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Abstract

In this paper, we propose GSR: a new routing and session management protocol for ad-hoc networks as
an integral part of a service discovery infrastructure. Traditional approaches place routing at a layer below
service discovery. While this distinction is appropriate for wired networked services, we argue that in ad hoc
networks this layering is not as meaningful and show that integrating routing with discovery infrastructure
increases system efficiency. Central to our protocol is the idea of reusing the path created by the combination
of a service discovery request and a service advertisement for data transmission. This precludes the need
to use separate routing and discovery protocols. GSR also combines transport layer features and provides
end-to-end session management that detects disconnections, link and node failures and enables service-centric
session redirection to handle failures. This enables GSR to accommodate service-centric routing apart from
the traditional node-centric routing. We compare GSR with AODV in terms of packet delivery ratio, response
time and average number of hops traveled by service requests as well as data. GSR achieves better packet
delivery ratio with a minor increase of the average packet delivery delay.

1 Introduction

The growth of handheld devices ranging from cell phones to portable mp3 players to win CE iPAQs has opened
up new research directions in the area of pervasive computing. These devices have varying resource capabilities.
However, a large number of them have basic networking capabilities (GPRS, IR, Bluetooth, 802.11) to connect
to peer devices. Current usage of these devices vary from localized access of capabilities (mostly) to accessing
Internet-based Services (sometimes) to accessing rudimentary services from peer devices like downloading business
cards (rarely). However, with the increase in the heterogeneity of information, capabilities and usage of these
devices, the future holds an enormous potential for these devices to utilize services in peer devices using ad-hoc
networking capabilities. Examples range from mobile commerce environments to battlefront environments to
sensor networks. Mobile commerce examples include receiving discount coupons at malls, carrying out automatic
checkout in grocery stores. Warfront activities and sensor networks often need to integrate data (that are offered
by services on various devices/sensors) from heterogeneous sources to discover meaningful trends.

It can be argued that the fundamental reason for ad-hoc networks (also referred to as Mobile Ad-hoc Networks
or MANETS) is for devices to use the services available from their peers in the vicinity. By “Service”, we refer
to any software component, data, or hardware resource on a device that it makes accessible to others. Service
discovery and invocation are thus fundamental operations in an ad-hoc network. While there exists a huge body
of work in service discovery in the context of wired-networks, research in the area of service discovery in ad hoc
networks is relatively new [1, 2, 3]. Solutions primarily utilize the broadcast-driven nature of the underlying
ad-hoc network to carry out service discovery on various devices.

Service invocation is carried out after service discovery and involves sending of service invocation data to
the desired service. Service invocation primarily utilizes underlying ad-hoc routing protocols [4, 5, 6, 7] for its
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operation. Most prior work in the area of service discovery and invocation assumes that the process of service
discovery and routing are only loosely coupled. To the contrary, it has been argued in [8, 9] that cross layer
integration of protocol stacks improve system efficiency. There has also been some work in utilizing service-
centric data to route packets [10, 11] for wired networks. AODV [4] defined a service extension to its routing
protocol to incorporate discovery. However, as discussed in section 2, the extension considers only bit-level
addressing of services and is primarily based on the broadcast-driven nature of the AODV protocol. We argue
that an efficient service discovery protocol can provide further efficiency to an integrated discovery and routing
protocol. Furthermore, incorporating some transport layer end-to-end session management with the integrated
layer provides greater reliability to end applications in an ad-hoc network.

Apart from the benefits pointed out in [8], integration of the service discovery with routing in ad-hoc networks
provides the following benefits: (1) Usage of available routes: The discovery infrastructure while trying to
discover a service discovers multiple possible paths to reach a service too. Typically, a discovery infrastructure
discards this information. While this is not needed in wired networks (since network topology is fixed and there
are very few route changes), it could be effectively used by ad-hoc routing protocols; (2) Service-centric Route
Enablement: Multiple instances of the same service may potentially exist on different ad-hoc nodes. If needed,
the integrated layer can use the information in the discovery infrastructure to route the invocation data to a
service instance instead of a node address. This makes the integrated protocol service-centric instead of the
traditional node-centric approach towards routing; (3) Resilience to Service-Node Failures: Moreover, all
routing protocols are node-centric (they route based on the node address or IP address) and hence prone to failure
of that node. Service-node failure leads to the service being unavailable leading to a service failure. Ideally, we
would like service discovery and invocation to be immune to service-node failure since multiple instances of the
same service could be existing on different nodes. We achieve this by combining the service discovery and routing
layers. We borrow the notion of path-repair which is widely used in optical networks where the switching fabric
is aware of multiple paths from source to destination. However, instead of multiple paths, the service discovery
layer is aware of multiple instances of a specific type of service and the route to that service. In the event of a
service-node failure, this new integrated layer can rediscover another instance of the service and deliver data to
it. (4) Reduced Routing Overhead: Reuse of the discovery infrastructure to route invocation data results
in reduced overhead since certain mandatory actions of standard routing protocols like route discovery, path
maintenance can potentially be integrated with the discovery infrastructure. Typically, ad-hoc service discovery
protocols involve local or global broadcasting of service advertisements and service requests until the requestor
has discovered the desired service. Once a service is discovered, any standard on-demand or link-state/distance-
vector based routing protocol is used for service invocation. These routing protocols, which reside below the
service discovery layer, perform route discovery (in case of on-demand protocols) and link-maintenance (in case
of link-state/distance-vector protocols) using a flooding-based approach. The overhead is essentially redundant
because these steps could be combined with the broadcasts done during service discovery.

In prior work we have developed a distributed and network efficient peer-to-peer caching based service dis-
covery architecture for ad hoc networks [3] that performs better than traditional broadcast-driven discovery
architectures [1, 2]. However, it uses the available underlying ad-hoc routing protocol for service invocation and
data transmission. In this paper, we describe our work in enabling our discovery infrastructure to support service
invocation and hence obviate the necessity of a separate routing protocol. We also show that integrating the two
layers in fact provide us with better system efficiency. We call our protocol Group-based Service Routing Protocol
(GSR). Central to our routing protocol is the concept of reusing the path created by a service discovery request
and a service advertisement to enable data transmissions. The service request matches a service advertisement
at an intermediate node. The route between the source and the destination service is formed by the combination
of the path traversed by the service request and the path traversed by the advertisement. We call the path that
is actively participating in data transfer as the ACTIVE_PATH.

