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Abstract

Title of Dissertation: Intrusion Detection: Modeling System State to Detect and Classify

Aberrant Behaviors

Author: Jeffrey L. Undercoffer, PhD, 2004

Thesis directed by: Dr. John Pinkston, Professor and Chair

Department of Computer Science and

Electrical Engineering

We present a dual-phase host-based intrusion detection process. We have demonstrated,

through experimental validation, that our process improves the current state of intrusion de-

tection capabilities. The first phase uses cluster analysis to compare samples of low-level

operating system data to an established model of normalcy. The second phase takes instances

of non-conforming data from phase-1, maps that data to instances of our target-centric ontol-

ogy and reasons over it. The reasoning process serves two purposes: primarily it is intended

to classify the anomalous data as a specific type, or class, of attack. Its secondary purpose is

to provide an orthogonal test to differentiate between true and false positives.

We developed a novel metric (self-distance) to quantify the streams of system calls

generated by a process, and we have constructed a feature set from the low-level operating

system data, which is subsequently used as input to the clustering process. We experimented

with different clustering algorithms (Fuzzy c-Medoid, k-Means, and Principal Direction Di-

visive Partitioning), distance measures (Euclidean and Mahalanobis), and the effects of z-

normalizing the data set. Our experiments indicated that the Fuzzy c-Mediod algorithm us-

ing the Mahalanobis metric as a distance measure was the optimal performer, yielding an



F-Measure of .9822. The F-Measure is a common method for describing accuracy and is

combination of precision and recall.

We experimentally demonstrated the case for migrating from taxonomic classification

systems and their syntactical representation languages to ontologies and semantically rich

ontology specification languages. We created a data model of the relationships that hold

between the low-level data and instances of attacks and intrusions. We used the DARPA

Agent Markup Language + Ontology Inference Layer to specify the data model as a ontology

and the Java Theorem Prover, a sound and complete First Order Logic theorem prover, to

reason over and classify instances data that were deemed to be anomalous in the first phase

of our process. Our classification mechanism achieved an F-Measure of .9776.

The overall F-Measure of our dual-phase process was .9718. Ignoring the characteristics

of the data population is a classic mistake that is made when evaluating intrusion systems.

This is also referred to as the base-rate fallacy. When evaluating the posterior probability (the

probability of an alarm given an intrusion) of our process we achieve a score of .998.

We also present two novel mechanisms to detect and mitigate aberrant behaviors en-

countered in Mobile Ad Hoc and Wireless Sensor networks. Both of these networks consist

of resource constrained devices. Accordingly, we present our intrusion detection mechanisms

as protocols that monitor network state rather than system state.
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Chapter 1

Introduction

1.1 Intrusion Detection State of the Art

“Intrusion Detection Systems have failed to provide value relative to their costs and

will be obsolete by the year 2005” [39]. This indictment of “intrusion detection state of the

practice” was handed down in June, 2003 by Gartner, Inc., a firm that specializes in research

and analysis of the technology market place. The Gartner advisory states that the following

issues contributed to their assessment that Intrusion Detection Systems (IDSs) are a failure:

i. False positives and false negatives.

ii. An increased burden on the Information Security organization by requiring full-time

monitoring (24 hours a day, 365 days per year).

iii. A taxing incident response process.

iv. An inability to monitor traffic at transmission rates greater than 600 megabits per sec-

ond.

The Gartner report concludes by recommending that enterprises redirect money ear-

marked for IDSs toward other barrier technologies such as network firewalls. Before ad-

dressing the Gartner report, some history and background on IDS research is in order.

Intrusion detection research has been ongoing for approximately 20 years. One of the

earliest papers in this field of study is James Anderson’s 1980 paper Computer Security,
1
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Threat Monitoring, and Surveillance [2]. Anderson posited that computer systems must

be actively monitored in order to mitigate threats against them. Seven years later, Dorothy

Denning wrote An Intrusion Detection Model [27], providing a framework for IDSs. Denning

held that evidence of malicious activity would be reflected in the audit records of the affected

system.

Given the 20 plus years of research, one should think that IDSs are well advanced,

detecting and blocking intruders as they attempt to cross the perimeters of our networks or

detecting “insiders” as they attempt to abuse their system privileges. Unfortunately, as made

clear by the Gartner recommendation, this is not the case. According to the Carnegie Mellon

Software Engineering Institute’s State of the Practice of Intrusion Detection Technologies

[1], most commercial IDSs use a signature-based approach and do not provide a complete

intrusion detection solution. The Carnegie Mellon report further states: “despite substantial

research and commercial investments, IDS technology is immature, and its effectiveness is

limited”. Similarly, McHugh [83] states that based upon the results of the 1998 and 1999

DARPA off-line intrusion detection evaluations [77], research systems, like their commercial

counterparts, are very poor at detecting new attacks. McHugh continues, stating that “the

intrusion detection field is making little forward progress ����� none of the systems funded by

DARPA have achieved major breakthroughs nor has an individual system or combination of

systems approached the goals that DARPA has set for their IDS program.

IDSs are categorized according to scope — network based or host based — and method

– signature detectors or anomaly detectors. Anomaly detectors attempt to detect usage out-

side the bounds of established statistical norms. To do this, they create and maintain usage

profiles that reflect the normal behavior of the users and processes on the system. Tradition-

ally, anomaly detectors are comprised of a sensor that monitors aspects of system behavior

and a decision process that determines if the sensed data is consistent with the predefined

notion of acceptable behavior.

By contrast, signature detectors, also referred to as misuse detectors, filter usage against

a given set of attack signatures. Typically, they examine TCP/IP network traffic using pattern
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matching techniques to detect an actual or attempted intrusion and raise an alarm whenever

the event matches a pre-defined rule or signature.

The difference between misuse and anomaly detectors is that misuse detectors define

a model of “prohibited” behavior while anomaly detectors define a model of “permitted”

behavior.

A network-based IDS, although run on a single host, is responsible for the entire net-

work, or some network segment, while a host-based IDS is only responsible for the host on

which it resides. A significant difference between host-based and network-based detectors is

in the data set over which each type operates. A network-based detector is generally limited

to the information contained in TCP/IP packets while a host-based detector potentially has

access to all of the information available to the system on which it is running.

Based upon its criticisms, it appears as though the Gartner report is predicated upon the

use of network-based IDSs (e.g.: “An inability to monitor traffic at transmission rates greater

than 600 megabits per second”) and the SANS operational model.

The SANS Institute [86, 87], an information security research, certification and edu-

cation organization, recommends the use of the SNORT [98] network intrusion detection

system. SANS also recommends that an enterprise’s IDS be monitored 24 hours per day, 365

days per year. SNORT, because it is freely available, is the standard by which most other

IDSs are evaluated. As pointed out by [24, 44] SNORT is the most widely used IDS because

it is free and it generally performs as well as most commercial IDSs. Our own and other’s

research [66, 92] indicates that SNORT generates a significant number of false positives. In

our conversations with computer security practitioners, the overwhelming majority state that

network-based IDSs are the “only way” to conduct intrusion detection and that SNORT is

the “only intrusion detector”.

Given the shortcomings of relying solely upon network based IDSs, the Gartner evalu-

ation of the IDS state of the art comes as no surprise. It fails, however, to attribute causality

for the present condition of IDS technologies. The following list enumerates what many re-

searchers have identified as the central issues leading to the success (or failure) of IDSs and
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the research goals that we established in 2001 in response to those issues:

i. The elimination of the Single Point of Failure that is characteristic of most IDSs. A

review of many academic IDSs [93] [96], as well as commercial IDSs [98], reveals that

most, if not all, are one monolithic system. Those systems claiming to be distributed

operate by placing sensors throughout the network and either send their alarms to a

central management station or send their data to a central location for evaluation and

subsequent alarm. An additional danger presented by the use of this monolithic single

point of failure configuration is that the IDS may be subjected to denial of service

attacks.� The two-phase, host-based, IDS presented in our work is only one of a distributed

coalition of similar IDSs. In our proposed coalition each host-based IDS is re-

sponsible for itself and communicates using an ontology specification language

with other host-based IDSs in its coalition.

ii. Data Fusion from Multiple Sensors. Bass [111] suggests using cluster analysis on

input from distributed sensors as well as fusing data from heterogeneous devices. Ker-

schbaum et al. [63] suggest using sensors embedded in the operating system to detect

attacks. Allen et al. [1] suggest integrating multiple sources and types of information.� Our work addresses the issue of using sensors embedded within an operating

system. We record, at system call granularity, 119 low-level kernel attributes that

represent process, network, and global system state. We use cluster analysis to

discern between state that is representative of normal and abnormal behavior.

iii. Definition of an attack taxonomy from the systems’ point of view. McHugh [83] rec-

ommends classifying attacks based upon the protocol layer and the particular protocol

within the layer that is used as the vehicle for the attack. Allen et al. [1] criticize the

characterization of an intrusion from the attacker’s perspective, suggesting a classifica-

tion scheme according to vulnerabilities as an alternative methodology. Commenting
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on the Internet Engineering Task Force’s emerging standard – the Intrusion Detection

Message Exchange Format Data Model and Extensible Markup Language (XML) Doc-

ument Type Definition (IDMEF)[21] and its ability to enable interoperability between

heterogeneous IDS sensors, Kemmerer and Vigna [61] state that the IDMEF is a first

step but additional effort is needed to provide a common ontology that allows IDS

sensors to agree upon what they observe.� Attack classification is a particularly salient point and needs to be underscored.

A taxonomic classification implicitly defines the data model that an IDS operates

over. In the case of an anomaly detector, it is a model of acceptable behavior and

in the case of a misuse detector it is the model of intrusive behavior. Regardless of

the detector type, meaningful taxonomic characteristics are core to the effective

operation of an IDS. If they are limited to those elements that are directly ob-

servable by an IDS, then there is a greater likelihood that they can be accurately

measured and evaluated. Of equal importance is a language that can effectively

describe and communicate information about instances of the data model speci-

fied by the taxonomy.

We have created a target-centric ontology, one that incorporates and subsumes a

taxonomy. We have found that in applying ontologies to the problem of intrusion

detection, the power and utility of the ontology is realized not by the simple

representation of the attributes of the attack but rather because those instances

may be “reasoned” over to derive additional knowledge.

iv. The development of an expressive IDS language. Doyle, et al. [31] maintain that some

limitations with signature and statistical methods stem not from the methods them-

selves but rather from reliance on inadequately expressive languages for describing

significant events and communicating information about them.� “Language” is paramount to the effectiveness of the IDS because information

regarding an attack or intrusion needs to be intelligibly conveyed, especially in
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distributed environments, and acted upon. Moreover, the language must have

constructs that support the notion of correlation and aggregation.

We use the DAML+OIL [54] ontology specification language as a combined

event recognition, correlation, and communication language. DAML+OIL sup-

ports the correlation and linkage of data from diverse sources in a principled way.

Using DAML+OIL, once data is linked, it may then be aggregated and used to

determine facts that are not directly represented in any one source of data.

We have devised a method to map instances of non-conforming data (from our

model of normal behavior), which are numeric values, to instances of our ontol-

ogy, which are characterized as classes, properties and relationships. Our method

employs a statistical analysis to perform the mapping.

v. A reduction of the high false alarm rate. Allen et al. [1] recommend the integration of

data from multiple sources. The idea of using multiple sources is predicated upon the

notion that during sophisticated attacks information from a single sensor is unlikely to

detect suspicious activity.� We have extended the traditional view of anomaly detection, which calls for a

sensor and a decision process. Our decision process is two-stage. In addition

to cluster analysis on the low-level kernel data, we perform an additional test by

reasoning over instances of abnormal data. In addition to providing an orthog-

onal test, the reasoning stage, in conjunction with the target-centric ontology,

correlates and aggregates seemingly disparate, but related events. Our experi-

ments have demonstrated that our approach is able to detect multi-phased and

distributed attacks.

vi. The use of real world test data in order to test IDSs adequately . The only corpus of

test data available to researchers today is the data set that was synthetically produced

at MIT’s Lincoln Labs for use in the DARPA off-line Intrusion Detection Evaluation
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[77]. The use of this data set has become a contentious issue and some researchers

[80, 83] recommend against its use.� During our testing we used traces (5 million +) of system calls that were collected

from live systems. In other experiments, we have mirrored web servers and have

replayed their transaction logs while simultaneously attacking the system.

Most, if not all, of the aforementioned central issues lie beyond the ability of network

based misuse detectors, hence Gartner’s assessment of the “Intrusion Detection State of the

Practice”.

Gartner’s recommendation that enterprises redirect money earmarked for IDSs toward

barrier technologies such as network firewalls requires deeper thought and analysis. William

Wulf, the President of the National Academy of Engineers, during Congressional testimony

[121], has equated the use of barrier technologies to the “Maginot Line” 1, emphasizing that

this model does not work. Recently, during his keynote address before the National Science

Foundation’s Cyber Trust Point meeting [122], he called into question both the soundness of

current software engineering practices (stating that developers are producing software with

little regard for security) and the feasibility of relying upon barrier devices to protect a net-

work. The premise of Dr. Wulf’s address was that each individual system should be respon-

sible for its own security. We believe that assigning the responsibility for detecting malicious

and aberrant behavior to a single device residing at the network gateway (viz.: Gartner’s rec-

ommendation to use firewalling technologies) is nothing more then a continuation of Wulf’s

“virtual Maginot Line”.

1.2 Thesis Statement

It is serendipitous that Dr. Wulf identified so closely with the thesis that we proposed

over two years prior to his keynote address. Specifically, our thesis, motivated by the inade-

1The Maginot Line, named after Andre Maginot, the French Minister of War 1928 - 1932, was a series of
defensive fortifications built by France along its border with Germany and Italy. It failed. In 1940, the German
army bypassed the Maginot Line, entered France through a “neutral” third country and swiftly defeated her.
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quacies of network based signature detection, states that host based anomaly detection using

the right model will improve the current state of detection capabilities.

Like Denning, we hold that evidence of malicious activity is reflected in system level

data. However, by analyzing data at a much lower level than audit data, we can profile the

system’s normal state and perform anomaly detection.

1.2.1 Two Phase Intrusion Detection Framework

Our intrusion detection model is two-phased. By instrumenting the Linux kernel and

collecting low-level attributes in three separate data streams – process, system, and network

– we created a model of the quiescent state of the system. We then used these attributes either

“as is” or as components in the construction of a feature. For example, one feature is derived

from sequences of system calls. We use a novel measure, self-distance, to characterize the

streams of system calls. We then use the Kullback-Leibler metric to measure the relative en-

tropy between the self distances of a known exemplar of a system call stream to an unknown

sample that was produced by the same type of process.

During the first phase, low-level data is taken from the system under observation and

compared to the model, testing for conformance. During the second phase nonconforming

data is represented as an instance of the data model defined by our ontology, asserted into

a knowledge base, and reasoned over using First Order Logic. The primary purpose of the

second phase is to classify the anomalous data as belonging to a particular the type of at-

tack or intrusion. Its secondary purpose is to perform an orthogonal test in order to reduce

false positives. In our framework, once anomalous data has been classified, an alarm can be

generated and the attack can be communicated to other IDSs as an instance of the ontology.

The other IDSs can add this information to their knowledge bases, and if applicable, use it to

deduce that a more comprehensive attack is taking place.

Our IDS methodology is built upon notions introduced by the semantic web, most no-

tably the concept of machine understandable documents. These documents (data in our case)

do not imply an artificial intelligence application, rather, they take advantage of a machine’s
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ability to solve a well defined problem by performing well defined operations on well defined

data. By using an ontology representation language to define our data model, instances of

abnormal and intrusive events are able to be reported and communicated to associated IDSs,

which in turn can correlate, aggregate and evaluate them for the existence of distributed and

multi-phased attacks. Figure 1.1 illustrates our distributed intrusion detection framework.

Ontology
Mapping

Real Numbers
to

FOL Symbols Knowledge
Base

 
Answers to Queries

Event Classification
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Alarm.
Query other systems.
Alert other systems.

Assertions

Retractions

Input From Other Systems

Instrumented
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Network

System

Cluster
Analysis

Non
Conforming

Data

DAML+OIL Ontology
http://security.umbc.edu/ids.daml

Java
Theorem Prover

Phase 1 Phase 2

FIG. 1.1. Dual-Phase Intrusion Detection Methodology

Not long ago, the expense of collecting and processing low level kernel data was both

computationally and cost prohibitive. Today, processor speed has dramatically increased

while their costs have decreased and many computers are now configured as dual processor

machines. This market dynamic makes our thesis practicable whereas it would not have

been just a short time ago because the second processor may be dedicated to the handling of

security related functions.

1.3 Dissertation Overview

This dissertation advances the field of intrusion detection research in several key areas.

Its main thrust, as detailed in Chapters 2 - 7, is the use large data streams and semantic

knowledge to differentiate between normal and anomalous behaviors occurring in the hosts
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of distributed and interconnected systems. The difficult task of detecting and preventing

intrusive behavior is exacerbated by the manner in which our computing environment has

evolved and matured. In the 1950’s IBM Chairman Thomas Watson opined that the world-

wide demand for computers will at most be five. In the 1970’s the concept of the personal

computer was shunned by industry. In the 1980’s and early 1990’s, in the face of increas-

ing personal computer usage, no one envisioned the Internet as we have it today. In spite

of its benefits, our interconnectedness brings with it a plethora of security problems. These

problems are difficult to mitigate because they were not anticipated during the evolution-

ary process. Consequently, our security solutions are retrofitted onto existing computer and

network paradigms. We endeavor to prevent this dynamic from repeating in two emerging

models — Mobile Ad Hoc Networks and Sensor Networks.

