Hosts. In ACM

Internation Conference on Mobile Computing and Networking (MOBICOM), Newyork, USA, November 1996.
[4] P. Bhagwat B. Raman and S. Seshan. Arguments for Cross-Layer Optimizations in Bluetooth Scatternets. In The 2001

Symposium on Applications and the Internet (SAINT), January 2001.
[5] Bluetooth SIG. Specification. http://bluetooth.com/.
[6] D. Brickley and R. Guha. Resource Description Framework (RDF) Schema Specification 1.0 - W3C Recommendation.

http://www.w3.org/TR/2000/CR-rdfschema-20000327, 2000.
[7] A. Carzaniga and A.L. Wolf. Content-based Networking: A New Communication Infrastructure. In NSF Workshop on an In-

frastructure for Mobile and Wireless Systems. In conjunction with the International Conference on Computer Communications
and Networks (ICCCN), Arizona, USA, October 2001.

[8] F. Casati, D. Georgakopoulos, and M. Shan Editors. Special Issue on E-Services. VLDB Journal, 2001.
[9] F. Casati, S. Ilnicki, L. Jin, V. Krishnamoorthy, and M. Shan. Adaptive and Dynamic Service Composition in eFlow. In

Technical Report, HPL-200039, Software Technology Laboratory, Palo Alto, California, USA, March 2000.
[10] D. Chakraborty and A. Joshi. GSD: A novel group-based service discovery protocol for MANETS. In IEEE Conference on

Mobile and Wireless Communications Networks, Stockholm, Sweden, September 2002.
[11] D. Chakraborty, F. Perich, S. Avancha, and A. Joshi. DReggie: A Smart Service Discovery Technique for E-Commerce

Applications. In Workshop in conjunction with 20th Symposium on Reliable Distributed Systems, October 2001.
[12] D. Chakraborty, F. Perich, A. Joshi, T. Finin, and Y. Yesha. A reactive service composition architecture for pervasive comput-

ing environments. In 7th Personal Wireless Communications Conference (PWC 2002). Singapore, October 2002.
[13] D. Chakraborty, A. Shenoi, A. Joshi, and Y. Yesha. Queuing Theoretic Approach for Service Discovery in Ad-hoc Networks.

In Communication Networks and Distributed Systems Modeling and Simulation Conference (CNDS), San Diego, California,
USA, January 2004.

[14] H. Chen, A. Joshi, and T. Finin. Dynamic Service Discovery for Mobile Computing: Intelligent Agents meet Jini in the
Aether. Baltzer Science Journal on Cluster Computing, Special Issue on Advances in Distributed and Mobile Systems and
Communications, 2001.

[15] M. Cherniak, M. Franklin, and S. Zdonik. Expressing User Profiles for Data Recharging. In IEEE Personal Communications,
July 2001.

21

[16] A. Crespo and H. Garcia-Molina. Routing Indices for Peer-to-Peer Systems. In International Conference on Distributed
Computing Systems (ICDCS), Vienna, Austria, July 2002.

[17] K. Czajkowski, S. Fitzgerald, I. Foster, and C. Kesselman. Grid Information Services for Distributed Resource Sharing. In
Tenth IEEE International Symposium on High-Performance Distributed Computing (HPDC-10), California, USA, August
2001.

[18] A. Joshi D. Chakraborty and Y. Yesha. An Integrated Service Discovery and Routing Protocol for Ad hoc Networks. Ad Hoc
Networks Journal, Elsevier Science, To Appear, March 2003.

[19] T. Finin D. Khushraj and A. Joshi. Semantic Tuple Spaces: A Coordination Infrastructure in Mobile Environments. In Second
International Semantic Web Conference (ISWC), Florida, USA, October 2003.

[20] DARPA Agent Markup Language for Services Specification Draft 0.5. http://www.daml.org/services/daml-s/
2001/05/, May 2001.

[21] M. Dean, D. Connolly, F. V. Harmelen, J. Hendler, I. Horrocks, D. L. McGuinness, P. F. Patel-Schneider, and L. A. Stein.
Web Ontology Language (OWL) Reference Version 1.0. http://www.w3.org/TR/2002/WD-owl-ref-20021112/, 2002.

[22] G. Weikum. Editor. Special Issue on Infrastructure for Advanced e-Services. IEEE Data Engineering Bulletin, 24(1), March
2001.

[23] E. Guttman, C. Perkins, and J. Veizades. RFC 2165: Service Location Protocol, June 1997.
[24] S. Helal, N. Desai, and C. Lee. Konark-A Service Discovery and Delivery Protocol for Ad-hoc Networks. In Third IEEE

Conference on Wireless Communication Networks (WCNC), New Orleans, USA, March 2003.
[25] T. Hodes and R. Katz et. al. An Architecture for a Secure Service Discovery Service. In Fifth International Conference of

Mobile Computing and Networks, Washington, USA, August 1999.
[26] R. John. UPnP, Jini and Salutaion - A Look at some popular Coordination Frameworks for Future Network Devices. Technical

report, California Software Labs, 1999. http://www.cswl.com/whiteppr/tech/upnp.html.
[27] D.B. Johnson and D.A Maltz. The Dynamic Source Routing Protocol for Mobile Ad-hoc Networks. Mobile Computing,