Traditional routing protocols do not encapsulate transport layer features like end-to-end network state main-
tenance, session management etc. However, since GSR offers upper layer applications the feature to discover and
invoke a service at the same time, we have augmented GSR to provide the transport layer features of end-to-
end session management during service invocation. We call this protocol Group-based Service Routing Protocol
with session management (GSR-S). A session is maintained for each invoked service at each node in the AC-
TIVE_PATH. Each session handles various kinds of failures (service-node and link failures), buffers ongoing data
transmissions at the intermediate nodes and performs service-centric session redirection depending on session-



specific preferences from the source of the request. GSR defines two kinds of sessions: Service-Consistent session
and Node-Consistent session to offer various kinds of service guarantees to the end user.

We note that GSR also supports standard node-centric routing. We dont attempt to override the approach
of keeping routing at a separate layer in the network stack. We argue that when the upper layer is essentially a
service discovery protocol, then integrating the discovery with the routing protocol yields better efficiency.

We present simulation results comparing our integrated routing protocols (with and without session manage-
ment) with a version where we have our service discovery protocol running over standard Ad-hoc On-demand
Distance Vector (AODV) [4] routing protocol. We compare average packet delivery ratio, average service response
time, average packet delay and average service response time and packet hops (data and request packets). Our
integrated protocol gives almost 100% packet delivery ratio with a minor increase in the average packet delay.
This is much better than the standard performance of AODV as a routing protocol in such environments. We also
observe that reusing service discovery paths often results in reduced data path length. Drawback of our protocol
is in the increase in the average packet delay for GSR-S. This is mostly due to the buffering and retransmission
caused due to session redirection by GSR-S. However, an analysis of delay distributions shows that majority of
the packets have delays comparable to AODV packet delay. We chose AODV as a baseline for comparison over
other protocols because link-state/distance-vector protocols [7, 6] have sufficiently more routing overhead than
on-demand protocols (AODV, DSR).

2 Background

There has been ample amount of work in development of routing protocols in ad-hoc networks. Protocols like
DSR [5], AODV [4], TORA [7], DSDV [6] are only a few of the routing protocols that have come up over the
last 10 years. However, all these protocols are node-centric and the source has to know the destination address
before ensuing an interaction. Standard node-centric routing protocols cannot be used for service discovery. This
is primarily due to couple of reasons: (1) Discovery protocols do not assume that they know the node addresses
of the devices in the vicinity to be able to use standard routing protocols to reach the devices and check whether
the required service exists on those devices (2) Unique Address assumption: Routing protocols assume device
addresses are unique. However, services are not unique and there could be multiple instances of the same service
in a network. However, routing protocols have been traditionally used to route service invocation data once the
service has been discovered.

Work in the field of service discovery in ad hoc networks is relatively new. There exists a spectrum of
distributed approaches [1, 2, 12, 10] to enable service discovery. On one end of the spectrum lies a request-
broadcast-based solution where a service request is globally broadcast to all nodes in the network. Nodes having
the particular service reply to a request. On the other end of the spectrum lies an advertisement-broadcast-
based solution where a service advertisement is broadcast to all nodes in the network. Each node interested in
discovering services caches the advertisements. The advertisements are matched with service requests locally and
a result is returned.

Apart from the fact that these protocols are inefficient in terms of bandwidth and resource usage (since the
requests/advertisements have to be processed by all the nodes which have limited processing capability and battery
power), global broadcasting of messages is a very non-scalable solution, especially for large-scale ad-hoc networks
[13]. Caching of all advertisements is another bottleneck since many of the nodes have limited memory and are
unable to store all the advertisements and soon the cache gets filled up. Our service discovery protocol (referred to
as Group-based Service Discovery protocol - GSD) [3] is based on bounded broadcasting of advertisements in the
vicinity, peer-to-peer caching of advertisements and intelligent request routing (to ensure maximum reachability)
based on service group information that is propagated with an advertisement. It avoids global broadcasting of
requests or advertisements and decreases the network load to a large extent. Moreover, network-wide reachability
is not compromised too. It is worthwhile to note that even though there is a plethora of work in wired-network
based service discovery architectures and protocols [14, 15, 16, 17], centralized/semi-centralized architecture of
these protocols, registry-based working model and dependence on a stable underlying network connection make
them unsuitable for service discovery in ad hoc environments.

The idea of integrating routing with service discovery has been discussed earlier in [8, 18]. There has been
work [8] in looking at the issues and benefits involved in cross-layer optimizations in Bluetooth scatternets. The



principal idea is to integrate the link, routing and service discovery layer so that efficient handling of power is
possible. This body of work calls for a unified network stack instead of the traditional protocol design. Our
work also follows along these lines except that our integrated protocol is general for any ad hoc network. It also
develops on the concept of a “bottom-up” integration where the routing layer is integrated into the discovery
infrastructure above it. We also show that careful design of the service discovery protocol can provide better
routing support.

In [18], Balakrishnan et. al, present an integrated message routing and service discovery architecture. However,
this solution assumes an underlying wired network infrastructure support and solutions like DNS for bootstrap.
Moreover, message routing is done by piggybacking service data along with discovery request. Thus, the discovery
is in some sense tied to the routing layer. GSR does not rely on any wired network infrastructure and also supports
use of the discovery layer as a separate protocol along with other traditional routing protocols if needed.

Content-based Networking [11] mentions about message routing based on message content rather than node-
address. They employ a publish-subscribe-based middleware solution for data routing and in some sense is geared
towards wired networks. In essence, this is similar to service-driven routing. However, publish-subscribe or
middleware solutions do not perform well in a distributed ad-hoc environment due to their centralized/semi-
centralized architecture.