Mobile ad hoc and sensor networks are still in their nascent stage. Although ancillary

to the main body of this work, Chapters 8 and 9 lay the foundation for their secure inter-

networking. In both types of networks, we build security and intrusion detection mechanisms

into the communications protocols used by the mobile ad hoc devices and the sensors. We

anticipate that, as mobile ad hoc and sensor networks mature, the will be amalgamated with

the prevailing distributed and interconnected systems. We leave the task of defining ontolo-

gies that incorporate our secure communications protocols those researchers who will focus

on that merger.

The following is a chapter by chapter synopsis of our work.

Chapter 1 is this introduction where we provide an overview of our work. We have

stated the key issues facing researchers in the field of intrusion detection and we have pre-

sented industry’s assessment of the current intrusion detection state of the practice.

Chapter 2 addresses a worst case scenario for intrusion detectors — hidden processes.

A maliciously hidden processes is undetectable to a network-based IDS and might undermine

a host-based IDS. In this chapter we show how to detect and mitigate their effects. We state

methods that will ensure the integrity of the system call table and the interrupt descriptor

table. We state how we extended our assurance process in order to instrument the Linux
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kernel and capture the streams of low-level kernel data. We used this data to build our model

and used subsequent data samples to test the system for conformance to the model.

Chapter 3 presents our novel self distance measurement that we used to characterize

streams of system calls. Our measure quantifies the degree of intrinsic regularity within a

sequence of system calls. We detail our experiments, comparing the performance of our novel

measurement to those used in other research that also rely upon system calls to differentiate

between normal and abnormal behavior.

Chapter 4 details the feature sets that we constructed from low-level kernel data. It

presents our use of Principal Component Analysis to gain insight regarding the degree of

information that individual features convey.

Chapter 5 details how we constructed the model of normal behavior. We have ex-

perimented with the Mahalanobis Metric [17] and Euclidean Distance to measure distances

between the feature vectors. We also experimented with Fuzzy [70], Principal Direction

Divisive Partitioning [10], and K-Means [36] clustering algorithms as well as the effects of

z-normalization [42] on the data set.

Chapter 6 details our empirical analysis of over 4,000 types of attacks and intrusions.

We determined the means of attack most frequently employed (i.e.: as manifested at and

experienced by the victim), their most likely consequences, the system component (network

protocol stack, process, or system) most often targeted, and the most frequently employed

means of effecting an attack. We also identified the location from whence attacks most

frequently originate. This study is the foundation of our target-centric ontology.

Chapter 7 details our target-centric ontology and presents the results of our experi-

ments. We mapped the data that failed to conform to our model of normalcy as instances

of the data model specified by our ontology. We classified them as being representative of a

specific type of an attack or intrusion by asserting them into a knowledge base and reason-

ing over them using First Order Logic. Our experiments include correlating and aggregating

data from disparate events, where we were able to infer that a more comprehensive attack has

occurred.
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Chapter 8 presents our intrusion detection mechanisms for mobile ad hoc networks.

Our method relies upon packet snooping to detect aberrant behavior. Our extensions, which

are applicable to several mobile ad hoc routing protocols, offer two response mechanisms:

passive, which unilaterally determine if a node is intrusive; and active, which collaboratively

determines if a node is intrusive. We have implemented our extensions using the GloMoSim

simulator and have detailed their efficacy under a variety of operational conditions.

Chapter 9 details our intrusion detection and security protocol for wireless sensor net-

works. We state why security mechanisms that are designed for mobile ad hoc environments

are inadequate or not appropriate for sensor networks. Our protocol facilitates the detection

and elimination of network nodes displaying aberrant behavior. We implement our protocol

using SensorSim and present our experimental results.

Chapter 10 offers the conclusion to this dissertation, provides a synopsis of our accom-

plishments, and lays the groundwork for future research.



Chapter 2

Securing and Instrumenting the Linux Kernel

According to many security practitioners, inherent operating system insecurities obviate

any trust being placed in the data that they produce. Consequently, they adhere to the notion

that network-based IDSs are the only viable option. Network-based IDSs, unfortunately, are

only able to operate over the information contained in TCP/IP packets, consequently they are

not able to detect as many types of attacks and intrusions as their host based counterparts

[120].

This chapter introduces a novel “worse case” class of operating system compromise

— the hidden process — and presents ways to detect and mitigate their effects. Moreover,

hidden processes are a class of intrusions that are undetectable by network-based IDSs. We

present two methods to detect hidden processes in the Linux environment. The first method

requires modification to the operating system kernel. The other method employees a loadable

kernel module to add functionality to the operating system and we have extended this method

to instrument the kernel in order to provide low-level data to our host-based IDS.

2.1 Introduction and Background

The most significant and far reaching consequence of a computer attack is the intruder

gaining root (administrative) access to the targeted computer [28]. This type of access opens

the system to continued misuse and exploitation. According to the CERT/CC advisories, root

access is the most frequent consequence of an attack. Criscuolo [20] and Toxin [112] have

13
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observed that once an attacker has gained unauthorized administrative access to a computer,

he will often install a Rootkit as a means of continued access to the targeted system.

Rootkits, which first appeared in 1993, are a collection of tools and trojaned replace-

ments of core system utilities. These core utilities include binaries (such as top, ps, ls, du and

netstat) which are used to manage a system and ensure that it is operating properly. Rootkits

replace these core system utilities with modified versions in order to hide the presence of the

intruder and his tools. A network-based IDS is unable to detect the presence of a “trojaned”

core system binary, whereas, as we later demonstrate, our proposed host-based system does.

We have tried to anticipate future manifestations of attack and intrusions, consequently

we developed a method to hide a process. We posited that rather than employing trojaned

binaries, which interface between the administrator and the operating system, an attacker

might directly hide the tool from the operating system. To explore the feasibility of hiding

a process on a system without making detectable modifications to the system call table or

system utilities, we have written our own program that hides a process on the Windows (NT,

2000 and XP) operating system and we modified an existing program [22] to hide processes

on the Linux operating system.

2.2 Hidden Processes

In the following subsections we detail the steps that our program takes to hide processes

on both the Windows (NT, 2000 and XP) and Linux operating systems. Due to Window’s

prevalence, its subversion affords the greatest profitability to the attacker. Linux is also an

excellent target since it is widely deployed and is used to provide numerous network infras-

tructure services.

2.2.1 Windows

When queried about the processes currently running on the system, the Windows oper-

ating system presents a list of active processes that is obtained by traversing a doubly linked

list referenced in the EPROCESS structure (process descriptor) of each process. Specifically,
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a process’ EPROCESS structure contains a LIST-ENTRY structure that has members FLINK

and BLINK. FLINK and BLINK are pointers to the processes that are forward and behind

the current process descriptor. Figure 2.1 illustrates the EPROCESS block of the Windows

kernel.

To hide a process in Windows we located the Kernel’s Processor Control Block

(KPRCB), which is unique and located at the address 0xffdff120. We followed the Cur-

rentThread pointer to the ETHREAD block. From the ETHREAD block we followed the

pointer from the KTHREAD structure to the EPROCESS block of the current process. We

then traversed the doubly linked list of EPROCESS blocks until we located the process that

we wish to hide. Once located, we change the FLINK and BLINK pointer values of the for-

ward and rearward EPROCESS blocks to point around the process to be hidden. Referring

to Figure 2.1, the BLINK contained in the forward EPROCESS block is set to the value of

the BLINK contained in the EPROCESS block of the process to hide and the FLINK of the

rearward process is set to the value of the FLINK contained in the EPROCESS block of the

process that we are hiding.

KPRCB

*CurrentThread
    *NextThread
  *IdleThread

ETHREAD

KTHREAD

ApcState

EPROCESS
KPROCESS

LIST_ENTRY {
    FLINK

BLINK             }

EPROCESS
KPROCESS

LIST_ENTRY {
    FLINK

BLINK              }

EPROCESS
KPROCESS

LIST_ENTRY {
    FLINK

BLINK              }

FIG. 2.1. Windows Kernel Data Structures

Intuitively, one would think that hiding a process by removing its process descriptor

from the doubly linked list of EPROCESS blocks would prevent the process from being
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allocated a time slot in which to execute. We have observed that this is not the case. The

Windows scheduling algorithm is highly complex, is done at thread granularity, is priority

based, and is preemptive. Accordingly, a thread is scheduled to run for a quantum of time,

which is the length of time before Windows interrupts the thread to check for other threads

of the same or higher priority or to reduce the priority level of the current thread. A process

may have multiple threads of execution and each thread is represented by an ETHREAD

structure that contains pointers to its siblings. Although we have been unable to precisely

determine why “un-linking” a process’ EPROCESS block from the doubly linked list does

not adversely affect execution of the process, we strongly suspect that the Windows scheduler

references those threads from some other linked list, not the EPROCESS block. It should be

noted that the data structures employed by the various Windows operating systems are not

publicly documented.

We have implemented the task of hiding a process by writing a device driver (.sys),

which is similar to a LKM in Linux, and by writing a Dynamically Loadable Library (DLL)

that provides an interface to the device driver. To hide a process, we load the device driver

and invoke it by passing the name and the unique PID (Process Identifier) of the process

to hide. This procedure hides the process and unloads the device driver. We minimize the

chance that an intrusion detection system would notice our activity because it takes only a

few milliseconds to hide a process and unload the device driver . If this process were to be

executed as a system booted, and before any IDS software is executed, it would be virtually

impossible to detect.

As detailed above, we did not make any changes to the system call table. We used

Microsoft’s Windbg in an attempt to locate the hidden process by running the Windbg as

master on one machine and slaving the machine with the hidden process to it via a serial

connection. Windbg could not detect the presence of the hidden process.
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2.2.2 Linux

We located two attack tools that reportedly mask Linux processes from the operating

system, specifically Adore [103] and Phantasmagoria [22]. The Adore tool would not run

at all, and we needed to make run-time modifications to the Linux Scheduler in order for

Phantasmagoria to run. With one exception, the procedure for hiding a process on the Linux

operating system is similar to the one used for Windows.

The Linux operating system’s process descriptor is a data structure of type task struct

(the layout of the data structure is included as Appendix C). Unlike Windows, in Linux there

is a strong one to one correspondence between a process and its process descriptor. In Linux

the individual process descriptors contain pointers that make up the run queue of runnable

processes.

task_array

PID
Process 0

State

*next_task
*prev_task

*next_run
*prev_run

 *p_pptr
(null)

  *p_cptr
  *p_ysptr
  *p_osptr

...

...

PID

State

*next_task
*prev_task

*next_run
*prev_run

  *p_pptr
*p_cptr

  *p_ysptr
  *p_osptr

...

...

PID

State

*next_task
*prev_task

*next_run
*prev_run

  *p_pptr
*p_cptr

  *p_ysptr
  *p_osptr

...

...

PID
1901

State

*next_task
*prev_task

*next_run
*prev_run

  *p_pptr
*p_cptr

  *p_ysptr
  *p_osptr

...

...

FIG. 2.2. Linux Process Descriptors

As depicted in Figure 2.2, the task array contains a pointer to each process descriptor.

The first entry in the task array is to process 0, which does not have a parent process and

is synonymous with init task or swapper. Process 0 is the first process started by the Linux

kernel and is at the head of the doubly linked list that is referenced by next task and prev task
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pointers of each process descriptor. The run queue, a data structure that points to those

processes whose state is runnable is also maintained via a linked list formed by the next run

and previous run pointers of the process descriptor. Finally, each process descriptor contains

pointers to its parent, sibling, and child processes.

To hide a process, we unlinked the process descriptor from the task array, removed any

referencing links from corresponding parent, sibling and child process descriptors, and just as

in Windows we reset the next task and prev task links of any referencing process descriptors

to point around the subject process descriptor. To maintain a reference to the hidden process

we set the parent pointer (p pptr) of Process 0’s process descriptor to point to the hidden

process. Moreover, we were able use p pptr of Process 0 as the root of a list of hidden

processes in the event we wanted to hide additional processes.

Linux, unlike Windows, relies exclusively upon the pointers contained within the pro-

cess descriptor for scheduling CPU time to a process. Under normal execution, the Linux

scheduler, at the start of each epoch, traverses the doubly linked list of process descriptors,

assigning each process quantums or CPU time slices. We found that when we hid the pro-

cess we also needed to perform a run-time modification to the scheduler so that it would also

traverse the list pointed to by Process 0’s p pptr and the hidden process to the run queue.

Figure 2.3 illustrates the concept of removing PID 1901 from the normal list and hiding it by

making it the parent of Process 0.

2.3 Detecting Hidden Processes

In the following section we present three methods for detecting hidden processes. The

one method for Windows employs an existing tool. Of the two methods used for Linux, one

requires modification to the operating system and the other adds operating system function-

ality via a loadable kernel module (LKM). As will be described, we extended the LKM to

instrument the Linux kernel and export data streams containing low-level kernel attributes.

We also use the LKM to offer reasonable assurances regarding the integrity of the system call

table and the interrupt descriptor table. Intruders have historically modified the system call
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task_array

PID
1901

State

*next_task
*prev_task

*next_run
*prev_run

 *p_pptr
*p_cptr

  *p_ysptr
  *p_osptr

...

...

PID
Process 0

State

*next_task
*prev_task

*next_run
*prev_run

...

...

PID

State

*next_task
*prev_task

*next_run
*prev_run

  *p_pptr
*p_cptr

  *p_ysptr
  *p_osptr

...

...

 *p_pptr
*p_cptr

  *p_ysptr
  *p_osptr

FIG. 2.3. A Hidden Linux Process Descriptor

table giving rise to the notion held by many security practitioners that there are no operating

systems that can be trusted.

2.3.1 Detecting Hidden Processes in Windows

Hunt and Brubacher introduce Detours [51], a library for intercepting arbitrary Win32

binary functions, as a means of instrumenting and extending application and operating sys-

tem functionality in the Windows environment. Detours replaces the first few instructions

of a target function with an unconditional jump to a user provided detour function. The in-

structions from the target (original) function are preserved in a trampoline function. Detours

are inserted at execution time, where the code of the target function is modified in memory

– not on disk. Figure 2.4 shows the temporal ordering of the detour, trampoline and target

functions.

In Windows, context switching is carried out by a call to SwapContext which is a func-
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Source
Function

Detour
Function

Trampoline
Function

Target
Function

1 2 3

45

FIG. 2.4. Temporal Ordering of a Detour Function

tion in ntoskrnl.exe. The first seven bytes of SwapContext are:

OR CL, CL

MOV byte ptr ES:[ESI+2D], 02

When SwapContext is called, the value contained in the EDI register is a pointer to the

next thread that is to be swapped in and the value contained in the ESI register is a pointer

to the current thread, which is to be swapped out. In our detection method, we replace the

seven bytes of SwapContext with a five byte unconditional jump to our Detour Function. The

Detour Function verifies that the KTHREAD of the thread to be swapped in (referenced by

the EDI register) points to an EPROCESS block that is appropriately linked to the doubly

linked list of EPROCESS blocks.

2.3.2 Detecting Hidden Processes in Linux

We have devised two methods that will detect hidden process in the Linux environment.

The first method is straightforward and requires modification to the kernel’s scheduler func-

tion. Accordingly, we are able to detect hidden processes by modifying the scheduler so that

when a process’ state is set to Task Running and it is placed in the run queue by setting the

next run and prev run pointers of its process descriptor, the doubly linked list of next task

and prev task pointers is traversed to ensure that they are correctly linked. This takes place

once per epoch and the system overhead is �� traversals where � is the number of active

processes.
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Our second method, although more complex, does not require modification to the kernel.

It also serves as a segue into our method of instrumenting the Linux kernel. The following

treatment of our method and LKM assumes the Intel i686 architecture.

The interrupt descriptor table (IDT) is a table of interrupt vectors where each vector

points to an interrupt handler. The IDT is comprised of 256 8-byte pointers and resides in

the first 2k of addressable memory. With one exception, all of the interrupts are hardware

interrupts. The exception is interrupt x80 (decimal 128), which is a software interrupt that

calls the system call handler. On the i686 architecture, a system call number is placed in the

EAX register and interrupt x80 is invoked. The address of the system call handler is retrieved

from the IDT, and control is passed to that address.

Kernel system calls are the lowest level of system functionality. System calls provide

read and write access to file systems, access to network connections, time of day functions,

and invoke process execution. In order to hide files, directories, processes, or network con-

nections without modifying any system binaries, an attacker will need to modify the function

addresses in the kernel system call table (i.e.: sys call table) so that they point to spurious

functions.

In order to ensure the integrity of the system, we maintain a copy of the addresses of

the handler offsets from the interrupt vector and the kernel function calls. These copies are

periodically checked to ensure that the IDT and the system call table have not been modified.

In order to mitigate the effects of hidden processes, we intercept all calls to the system

call handler. Prior to copying the addresses of the interrupt handlers contained in the IDT, we

save the address of the handler that is stored at address x80 and replace it with the address

of our own kernel function. Consequently, whenever a process makes a kernel system call,

we intercept that process and traverse the doubly linked list of file descriptors to ensure that

the process is properly linked and not “hidden”.

The computational overhead imposed by the LKM method increases linearly with the

number of active processes.
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2.4 Instrumenting the Linux Kernel

We have adapted our LKM to serve as a sensor embedded in the operating system. We

use it to monitor system state at the process, network, and “global” system levels.

When loaded, our LKM replaces the address of the call handler with the address of

our LKM. (The Linux source file for the call handler functions is entry.S). Whenever a

process makes a system call, instead of jumping to the call handler, control is passed to our

LKM, where we save the process’ state information. We now have immediate access to that

process’ process descriptor (the Linux task struct). All of the available information about a

process can be learned by accessing the additional data structures pointed to by the pointers

in the process descriptor. This information includes: the process’ memory regions, shared

libraries, register values, memory faults, and page faults. Our LKM extracts selected data and

exports it. Once the data has been exported, the process’ register vales are restored, the stack

pointer is set to the appropriate value, and we then pass control to the system call handler.