Kluwer Academic Publishers, pages 153–181, 1996.
[28] R.H. Katz, Eric. A. Brewer, and Z.M. Mao. Fault-tolerant, Scalable, Wide-Area Internet Service Composition. Technical

Report. UCB/CSD-1-1129. CS Division. EECS Department. UC. Berkeley, January 2001.
[29] T. Finin L. Kagal and A. Joshi. Trust-Based Security in Pervasive Computing Environments. In IEEE Computer, December

2001.
[30] O. Lassila and R. Swick. Resource Description Framework. http://www.w3.org/TR/1999/REC/

rdf-syntax-19990222, February 1999.
[31] Q. Lv, P. Cao, E. Cohen, K. Li, and S. Shenker. Search and Replication in Unstructured Peer-to-Peer Networks. In 16th ACM

International Conference on SuperComputing, New York, USA, June 2002.
[32] D. Mennie and B. Pagurek. An Architecture to Support Dynamic Composition of Service Components. In 5th International

Workshop on Component-Oriented Programming (WCOP), Sophia Antipolis, France, June 2000.
[33] T. Finin O. Ratsimor, A. Joshi and Y. Yesha. eNcentive: A Framework for Intelligent Marketing in Mobile Peer-To-Peer

Environments. In The 5th International Conference on Electronic Commerce (ICEC), October 2003.
[34] M. Paolucci, A. Ankolekar, N. Srinivasan, and K. Sycara. The daml-s virtual machine. In Proc. 2nd International Semantic

Web Conference (ISWC), October 2003.
[35] V. D. Park and M. S. Corson. A Highly Adaptive Distributed Routing Algorithm for Mobile Wireless Networks. In Sixteenth

Annual Joint Conference of the IEEE Computer and Communications Societies (INFOCOM), Kobe, Japan, April 1997.
[36] F. Perich, S. Avancha, D. Chakraborty, A. Joshi, and Y. Yesha. Profile Driven Data Management for Pervasive Environ-

ments. In 13th International Conference on Database and Expert Systems Applications, (DEXA), Aix-en-Provence. France,
September 2002.

[37] C.E Perkins and P. Bhagwat. Highly Dynamic Destination-Sequenced Distance-Vector Routing (DSDV) for Mobile Comput-
ers. Computer Communications Review, pages 234–44, October 1994.

[38] C.E. Perkins and E.M Royer. Ad-hoc On-Demand Distance Vector Routing. In 2nd IEEE Workshop on Mobile Computing
Systems and Applications, pages 90–100, February 1999.

[39] A. Ranganathan and R. H. Campbell. Advertising in a Pervasive Environment. In 2’nd ACM International Workshop on
Mobile Commerce, pages 10–14, September 2002.

[40] M. Ripeanu and I. Foster. Mapping the Gnutella Network: Macroscopic Properties of Large-Scale Peer-to-Peer Systems. In
1st International Workshop on Peer-to-Peer Systems, March 2002.

[41] The Salutation Consortium Inc 1999. Salutation Architecture Specification (Part 1), Version 2.1 Edition. http://www.
salutation.org.

[42] J. Sauver. Percentage of Total Internet Traffic Consisting of Kazaa/Morpheus/FastTrack. http://darkwing.uoregon.
edu/joe/kazaa.html, 2002.

[43] Bluetooth Specification. http://www.bluetooth.org/specifications.html.
[44] D. Tang, C. Chang, K. Tanaka, and M. Baker. Resource Discovery in Ad hoc Networks. Technical report, Stanford University,

August 1998. CSL-TR-98-769.
[45] J. Undercoffer, F. Perich, A. Cedilnik, L. Kagal, A. Joshi, and T. Finin. A Secure Infrastructure for Service Discovery and

Management in Pervasive Computing. ACM MONET : The Journal of Special Issues on Mobility of Systems, Users, Data and
Computing, 2002.

[46] Universal Description Discovery and Integration Platform. http://www.uddi.org/pubs/Iru_UDDI_Technical_
White_Paper.pdf, September 2000.

[47] E. Schwartz W. Adjie-Winoto and H. Balakrishnan. The Design and Implementation of an Intentional Naming System. In In
Proceedings of the Symposium on Operating Systems Principles, South Carolina, USA, December 1999.

[48] WSDL. Web Services Description Language 1.1. http://www.w3.org/TR/wsdl, March 2001.

22

[49] WSFL. Web Services Flow Language. http://xml.coverpages.org/wsfl.html.
[50] D. Wu, B. Parsia, E. Sirin, J. Hendler, and D. Nau. Automating DAML-S Web Services Composition Using SHOP2. In 2nd

International Semantic Web Conference (ISWC), Florida, USA, October 2003.
[51] R. Bagrodia X. Zeng and M. Gerla. GloMoSim: A Library for Parallel Simulation of Large-scale Wireless Networks. 12th

Workshop on Parallel and Distributed Simulations, Alberta, Canada, 1998.
[52] XML. Extensible Markup Language. http://www.w3c.org/XML/.