Ad-hoc On-Demand Distance Vector Protocol (AODV) [4, 19] has defined an extension that is based on the
idea of enhancing the routing protocol by adding a service discovery extension to it. It uses the AODV_RREQ
message as a service discovery request when its ’S’ flag is set. The IP address field contains the service address and
port number. Even though this is one way of performing service discovery and enables service-based routing, the
key limitations/differences from GSR are: (1) It assumes only one service per node whereas GSR does not have
any such assumption. (2) The discovery protocol is dependent on the broadcast-based architecture of AODV.
GSR on the other hand, uses selective forwarding based on the service group information (discussed in section 4)
and is more efficient than simple broadcasting used by AODV. This reduces network overhead in the integrated
protocol.

The remaining part of the paper is organized as follows: Section 3 defines some key terms used in GSR and
GSR-S. In section 4, we briefly cover our Group-based Service Discovery protocol (GSD). Section 5 describes
the design and various features of GSR. Section 6 describes implementation components of GSR. We present our
experimental evaluation of GSR, GSR-S and compare it with AODV in section 7. We finally conclude in section
8.

3 GSR Protocol Key Terms

In this section, we define some key terms and concepts associated with GSR. GSR uses GSD as the service
discovery protocol and incorporates routing support to it by enabling service invocation and data transmission.
Some of the definitions in this section are intuitive and well-known. We define them for the purpose of clarity
with respect to our work.

e Request Source (RS): Node from where a particular service discovery and invocation request originates.
Note that a node is referred to as the Request Source only with respect to the request that it has originated.

e Service Provider (SP): Nodes that contains services that are accessible from other peer nodes.

e Intermediate Node (IN): For a particular discovery request, a node where the discovery request finds
out a matching service.

e ADVERTISEMENT PATH: Path traversed by a service advertisement starting from a particular SP
to an IN. It is measured in number of hops.

e REQUEST _PATH: Path traversed by a service discovery request starting from the RS. It is also measured
in number of hops.

¢ RESPONSE_PATH: Path traversed by a service reply that is generated in response to a service discovery
request. It is measured in number of hops.



e DATA _PATH: Path formed by combining an ADVERTISEMENT _PATH and a REQUEST_PATH that
meet at an IN. The IN could as well be the SP or the RS (in which case the length of either the ADVER-
TISEMENT _PATH or the REQUEST_PATH would be 0).

e ACTIVE_PATH: It is defined as the DATA_PATH actually employed to transmit service invocation data'
to the discovered SP. Out of multiple DATA_PATHs, a single path is chosen to be the ACTIVE_PATH for

a service invocation.

e Service-Consistent Session: It refers to a session that requires all data to be sent to a particular service
but does not require it to be sent to a particular node. In case of service-node or link failures, such sessions
could be redirected to another node hosting the same service.

e Service-consistent Discovery Request: Service discovery request that just specifies the service descrip-
tion and does not contain any node specific information.

e Node-Consistent Session: A Node-Consistent Session requires service invocation data to be sent to a
particular service at a particular node.

e Node-Consistent Discovery Request: Service discovery request that contains node specific information
apart from the service that it is trying to discover.

4 GSD: Group-based Service Discovery

For the purpose of completeness, we give a brief description of our Group-based Service Discovery Protocol (GSD)
[3]. GSD is based on the concepts of (1) Bounded advertising of services in the vicinity (2) Peer-to-Peer dynamic
caching of service advertisements (3) Service group-based selective forwarding of discovery requests.

GSD exploits the semantic capabilities offered by DARPA Agent Markup Language [20] to effectively describe
services/resources present on nodes in the MANET. Services are described using an ontology developed using
DAML+OIL [21]. Semantic Service description has two purposes in GSD: (1) Services are classified into hierar-
chical groups depending on their functionalities. This information is used to selectively forward a service request
to other nodes in the MANET thus preventing request broadcast. (2) Apart from various advantages provided
by semantic service description [22], it enables us to discover services that are functionally identical or similar to
the service specified in the discovery request even if they have different names or invocation mechanisms. Figure
1 shows a snapshot of the extended hierarchical service group used in GSD.

Each Service Provider (SP) periodically advertises a list of its services to all the nodes in its radio range. An
advertisement message consists of the following fields:

< Packet-type, Source-Address, Service-Description, Service-Groups, Other-Groups, Hop-Count, Lifetime, ADV_DIAMET

A monotonically increasing identifier called broadcast-id along with the source-address uniquely identify a
broadcast and detects duplicate advertisements. The Service-description and Service-groups contain information
about the local service(s) and their corresponding service groups.

Additionally, each IN receiving the advertisement can forward it to all other nodes in its radio range. The
field ADV_DIAMETER determines the number of hops each advertisement travels. Each IN increments the
Hop-Count when it forwards an advertisement that is in turn used to compute whether the advertisement can be
forwarded any further. ADVERTISEMENT _PATH in this context is the path formed by service advertisements
from the SP to an IN. Hence, a single advertisement creates multiple ADVERTISEMENT _PATHs starting from
the SP. Each node on receipt of an advertisement stores it in its Service Cache. Each entry in the Service Cache
contains the following fields:

< Source-Address, local, Service-Description, Service-Groups, Other-Groups, Lifetime>

lwe use the term service invocation data and service data interchangeably in the rest of the paper.
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Figure 1: Hierarchical Service Group based on Functionality

Apart from storing advertisements, a Service Cache also stores descriptions of local services in the node(identified
by the local field in each cache entry). The field Other-Groups contain a list of the groups that the corresponding
Source-Address (sender of the advertisement) has seen in its vicinity. We follow a lowest-remaining-lifetime
replacement policy to replace entries when the cache is full. The advertisement frequency, advertisement diameter
and advertisement lifetime are user-controlled parameters that enables GSD to be adapted to the necessities of
the device and the environment.