When the system call handler finishes, control is returned directly to the calling process.

The low-level kernel data can now be used to build a model of normal system state.

Once we have constructed the model, we compared subsequent instances of the low-level

kernel to the model to test for anomalous behavior that is indicative of attacks and intrusions.

2.5 Chapter Conclusions

In this chapter we have demonstrated how to detect hidden processes, as well as changes

to the system call and interrupt descriptor tables (one of the most common methods of sub-

verting a system). These safeguards afford a host-based intrusion detection system some

assurances that the host has not been compromised.

Our assurance function operates within the operating system and has been extended to

output streams of low-level kernel data that are specific to the processes that are running on

the system.

To offer an additional level of assurance, Arbaugh, et. al [3] have specified the AEGIS
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bootstrap protocol which systematically loads the BIOS, the operating system, and all device

drivers from a trusted source. Although AEGIS is only concerned with loading trusted soft-

ware, not testing for modification while it is in process, our procedure ensures that binaries

that are resident in memory have not been modified and remain consistent with the image that

was loaded. AEGIS in concert with our methods, which are able to detect changes to loaded

binaries, affords a reasonable degree of assurance in the integrity of an operating system.



Chapter 3

Measuring System Calls in Terms of Self-Distance

Considerable research effort has been dedicated to using system call sequences to de-

tect anomalous behavior. As will be described, Stephanie Forrest et al. have shown that

characterizing sequences of system calls holds promise. There are also several analyses and

critiques of Forrest’s work and of the concept of using system calls to characterize system

behavior in general. This chapter synopsizes that research and its analyses and presents our

novel system call measurement. Our novel measurement quantifies the intrinsic regularity

and density of a system call that is observed in contiguous system calls. We refer to it as the

system call’s self-distance.

3.1 Introduction and Background

Forrest et al. [37, 116] have developed an intrusion detection methodology modeled

after the way the human immune system distinguishes between harmful and benign antibod-

ies. Immunologists describe the immune system’s dilemma as one of distinguishing “self”

from dangerous “other” (or “nonself”) in order to eliminate the dangerous “other”. In their

immunological intrusion detection model, traces of system calls are used to distinguish be-

tween “self” and “other” at the system level.

They use a collection of system call traces from privileged processes to define an em-

pirical model of the program’s normal behavior – “self”. They then take subsequent traces of

system calls and compare those traces to the empirical model to determine if the subsequent

24



25

trace conforms to the model. If any portion of the subsequent trace fails to conform to the

model it is declared to be “other” and therefore intrusive.

Their empirical model is defined in terms of short n-grams of system calls. To classify a

trace, a fixed-size window of size w (here � = 6) is slid over the trace. As the window slides

across the sequence, and for each system call thereafter, the preceding system call is recorded

at different positions within the window, numbered from 0 to ����� . This results in a model

that is comprised of a lexicon of all possible sequential sequences of size w. To test whether

a process is normal or intrusive, system call sequences (n-grams of size 6) from the process

under observation are compared to the empirical model that defines the program’s profile.

This method was experimentally implemented as stide (sequence time-delay embed-

ding) and t-stide (threshold sequence time-delay embedding). The difference between stide

and t-stide is that t-stide determines the relative frequency of each n-gram in the sequence. If

the frequency is under a user specified threshold (typically ������� ), it is declared to be “rare”

and is not included in the process’ profile.

In [101], Forrest et al. extended their previous work, calling it pH, short for process

homeostasis. Homeostasis is a term for the biological process of maintaining a normal in-

ternal environment. pH monitors every executing process on a computer at the system-call

level and responds to anomalies by either delaying the process by some amount of time t or

by terminating the process.

The pH prototype was implemented as a patch for the Linux kernel, where the modified

kernel is capable of monitoring every executed system call. The training of pH was con-

ducted in real-time where a process’ profile is established after some set number of system

calls, wherein the system “believes” it has been adequately trained. In testing the prototype

they found that some processes, such as X-server, can be perturbed by normal user actions,

consequently freezing the system. They also found that processes that make a large number

of system calls in a short period of time prematurely acquire their “normal” profile.

Tan et al. [107–110] have extensively analyzed and tested stide and t-stide, hereafter

collectively referred to as stide. They found that stide was blind to foreign sequences, which
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they define as two consecutive sequences of size � that are found in the normal profile, such

that if the window size were expanded to ��� the aggregated sequence would not be included

in the normal profile. They refer to this phenomena as a “blind spot” and have demonstrated

that the size of the blind spot increases with the size of � . Their analysis indicates that attacks

can be hidden within the blind spot. They also show that attacks can be aggregated so that a

lesser attack masks a more egregious attack.

Wagner and Soto [115] have constructed a theoretical framework for a mimicry attack.

They define a mimicry attack as one whose sequence of system calls mimics a normal se-

quence of system calls. They implemented their framework by first building a normal profile

of system call sequences for the wuftpd server ( � = 6). They then crafted a “theoretical”

buffer overflow attack comprised of sequences of system calls that matched the normal pro-

file. This theoretical framework could not be implemented, however. Specifically, they could

not code a buffer overflow attack and have it compile to the requisite sequence of system

calls needed to execute their mimicry attack.

Eskin et al. [33] have extended Forrest et al.’s work by incorporating dynamic window

sizes into the process. The premise of their extension is that there exists intrinsic regularity in

the sequences of system calls produced by a running process. They determine the regularity

of a sequence of system calls by measuring the conditional entropy under varying window

sizes. They then choose the window size wherein the sequence of system calls exhibits the

least amount of entropy.

3.2 Defining Self Distance

Eskin et al. point out that the greater the regularity within a sequence of system calls,

the better the predictive value of the sequence when compared to subsequent sequences. Our

self-distance metric takes advantage of both the regularity and the density of the specific

system call types with a sequence of system calls.

We have constructed a feature that uses the Kullback-Leibler dissimilarity measure be-

tween the probability distributions of the self distances between a baseline exemplar and
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those of an unknown sample. Both the baseline exemplar and the sample are from a process

of the same type (e.g.: sendmail, apache, login, etc). We weight Kullback-Leibler dissimi-

larity measure with the information gain value I of the intrinsic regularity of a sequence of

system calls of the baseline. The following explanation provides the theory behind our met-

ric.

Information Gain. Information gain is a measure of the intrinsic periodicity and density of

a particular system call within a sequence of system calls. Consider the following:

Suppose we have a hypothetical system call, � , and a hypothetical sequence of unit

length. Furthermore suppose that we have four (4) occurrences of system call � , where � is

the first and last system call in the sequence and the intervening occurrences of � are evenly

spaced in the sequence. Figure 3.1 shows our hypothetical system call � , as having self-

distances of �� , �� , and �� within the sequence. We use Equation 3.1 to measure the degree of

regularity conferred by the self-distances of system call � to the sequence.

a0 a1 a2
a3

     
1/3 1/3 1/3

FIG. 3.1. Uniformly Distributed Occurrences of System Call � Within the Sequence

��� ��� �! #"%$'&(�! (3.1)

where � is a unique system call number and ) is number of intervening system calls between� and the previous occurrence of � in a stream of system calls

Therefore, the information gain,
�
, of system call � as depicted in Figure 3.1 is:

�+*,� �.- �� "/$'& ��10 �� "%$'& ��20 �� "/$3& ��54 = 67-8� �� "%$'& ��54 � �9"%$'& �� � "%$'&:6<; ��=(>?>
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Now consider the case of the hypothetical system call 	 , illustrated in Figure 3.2. We

have four (4) occurrences of 	 of varied spacing within the sequence.

b0 b1 b2
b3

   
1/20 17/20

 
2/20

FIG. 3.2. Varied Occurrences of System Call 	 Within the Sequence

The application of Equation 3.1 to the sequence illustrated in Figure 3.2 results in the

information gain of:

�+@A� �.- �CB "/$3& �CB 0 CB "/$3& CB 0 �EDCB "/$3& �EDCB 4 = �.-8����F�FHGI�J�K�L�����HG?M?M 4 ; �N�?��=HM
As illustrated, the more regular the periodicity and the greater density of the system call

within the sequence, the greater the system call’s information gain.

Definitions:

C is the set (alphabet) of all system calls.

CallTrace. By 
��("/"PO9Q��(RTS we mean a map from U 1,2, ����� , T V into 
 , where T is the tempo-

rally greatest system call and where each R in 
��("%"POWQ��XRYS originated from the same Process

ID (PID).

CallProfile. By 
��("%"/Z�Q?$�[\)]"%S we mean the inverse images of a 
��("%"POWQ��XRYS for each R_^�
 .

SelfDistance. By SelfDistance we mean the sequence of differences ` (defined by Equation

3.2) of consecutive elements in a 
��("/"%Z�Q�$?[\)]"/S.� , for �a^b
 . (i.e. if 
��("/"/Z�Q�$?[c)d"/S(-/� 4 =� �fe �  e ����� e �Hg (where h is the number of occurrences of call � ) then the self distance set for
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call � is `5i where `5i is defined by Equation 3.2.

`3i � `c- � i 4 �j`c- � ifk � 4Yl for m = 2, ..., M (3.2)

I is the information gain derived from the periodicity and density of a system call R in a
��("/"#OWQ��(RTS and is formally specified in Equation 3.3.

� -%R 4 � � �npo�q3r]s�tYu  wv%x *zy�{ rE| `}I"/$3& `} l��~!S�Q�S }���� 
��("%"POWQ��XRYS � (3.3)

Collection. By 
�$5"/"%S'Rp�z)d$3� we mean a set of 
��("/"#OWQ��(RTS s where each 
��("/"PO9Q��(RTS in the
�$5"%"/S'Rp�z)d$3� originated from a process of the same type (i.e.: they all came from emacs or

sshd, etc).

Constructing the Baseline. We construct a baseline for a particular type of process by

taking a 
�$5"%"/S'Rp�z)d$3� and generating and aggregating all of the corresponding CallProfiles and

SelfDistances for each 
��("/"#OWQ��(RTS�^�
�$5"/"/S'Rf�z)]$5� . We have a function [�-%R e ` 4 that produces

the number of calls R at distance ` for each system call in the 
�$5"/"%S'Rp�z)d$3� . Likewise, the

information gain
�

for each system call R is calculated over the entire 
�$�"/"/S'Rf�z)]$5� .

Constructing a Sample � for Comparison to the Baseline � . A sample is constructed

from another 
��X"/"POWQ?�(RYS , where 
��("/"PO9Q��(RTS is a subsequent CallTrace derived from the

same type of process (i.e.: sendmail, named, login, etc.) as was the baseline. Likewise,

the 
��("/"%Z�Q�$?[\)]"/S , ��S'"E[\��)C�+�8�H��RYS and the distribution [�-%R e ` 4 are also calculated.

Using the Kullback-Leibler Dissimilarity Metric to Compare Distributions � and � .

The Kullback-Leibler dissimilarity metric is a measure of the relative entropy between two
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discrete distributions that have probability functions ��� and �\� , respectively. It is defined by

Equation 3.4: � -E�9� ��� �\� 4�� � � � �\��"%$'& �\��9� (3.4)

and it has the following properties:

i.
� -E�9� ��� �\� 4���<� -]�\� ��� �W� 4 ; it is asymmetric

ii.
� -E�9� ��� �\� 4�� � .

iii.
� -E�9� ��� �\� 4 ���j�

( �9 � �����\ �� � )
iv.

� -E�9� ��� �\� 4 � � � ( �W �� �L���\ � � )
Equation 3.5 shows how we use the Kullback-Leibler dissimilarity measure to calculate

the self distance metric of the Sample, � , in respect to the Baseline, � .� ��� q � � { �T{W� � n � { n "%$'& � { n� { nH  (3.5)

When comparing the sample � to the baseline � with the Kullback-Leibler dissimilarity

measure there are two potential conditions that result in a score of infinity. If this occurs, the

following heuristics are applied: �.-]� { n "P&�� { n 4¡� `¢^£� { n �¤`¦¥^�� { n=H� � R_^¦� { n �§R¢¥^�� { n
3.3 Experimental Design

To test the merits of our self-distance metric, we acquired 
�$5"%"/S'Rp�z)d$3��� of 
��("%"POWQ��XRYS3�
produced by the lpr, named, xlock, login, ps, inetd, ftpd, and sendmail

processes under normal operation. 80% of each process’ 
�$�"/"/S'Rp�z)d$3� was used to create a

baseline exemplar for that process. The remaining 20% of the process’ 
�$�"/"/S'Rp�z)d$3� was used

to create “unknown” 
��("/"POWQ?�(RYS3� of that process. We also produced our own data by creating
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a 
�$�"/"/S'Rf�z)]$5� from Apache Server version 1.3.27, which mirrored the International Federa-

tion for Information Processing and Music Machines Web sites. Traffic was generated by

replaying the Web sites’ transaction logs against the web server.

To establish a baseline dissimilarity score, we applied Equations 3.2 and 3.4 to each

known 
��("%"POWQ��XRYS¨^b
�$�"/"/S'Rf�z)]$5� , and recorded the maximum score( h©�H� q {/ª]« r ). We then

constructed “unknown” samples, � , as previously defined, and applied Equation 3.4 to mea-

sure the dissimilarity between the baseline and each of the unknown samples. If the unknown

sample’s score was ¬h©�H� q {/ª]« r , the sample was declared to be anomalous and counted as a

false positive.

We also acquired 
�$5"%"/S'Rp�z)d$3��� of 
��("/"PO9Q��(RTS3� of those same processes, but while they

were under attack. The 
��("%"POWQ��XRYS3� were processed as previously described and we created

“unknown” samples corresponding to each 
��("%"POWQ��XRYS�^�
�$�"/"/S'Rf�z)]$5� . Using Equation 3.4,

we compared the unknown sample to the baseline, producing a dissimilarity score. If the re-

sulting score was greater than h©�H� q {/ª]« r , that 
��("/"PO9Q��(RTS was considered to be a true positive

and represented an attack. If the score was less than or equal to h®��� q {/ª]« r , then the result

was counted as a false negative.

3.3.1 Data Sets

We used the stide, t-stide, and pH data sets from the University of New Mexico. These

data sets consist of streams of system calls from processes under normal operation and those

same processes while under attack. To generate attack 
��("/"PO9Q��(RTS3� for our Apache Server

data set, we attacked it with with a buffer overflow attack and a resource consumption attack,

collecting the 
��("/"#OWQ��(RTS3� during the attacks. The following provides an overview of each

process and the attacks that were used against them:

A. sendmail. Sendmail is a Unix-based implementation of the Simple Mail Transfer

Protocol (SMTP) used for transmitting and delivering e-mail. When a sendmail server

receives e-mail, it attempts to deliver the mail to the intended recipient. If it cannot

deliver the message, it queues it for later delivery.
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(a) sscp. The sunsendmailcp (sscp) attack script uses a special command line option

to cause sendmail to append an email message to a file. By using this script on a

file such as /.rhosts, a local user may obtain root access.

(b) decode. In older sendmail installations, the alias database contains an entry

called “decode”, which resolves to the uudecode binary, a Unix program that

converts a binary file that was encoded into ASCII characters for transmission

back into its original form and name. uudecode respects absolute filenames,

so if a file “bar.uu” says that the original file is “/home/foo/.rhosts” then when

uudecode is given “bar.uu”, it will attempt to create foo’s .rhosts file. Sendmail

will generally run uudecode as a semi-privileged process so that email sent to

decode cannot overwrite files on the system. However, if the target file is world-

writable, the decode alias entry allows these files to be modified by a remote user.

(c) loops. This attack consists of a local forwarding loop. It occurs in sendmail

when a set of ¯ ./forward file forms a logical circle.

(d) syslogd. The syslogd attack uses the syslog interface to overflow a buffer in

sendmail. A message is sent to the victim machine, causing it to log a very long,

specially created error message. The log entry overflows a buffer in sendmail,

replacing part of sendmail’s running image with the attacker’s machine code.

B. lpr. The lpr utility adds a job to the print queue by copying the specified file into its

spooling directory. Strictly speaking, the file is only added to the print queue, the lpd

print daemon handles the task of sending the file to the actual print device.

(a) lprcp. The lprcp attack uses lpr to replace the contents of an arbitrary file.

This attack exploits the fact that older versions of lpr use only 1,000 differ-

ent names for printer queue files, and do not remove the old queue files before

reusing them. The attack produces 1,001 unique PIDS which results in 1,001
��("/"POWQ?�(RYS3� . In the first trace, lpr places a symbolic link to the victim file in
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the queue. The middle traces advance lpr’s counter, until on the last trace, the

victim file can be overwritten with the attacker’s own file.

C. named. The named daemon is the name server and routing daemon. Specifically, it

is a Domain Name System (DNS) server, which is part of the BIND distribution.

(a) Inverse Query Buffer Overrun. BIND 4.9 releases prior to BIND

4.9.7 and BIND 8 releases prior to 8.1.2 do not properly perform a bounds check

when calling memcpy() when responding to an inverse query request. An im-

properly or maliciously formatted inverse query on a TCP stream can crash the

server or it may allow an attacker to gain root privileges.

D. wuftpd. Ftpd is the Internet File Transfer Protocol server process. The server uses

the TCP protocol and typically listens to ports 20 and 21 (control and data). wuftpd

is a replacement ftp daemon for Unix systems..

(a) misconfiguration vulnerability. The wuftpd binary was mis-configured

when it was compiled, consequently allowing users SITE EXEC (execute a pro-

gram) access to /bin, consequently permitting root privileges.

E. login. The login utility is used when signing onto a system. It can also be used to

switch from one user to another at any time.