Advertising Service Groups: Apart from advertising its own services, GSD also uses the same advertisements
to advertise functional group information of services a node has seen in its vicinity. The field Other-Groups in an
advertisement contains an enumerated list of the service groups of all the non-local services seen by sender node.
This information is obtained from the advertisements stored by the IN in its service cache. This service group
information gets propagated from one IN to another and may potentially cover the whole network (if the network
is partition free). Functional group information provides a good abstraction to represent services and is enough
to divert a discovery request towards the appropriate region. They also provide a good measure to aggregate the
service descriptions and hence save on network bandwidth. Figure 2 shows an example of propagation of service
advertisements and the associated service group information for a simple ad-hoc network.

Request Routing: A service discovery request originates from a Request Source (RS) whose application layer
requests the service. A request consists of our ontology based description of the service requested that also op-
tionally includes descriptions of service groups to which the requested service belongs. The request is matched
with the services present in the local cache of the RS (that might also be a SP). A service discovery request is
formed on a local cache miss. A service discovery request contains the following fields:

< Packet-type, broadcastld, Service-Description, Request-Groups, Source-Address, Last-Address, Hop-Count>

The field Request-Groups contains the service group(s) to which the requested service belongs. Hop-Count,
a user-controlled parameter specifies the maximum propagation limit of the request. We use the information
regarding Other-Groups present in the service cache of each node to selectively forward a discovery request in
case of a local cache miss. We recall that each entry in the service cache of a node contains a field Other-Groups.
Thus, if the request belongs to one of those groups, then there is a chance that the requested service might
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Figure 3: Group-based Selective Forwarding of Service Discovery Request

The selective forwarding process is explained in Figure 3 for a simple ad-hoc network. It shows a sequence
of nodes (that are all INs) connected to each other with RS being the requesting source and SP being the
service provider where the requested service (S1) is available. For the sake of simplicity, we only display a linear
connection of nodes and do not show other nodes that might be present in the vicinity. We do not show the
exchange of advertisements in the figure. Assuming that each node has advertised its own services and other
remote service groups, Figure 3 shows the partial service cache entries in each node. For example, the entry

52(G2),G1- > N1

means that node N1 has service S2 belonging to group G2 and it has seen a service belonging to group G1 in its



vicinity. When a request belonging to group G1 comes to N3, then instead of broadcasting it to all nodes in its
vicinity (N4, N5), N3 selectively forwards it to node N2. This is because only N2 claims to have seen a service
belonging to group G1 in its vicinity. This process continues in all other nodes until the request has reached
N1 where it finds a direct match of the requested service (present in the service cache of N1).The request is by
default broadcast to other nodes when the algorithm fails to determine a set of nodes to selectively forward the
request to.

A Service Reply is generated by the IN once a service request matches a service advertisement. The reply
is transmitted back to the source using either the reverse route used by the discovery request or any standard
ad-hoc routing protocol in case of a route failure. We describe the protocol in detail in [3, 13]. In the next section
we describe how we incorporate service invocation and service data routing using the discovery infrastructure.

5 GSR Protocol Design

GSR uses the discovery infrastructure of GSD to support service invocation and transmission of service data
instead of using a separate ad-hoc routing protocol. The central idea in GSR is to utilize the ADVERTISE-
MENT_PATH and the REQUEST _PATH (or the RESPONSE_PATH) to transmit service invocation data. Like
AODV [4], we assume link reversals on the underlying ad-hoc connection. Hence if a node A is reachable
from node B, then node B is also reachable from node A under identical conditions. GSR creates several
DATA PATHs after a service has been discovered by appropriately combining the ADVERTISEMENT _PATH
and the REQUEST PATH. It selects a suitable DATA PATH for transmission of service data. This becomes
the ACTIVE_PATH. It also maintains end-to-end session over the ACTIVE_PATH to detect link failures or
service-node failures. We employ the technique of partial path reconstruction that enables session redirection
to a different node or reconnection to the same node through a different path depending on service guarantee
requirements. We explain the various salient components of GSR in the following subsections.

5.1 Dependence on GSD

Current implementation of GSR depends on GSD for its successful operation. However, the design of the routing
protocol is not dependent on GSD. GSR could as well be integrated with any other ad-hoc service discovery
protocol. This is because the only condition that GSR imposes on the underlying discovery protocol is the ability
to discover a service. However as explained in section 4, using GSD as the driver protocol enables GSR with
the following advantages: (1) Efficient usage of network bandwidth: GSD performs selective forwarding
(instead of broadcasting) and efficiently discovers routes to the discovered service. This is again mostly due to the
hierarchical grouping of services in GSD.(2) Semantic Session Redirection: GSD performs semantic service
matching that enables loose or near matches of services. Thus, if a service request tries discovering service S1
belonging to groups G1, GSD enables the discovery request to match with a service S2 belonging to group G1 that
matches most of the functional requirements of service S1. This lets GSR to redirect a session to another service
having similar functionality in case of service-node failure. We note that, a hierarchical grouping of services could
be replaced by a flat grouping (where there is only one level in the hierarchical tree). However, a hierarchical
approach simply enhances the chances of GSD to discover services that are farther and farther away from the
specified description and hence enables graceful degradation in case of service unavailability.

5.2 Data Path Setup

A service discovery request matches service descriptions at several intermediate nodes (IN). On a successful
match, a service reply is generated by the IN and transmitted back through the REQUEST _PATH in the reverse
direction. Each node in the REQUEST_PATH maintains a pointer to its previous hop in the path leading back
to the RS. This is setup when the discovery request reaches the nodes. However, REQUEST _PATH only contains
the path from the RS to the IN. In GSD, service advertisements are broadcast. GSD maintains no information
about the route from the IN to the SP. We have enhanced service advertisements in GSR where in each node
receiving an advertisement maintains a pointer to its previous hop leading to the SP.