(a) trojan login. The trojaned login, which allows an intruder to login

through a “backdoor”, has been substituted for the legitimate binary. This allows

the attacker unfettered access to the system.

F. ps. The ps utility provides a snapshot of the current processes running on a system.

It uses the /proc file system to acquire information regarding each process.

(a) trojan ps. The trojaned ps has been substituted for the legitimate binary.

This trojaned binary hides the attacker’s activities from the system administrator.
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G. inetd. The inetd program is started as a foreground process, initiates a daemon

process to run in the background, and then exits. The daemon process initiates child

processes that perform a fixed set of initialization steps before executing some other

program.

(a) DoS. This denial-of-service attack consumes network connection resources. The

intrusive 
��("/"#OWQ��(RTS includes a startup process, a daemon process, and several

child processes. Only the daemon process is expected to show any deviation

from normal behavior.

H. xlock. The xlock program allows the user to “lock” their X terminal.

(a) buffer overflow. A buffer overflow condition exists in some implementa-

tions of xlock. It is possible to attain unauthorized access by calling a vulnera-

ble version of xlock that has the setuid or setgid bits set.

I. Apache Server. The Apache HTTP Server is an open source HTTP (Web) server

for the Unix and Windows operating systems.

(a) chunking vulnerability. The HTTP 1.1 specification allows for “chun-

ked” encoding, where a message is transfered in a series of chunks. Certain ver-

sions of the Apache Server are vulnerable to a chunking vulnerability that causes

a buffer overflow in a memcpy() function when re-assembling those chunks.

(b) DoS. Memory leaks occur when memory is allocated and never released. Certain

versions of Apache Server are vulnerable to remotely induced memory leaks.

This remotely induced memory leak in Apache Servers constitutes a Denial of

Service attack because it consumes all of the computer’s memory and causes it to

freeze.

Table 3.1 details each 
�$�"/"/S'Rf�z)]$5� . The table contains the number of traces, the number

of unique PIDS, and the number of system calls collected per process and per attack. Table

3.2 presents the similar details regarding our own self generated 
�$5"/"/S'Rf�z)]$5� .
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Data Set Normal Data Intrusion Data
Program No. of No. of No. of Attack No. of No. of No. of
Name Traces PIDS Syscalls Name Traces PIDS Syscalls

1 UNM 1 147 1,571,583 smcp 3 3 1,119
sendmail decode 2 10 3,067

loops 5 10 2,569
2 syslogd 4 6,504
2 UNM lpr 1 1 1,234 553,336 lprcp 1 1,001 164,232
3 MIT lpr 1 2,766 467,464 lprcp 1 1,001 165,248
4 UNM lpr 2 10 2,938 lprcp 1 1,001 164,231
5 named 1 28 9,230,572 buf over #1 3 3 969

buf over #2 2 2 831
6 wuftpd 2 7 8,603 mis. conf. 1 5 1,363
7 login 1 24 8,906 trojan #1 1 5 2,054

trojan #2 1 8 2,083
8 ps 1 19 12,307 trojan #1 1 11 2,463

trojan #2 1 15 4,505
9 inetd 3 541 DoS 31 8371
10 xlock 71 71 339,177 buf over #1 1 1 489

(synthetic) buf over #2 1 1 460

Table 3.1. University of New Mexico Data Sets

Data Set Normal Data Intrusion Data
Program No. of No. of No. of Attack No. of No. of No. of
Name Traces PIDS Syscalls Name Traces PIDS Syscalls

11 Apache 10 10 102,920 chunking 10 10 1,320
Server DoS 10 10 860

Table 3.2. Our Generated Apache Server Data Set

3.3.2 Results and Discussion

Our self distance metric correctly classified all of the normal 
��("%"POWQ��XRYS3� . When pro-

cessing the intrusive 
��X"/"POWQ?�(RYS3� we failed to correctly classify all of the decode and

loops attacks that were made against sendmail. Although we caught some of the

decode and loops attacks, we had 80% and 10% false negatives respectively.

As we stated in the discussion of sendmail and the attacks made against it, the

decode attack overwrites a protected file. Because we are only examining system calls

we could not differentiate between a write to a non-protected and a write to a protected file.

Our results are detailed in Table 3.3.
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Normal Data Attack Data
Program °!±z²´³pµp¶¸·C¹ % False Attack No. Attacks % False
Name Positives Name in º�»�¼½¼¿¾À³p»�±zµpÁ Negatives
UNM .019385 0 smcp 3 0
Sendmail decode 10 80

loops 10 10
syslogd 4 0

UNM lpr 1 .028535 0 lprcp 1 0
MIT lpr .049562 0 lprcp 1 0
UNM lpr 2 .029079 0 lprcp 1 0
named .030134 0 buf ov 1 3 0

buf ov 2 3 0
wuftpd .027593 0 5 0
login .042293 0 troj 1 5 0

troj 2 8 0
ps .014905 0 troj 1 11 0

troj 2 15 0
inetd .005634 0 DoS 1 0
xlock .062143 0 buf ov 1 1 0

buf ov 2 1 0
Apache .039102 0 buf ov 1 0
Server DoS 1 0

Table 3.3. Results

3.4 Chapter Conclusions

Our results (both true and false positive rates) surpass those achieved by Forrest et al.,

confirming that the Kullback-Leibler dissimilarity measure, weighted by information gain

of the self-distance distributions between a unknown sample and a baseline exemplar, is a

suitable measure to distinguish between processes that are under attack and those that are

not.

Although metrics derived from streams of system calls prove to be indicative of a pro-

cess’ behavior there may be many attacks and intrusions that are immune from detection by

this method alone. Additional metrics will be required to detect their presence. The next

chapter details the feature vectors (which include our self-distance measure) that we have

constructed from low-level kernel data that supply those other metrics.



Chapter 4

Feature Set Construction from Low-Level Kernel

Data

In their 1990 paper IDES: A Progress Report [78] Lunt et al. note the existence of low-

level system data and suggest that it be used for intrusion detection. We are unaware of any

other researchers comprehensively making use of low-level kernel data. This chapter details

the feature sets that we constructed from low-level kernel data.

We collected low-level kernel data at the process, network, and system levels. We used

this data to create feature vectors of 34 attributes at the process level, 67 attributes at the

network level, and 18 attributes at the system level. Each vector is representative of system

state at the time it was taken. Process data is sampled once per system call while network

and system data is sampled at intervals of .5 seconds each.

As will be detailed in Chapter 5, the feature vectors derived from each sample were used

as input in the creation of our model of normal behavior. Once the models were established,

we created additional feature vectors derived from subsequent data samples and tested them

for conformance to the model.

We used Principal Component Analysis (PCA) [58] to analyze the data sets (made up

of the feature vectors) that represent our model. PCA gives us insight regarding the features

that are the most meaningful in the model of normal behavior.

37
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4.1 Process Level Data

We collected several low-level attributes from each process of interest (e.g: network at-

tached processes, core system binaries, etc.) and used those attributes to construct the feature

sets. Each low-level attribute consists of numeric values. Some were memory addresses that

remained static and, when calculating the mean and standard deviation of that feature within

the feature set, resulted in a standard deviation of 0. In those cases, the corresponding feature

became a binary value that serves as a flag to indicate that some value other than the norm

was encountered. Other values, such as return addresses from system calls were limited to

a fixed set of addresses. Again, we used a binary value as that feature to indicate that some

other address was observed. Finally, in cases such as heap size, which is dynamic, the actual

size was used as the feature because the amount of dynamically allocated memory and its

pattern of change have an a priori predictive value.

time The time that the sample was taken. This is recorded as type long time t and is used to

synchronize events that occur in other processes, the network model, system model, or

on other hosts.

self distance metric The Kullback-Leibler dissimilarity measure of the difference between

the self-distance probability distributions of the model and the sample. This value is

assigned to blocks of system calls. For example, the Apache Web server executes 68

system calls when processing a single HTTP get request. Processes such as netstat,

ls, and top generate varying numbers of system calls depending upon the number of

connections, number of files, or the number of processes. Accordingly, the sequence

lengths are varied to match the observed number of system calls generated by each

process for one “atomic” operation.

nice The nice value ranges from 19 (nicest) to -19 (not nice to others). It quantifies the

scheduling priority that the process requests for itself.

unknown calling address This is a binary value (0-1) to indicate that the calling address
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(from a system call) was not previously encountered in the model.

calling address outside of code segment This is a binary value (1) that indicates that the

calling address of a system call is outside of the code segment.

return address outside of code segment This is a binary value (1) that indicates that the

return address of a system call is outside of the code segment.

unknown return address This is a binary value (0-1) to indicate that the return address

(from a system call) was not previously encountered in the model.

code size This value is the actual size of the process, calculated by (mm- ¬ end code - mm-¬ start code). We should expect that it will not deviate from instance to instance of the

process.

library size This value is the actual library size of the libraries that are linked to the the

process at run time. We should expect that it not deviate from instance to instance of

the process.

current stack size This is a value that indicates the current stack size. During normal ex-

ecution, the stack should grow and shrink. Rapid and sustained growth may be an

indicator of a problem.

virtual memory size The size of the virtual memory owned by the process. This is calcu-

lated by traversing the AVL tree1 pointed to by the first vm area struct and summing

each vm end - vm start.

number of memory regions owned The kernel attempts to merge regions when a new one

is allocated. Ownership of several regions could indicate a resource consumption at-

tack.

1An AVL tree is another balanced binary search tree. Named after their inventors, Adelson-Velskii and Lan-
dis, they were the first dynamically balanced trees to be proposed. Like red-black trees, they are not perfectly
balanced, but pairs of sub-trees differ in height by at most 1, maintaining an O(log n) search time. Addition and
deletion operations also take O(log n) time.
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resident set size limit This value reflects changes of the limit to the process’ resident set

size.

resident set size A value reflecting the change in number of pages that the process has in

real memory.

locked virtual memory A value reflecting changes in the amount of virtual memory that is

locked by the process. As with all of the memory measurements, we expect to see

allocation and deallocation of resources that are commensurate with the changes to the

other attributes.

xds The xds register is a pointer to the user’s data segment. This feature contains a binary

value (0-1) that indicates that the value has changed to one that was not encountered in

the model.

system time The amount of time that the process has spent in s time.

user time The amount of time that the process has spent in u time.

open files A value indicating the number of files that are opened by the process. We expect

this value to remain fairly constant.

child processes The number of processes forked by the process. A large number of children

is indicative that there may be some type of resource consumption attack in progress.

minor faults A value representing the change in the number of minor faults the process has

made, those which have not required loading a memory page from disk.

child minor faults A value representing the change in the number of minor faults that the

process and its children have made, those which have not required loading a memory

page from disk.

major faults A value representing the change in the number of major faults the process has

made, those which have required loading a memory page from disk.
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child major faults A value representing the change in the number of major faults that the

process and its children have made, those which have required loading a memory page

from disk.

page swaps A value representing the change in page swaps made by the process.

child page swaps A value representing the change in the number of page swaps made by

the process’ children.

links A value representing a change in the number of symbolic links held by a process. Some

attacks are carried out by causing long chains of recursive links.

files open The number of files that are opened by a process. This number should fluctuate

within a given range during the life of the process.

files locked The number of files that are locked by a process. We expect that the range of

values will remain fairly constant.

address limit.seg The value of the highest memory address to be checked. This may be

changed by set fs, where the fs value determines whether or not argument validity

checking should be performed.

cpu time A value representing a change in the cpu time alloted to the process.

changed UID A binary value (1) indicating that the UID value has changed.

changed GID A binary value (1) indicating that the GID value has changed.

changed SUID A binary value (1) indicating that the SUID value has changed.

4.2 Network Level Data

We collected 67 attributes from the network protocol stack, to include the number of ac-

tive connections, half open connections, and the number of ports that have a process listening

on them. Except for the connection information, the data is cumulative information defined
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by the Management Information Base (MIB) for network management of TCP/IP-based In-

ternets [100]. We used this data to produce a feature set containing statistical information

that reflects the amount of change within each time interval. The feature set follows:

time The time that the sample was taken. This is recorded as type long time t and is used to

synchronize events that occur in other processes, the network model, system model, or

on other hosts.

tcp established This number provides the number of tcp connections including connec-

tions of type: “ESTABLISHED”, “SYN SENT”, “FIN WAIT1”, “FIN WAIT2”,

“TIME WAIT”,”CLOSE”, “CLOSE WAIT”, “LAST ACK”, and “CLOSING”.

tcp syn recv This provides the number of connections that are in the state of ”SYN RECV”;

the number of half open connections. A high number is indicative of a syn flood attack.

tcp listen This provides the number of processes that are listening. Depending on the sys-

tem, it should remain static.

Ip Forwarding The indicator of whether this host is acting as an IP gateway in respect to

the forwarding of datagrams received by, but not addressed to this host.

Ip DefaultTTL The default value inserted into the Time To Live field of the IP header of

datagrams originated at this host, whenever a TTL value is not supplied by the transport

layer protocol.

Ip InReceives The number of input datagrams received from interfaces, including those

received in error, during the interval defined by the observation period. This value is

indicative of the rate.

Ip InHdrErrors The number of input datagrams that were discarded due to errors in their

IP headers, including bad checksums, version number mismatch, other format errors,

time to live exceeded, errors discovered in processing their IP options, etc, during the

interval defined by the observation period.
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Ip InAddrErrors The number of input datagrams discarded because the IP address in their

IP header’s destination field was not a valid address to be received at this host. This

count includes invalid addresses (e.g., 0.0.0.0) and addresses of unsupported Classes

(e.g., Class E).

Ip ForwDatagram The number of input datagrams for which this host was not their final IP

destination, as a result of which an attempt was made to find a route to forward them

to that final destination. In entities which do not act as IP Gateways, this counter will

include only those packets which were Source Routed via this host, and the Source

Route option processing was successful.

Ip InUnknownProtos The number of locally addressed datagrams received successfully

but discarded because of an unknown or unsupported protocol.

Ip InDiscards The number of input IP datagrams for which no problems were encountered

to prevent their continued processing, but which were discarded (e.g., for lack of buffer

space). Note that this counter does not include any datagrams discarded while awaiting

reassembly.

Ip InDelivers The total number of input datagrams successfully delivered to IP user protocols

(including ICMP).

Ip OutRequests The total number of IP datagrams which local IP user protocols (including

ICMP) supplied to IP in requests for transmission. Note that this counter does not

include any datagrams counted in ipForwDatagrams.

Ip OutDiscards The number of output IP datagrams for which no problem was encoun-

tered to prevent their transmission to their destination, but which were discarded (e.g.,

for lack of buffer space). Note that this counter would include datagrams counted in

ipForwDatagrams if any such packets met this (discretionary) discard criterion.

Ip OutNoRoutes The number of IP datagrams discarded because no route could be found to

transmit them to their destination. Note that this counter includes any packets counted
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in ipForwDatagrams which meet this ‘no route’ criterion. Note that this includes any

datagrams which a host cannot route because all of its default gateways are down.

Ip ReasmTimeout The maximum number of seconds that received fragments are held while

they are awaiting reassembly at this host.

Ip ReasmReqds The number of IP fragments received that need to be reassembled at this

host.

Ip ReasmOKs The number of IP datagrams successfully reassembled.

Ip ReasmFails The number of failures detected by the IP reassembly algorithm (for what-

ever reason: timed out, errors, etc). Note that this is not necessarily a count of discarded

IP fragments since some algorithms (notably the algorithm in RFC 815 [16]) can lose

track of the number of fragments by combining them as they are received.

Ip FragOKs The number of IP datagrams that have been successfully fragmented at this

host.

Ip FragFails The number of IP datagrams that have been discarded because they needed to

be fragmented at this host but could not be (e.g.: because the DF flag was set).

Ip FragCreates The number of IP datagram fragments that have been generated as a result

of fragmentation at this host.

Icmp InMsgs The total number of ICMP messages which the host received. Note that this

counter includes all those counted by icmpInErrors.

Icmp InErrors The number of ICMP messages which the host received but determined as

having ICMP specific errors (bad ICMP checksums, bad length, etc.).

Icmp InDestUnreachs The number of ICMP Destination Unreachable messages received.

Icmp InTimeExcds The number of ICMP Time Exceeded messages received during the

interval defined by the observation period.
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Icmp InParmProbs The number of ICMP Parameter Problem messages received during

the interval defined by the observation period.

Icmp InSrcQuenchs The number of ICMP Source Quench messages received during the

interval defined by the observation period.

Icmp InRedirects The number of ICMP Redirect messages received during the interval

defined by the observation period.

Icmp InEchos The number of ICMP Echo (request) messages received during the interval

defined by the observation period.

Icmp InEchoReps The number of ICMP Echo Reply messages received during the interval

defined by the observation period.

Icmp InTimestamps The number of ICMP Time stamp (request) messages received during

the interval defined by the observation period.

Icmp InTimestampReps The number of ICMP Time stamp Reply messages received dur-

ing the interval defined by the observation period.

Icmp InAddrMasks The number of ICMP Address Mask Reply messages received during

the interval defined by the observation period.

Icmp InAddrMaskReps The number of ICMP Address Mask Request messages received

during the interval defined by the observation period.

Icmp OutMsgs The total number of ICMP messages which this host attempted to send

during the interval defined by the observation period. Note that this counter includes

all those counted by icmpOutErrors.

Icmp OutErrors The number of ICMP messages which this host did not send due to prob-

lems discovered within ICMP, such as a lack of buffers. This value should not include
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errors discovered outside the ICMP layer, such as the inability of IP to route the resul-

tant datagram.

Icmp OutDestUnreachs The number of ICMP Destination Unreachable messages sent dur-

ing the interval defined by the observation period.

Icmp OutTimeExcds The number of ICMP Time Exceeded messages sent during the in-

terval defined by the observation period.

Icmp OutParmProbs The number of ICMP Parameter Problem messages sent during the

interval defined by the observation period.

Icmp OutSrcQuenchs The number of ICMP Source Quench messages sent during the in-

terval defined by the observation period.

Icmp OutRedirects The number of ICMP Redirect messages sent. For a host, this object

will always be zero, since hosts do not send redirects during the interval defined by the

observation period.

Icmp OutEchos The number of ICMP Echo (request) messages sent during the interval

defined by the observation period.

Icmp OutEchoReps The number of ICMP Echo Reply messages sent during the interval

defined by the observation period.

Icmp OutTimestamps The number of ICMP Time stamp (request) messages sent during

the interval defined by the observation period.

Icmp OutTimestampReps The number of ICMP Time stamp Reply messages sent during

the interval defined by the observation period.

Icmp OutAddrMasks The number of ICMP Address Mask Request messages sent during

the interval defined by the observation period.
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Icmp OutAddrMaskReps The number of ICMP Address Mask Reply messages sent dur-

ing the interval defined by the observation period.

Tcp RtoAlgorithm The algorithm used to determine the timeout value used for retransmit-

ting unacknowledged octets during the interval defined by the observation period.

Tcp RtoMin The maximum value permitted by a TCP implementation for the retransmis-

sion timeout, measured in milliseconds. More refined semantics for objects of this type

depend upon the algorithm used to determine the retransmission timeout. In particular,

when the timeout algorithm is rsre(3), an object of this type has the semantics of the

UBOUND quantity described in RFC 793 [25].

Tcp RtoMax The minimum value permitted by a TCP implementation for the retransmis-

sion timeout, measured in milliseconds. More refined semantics for objects of this type

depend upon the algorithm used to determine the retransmission timeout. In particular,

when the timeout algorithm is rsre(3), an object of this type has the semantics of the

LBOUND quantity described in RFC 793[25].

Tcp MaxConn The limit on the total number of TCP connections the host can support. In

entities where the maximum number of connections is dynamic, this object should

contain the value 1.

Tcp ActiveOpens The number of times TCP connections have made a direct transition to

the SYN SENT state from the CLOSED state during the interval defined by the obser-

vation period.

Tcp PassiveOpens The number of times TCP connections have made a direct transition

to the SYN RCVD state from the LISTEN state during the interval defined by the

observation period.

Tcp AttemptFails The number of times TCP connections have made a direct transition to

the CLOSED state from either the SYN SENT state or the SYN RCVD state, plus the
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number of times TCP connections have made a direct transition to the LISTEN state

from the SYN RCVD state during the interval defined by the observation period.

Tcp EstabResets The number of times TCP connections have made a direct transition to

the CLOSED state from either the ESTABLISHED state or the CLOSE WAIT state

during the interval defined by the observation period.

Tcp CurrEstab The number of TCP connections for which the current state is either ES-

TABLISHED or CLOSE WAIT.

Tcp InSegs The total number of segments received, including those received in error. This

count includes segments received on currently established connections during the in-

terval defined by the observation period.

Tcp OutSegs The total number of segments sent, including those on current connections

but excluding those containing only retransmitted octets during the interval defined by

the observation period.

Tcp RetransSegs The total number of segments retransmitted, that is, the number of TCP

segments transmitted containing one or more previously transmitted octets during the

interval defined by the observation period.

Tcp InErrs The total number of segments received in error during the interval (e.g., bad

TCP checksums).

Tcp OutRsts The number of TCP segments sent containing the RST flag during the interval

defined by the observation period.

Udp InDatagrams The total number of UDP datagrams delivered to UDP users during the

interval defined by the observation period.

Udp NoPorts The total number of received UDP datagrams for which there was no appli-

cation at the destination port during the interval defined by the observation period.
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Udp InErrors The number of received UDP datagrams that could not be delivered for rea-

sons other than the lack of an application at the destination port during the interval

defined by the observation period.

Udp OutDatagrams The total number of UDP datagrams sent from this host during the

interval defined by the observation period.

4.3 Global System Level Data

We collected measurable system data at .5 second intervals. Measurable system data

includes: Memory Usage (by user, process, and time of day) CPU Load (by user, process,

and time of day), Number of Concurrent Users, Number of Processes, and Disk Usage (file

reads, writes, and page faults).

time The time that the sample was taken. This is recorded as type long time t and is used to

synchronize events that occur in other processes, the network model, system model, or

on other hosts.

per mem used The amount of memory used, expressed as a percentage of available mem-

ory.

per swap used The amount of swap memory used, expressed as a percentage of available

memory

cpu one minute The average cpu load for the previous one minute.

cpu five minute The average cpu load for the previous five minutes.

cpu ten minute The average cpu load for the previous ten minutes.

current procs The number of processes currently running on the system.

count users The number of users currently logged into the system. If a user is logged in

twice, he will be counted twice.
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time user mode A value representing the change in the amount of time that the CPU spent

in user mode since the last sample was taken.

time user mode low A value representing the change in the amount of time that the CPU

spent in low priority user mode since the last sample was taken.

time sys mode A value representing the change in the amount of time that the CPU spent

in system mode since the last sample was taken.

time idle A value representing the change in the amount of time that the CPU was idle since

the last sample was taken.

pages in A value representing the change in the number of pages that were paged into mem-

ory from disk since the last sample was taken.

pages out A value representing the change in the number of pages that were paged out of

memory from disk since the last sample was taken.

swap in A value representing the change in the number of swap pages that were brought

into memory since the last sample was taken.

swap out A value representing the change in the number of swap pages that were brought

out of memory since the last sample was taken.

context switch A value representing the change in the number of context switches that have

occurred since the last sample was taken.

count procs A value representing the change in the number of forks since the last sample

was taken.

4.4 Discussion

We used Principal Component Analysis (PCA) [58] to discover the most significant

features (given our data from a correctly functioning system) of the feature sets that we con-

structed at the process, network and system levels. PCA, also referred to as eigen-analysis, is
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mainly used to reduce the dimensionality of a data set while retaining as much information

as possible. Accordingly, the first principal component is the linear combination of features

accounting for the greatest amount of variation, the second principal component accounts for

the second largest amount of variation and is independent to the first principal component,

etc.

PCA is performed on the variance-covariance matrix of our feature set. The variance-

covariance matrix (hereafter referred to as the covariance matrix) enables us to measure dis-

tance in a manner that is invariant to linear transformations of the data. The main diagonal of

a covariance matrix contains the variance of each feature. The remaining entries in the ma-

trix contain the covariances between the two opposing (row versus column) features. Given� sets of variates denoted Â �Ye ����� e Â y , the covariance RT$3Ã\-/�Ä e �Xi 4 is defined by Equation 4.1Å  Æi � RY$5ÃX�HQ�)]�H��RYS(-/�! e �Xi 4�Ç È -#�! \�2ÉÊ 4 -Ë-/�XiÌ�1É!i 4ËÍ (4.1)

where É� and É!i are the means of �Ä and �Xi . The matrix
Å  Æi of the quantities

Å  Îi = RY$3ÃÊ-#�! e �Xi 4
is called the variance-covariance is matrix where ) � m defines the variance.

We used Singular Value Decomposition (SVD) [117] to compute the eigenvalues and

their corresponding eigenvectors of the covariance matrix for each of the baseline data sets,

sorting the results in descending order by eigenvalue. When using PCA to reduce the dimen-

sionality of a data set, the general practice is to take those (eigenvalue, eigenvector) pairs that

account for 85% of the sum of the eigenvalues. The basic idea is that “noise”, or inconse-

quential features, will be removed.

Accordingly, we took the (eigenvalue, eigenvector) pairs that account for 85% of the

sum of the eigenvalues to measure the representation, Ï , of each feature [ that was included

in the dominant eigenvalues. This operation was carried out according to equation 4.2, where� is the number of eigenvectors in the top 85% and Ð is the size of the eigenvector.

Ï�-][ « 4 � y� iËÑ � [ « iÒÓ ¿Ñ �CÔ  %ÕÑ « [  Îi (4.2)
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Table 4.1 shows the application of Equation 4.2 at the process level. It lists the principal

features of the process state baselines and the degree (on a scale of 0 to 1) to which they

are represented in the eigenvectors that correspond to the top 85% eigenvalues. Seven (7)

eigenvalues accounted for the top 85%.

Feature Quantity
Self-Distance metric .999940
Change in CPU user time .999213
Change in CPU system time .999213
Change in the stack size .998674
Change in the number of locks .991897
Change in the number of minor faults .556307
Change in the number of major faults .499332

Table 4.1. Principal Features at the Process Level

Table 4.2 shows the application of Equation 4.2 at the network level. It lists the principal

features of the network state baseline and the degree (on a scale of 0 to 1) to which they

are represented in the eigenvectors that correspond to the top 85% eigenvalues. Five (5)

eigenvalues accounted for the top 85%.

Feature Quantity
UDP Change in NO Port .498949
UDP Change in Out Datagrams .498835
TCP Change in Current Established .492124
ICMP Change in In Echos .492124
IP Change in In Delivers .356346
IP Change in IP Ins .353587

Table 4.2. Principal Features at the Network Level

Table 4.3 shows the application of Equation 4.2 at the system level. It lists the principal

features of the system state baseline and the degree to which they are represented in the

eigenvectors that correspond to the top 85% eigenvalues. Eight (8) eigenvalues accounted for

the top 85%.
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Feature Quantity
Change in Pages in .985320
Number of Current Processes .931737
Percentage of memory used .855775
Change in current processes .811692
Change in context switches .617284
Change in time the CPU spent in user mode .581675
Change in time the CPU spent in system mode .550951
Change in time the CPU spent in idle mode .533352

Table 4.3. Principal Features at the System Level

4.5 Chapter Conclusions

This chapter lists the features that we derive from the low-level kernel data. Eigen

analysis of the feature set indicates that the self-distance metric is the dominant feature in

the feature set of a running process. One might think, based upon the results of the eigen

analysis, that only the dominant features need to be monitored. The analysis was conducted

on data sets that represented normal process state, many of the features have no variance

(e.g.: return addresses that were not previously encountered), consequently are not in the

dominant set of features. This analysis informed us that our models must be constructed in a

manner that highlights subsequent instances wherein the feature varies significantly from its

mean.

In the next chapter we will detail how we have used these features to construct models

of selected processes, the network protocol stack, and the system in general. We will detail

our experiments and their results. In Chapter 6, we momentarily digress to report on our

empirical analysis of over 4,000 attacks and intrusions. This analysis served as the foundation

for our ontology, which is presented in Chapter 7.



Chapter 5

Modeling System Behavior

Host-based anomaly intrusion detectors compare current system state to a model of

“permitted” behavior, testing for non-conformance to the model. This chapter details how

we constructed our model of normal system state. We used cluster analysis to model the

system and have experimented with Fuzzy c-Medoid [70], Principal Direction Divisive Par-

titioning [10], and K-Means clustering [36] to produce clusters that model normal behavior.

Likewise, we have experimented with the Mahalanobis Metric [17] and the Euclidean Dis-

tance to measure distances between the feature vectors in order to cluster them. We have also

experimented with the effects of z-normalization [42] on the data set.

To determine which combination of clustering method, distance measure, and normal-

ization technique was optimal, we experimented by taking known samples of benign and

anomalous data and tested them for conformance to each of the models. We evaluated each

model by using Precision, Recall and F-Measure [73] as a performance metric.

In addition to creating models of normalcy for processes of interest, the network, and

the global system, we also created a mean vector and standard deviation vector for the feature

sets that were used to create the model. We used these mean and standard deviation vectors

to map instances of non-conforming data, which are numeric values, to instances of our

ontology, which are represented as classes, relationships, and properties.

54
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5.1 Model Creation

A vector representing state (process, network, or system) at a particular instance of time

is a vector with � entries � � -#� �Ye ����� e � y 4CÖ . This vector carries information describing the

feature set that we have constructed and is taken from the host under observation. Assuming

that Â is a set of vectors representing the baseline state of the system, our goal is to partitionÂ into clusters, so that clusters × �Ye ����� e ×ÄØ contain vectors �£^�Â corresponding to normal

behavior.

As stated in the introduction to this chapter, we used three different clustering algo-

rithms, two different distance measures, and experimented with the effects of z-normalizing

the data set. The following explains these measures.

Z-Normalization Z-Normalization is used to standardize the parameters recorded in a vec-

tor to zero mean and unit variance. For each set of vectors Â , each parameter �� CÙ m�Ú
represented in a vector has a mean Û�i given in Equation 5.1 and a standard deviationÜ i given in Equation 5.2.

Ûci �
yÓ ¿Ñ � �Xi?ÙÆ)EÚ� (5.1)

Ü i �jÝ yÓ wÑ � -/�Xi�ÙÎ)%ÚÄ�1Û\i 4 �Þ�I� (5.2)

Using the the mean Û and standard deviation Ü , Equation 5.3 gives the algorithm for

z-normalizing each vector �Þ^¤Â .ß -#� 4 � �àÙ m�ÚÄ�¨ÛciÜ i (5.3)

Z-normalization scales a data set so that all parameters are equally weighted. This

equal weighting mitigates the condition wherein the parameters with large values dom-

inate those with small values. For example, in a two parameter vector, if one parameter
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has a range 500 - 1000 and the other parameter has a range of 2 - 10, the first param-

eter will dominate even though small changes in the second parameter may be more

significant. This disparity also comes into play when conducting Principal Component

Analysis (PCA) [58]. When doing PCA on a data set, the parameters with the greatest

variances will dominate the linear combinations of the eigenvectors, potentially mask-

ing the discovery of the principal components.

Principal Direction Divisive Partitioning The Principal Direction Divisive Partitioning (PDDP)

clustering algorithms starts with a root cluster (i.e.: the initial data set) and recursively

splits it into pairs of children clusters until the specified number of clusters have been

created.

PDDP does not use a distance measure, rather, it uses SVD to calculate the (eigenvalues,

eigenvectors) of the cluster. It then uses the eigenvector that corresponds to the largest

eigenvalue as the principal direction of the mean centroid of the cluster and projects

each of the vectors in that cluster as a data point onto the mean vector. Two new clusters

are formed by bifurcating the mean vector as illustrated in Figure 5.1.

Prin
cipal D

irection of M
ean Vector

Cluster 1

Cluster 2

FIG. 5.1. Illustration of Principal Direction Divisive Partitioning

Fuzzy c Medoid Clustering The Fuzzy c-Medoids (FCMdd) algorithm takes a matrix con-

taining the pair wise distances between the vectors as input. FCMdd attempts to min-
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imize the intra-cluster (Equation 5.4) distance while maximizing the inter-cluster dis-

tance ( Equation 5.5).

intra-cluster Ø ��á  o Ø á i o ØTâ  %ÕÑHip�ã-%) e m 4� � �Xä - � � � �� 4 (5.4)

inter-cluster Ø � â Ø  � á  o Ø � á i o Ø  ��-/) e m 4� � � �(ä� � � � (5.5)

The FCMdd algorithm is in the category of alternating cluster estimation paradigms,

and is not guaranteed to find the global minimum. Consequently, we repeated this pro-

cess several times to increase the reliability of our results. FCMdd reportedly finds the

optimal number of clusters for the data set. The strategy to is to over-specify the initial

number of clusters and allow FCMdd to merge the extra clusters until “optimality” is

reached.

The FCMdd assigns feature vectors to a cluster in a fuzzy or “possibilistic” manner, for

example a vector could be assigned to Cluster Â with a degree of possibility of .8 and

simultaneously be assigned to Cluster å with a degree of possibility of .75. Once the

cluster assignments are made, the FCMdd algorithm attempts to produce the optimal

number of clusters as follows:

i. Form a fully connected graph where each cluster serves as a node.

ii. Using the Jaccard index, given in Equation 5.6, and the inter-cluster distanceQ , given in Equation 5.5, between the medoids of the clusters, weight the edge

between the clusters according to equation 5.7.� ��`(S+�\æ *8{%{/*z« n -/Â e å 4 � � Â�ç§å �� Â�è§å � (5.6)é -/Â e å 4 � Q�-/ê eËë 4 -8�,� � ��`(S+�\æ *8{/{%*z« n -/Â e å 4ì4 (5.7)

iii. Once the edges between each cluster have been weighted, calculate the Minimum

Spanning Tree of the graph. As each edge is cut, the two clusters that were

connected are merged.
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k-Means Clustering We use the traditional
�
-means clustering algorithm, which is a greedy

algorithm for clustering � objects into
�

clusters. There are two problems that are

inherent to k-Means Clustering algorithms. The first is determining the initial partition

and the second is determining the optimal number of clusters.

In our implementation, we set the number of clusters to be the same number as was cre-

ated by the FCMdd algorithm. We then selected the feature vectors that were farthest

apart to serve as the initial centroids.

Euclidean Distance Given two vectors, �c and �Xi , with � parameters, the Euclidean distance

between them is given in Equation 5.8.

`c-/�! e �Xi 4 � í -/�! �â � ���Xi8â � 4  0 -/�! ½â  �2�Xizâ  4  0 ���+��-/�! ½â y ���Xi8â y 4  (5.8)

Mahalanobis Distance The Mahalanobis metric uses the inverse variance-covariance matrix

of the set of feature vectors, essentially weighting the difference between two vectors

by a linear combination of the original data set. The Mahalanobis metric is given in

Equation 5.9, where î k � is the inverted variance/covariance matrix, and �\ e �Xi are the

feature vectors for which the distance is calculated.

`c-/�! e �Xi 4 � í -/�! Ä���Xi 4 Ö î k � -/�! c���Xi 4 (5.9)

By using the variance/covariance matrix, the Mahalanobis distance takes the data set’s

variability into account. Rather than treating all values equally, it weights the differ-

ences by the range of variability of the features. The Mahalanobis metric is calculated

in units of standard deviation from the feature’s mean. Therefore, the clusters form an

ellipse that is elongated in the direction of the mean vector.