The service reply is dropped in case of disconnections or link failures. Link failures result when the node
upstream in the path has either moved or shut itself down. RESPONSE_PATH refers to the actual path that



the reply traverses to reach the RS from the INs. Each node in the RESPONSE_PATH maintains a forward
pointer to the node leading to the IN. This is done when the service reply traverses the corresponding node.
Note that these two paths could be different if a standard routing protocol was used to transmit the service reply
back to the source. Our protocol reuses the path that was already traversed by the service request instead of
having to discover another new one. A DATA _PATH is formed by combining the RESPONSE_PATH with the
ADVERTISEMENT PATH to establish a complete route from the RS to an SP. Figure 4 shows the various steps
in involved in the creation of the DATA _PATH.
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Figure 4: Creation of a single DATA_PATH in GSR. The ADVERTISMENT _PATH is set up first when service
advertisement is sent by the SP (Figure 4a). The REQUEST PATH is set up after that (Figure4b) . The service
reply propagates back to the RS using the REQUEST _PATH and in turn sets up the RESPONSE_PATH (Figure
4c). The ADVERTISEMENT _PATH and the RESPONSE_PATH form the DATA_PATH (Figure 4d).

We note that for a certain discovery request, there could be DATA_PATHs established to different similar
services or multiple instances of the same service. There could also be multiple DATA_PATHs to the same service
through various INs. The IN bridges the RESPONSE_PATH with the ADVERTISEMENT _PATH.

Each node in the paths maintains time outs corresponding to the paths. A DATA_PATH thus expires if either
the ADVERTISEMENT PATH or the RESPONSE_PATH times out.

5.3 Active Path Selection

We have observed in the previous section that various DATA_PATHs are formed after service discovery due to the
presence of potentially multiple instances of the same service. Once the RS receives a service reply, it determines



the best service to perform the service invocation. The details of the best service selection can be found in [22].
In this paper, we are concerned with routing service invocation data to the selected service. However, multiple
DATA PATHs could also be formed with the same instance of the selected service. This is because:

1. Service Requests propagate through multiple outgoing links (since they are selectively forwarded) and could
potentially be answered by the same INs leading to formation of multiple DATA _PATHs. Please note that
an IN detects duplicate requests. However, the RS might send out multiple discovery requests for the same
service.

2. There could be multiple instances of a single unique service cached on different INs. These INs could reply
to a service request thus resulting in multiple RESPONSE_PATHs and hence multiple DATA_PATHs.

One of the DATA PATHs is chosen to be the ACTIVE_PATH for the corresponding service invocation. Currently,
an ACTIVE_PATH is chosen from available DATA _PATHs based on minimal hop count from the RS to the
SP. This information is obtained from the service reply from the IN. The service reply while traversing the
RESPONSE_PATH computes the length of the RESPONSE_PATH (in hops). However, it does not know the
length of the ADVERTISEMENT PATH. To accommodate for this, we enhanced each service advertisement to
compute the length of the current path and store it in each IN it traverses. An IN, while replying to a discovery
request conveys the ADVERTISEMENT _PATH length to the service reply. This is used to compute the final
DATA PATH length by the RS.

Once an ACTIVE_PATH has been selected, the RS uses it to transmit service invocation data. All other
DATA PATHSs constructed during the discovery phase time out if they are kept unused and all route information
is deleted.

5.4 End-to-end Session Maintenance

GSR uses the selected ACTIVE_PATH to transmit service invocation data. Service invocation in ad-hoc networks
requires various kinds of service guarantees. For example, the request might require that all the data be sent to one
instance of the discovered service. One example of such service invocation could be data streaming applications
in sensor networks where all data of a particular type needs to be sent to one instance of a service only. On
the other hand, the request could be also specify that the data could potentially go to multiple instances of a
particular service. An example of such service could be audio streaming applications where the audio is sent to
the music service nearest to a person. Service guarantees could also be relaxed to service groups where the data
could potentially go to any service belonging to a particular functional group. Example of such services could be
music streaming service where the music could potentially be sent to any ‘”speaker” in a given location. GSD
protocol by virtue of its semantic service matching features is capable of discovering services based on required
service guarantees. Furthermore, we have incorporated session management into GSR to provide various levels
of service guarantees during service invocation too.

GSR supports two kinds of session, namely: Service-Consistent session and Node-Consistent session. A Node-
Consistent session (as defined previously) requires that all data in a particular invocation be sent to one instance
of the discovered service. A Service-Consistent session on the other hand only requires that the data be sent to
the particular service. It does not impose any restriction on the service instance. In subsection 5.5, we discuss
how these strict and relaxed guarantees are enforced in case of failures.

Each node in the ACTIVE_PATH maintains a session for an open connection. A session is initiated by the
RS at the time of sending service invocation data. The RS specifies the type of session it desires. Each node in
the ACTIVE_PATH maintains a Session_Handler for each connection going through it. A Session_Handler keeps
the following information for each connection:

< Service_Description, Current_Sessionld, ACTIVE_PATH Source, ACTIVE_PATH _Destination, Next_Hop,
Previous_Hop, Session_LifeTime, Session_State, Session_Strictness, Session_Buffer>.

Session_Buffer is used to buffer packets during failures. A Session_Handler is initiated when a service in-

vocation data packet is received by a node. Thus Session_Handlers are initiated at different times at different
nodes in the ACTIVE_PATH. Each data packet piggybacks along with it session related information. Session
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related information include Sessionld, Service_Description of the service to which this session belongs to, AC-
TIVE_PATH Destination, Session_LifeTime and Session_Strictness. The parameter Session_Strictness specifies
whether the session has to be node-consistent or the session could be service-consistent. ACTIVE_PATH_Destination
refers to the address of the selected SP.

5.5 Path Breakage and Session Redirection

End-to-end session management in GSR provides it with connection monitoring to detect link failures and node
failures. A Link Failure might happen due to disconnections or mobility of nodes in the ACTIVE_PATH. The
node that is upstream in the ACTIVE_PATH detects this when it fails to transmit data packets to the next hop.
A Service-Node Failure on the other hand refers to the failure due to shutting down of the SP or the SP becoming
unreachable. We detect this at the node just ahead of the SP in the ACTIVE_PATH when it fails to transmit
data packets to the SP.