The benefit of using the Mahalanobis metric is that it scales the coordinate axis and

corrects for correlation between the different features. This is advantageous because

it mitigates the limitations of the Euclidean distance that were presented during our

discussion of z-normalization. These advantages, however, are not without additional
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cost. The covariance matrix and its inverse can be hard to determine accurately and the

memory and time requirements grow quadratically rather than linearly with the number

of features. As stated in Equation 5.9, î k � is the inverse variance/covariance matrix of

our data set. In those instances where the variance/covariance matrix is singular, we

need to construct a pseudo inverse as follows:

Without loss of generality, the Singular Value Decomposition of î is of the form:


 �ðï9ñ¸Å Ö (5.10)

where
ï

and
Å

are square matrices with orthogonal columns such that:ï Ö ï©��Å Ö Åò�¨ó
(5.11)

and
ñ

is an � x � matrix with real diagonals ôÄ such that ô � � ô  � �+��� � ô y . We

can, therefore, rewrite our variance/covariance matrix as:

î � ô � Å � ï Ö� 0 ô  Å  ï Ö 0 ���+� 0 ô y�Å!y(ï Öy (5.12)

This also allows us to rewrite the inverse variance/covariance matrix as:

î k � � �ô � ï Ö� Å � 0 �ô  ï Ö Å  0 �+��� 0 �ô y ï Öy Å7y (5.13)

The pseudo inverse is constructed by applying Equation 5.13
� ô\ ¤¬�� .

During our experiments, we observed that the Euclidean distance between the vectors�¨^LÂ differed significantly from the vectors õ¦^�å where å = z-normal( Â ). The

vectors marking the diameter of the set also varied.

This was not the case with the Mahalanobis distance. The vectors � and õ , where å
= z-normalized( Â ), resulted in identical distances and diameter of the data set. This

phenomena is explained by the proof in Figure 5.2.
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Let ö �f÷pøpøpøf÷ ö�ùÌö  �úüû y represent a set of vectors ý
where each parameter has a mean of 0.
The variance/covariance matrix þ � = ý Ö ý
The Mahalanobis distance ÿ���ö  ÷ ö i�� = ��ö  �� ö i���� k �� ��ö  	� ö i�� Ö
Let ÿ �f÷pøpøpøY÷ ÿ y be a set of constants such that ÿ  = �
���

���
�����
�
ÿ � � øpøpø �� ÿ  ...
... øpøpø . . .

...� øpøpø ÿ y
������
�

If �  = ��ö  and � k � �  � ö  then � = ��ý . ( z-normal( ý ) ).� k � � � ý because � is symmetric and� Ö � ý Ö � Ö � ý Ö �
The covariance matrix þ�� = � Ö � = ��ý Ö ý�� = � � � � .
The inverse covariance matrix þ k �� = � k � þ k �� � k �
The Mahalanobis distance ÿ����  ÷ � i � = ���  � � i � � k �� ���  � � i � Ö! ÿ"���  ÷ � i � = ���  � � i � � k �� ���  � � i � Ö
= ��ö  � ö i � � Ö � k � � k �� � k � �#��ö  � ö i � Ö
= ��ö  � ö i � � k �� ��ö  � ö i � Ö

FIG. 5.2. Proof of Equality of the Mahalanobis Distance Between Unnormalized Data and
Z-normalized Data when 
 is Invertible

5.2 Experiments

We experimented by using all possible combinations of clustering algorithms, distance

functions, and z-normalization. Once we created a model, additional sets,
é

, of vectors � ,

were taken from the system while it was operating under normal conditions. We measured

the distance of each vector � ^ é from the clusters × �Ye ����� e ×ÄØ to determine membership

in one of the clusters. Vectors that were determined to not have membership in one of the

clusters were considered to be false negatives.

Similarly, additional set(s) å , of vectors õ , were taken from the same system while it was

under attack. We measured the distance of each vector õ¢^¤å from the clusters × �fe ����� e ×ÄØ to

ensure that they do not have membership in the clusters. Those vectors that were determined

to have membership in one of the clusters were considered to be false positives.
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Clustering Algorithm Distance Function Data Type
FCMdd Mahalanobis Plain

Euclidean Plain
Z-Normalized�

-Means Mahalanobis Plain
Euclidean Plain

Z-Normalized
PDDP Plain

Z-Normalized

Table 5.1. Combinations of Clustering Algorithms, Distance Measures, & Normalization
Technique

We ran four (4) rounds of experiments for each of the eight (8) combinations listed in

Table 5.1. The first round consisted of five (5) attacks directed against network connected

processes. For this round we used different versions of the the Apache HTTP server running

on an installation of Red Hat Linux. To exercise the HTTP Server, we mirrored two web sites

and replayed their usage logs against them. During this round we collected process data. The

attacks, their consequences, the HTTP server version, and Linux kernel version are listed in

Table 5.2.

Attack Attack Consequence HTTP Server Kernel
Number Version Version

1 Buffer Overflow Denial of Service 1.3.27 2.4.7-10
2 Resource Denial of Service 2.0.39 2.4.7-10

Consumption
(memory leak)

3 Long Slashes Exposes Directory 1.3.12 2.4.7-10
4 Buffer Overflow User to Root 1.3.23 2.4.7-10
5 MIME Flood Denial of Service 1.3.1 2.4.7-10

Table 5.2. Attacks and Consequences: Network Connected Processes

The second round of experiments was carried out by replacing four (4) core system

binaries (utilities typically used for system administration) with “trojaned” versions. The

trojaned versions were altered to hide the presence of files, processes, users, and network
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connections. Table 5.3 lists those system binaries, their function, and the kernel version used

during the experiment.

Attack Binary Consequence Kernel
Number Version

6 ls hides specified file 2.4.7-10
7 netstat hides specified connections 2.4.7-10
8 ps hides specified processes 2.4.7-10
9 top hides processes and recalculates CPU load 2.4.7-10

Table 5.3. Attacks and Consequences: Trojaned Binaries

The third round of attack consisted of five (5) different attacks that were directed against

the network protocol stack. Most attacks against the protocol stack typically result in a denial

of service (DoS). Some attacks resulted in a degradation of network resources, some resulted

in a degradation of processing ability, and some froze the machine. The attacks, their action,

and the Linux kernel version are listed in Table 5.4.

Attack Attack Consequence Kernel
Number Version

10 tcp portscan scans for open ports 2.4.20-8
11 syn flood 1 1/2 open a connection 2.4.20-8
12 ping of death large icmp messages 2.4.20-8
13 ip frag transmit overlapping ip fragments 2.4.20-8
14 syn flood 2 floods target with illformed Syn segments 2.4.20.8

Table 5.4. Attacks and Consequences: Network Protocol Stack

The final round of attacks, although an attack against a network connected process and

a locally effected DoS attack, were used to model and test global system behavior. Accord-

ingly, they consisted of two (2) memory consumption attacks. Those attacks, their actions,

and the Linux kernel version are listed in Table 5.5.

In summation, we ran five (5) rounds of experiments consisting of 5, 4, 5, and 2 sets of

attacks for the eight (8) combinations of clustering algorithms, distance measures, and data

conditioning technique. This totaled 128 different trials.
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Attack Attack Consequence Kernel
Number Version

15 local DoS memory consumption 2.4.20-8
16 remote DoS mime flood against Apache 1.3.27 2.4.20-8

Table 5.5. Attacks and Consequences: System Resources

5.2.1 Methodology

For each trial, we had 8,000 samples of normal data, 2,000 sample of “unknown” normal

data, and 2,000 samples of data taken while the host was under attack. Once the model of

normalcy was constructed, the “unknown” normal data was compared to it for inclusion and

the “attack” data was compared to it for exclusion. Since we were doing anomaly detection,

we tested for inclusion to the model — not exclusion. Therefore, we consider a false negative

to exist whenever the normal data is deemed to not fit the model. Likewise, we consider a

false positive to exist whenever attack data is deemed to fit the model. Our goal was to

minimize false positives and false negatives. Table 5.6 illustrates the confusion matrix for

our classification scheme. Although are ultimate goal was to detect intrusions, at this first

stage we were classifying unknown data in order to determine conformance to a model of

normalcy. Therefore, a false negative is normal data that is wrongly classified as abnormal.

Similarly, a false positive is aberrant data that is incorrectly classified as conforming to the

model of normal behavior.

Actual Classification Predicted Classification
Anomalous Normal

Anomalous True Negative False Positive
Normal False Negative True Positive

Table 5.6. Confusion Matrix for Actual and Predicted Classifications

We used precision, recall, and F-Measure [73], as metrics to measure each model’s

performance. Table 5.7 defines these metrics.
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Precision = Ö «%$ r'& ª v% Nxw �( r v) Ö «*$ r'& ª v% xw +( r v�,.- * s v r'& ª v% Nxw �( r v*/
Recall = Ö «%$ r*& ª v/ Nxw +( r v) Ö «*$ r'& ª v% xw +( r v�,.- * s v r*0àr'1 * xw +( r v'/
F-Measure =

) � ,"243�/6587 r {/* s�s 5 & « r {  ¿v/ ª]y2 3 597 r {/* s s , & « r {  ¿v% ª]y
Table 5.7. Precision, Recall, and F-Measure; � Corresponds to the Relative Importance of

Precision vs. Recall and is Usually Set to 1

5.2.2 Fuzzy c Medoid Clustering

During initialization we set the initial cluster number to 24 and selected candidate

medoids such that the initial medoid was the one most central to the data set and each subse-

quent candidate medoid was selected so that it was most dissimilar to the previously selected

medoids. The FCMdd is a possibilistic algorithm, that is each data point is determined to

belong to a cluster with some degree of possibility. The degree of possibility can be set and

is referred to as the “fuzzifier”. We selected a value of ���K�3��G .
Because the Mahalanobis distance of unconditioned data and the z-normalized data re-

sulted in the same dissimilarity measure (viz.: the Proof in Figure 5.2), we only experimented

with unconditioned data using the Mahalanobis distance metric.
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Mahalanobis Distance

Attack Clusters Cluster Intra Inter False False F-Measure
Number Size Cluster Cluster Negatives Positives

Distance Distance
1 2 7999 0.079 0.847 0.004 0.000 0.997

1 0.000
2 2 75 0.005 0.696 0.042 0.000 0.978

7925 0.138
3 2 7999 0.033 0.936 0.007 0.000 0.996

1 0.000
4 2 6 0.089 0.420 0.007 0.000 0.996

7994 0.146
5 2 7999 0.051 0.925 0.000 0.000 1.000

1 0.000
6 3 3 0.077 (1-2)0.039 0.000 0.000 1.000

5 0.002 (2-3)0.196
7992 0.240 (1-3)0.184

7 2 1189 0.076 0.126 0.000 0.000 1.000
6811 0.099

8 3 76 0.026 (1-2)0.952 0.000 0.000 1.000
6 0.026 (2-3)0.590

7918 0.108 (1-3)0.363
9 3 364 0.100 (1-2)0.544 0.000 0.000 1.000

1029 0.063 (2-3)0.232
6607 0.068 (1-3)0.316

10 2 1 0.000 0.708 0.009 0.624 0.757
7999 0.026

11 2 1 0.000 0.708 0.000 0.000 1.000
7999 0.026

12 2 1 0.000 0.708 0.000 0.000 1.000
7999 0.026

13 2 1 0.000 0.708 0.000 0.000 1.000
7999 0.026

14 2 1 0.000 0.708 0.000 0.000 1.000
7999 0.026

15 3 1 0.000 (1-2)0.693 0.003 0.000 0.998
1 0.000 (2-3)0.724

7998 0.032 (1-3)0.693
16 3 1 0.000 (1-2)0.693 0.003 0.000 0.998

1 0.000 (2-3)0.724
7998 0.032 (1-3)0.693

AVERAGE 0.982249

Table 5.8. Performance of the FCMdd Clustering Algorithm using the Mahalanobis
Distance
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Euclidean Distance: Unconditioned Data

Attack Clusters Cluster Intra Inter False False F-Measure
Number Size Cluster Cluster Negatives Positives

Distance Distance
1 2 650 0.002 0.985 0.000 0.258 0.885

7350 0.015
2 2 1083 0.005 0.696 0.073 0.000 0.962

6917 0.138
3 2 22 0.010 1.000 0.000 0.000 1.000

7978 0.019
4 2 70 0.001 0.999 0.000 0.905 0.688

7930 0.003
5 2 11 0.011 1.000 0.070 0.013 0.957

7989 0.020
6 2 6879 0.060 0.940 0.000 0.000 1.000

1121 0.024
7 2 7516 0.060 0.942 0.000 0.000 1.000

484 0.022
8 3 19 0.29 (1-2)0.974 0.000 0.015 0.992

4128 0.001 (2-3)0.642
3799 0.001 (1-3)0.666

9 3 162 0.066 (1-2)0.946 0.001 0.054 0.973
717 0.002 (2-3)0.579

7121 0.002 (1-3)0.728
10 2 31 0.230 0.569 0.053 1.000 0.642

7969 0.142
11 2 31 0.230 0.569 0.053 0.063 0.942

7969 0.142
12 2 31 0.230 0.569 0.053 0.011 0.967

7969 0.142
13 2 31 0.230 0.569 0.053 0.008 0.968

7969 0.142
14 2 31 0.230 0.569 0.053 0.009 0.968

7969 0.142
15 2 1 0.000 0.979 0.000 0.000 1.000

7999 0.021
16 2 1 0.000 0.979 0.000 0.001 0.999

7999 0.021
AVERAGE 0.932687

Table 5.9. Performance of the FCMdd Clustering Algorithm on Unconditioned Data using
Euclidean Distance
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Euclidean Distance: Z-Normalized Data

Attack Clusters Cluster Intra Inter False False F-Measure
Number Size Cluster Cluster Negatives Positives

Distance Distance
1 2 7999 0.028 0.976 0.002 0.000 0.999

1 0.000
2 2 7999 0.032 0.986 0.000 0.000 1.000

1 0.000
3 2 7999 0.023 0.928 0.000 0.000 1.000

1 0.000
4 2 7999 0.026 0.881 0.022 0.017 0.980

1 0.000
5 2 7999 0.025 0.911 0.070 0.013 0.957

1 0.000
6 3 5 0.095 (1-2)0.985 0.001 0.000 0.999

5 0.069 (2-3)0.606
7990 0.050 (1-3)0.780

7 3 15 0.026 (1-2)0.999 0.000 0.000 1.000
12 0.038 (2-3)0.671

7973 0.078 (1-3)0.749
8 2 7981 0.036 0.475 0.037 0.000 0.981

19 0.108
9 3 6 0.071 (1-2)0.984 0.000 0.000 1.000

16 0.067 (2-3)0.824
7978 0.058 (1-3)0.546

10 2 3 0.472 0.787 0.004 0.632 0.757
7997 0.045

11 2 3 0.472 0.787 0.004 0.000 0.997
7997 0.045

12 2 3 0.472 0.787 0.004 0.000 0.997
7997 0.045

13 2 3 0.472 0.787 0.004 0.000 0.997
7997 0.045

14 2 3 0.472 0.787 0.004 0.000 0.997
7997 0.045

15 3 1 0.000 (1-2)1.000 0.000 0.000 1.000
1 0.000 (2-3)0.743

7998 0.026 (1-3)0.660
16 3 1 0.000 (1-2)1.000 0.000 0.000 1.00

1 0.000 (2-3)0.743
7998 0.026 (1-3)0.660

AVERAGE 0.978812

Table 5.10. Performance of the FCMdd Clustering Algorithm on Z-Normalized Data using
Euclidean Distance
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5.2.3
�
-Means Clustering

Mahalanobis Distance

Attack Clusters Cluster Intra Inter False False F-Measure
Number Size Cluster Cluster Negatives Positives

Distance Distance
1 2 5654 0.044 0.131 0.081 0.000 0.957

2346 0.097
2 2 1945 0.108 0.266 0.142 0.000 0.923

6055 0.094
3 2 1719 0.025 0.043 0.142 0.000 0.923

6281 0.031
4 2 2809 0.050 0.221 0.031 0.000 0.984

5191 0.120
5 2 1892 0.049 0.083 0.000 0.000 1.000

6108 0.041
6 2 2942 0.065 0.102 0.000 0.000 1.000

5058 0.068
7 2 368 0.116 0.158 0.000 0.000 1.000

7632 0.092
8 2 1166 0.080 0.246 0.000 0.000 1.000

6834 0.080
9 2 1034 0.063 0.248 0.000 0.000 1.000

6096 0.090
10 2 6377 0.027 0.032 0.018 0.829 0.698

1623 0.018
11 2 6377 0.027 0.032 0.009 0.000 0.995

1623 0.018
12 2 6377 0.027 0.032 0.009 0.000 0.995

1623 0.018
13 2 6377 0.027 0.032 0.009 0.000 0.995

1623 0.018
14 2 6377 0.027 0.032 0.009 0.000 0.995

1623 0.018
15 2 41 0.031 0.119 0.003 0.000 0.998

7959 0.031
16 2 41 0.031 0.119 0.003 0.000 0.998

7959 0.031
AVERAGE 0.966312

Table 5.11. Performance of the
�

-Means Clustering Algorithm using the Mahalanobis
Distance



69

Euclidean Distance: Unconditioned Data

Attack Clusters Cluster Intra Inter False False F-Measure
Number Size Cluster Cluster Negatives Positives