GSR takes corresponding actions depending on the type of session. Intermediate nodes are not able to
distinguish between a Link Failure and a Service-Node Failure. This is because, both the failures are triggered
from failure to transmit data packets successfully. Thus, for a Node-Consistent session, the intermediate node
that detects the failure uses the discovery infrastructure to discover another route to the required SP. A Node-
Consistent discovery request is sent out during this type of failure. All packets coming into the node during this
period are buffered in the corresponding Session_Buffer. If an alternate route is discovered, then all buffered
packets are transmitted through the new path that becomes augmented to the already existing ACTIVE_PATH.
Figure 5 describes the redirection of the ACTIVE_PATH. The session is dropped if the node fails to discover a
route to the required SP.
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Figure 5: ACTIVE_PATH Redirection in GSR

GSR resorts to service-centric session redirection in case of link or service-node failures for a Service-Consistent
session. The node that detects the failure tries using GSD to discover a service that has the same specification
as of the service in the ongoing session. The discovery request sent out during this period is Service-Consistent.
On a successful discovery, the session is redirected to the new SP. Note that the node detecting the failure
redirects the session. This does not impose any load on the RS. Moreover, the part of the ACTIVE_PATH that
is usable remains intact. The ACTIVE_PATH from the RS to the new SP is established by combining the old
ACTIVE_PATH from the RS to the node that detects the failure and the new ACTIVE_PATH formed from that
node to the new SP. This novelty of our routing protocol enables service invocation data to be routed based on
service descriptions, thus enabling GSR to be service-centric. Currently, GSR tries discovering services exactly
matching the description of the service in the ongoing session. However, we could also redirect a session to a
service belonging to the group of the service in the session by utilizing the semantic service matching features
and the hierarchical service groups. Figure 6 describes session redirection in GSR. By buffering packets and
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retransmitting them, GSR tries to improve the reliability of the protocol. However, it does not guarantee delivery
of all the packets in the service invocation data. We show in section 7 that GSR performs reasonably well
compared to other routing protocols in terms of data delivery.

Node3 performs service-centric session
redirection

Figure 6: Service-centric Session Redirection in GSR

6 GSR Implementation Components

We have employed the use of several existing and new techniques to augment our discovery infrastructure to
enable service-centric data routing. We employ the use of Forward Route Tables and Reverse Route Tables to
maintain path specific information during service discovery and invocation. Additionally, we also maintain a
Session Table that stores information about ongoing sessions through a node. A Session_Handler in each node
maintains session data corresponding to each session. A Session_Handler could belong to any of the four session
states, Session_Discovery, Session_Active, Session_Dropped and Session_Finished. In this section, we describe the
various implementation level components of GSR.

6.1 Reverse Route Table:

Each node in addition to maintaining a Service Cache (for GSD) also maintains a Reverse Route Table. It is a
node-centric route table indexed by the source address of a node. Important fields in the Reverse Route Table
(RR Table) are

< Source-Address, Previous-Address, Life-Time, Hops-To-Source>

Reverse Route Table performs the function of reverse routing a service reply back to the source of the request
using the REQUEST_PATH. This makes the REQUEST _PATH same as the RESPONSE_PATH in GSR but in
the reverse direction. The RR table is updated during the time a service request arrives at a node. Each service
request packet contains a Last-Address field. Each node seeing a service request changes this field to reflect its
own address before forwarding it to other nodes in its vicinity. This value is stored in the RR Table (as Previous-
Address)of each node the request traverses. The RR Table is used to send a service reply back to the RS. Our
protocol offers updating of the RR Table based on shortest route or recency of the request.

e Shortest Route Updation: The RR Table for a source address is updated only when it has received a request
that has lesser value of Hops-To-Source than the existing entry (if there is one).

e Recency-based Updation: The RR Table is updated whenever a request received from a source is more recent
than the previously stored value. Recency is determined using the timestamp of the service request and the
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Life-Time of the entry.

These actions are performed only after the discovery layer has handled duplicate requests and replies. The entry in
the table is kept for REV_ROUTE_TIMEOQOUT time units. The REV_ROUTE_TIMEOUT value thus determines
the time limit for which intermediate nodes maintains the REQUEST_PATH. Shortest Route Updation could be
used for relatively stable ad-hoc networks where as recency-based updation could be used for fast-moving ad-hoc
networks where the recency of the route is very important.

6.2 Forward Route Table:

It is a node-centric route table indexed by the Destination Address of nodes. Important entries in the Forward
Route Table (FR Table) are:

< Destination-Address, nextHop-Address, Life-Time, Hops-To-Destination>

FR Table performs the role of forming the DATA_PATH by combining RESPONSE_PATH and ADVERTISE-
MENT _PATH. Service Invocation Data is routed through the selected DATA_PATH using FR Table. FR Table
determines the nexrtHop-Address when data packets reach a certain node in the path. FR Table is updated in
when a service reply or an advertisement arrives a node.

o Service Reply based Updation: A service reply packet contains two fields (apart from others) namely: Last-
Address and Service-Source-Address. The Last-Address identifies the next hop required for a data packet
to reach Service-Source-Address. These values are stored in the FR Table. Each node, before forwarding a
service reply changes the Last-Address field to reflect its own node address.

o Advertisement based Updation: The FR Table is also updated when a service advertisement reaches a
node. The Source Address of the advertisement and the Last-Address from where it has been forwarded
are stored in the FR Table. This forms the ADVERTISEMENT_PATH. Thus each node on the ADVER-
TISEMENT _PATH knows the next hop neighbor in case it has to forward data to the source of the service
advertisement.

FR Table updation is based on shortest route to destination as well as recency of advertisement and service
reply. This is analogous to the updating on RR Table. Each entry is kept for FOR_ROUTE_TIMEOQOUT time
units and that determines the duration of the time the DATA_PATH remains idle. The DATA _PATH is destroyed
if it has not been used within this time interval. Apart from the above mentioned updations, the timeout value
of entries in the FR Table that participate in an ACTIVE_PATH is updated whenever a session is initiated in an
ACTIVE_PATH.

6.3 Session Maintenance:

Session_Handlers at each node manage sessions for each connection through the node. Data transfer is performed
by forwarding the data packets through the ACTIVE_PATH using the FR Table. After a Session_Handler is
initiated, it constructs an entry in the Session Table. It obtains the required information from the session-
related information piggybacked in an invocation packet (explained before) and from the FR and RR Tables. As
mentioned before, the Session Handler can possibly have four states. A session after being initiated belongs to
either Session_Discovery or Session_Active state. The states of the Session_Handler and the corresponding actions
performed it are explained in detail in this subsection.

e Session_Discovery: This is the state when the required service has not yet been discovered and the Ses-
sion_Handler is waiting for the requested service. Session_Handler on entering this state initiates a service
discovery using GSD. The Session_Handler also buffers incoming data packets in the Session_Buffer. A
Session_Handler can go into this state from either Session_Active state (explained below) or right at the in-
ception of the session at the source of the request. During the inception of the session, the discovery request
sent out by the Session_Handler is always Service-Consistent. However, if this state has been reached from
Session_Active state, the discovery request sent out depends on the type of the currently existing session.
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The state goes either into Session_Active state if a service meeting the session specifications was discovered,
or goes into Session_Dropped in case of a discovery failure after repeated trials.

e Session_Active: This is the state when a Session_Handler engages in transferring data packets in an AC-
TIVE_PATH. A Session_Handler monitors the outgoing link for a certain connection. Whenever, it receives
a data packet, it checks the FR Table to determine the next hop for it. It then forwards the data packet
to the next hop. In the event of a link failure or node failure, the outgoing packet is buffered. The Ses-
sion_Handler immediately goes back to the Session_Discovery phase on detecting this. This state can be
reached from either a Session_Discovery state or during the creation of the session at a node. A node
other than the source node or the destination node, but belonging to the ACTIVE_PATH can go into this
state right at the creation of the session. This is because the node already belongs to a DATA_PATH and
hence knows a route to the particular service/destination. Hence it can actively participate in data transfer
without having to go into the Session_Discovery state. It transitions to the Session_Finished state in case
of a successful transfer or to the Session_Dropped state in case of an unsuccessful transfer.

e Session_Dropped: This is the state when either the Session_Handler has failed in transmitting all the packets
to the destination. This may result due to the failure of a node to discover the required service. All session-
related information is purged from the participating nodes. Pending data packets for a dropped session are
dropped too. A Session_Handler that goes from the Session_Discovery to this state, has not succeeded in
discovering the required service. A session buffer overflow may lead to a session being dropped too. The
session then transitions into the Session_Finished state at the end.

o Session_Finished: This is the end state reached by the Session_Handler once it has finished a successful or
an unsuccessful session. It is reached either from the Session_Active or Session_Dropped state.
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Ir
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Detected?

Session_Discovery

Discovery
Information
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Figure 7: Session State Transition Diagram

Figure 7 depicts the session state changes. Our session maintenance and failure handling detects most failures
and resorts to appropriate fault handling mechanisms depending on the session type (as explained in section 5).
However, there are certain instances where the node failure might go undetected. For example, if a node is in
Session_Discovery state, and it goes down after having buffered all incoming packets, it wont be detected by its
upstream neighbor in the Active_Path. However, if some packets were still being transmitted by the upstream
node, it would be able to detect the failure due to packet drops and take necessary actions.
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7 Experimental Evaluation

We implemented GSR on the ad hoc network simulator Glomosim [23] under various mobility conditions and
different node topologies. We compared GSR with our basic model where we had our service discovery architecture
as a layer on top of AODV. We had two versions of our integrated protocol. The basic version does not do any
session management. We call this GSR (Group-based Service Routing). The version of our protocol that performs
end-to-end session management is termed as GSR-S (Group-based Service Routing with Session Management).
We compare these two versions with the basic version where the discovery layer uses AODV for all routing
purposes. We call this GSD+AODYV (Group-based Service Discovery+AODV).

We implemented the integrated protocol as a routing layer in the Glomosim protocol stack. We used CBR
(Constant Bit Rate) messages from the application layer as triggers to invoke discovery and routing in our proto-
col. Simulation Environment consisted of node topologies ranging from a topology with 25 nodes to a topology
with 64 nodes. In this paper, we present results for the two extremes (25 nodes and 64 nodes). We used a random
way-point mobility pattern for all the nodes. The initial setup followed a grid structure where all the nodes were
distributed in a grid over the terrain. For the purposes of the simulation, we used representative services SO to
S64 to represent actual services and groups G1 to G10 to represent service groups with G10 being equivalent
to the parent service group called “Service”. Through out all the experiments, we used a pessimistic evaluation
strategy by keeping the requested service only on 8% of the nodes. This is because, intuitively with the increase
in the availability of the service, the performance of the protocol will improve. All the simulation parameters
including the various timeouts used for different tables and link and radio layer parameters have been enumerated
in Figure 8.

Duration 600 seconds
Network Area (x,y) | (110 x 110m), (250 X 250m)
Initial Topology Grid topology
Network Diameter 7,11
Tx Range 30m
Tx Throughput 20kbps
No. of Nodes 25, 64
Advertisement Interval 10 seconds
Advertisement Lifetime 5 seconds
Reverse Route Timeout 12 seconds
Forward Route Timeout 8 seconds
broadcast jitter 10 milliseconds
GSR-S Session type Service-Consistent

Figure 8: Experiment Parameters

We compared GSR, GSR-S and GSD+AODV with respect to packet delivery ratio, average response time for
request, average response hops, average packet delay and average packet hops. We define mobility of nodes by
P(Sm, SMax) where :