Distance Distance
1 2 650 0.026 0.040 0.009 0.000 0.995

7350 0.014
2 2 3249 0.001 0.204 0.171 0.074 0.871

4751 0.318
3 2 6238 0.008 0.059 0.418 0.368 0.702

1762 0.003
4 2 7930 0.020 0.999 0.155 0.084 0.876

70 0.011
5 2 6199 0.005 0.058 0.0800 0.013 0.951

1801 .0.003
6 2 1121 0.024 0.940 0.141 0.000 0.924

6879 0.060
7 2 4601 0.002 0.200 0.150 0.000 0.918

3399 0.210
8 2 4182 0.001 0.646 0.001 0.000 0.999

3818 0.007
9 2 7283 0.034 0.584 0.046 0.000 0.976

717 0.002
10 2 1517 0.113 0.356 0.061 1.000 0.638

6483 0.054
11 2 1517 0.113 0.398 0.061 0.052 0.943

6483 0.054
12 2 1517 0.113 0.398 0.061 0.011 0.963

6483 0.054
13 2 1517 0.113 0.398 0.061 0.018 0.959

6483 0.054
14 2 1517 0.113 0.398 0.061 0.009 0.964

6483 0.054
15 2 4207 0.007 0.030 0.002 0.000 0.999

3793 0.027
16 2 4207 0.007 0.030 0.002 0.002 0.998

3793 0.027
AVERAGE 0.921187

Table 5.12. Performance of the
�
-Means Clustering Algorithm on Unconditioned Data

using Euclidean Distance
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Euclidean Distance: Z-Normalized Data

Attack Clusters Cluster Intra Inter False False F-Measure
Number Size Cluster Cluster Negatives Positives

Distance Distance
1 2 6479 0.028 0.976 0.002 0.000 0.998

1521 .034
2 2 1083 0.022 0.872 0.000 0.000 1.000

6917 0.029
3 2 402 0.054 0.007 0.086 0.000 0.955

7598 0.021
4 2 7999 0.026 0.881 0.094 0.000 0.950

1 0.000
5 2 1668 0.018 0.034 0.131 0.000 0.929

6332 0.027
6 2 6859 0.041 0.076 0.000 0.000 1.000

1141 0.065
7 2 4578 0.052 0.125 0.000 0.000 1.000

3422 0.095
8 2 3818 0.035 0.060 0.000 0.000 1.00

4182 0.026
9 2 2447 0.064 0.073 0.000 0.000 1.000

5553 0.066
10 2 1917 0.039 0.074 0.017 0.991 0.661

6083 0.029
11 2 1917 0.039 0.074 0.017 0.029 0.977

6083 0.029
12 2 1917 0.039 0.074 0.017 0.000 0.991

6083 0.029
13 2 1917 0.039 0.074 0.017 0.000 0.991

6083 0.029
14 2 1917 0.039 0.074 0.017 0.000 0.991

6083 0.029
15 2 1333 0.023 0.038 0.034 0.000 0.982

6667 0.026
16 2 1333 0.023 0.038 0.034 0.000 0.982

6667 0.026
AVERAGE 0.962937

Table 5.13. Performance of the
�

-Means Clustering Algorithm on Z-Normalized Data using
Euclidean Distance
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5.2.4 Principal Direction Divisive Partitioning

Unconditioned Data

Attack Clusters Cluster Intra Inter False False F-Measure
Number Size Cluster Cluster Negatives Positives

Distance Distance
1 2 7350 0.015 0.985 0.105 0.258 0.831

650 0.002
2 2 1083 0.059 0.925 0.171 0.073 0.871

6917 0.001
3 2 7978 0.019 1.00 0.863 .162 0.210

22 0.010
4 2 7930 0.003 0.999 0.169 0.035 0.890

70 0.001
5 2 7989 0.020 1.000 0.028 0.008 0.981

11 0.011
6 2 1121 0.030 0.082 .999 0.062 0.001

6879 0.042
7 2 4601 0.050 0.126 0.642 0.000 0.527

3399 0.100
8 2 3818 0.035 0.060 0.999 0.000 0.001

4812 0.026
9 2 717 0.002 0.584 0 .107 0.000 0.943

7283 0.034
10 2 5150 0.018 0.296 0.046 1.000. 0.645

2490 0.166
11 2 5150 0.018 0.296 0.046 0.853 0.679

2490 0.166
12 2 5150 0.018 0.296 0.046 0.011 0.970

2490 0.166
13 2 5150 0.018 0.296 0.046 1.000 0.645

2490 0.166
14 2 5150 0.018 0.296 0.046 0.009 0.971

2490 0.166
15 2 6904 0.028 0.030 0.016 0.000 0.991

1096 0.023
16 2 6904 0.028 0.030 0.016 0.002 0.990

1096 0.023
AVERAGE 0.696625

Table 5.14. Performance of the PDDP Clustering Algorithm on Unconditioned Data
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Z-Normalized Data

Attack Clusters Cluster Intra Inter False False F-Measure
Number Size Cluster Cluster Negatives Positives

Distance Distance
1 2 6786 0.020 0.530 0.004 0.000 0.997

1214 0.068
2 2 4837 0.027 0.035 0.000 0.000 1.00

3163 0.035
3 2 5229 0.027 0.022 0.967 0.000 0.063

2771 0.019
4 2 2130 0.041 0.035 0.061 0.000 0.996

5870 0.023
5 2 4674 0.020 0.034 0.000 0.067 0.967

3326 0.033
6 2 6004 0.043 0.066 0.000 0.000 1.000

1996 0.071
7 2 3150 0.073 0.107 0.000 0.000 1.000

4850 0.078
8 2 3818 0.035 0.060 .999 0.000 0.001

4182 0.026
9 2 1276 0.134 0.130 0.028 0.000 0.985

6724 0.043
10 2 6032 0.026 0.077 0.016 0.981 0.663

1968 0.049
11 2 6032 0.026 0.077 0.016 0.029 0.977

1968 0.049
12 2 6032 0.026 0.077 0.016 0.000 0.991

1968 0.049
13 2 6032 0.026 0.077 0.016 0.000 0.991

1968 0.049
14 2 6032 0.026 0.077 0.016 0.000 0.991

1968 0.049
15 2 1000 0.023 0.030 0.000 0.000 1.000

7000 0.028
16 2 1000 0.023 0.030 0.000 0.011 0.994

7000 0.028
AVERAGE 0.854331

Table 5.15. Performance of the PDDP Clustering Algorithm on Z-Normal Data
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5.2.5 Results

We used both z-normalized and unconditioned data with the PDDP,
�
-Means, and

FCMdd clustering algorithms. Z-normalization improved the performance of each clustering

algorithm when compared to unconditioned data. The F-Measures of the PDDP algorithm in-

creased from .696626 to .854331;
�

-Means went from .921187 to .962937; the FCMdd went

from .932687 to .978812. These results are using the Euclidean distance for the FCMdd and�
-Means algorithms (PDDP does not use a distance metric).

Comparing the performance between the
�

-Means and FCMdd clustering algorithms

when using the Mahalanobis metric, the FCMdd algorithm was the better of the two scoring

.982249, to the
�
-Means’ score of .966312.

The FCMdd using the Mahalanobis metric was the optimal performer with a score of

.982249, followed by the FCMdd using the Euclidean distance on z-normalized data with a

score of .978812. The
�

-Means algorithm using the Mahalanobis metric ranked third with a

score of .966312.

Figure 5.3 graphs the performance of the FCMdd clustering algorithm when analyzing

attack data. Figure 5.4 graphs the performance of the
�

-Means clustering algorithm. Fig-

ure 5.5 graphs the performance of the PDDP clustering algorithm. Figure 5.6 is a graph

comparing the performance of the best of each clustering algorithm.
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FIG. 5.3. Performance Comparison of the FCMdd Clustering Algorithm: Mahalanobis
Distance, Euclidean Distance with Un-normalized Data, and Euclidean Distance with Z-
normalized Data
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FIG. 5.4. Performance Comparison of the
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-Means Clustering Algorithm: Mahalanobis

Distance, Euclidean Distance with Un-normalized Data, and Euclidean Distance with Z-
normalized Data
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FIG. 5.5. Performance Comparison of the PDDP Clustering Algorithm: Un-normalized
Data and Z-normalized Data
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5.3 Chapter Conclusions

Our results clearly indicate that the FCMdd clustering algorithm, using the Mahalanobis

metric, provided the optimal model of the normal state system. We used this model for the

remainder of our work.

This concludes the first of our two stage process where our goal was to test subsequent

feature vectors that were taken when the system was operating in a quiescent state for con-

formance to the model and feature vectors that were taken when the system was under attack

for non-conformance to the model.

Our model was not able to detect the majority of the stealthy port scans hence they were

counted as false positives. This is not to say, however, that the port scan went undetected.

We scanned the targeted system for approximately 35 minutes (long enough to take 2,000

samples from the network interface at .5 second intervals). We did detect scanning activity

during 37.6% of that time. Although our reasoning process was only able to confirm 50% for

these, reducing the detection rate to 18.8% for this type of activity, we were able to confirm

that the system was scanned.

The false negatives (good data deemed bad) and true negatives (bad data deemed bad)

are passed from the first to the second phase of our process, where we used them in subse-

quent experiments to evaluate our ontology and reasoning process.

In Chapter 6 which follows, we stepped back and took a macro view of security by

analyzing over 4,000 types of attacks and intrusions. Our analysis provided the foundation

for our ontology, which is detailed in Chapter 7.



Chapter 6

Target Centric Attack Classification: An

Empirical Analysis

Allen et al. [1] and McHugh [83] assert that the characterization of intrusive behavior

has typically been from the attacker’s point of view, each suggesting that alternative tax-

onomies need to be developed. Allen et al. also state that intrusion detection is an immature

discipline and has yet to establish a commonly accepted classification framework.

We have reviewed the existing taxonomies for intrusion detection and have found them

to be inadequate for our purposes. To remedy this situation, we have conducted an empirical

analysis of over 4,000 computer attacks and their corresponding attack strategies and have

developed a target-centric taxonomy.

6.1 The Goal of Taxonomic Classification

A taxonomy may be broadly defined as a classification system with a systematic ar-

rangement into groups or categories according to established criteria. Glass and Vessey [41]

contend that taxonomies provide a set of unifying constructs so that the area of interest can

be systemically described and aspects of relevance may be interpreted. The overarching goal

of any taxonomy, therefore, is to supply some predictive value during the analysis of an

unknown specimen.

According to Simpson [106] classifications may be created either a priori or a poste-

77
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riori. An a priori classification is created non-empirically whereas an a posteriori classi-

fication is created by empirical evidence derived from some data set. Simpson defines a

taxonomic character as a feature, attribute or characteristic that is divisible into at least two

contrasting states and used for constructing classifications. He further states that taxonomic

characters should be observable solely from the object in question.

To be effective, taxonomies for intrusion detection must provide criteria that are limited

to the attributes and properties of an attack as they are experienced by the target. Failing to

do so will not only prevent an IDS from effectively classifying and categorizing the attack,

but will also impede the IDS from recognizing the intrusive event.

6.2 Existing Classification Schemes

Howard [50] provides a “Complete Computer and Network Attack Taxonomy”, that

include the categories Attackers, Tools, Access, Results and Objectives. Howard classifies

attackers as Hackers, Spies, Terrorists and Teenagers with objectives that include Political

Gain and Financial Gain. However accurate he may be regarding an attacker, his tools and

his motives, these characteristics are not discernible by analyzing an instance of the intrusive

event. Specifically, an IDS does not have the means to know whether an attacker is a terrorist

or a teenager or if the attacker’s objective is financial gain or curiosity.

During the 1998 and 1999 DARPA Off Line Intrusion Detection System Evaluations

[48, 77], Weber [118] and Kendall [62] provided taxonomies classified by Initial Privilege

Level, Method of Transition to a New Privilege Level and New Privilege Level. Kendall

includes Social Engineering 1 in the Method of Transition category. Since detecting off-

line human interaction is beyond the scope of an IDS, that specific taxonomic character is

not discernible by objectively observing the attack. Weber’s taxonomy defines the category

Consequence, with sub-categories of Denial of Service, Remote to Local, User to Root and

1Social engineering is a term that describes a non-technical kind of intrusion that relies heavily on human
interaction and often involves tricking other people into breaking normal security procedures. A social engineer
runs what used to be called a ”con game”.
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Probe. We have incorporated these classifications into our work.

Lindqvist and Jonsson [75] state that they ”focus on the external observations of attacks

and breaches which the system owner can make”, consequently, they create a taxonomy

in terms of intrusion techniques and intrusion results. Their categories of intrusion tech-

niques are: Bypassing Intended Controls, Active Misuse of Resources and Passive Misuse

of Resources and their categories of intrusion results are: Exposure, Denial of Service and

Erroneous Output. They provide two examples of passive misuse of resources – “automated

searching using a personal tool” and “automated searching using a publicly available tool”.

These taxonomic characters are not discernible by objective observation of an attack because

knowledge of an attack tool’s origin is beyond the scope of an IDS.

In their “Taxonomy of Security Faults”, which defines a classification scheme for secu-

rity faults in the Unix operating system, Aslam et. al [4] group vulnerabilities according to

Emergent Faults, Environment Faults, Coding Faults and Other Faults. They define Coding

Faults as faults introduced during software development that include errors in programming

logic, missing or incorrect requirements, and design errors. Alsam’s work largely rests upon

Landwehr et al.’s “A Taxonomy of Computer Security Flaws with Examples” [72].

Landwehr et al. developed a taxonomy that was meant to be used during the software

development process to enhance application security. Their taxonomy is categorized accord-

ing to genesis (how), time of introduction (when) and location (where). In their work, the

authors use the term “flaw” as a synonym for “software bug”. The presupposition of their

paper is that software errors produce incorrect results that cause security failures. Although

Landwehr et al.’s taxonomy is not directly mappable to an IDS, it does underscore the no-

tion that many potential faults and vulnerabilities are intrinsic to the software development

process.
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In a recent paper, McHugh et al. [84] characterize two competing attack perspectives —

the target’s view and the attacker’s view. They state that these views focus on the following

manifestations:

Victim View� What happened?� Who and what is affected?� Who is the intruder?� Where and when did the intrusion originate?� How and why did the intrusion happen?

Attacker View� What is my objective?� What vulnerabilities exist in the target system?� What damage or other consequences are likely?� What exploit scripts or other attack tools are available?� What is my risk of exposure?

These perspectives each require two different sets of observables and measureables. If

an IDS were to attempt to incorporate the “Attacker View”, its rule set, or programmatic

logic, will lack sufficient information to answer these interrogatories.

We advocate using the victim’s view in IDS research. Accordingly, we focus on the

effectors (data) of an attack, observing that an attack consists of:� Input directed to a system component (how and why did the intrusion happen).� The input was received from an attached tty or via the network (where and when did

the intrusion originate).� The input served as an agent of change, causing an aberrant condition (how did the

intrusion happen).



81� The aberrant condition resulted in some unintended consequence (who and what is

affected).

The intermediate goal of our analysis, therefore, is to to classify an attack according to:

the system component to which the input was directed; the causal effects of the input; and

the consequences of the attack. The final result of our analysis is to identify the observable

properties of an attack (i.e. in terms of the features and attributes that we detailed in Chapter

4) and the relationships that hold between them during an attack.

6.3 Empirical Analysis

Our analysis used data contained in the CERT/CC Advisories maintained by the “Com-

puter Emergency Response Team/Coordination Center” of Carnegie Mellon University’s

Software Engineering Institute and the “Internet Catalog of Assailable Technologies” (ICAT)

maintained by the National Institute of Standards and Technology. Both provide a catalog of

known computer attacks, vulnerabilities and exploits.

CERT obtains its data from reports of adverse computer incidents. After a forensic

examination of the adverse incident, and providing that the incident has wide spread impact,

CERT posts an advisory. We used 280 of the 286 advisories that CERT has issued since its

inception in 1985. The six that we did not use pertained to attacks against peripheral devices.

The format of a CERT advisory is shown in Appendix B.

ICAT is a collection derived from multiple sources, to include but not limited to: CERT,

Internet Security Systems (ISS), Bugtraq, Microsoft and Security Focus. Currently, it con-

tains 4,160 entries and is classified according to severity, loss type, vulnerability type, ex-

posed system component, etc. Its format is shown in Appendix A. The ICAT Meta-base

classification scheme is not mutually exclusive. For example, the ICAT Meta-base lists the

exposed component of the Land 2 attack as both the network protocol stack and the op-

erating system as well as stating that multiple vulnerabilities are responsible for enabling

2The Land attack is an IP Denial of Service Attack where a SYN packet in which the source address and
port are the same as the destination address and port.
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the Land attack: “Input Validation Error”, “Buffer Overflow”, “Boundary Overflow” and an

“Exceptional Condition Handling Error”. CERT provides a more accurate description, stat-

ing that the Land attack is directed against the network protocol stack and results in an input

validation error. We reclassified many of the ICAT Meta-base entries to ensure that each sub-

category was mutually exclusive and non-ambiguous. This yielded 3,809 entries that were

used for our analysis.

We examined both the CERT and ICAT data to ensure thoroughness and completeness,

and we compared the results of each to test for continuity between the two data sets.