P= Pause (in seconds) after the node has moved to a new position

Sm= Minimum speed (meters/sec) of movement of the node

SMax= Maximum speed (meters/sec) of movement of the node

The node moves with a speed within the range (Sm, SMax). In our simulations, we have varied node speed
ranging from 1 meters/second to 9 meters/second with a pause time of 5 seconds for all the experiments. All the
time calculations (packet delay, response time) are in seconds.

o Experiment 1: Packet Delivery Ratio vs. Mobility
Average Packet Delivery Ratio is defined as the number of data packets received by the final destination
as a fraction of the number of data packets transmitted by the source. In Figure 9 we plot the average
packet delivery ratio as a function of mobility. GSR-S quite predictably shows a packet delivery ratio of
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Figure 9: Average Packet Delivery Ratio Comparison graph of GSD+AODV, GSR and GSR-S

almost 1 which is significantly higher than AODV+GSD or GSR. This is mainly due to the end-to-end
session management. This shows that integrating session management along with routing provides with
improved efficiency in packet delivery. However, it is also noticed that packet delivery ratio of GSR is more
than AODV+GSD in low mobility situations. However, AODV seems to be performing somewhat better
in high mobility situations (9 meters/second) for networks consisting of large number of nodes (64 nodes
in the graph). This is because often times in high mobility scenarios, the reverse routes break due to node
mobility contributing to the decrease in the delivery ratio. AODV, on the other hand discovers a fresher
route each time it transfers service data.

Experiment 2: Average Data Delay vs. Mobility

We calculated the Average Packet Delay for data received in Experiment 1. Logically, packet delay should
increase in GSR-S since GSR-S buffers dropped packets, and again retransmits them after the session has
been re-established. The results have been plotted in Figure 10. As expected, we see that packet delay in
GSR-S is greater than delay in GSR or AODV+GSD. However, we also observed that the distribution of
delay for GSR-S shows a high proportion of packets (about 75%) being delivered with delays almost similar
to AODV or GSR. The average data delay is strongly affected by a small fraction of the packets which take
a very long time to be delivered. These are packets that had been buffered by a session during a node or
link failure. Figure 11 shows the delay distribution. We also observe that GSR performs consistently better
than AODYV in terms of packet delay. This is because GSR, uses one of the DATA_PATHs to transmit data
whereas AODV transmits data only after having finished its route discovery process. This result along with
results from Experiment 1 shows that reusing the path already obtained during discovery would result in
faster data transmission with a minor decrease in the delivery ratio. The delivery ratio on the other hand
drastically improves with session maintenance.

Experiment 3: Average Data Hops vs. Mobility

The average hops traveled by data packets give an idea of the efficiency of the routing protocol in terms of
discovering shorter routes. Our results show that GSR performs best in terms of average data hops both
in low mobility as well as high mobility situations with small and large node topologies. GSR-S performs
a little worse than GSR. This is again attributed to the fact that some of the data packets are redirected
via a different path (these packets are dropped in GSR), resulting in increased hop count. AODV+GSD
perform even worse than GSR-S. However, under high mobility conditions (9 meters/second) in a large node
topology (64 nodes), AODV performs comparatively better than both the other protocols. We believe this
is because high mobility often breaks the reverse routes. AODV, in such situations discovers fresher routes
from the RS to the SP. GSR-S, on the other hand employs partial path reconstruction from an intermediate
node. In high mobility scenarios, this often results in GSR-S discovering a longer path than what AODV
discovers from RS to the SP. The results have been shown in Figure 12.
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Figure 10: Average Packet Delay of GSD+AODV, GSR and GSR-S with respect to varying mobility
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Figure 11: Delay Distribution for GSR-S with Mobility 5(9,9)

e FEzxperiment J: Average Request Response Time vs. Mobility

Request Response Time refers to the time taken for a service reply to reach the source after a service request
had been sent out. This result gives us an estimate of how long AODV takes to transmit a service reply
back to the source vis-a-vis our protocol where the reply is reverse-routed back to the source. In Figure
13, we observer that with less number of nodes (25 nodes), GSR/GSR-S performs significantly better than
AODV. We also observe that with 64 nodes, the response time decreases with increasing mobility. This is
corroborated in Figure 14 where we see a decrease in the average response hops (thus resulting in decreased
response time) for large nodes under high mobility conditions. However, with small number of nodes (25)
there is no significant decrease in the average response time. GSR/GSR-S, as expected is more efficient in
utilizing a shorter route than AODV.

8 Conclusions and Future Work

We have presented the design of an integrated service discovery and routing protocol (GSR). Our integrated
protocol has the capability to do both node-centric as well as service-centric routing. Service Discovery is a key
component for the development of distributed applications. We show that an integration of service discovery with
routing in ad hoc networks offers greater system efficiency.
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Figure 12: Average Data Packet Hop Count registered in GSD+AODV, GSR and GSR-S with respect to varying
mobility
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Figure 13: Average Request Response Time in GSD+AODYV, GSR and GSR-S with respect to varying mobility

Integrating different layers of the protocol stack has well-known shortcomings. The integrated protocol be-
comes non-modular and difficult to upgrade. Correctness checks also become complicated and code reuse becomes
difficult. While the benefits offered by modularity in wired networked systems outweigh the need for integration,
in ad hoc networks, integration of the two layers offers greater justification in terms of the benefits obtained.

Several minor enhancements are possible in our proposed protocol. For example, currently, a service reply is
dropped if it does not have a route to the source node. On detection of such a message drop, the node immediate
upstream could broadcast the packet to the limited vicinity and expect some node to route the reply to the source
node. This enhancement makes the REQUEST PATH and RESPONSE _PATH different and we have to handle
it accordingly. The Session_Handler could also be enhanced by providing it with multiple possible destinations
where the particular session could be forwarded. Right now, it goes into the Session_Discovery state and tries to
recover /redirect the session in a reactive manner. We could make a Session_Handler cache service replies from
multiple nodes and hence pre-calculate possible destinations for an active session. Our future work plan is to
integrate these features and try to make the integrated protocol more robust for upper-level applications.
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Figure 14: Average Response Hops in GSD+AODV, GSR and GSR-S with respect to varying mobility
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