We begin our analysis by plotting the incidence of attacks according to the system com-

ponent (process, system or network) that was targeted. We then plot the means, consequences

and location of attack against each of the system components. The definitions of means, con-

sequence, and location will be given as this chapter progresses.
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6.3.1 Incidence of Attack Against System Components

Figure 6.1 illustrates the distribution of the system components targeted according to

the ICAT Meta-base. The distribution of attacks comparison indicates that processes are the

most frequently targeted system component. According to the ICAT data, the processes that

are most frequently targeted run at the root level, and include web servers, mail servers and

core system binaries (e.g.: login, inetd, etc.).
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FIG. 6.1. ICAT: System Component Most Frequently Targeted
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Likewise, Figure 6.2 illustrates the distribution of system components targeted as

counted by the CERT advisories. According to the CERT data, the “system” includes core

system binaries such as login, inetd, and xinetd. This is in contrast to ICAT, where they are

counted as “stand-alone” processes. The CERT data indicates that the system is the most

often attacked, followed closely by processes.
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FIG. 6.2. CERT: System Component Most Frequently Targeted



85

6.3.2 Means of Attack

We define Means of Attack as the immediate system reaction to input. Typically, the

input exploits a software flaw or it is not type checked to verify conformance to an anticipated

format. The following categories, compiled from [14, 15, 19, 85], describe the type of input

that are reportedly used as a means of attack.

i. Input Validation Error. An input validation error exists if input is received by a software

component and it is not properly bounded or checked. This class is further sub-divided

as:

(a) Buffer Overflow. A buffer overflow results from an overflow of a static-sized

data structure. Typically, this is a temporary data structure that is located on the

process’ stack.

(b) Boundary Condition Error. This type of error occurs when a process attempts to

read or write beyond a valid address boundary ,or a system resource is exhausted.

An error occurs when the condition is not caught.

(c) Malformed Input. A process accepts syntactically incorrect input, extraneous

input, or the process lacks the ability to handle field-value correlation errors.

ii. Logic Exploit. Logic exploits occur when race conditions or unanticipated states are

induced. Logic exploits are further categorized as follows:

(a) Exception Condition. An error resulting from the failure to catch and handle a

run time error. Examples include failing to catch erroneous results generated by

an arithmetic operation that requires positive input (e.g.: log base 2), attempting

to divide by zero, or an operation that results in infinity.

(b) Race Condition. An error occurring during a timing window between two opera-

tions. They usually result from the use of a shared variable that is not locked.
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(c) Serialization Error. An error that results from the improper serialization of oper-

ations. For example, a process expects : to occur before � , but instead � occurs

before : and this is not caught.

(d) Atomicity Error. An error occurring when a partially-modified data structure is

used by another process. For example, reading or writing pipe data is atomic if

the size of the data is less than the size of the pipe. If the data is larger than the

size of the pipe, an error occurs if it is not caught and handled.

iii. Configuration Error. A configuration error results when user controllable settings in

a system are set such that the system is vulnerable. This vulnerability is not due to

how the system was designed but on how the end user configures and uses the system.

These may be further categorized as follows:

(a) An error that results from a system utility being installed with incorrect parame-

ters.

(b) An error that occurs when a system utility is installed in the wrong location.

(c) An error that occurs when access permissions allow a system utility to violate a

security policy.
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Figure 6.3 illustrates the means of attack against each of the system components as

reflected in the ICAT data. The ICAT shows that logic exploits are the principal means

of attack. The data also shows that processes are overwhelmingly the target of the attack.

Logic exploits account for 50.37% of the attack strategies overall and 33.76% of the attack

strategies directed against processes. Input validation errors are a close second and account

for 31.42% of the attack strategies directed against processes.
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Figure 6.4 illustrates the means of attack according to CERT’s data. Like the ICAT data,

CERT shows that the primary means of attack is also logic exploits and that input validation

errors are a close second.
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6.3.3 Consequences of Attack

The consequence is the final result of an attack. For example, a Land attack directed

against the network protocol stack induces an input validation error, which, until the pro-

tocol stack was made more robust, resulted in a Denial of Service. Another example is a

Buffer Overflow attack directed against an HTTP server that results in the attacker gaining

Unauthorized Root Access. We have categorized the consequences of attack as “denial of

service”, “unauthorized user access”, “unauthorized root access”, “loss of confidentiality”

and “probe”. These categories are defined as follows:

i. Denial of Service. The attack results in the system being placed into an unstable state

or all of the system resources being consumed by meaningless functions.

ii. Unauthorized User Access. The attack results in the attacker having access to services

on the target system at a privilege level that is equivalent to an ordinary user.

iii. Unauthorized Root Access. The attack results in the attacker being granted privileged

access to the system, consequently having complete control of the system.

iv. Loss of Confidentiality. The attack results in an information leak from the system. This

does not include the loss of information as a result of unauthorized root or user access.

v. Probe. This type of an attack results in the disclosure of the system’s profile.
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Figure 6.5 illustrates the consequences of the attack according to the ICAT data. This

data shows that denial of service is the most likely consequence of an attack, followed by

unauthorized root (superuser) access.
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Figure 6.6 illustrates the consequences of attack according to the CERT data. The CERT

data shows unauthorized root access as the most likely consequence. The disagreement be-

tween the two data sets is attributable to the selection process of each. The ICAT data set

contains information regarding all types of attacks, whereas CERT only publishes a security

alert for attacks that are widespread and of serious consequence.
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6.3.4 Location of Attack

Attacks are possible because the attacker has access to the target, either directly from

a terminal or via a network connection. Figure 6.7 illustrates the distribution of locations of

attack according to the ICAT data. The data indicates that nearly twice as many attacks are

carried out via a network connection. The data also shows that most attacks that target the

operating system occur locally.
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Figure 6.8 illustrates the distribution of locations of attack according to the CERT data.

Both CERT and ICAT agree that most attacks are carried out remotely and that attacks tar-

geting the operating system are usually conducted from a local terminal.
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6.4 Results

Our analysis reveals that exploiting a software flaw in a network connected process

is the most common means of an attack. According to the CERT data, root access is the

most common consequence of an exploited vulnerability, while the ICAT data shows that the

most frequent consequence is a denial of service. As previously stated, this discrepancy (root

access vs. denial of service) is most likely the result of CERT issuing advisories only in cases

where the vulnerabilities have great and widespread consequence, with root access being the

gravest of consequences.

Both the ICAT and CERT data show that attacks against the system are the second most

common. They are effected by a logic exploit, resulting in the attacker gaining root access,

and are carried out locally. This means that the attacker has physical access to the machine –

an “insider”.

Recall Gartner’s recommendation that enterprises redirect money earmarked for intru-

sion detection to barrier technologies. Although network attached processes are the most

frequent targets of an attack, the data shows that attacks against the system are the most

consequential and they occur locally via a terminal not via the network.

6.5 Chapter Conclusions

Our analysis indicated that the overwhelming majority of attacks are carried out by

directing malformed input to a network attached process to exploit a software vulnerability.

It also indicated that the most consequential attacks are effected by “insiders” who carry out

an attack via an attached terminal. This implies that Network Based ID will not detect the

most serious attacks.

We have classified attacks according to Targeted Component, Means, Consequence, and

Location of Attacker. We have also defined subclasses for the Means, Consequence and

Location categories. These class and subclasses will be incorporated into the Target Centric

Ontology defined in Chapter 7.
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Although we will present the case for migrating from taxonomies to ontologies, our

intent is not to criticize the use of taxonomies. To the contrary, they have served their pur-

pose well, particularly in identifying and classifying the characteristics of computer attacks

and intrusions. We do, however, advocate leveraging their work by building upon existing

taxonomies and transitioning to ontologies. We feel that this is necessary and warranted

because, according to Staab and Maedche [102], taxonomies do not contain the necessary

meta-knowledge required to convey modeling primitives such as concepts, relations and ax-

ioms that are required to make sense of and operate on specific objects. Ontologies do.



Chapter 7

A Target-Centric Ontology for Intrusion

Detection

We detail the second phase of our intrusion detection process in this chapter. During the

first phase we modeled the quiescent state of the system and tested subsequent samples of

kernel data (process, system, and network) for conformance to the model. The purpose of the

second phase is to take the nonconforming data from the first phase as input and classify it

according to the type of intrusion or attack that it represents. The second phase also provides

an orthogonal test meant to reduce the number of false alarms.

We define our data model of intrusive behaviors as an ontology, a term borrowed from

philosophy. Ontologies provide formal specifications of the concepts and relationships that

exist between entities within a domain of discourse, and are intended to facilitate knowledge

sharing.

We present the benefits of transitioning from taxonomies to ontologies and ontology

specification languages by comparing and contrasting XML, the syntactic language employed

by the Intrusion Detection Message Exchange Format Data Model and Extensible Markup

Language (XML) Document Type Definition (IDMEF)[21], which is an Internet Engineering

Task Force emerging standard, to DAML+OIL 1 [54], an ontology specification language.

Commenting on the IDMEF and its ability to enable interoperability between heterogeneous

1DAML+OIL is being replaced by the Web Ontology Language (OWL) [82], a W3C standard.

96
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IDSs, Kemmerer and Vigna [61] state that the IDMEF is only a first step, however, addi-

tional effort is needed to provide a common ontology that allows IDSs to agree on what they

observe.

We also demonstrate an ontology specification language’s ability to simultaneously

serve as an attack recognition, attack reporting and attack correlation language — much

needed functionality in the realm of IDSs. We use our ontology in conjunction with the Java

Theorem Prover (JTP) [35], a sound and complete First Order Logic (FOL) theorem prover,

to reason over and classify the anomalous instances that failed to fit the model of quiescent

behavior presented in Chapter 5.

7.1 Background

A central component of an IDS is the taxonomy employed to characterize and classify

an attack or intrusion, and a language that describes instances of that taxonomy. The language

is paramount to the effectiveness of the IDS because information regarding an attack needs

to be intelligibly conveyed, especially in distributed environments, and acted upon. Several

taxonomies have been proposed by the research community. Some include a descriptive

language, but most do not. Likewise, several attack languages have been proposed, but most

are not grounded in any particular taxonomy, hence their associated classification schemes

are ad hoc and localized. The inherent problem with this approach is threefold:

i. Most attack and signature languages are particular to specific domains, environments

and systems, consequently, they are not extensible, are incommunicable between non-

homogeneous systems, and their semantics are vague and usually lack grounding in

any formal system of logic.

ii. In order for a software system to operate over instances of a data model characterized

by a taxonomy, the data model must be encoded within the software system. Any

changes or updates to the data model necessitate a change to the software system.
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iii. Taxonomies only provide schemata for classification. They do not contain the nec-

essary and sufficient constructs needed to enable a software system to reason over an

instance of the taxonomy. (Table 7.1 lists sufficient constructs.)

To mitigate the effects of theses problems, we advocate transitioning from taxonomies

to ontologies. Ontologies, unlike taxonomies, provide powerful constructs that include ma-

chine interpretable definitions of the concepts within a domain and the relations between

them. These constructs enable software systems to share a common understanding of the

information at issue, in turn empowering them with a greater analytical capability. Gruber

[45] defines an ontology as an explicit specification of a conceptualization. We view them as

a formal specification of the concepts and relationships that can exist between entities within

a domain of discourse. As we later illustrate, ontologies may be specified as a graph, a set

on n-triples or by a semantic language such as the Resource Description Framework Schema

(RDFS) [12] or (DAML+OIL) [54].

Semantic languages differ greatly from syntactic languages. Both types of languages

employ tags that define a grammar, however, semantic languages have additional tags that

support the language’s semantic properties. Ontology representation languages are a type

of semantic language and may be mapped into first-order relational sentences and a set of

first-order logic axioms. This mapping restricts the allowable interpretations of the non-

logical symbols (i.e., relations, functions, and constants), enabling instances of the ontology

to be operated over using theorem provers and other reasoning systems. The ontology, in

combination with a logic system, therefore, constitutes knowledge representation.

7.1.1 Intrusion Detection Languages

There are several attack languages proposed in the literature. These languages are often

categorized as Event, Response, Reporting, Correlation, and Recognition Languages [31,

32]. We concentrate on correlation, reporting and recognition languages because an ontology

representation language is able to simultaneously serve as all three.
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A. P-BEST

The P-BEST Toolset [76] (Production-Based Expert System Toolset) is a correlation

language that is used to specify the inference formula for reasoning and acting upon

facts asserted into its fact base and from facts derived from external events.

The P-BEST toolset consists of a rule translator, a library of runtime routines and

a set of garbage collection routines. To use P-BEST, rules and facts are written in

the P-BEST production rule specification language by the end-user. The rules are

then translated into a C language expert system program. The resulting expert system

program may then be compiled into a stand-alone executable or a set of library routines

that may then be linked into some other framework.

According to [31], the P-BEST language lacks concepts that are specific to event recog-

nition and consists solely of a formalism for expressing probabilistic and linguistic

rules.

B. STATL

STATL [32] is an extensible transition-based attack detection language specifically de-

signed to support intrusion detection. The language allows one to describe computer

penetrations as sequences of actions that an attacker performs in order to compromise

a computer system. In STATL, scenarios are attacker centric. A STATL description

of an attack scenario can be used by an intrusion detection system to analyze a stream

of events and detect possible ongoing intrusions. This language provides constructs to

represent an attack as a composition of states and transitions. The constructs are similar

to those used in programming languages, describing conditional, sequential and itera-

tive events. STATL, however, lacks the necessary constructs for combining sub-events

into larger events.

C. LogWeaver

LogWeaver [43] is a log auditing tool that takes a system log as input and processes it
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according to a signature (rule) file. The signature file defines the type of events that are

to be monitored and reported on. LogWeaver is able to match regular expressions and

make correlations between events provided that they are executed by the same user.

LogWeaver employs logic that is based upon model checking [99].

LogWeaver does not include signatures, but rather defines a syntax and grammar for

the end-user to use when writing signatures. Once written, a signature compiles into an

automaton, which is a graph like structure composed of states and transitions between

them.

D. CISL

The Common Intrusion Detection Framework (CIDF) [59] started as a DARPA initia-

tive in 1998. CIDF was an effort to develop protocols and application programming

interfaces to give IDS research projects the ability to share information and resources

and to enable IDS component reuse by multiple systems. The CIDF framework is

comprised of components which exchange data in the form of a GIDO (generalized

intrusion detection object) which are represented in a standard format. This standard

format is specified in the Common Intrusion Specification Language (CISL) [34], a

reporting language. The CIDF effort lost inertia and many of its developers now work

on the IETF’s IDMEF, infusing IDMEF with some of CISL’s concepts and notions.

According to [30] CISL provides a reasonably rich vocabulary for conveying the struc-

ture of concrete instances of a set of events involving networked computers. It does

not provide a vocabulary for describing classes of such events and it lacks the facilities

for representing ambiguity and nonexistence or negation.

E. IDMEF

The Internet Engineering Task Force’s proposed Intrusion Detection Message Ex-

change Format Data Model and Extensible Markup Language (XML) Document Type

Definition [21] is a profound effort to establish an industry wide data model which
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defines computer intrusions. It defines a data model that is representative of data ex-

ported by an IDS. It also defines data formats and exchange procedures for inter/intra

IDS exchanges. The data model is defined in an XML Document Type Definition and

implemented in the Extensible Markup Language (XML) [114]. XML is a syntactic

language.

Additionally, the IDMEF mandates a hierarchal configuration of three IDS compo-

nents, sensors, analyzers, and managers. Sensors are located at the bottommost level

of the hierarchy. Sensors output data to analyzers, which in turn report up to a manager,

located at the topmost level of the hierarchy.

In the next section we present the case for migrating from taxonomies to ontologies. We

compare and contrast the syntactic language XML, to the semantic language DAML+OIL,

because the IDMEF data model, encoded in XML, is an emerging IETF standard.

7.2 Syntax versus Semantics

The IDMEF’s principal shortcoming is its use of XML, which is limited to a syntactic

representation of the data model. This is not an indictment of XML, which in fact serves its

designer’s intentions. This limitation, however, requires that each individual IDS interpret

and implement the data model programmaticaly. This shortcoming may be mitigated by

using an ontology representation language such as DAML+OIL.

Semantic languages like RDF-S and DAML+OIL, are descriptive logic languages that

are grounded in both model-theoretic2 and axiomatic semantics3 and having been designed

specifically for the Internet, they are able to:

i. Model the attributes and characteristics of a domain
�

using a language ; .

ii. Decouple the data model from the underlying system of computational logic.

2model-theoretic semantics is the process of constructing mathematical models of logical consequence and
establishing when the model satisfies a formula

3axiomatic semantics is the process of defining a language using axioms and proof rules
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Feature Description DAML XML
+OIL

bounded Uses a first/rest structure to represent unordered bounded lists,
lists with nil representing the end of the list. Yes No
cardinality minCardinality and maxCardinality
constraints Yes Yes
class Wherever a Class is referenced allows an expression involving
expressions unionOf, disjointUnionOf,intersectionOf or complementOf. Yes No
data types e.g: numerical, temporal and string data types Yes Yes
defined Allows new classes to be defined based on property values
classes or other restrictions of an existing class. Yes No
enumerations Allows specification of a restricted set of values for

a given attribute to include oneOf Yes No
equivalence Supports equivalentTo for classes, properties, and instances

to support reasoning across ontologies and knowledge bases Yes No
extensibility Allows new properties to used with existing classes. Yes No
formal Semantics have been expressed in both model-theoretic
semantics and axiomatic forms. Yes No
inheritance Fully supports subClassOf and subPropertyOf Yes No
inference Has constructs such as TransitiveProperty, UnambiguousProperty,

inverseOf, and disjointWith for reasoning engines. Yes No
local Allows restrictions to be associated with a Class/Property pairs.
restrictions Yes No
qualified Allows expressions such as “all children of < are of type = ”.
constraints Yes No
reification Provides a standard mechanism for recording data sources,

timestamps, etc., without intruding on the data model. Yes No

Table 7.1. Language Feature Comparison: DAML+OIL versus XML

iii. Report the existence of an instance of the domain (model) in a manner that is “com-

prehensible” by any entity that possesses the specific ontology.

iv. Aggregate and store specific instances of the domain in a knowledge base to enable the

conclusion that some larger and more comprehensive instance of the ontology exists.

Table 7.1 provides a feature by feature comparison between DAML+OIL and XML. We

use this comparison to highlight the differences between the constructs and functionality of

the two language types.
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7.3 From Taxonomies to Ontologies: The case for ontologies

According to Davis et al. [23], knowledge representation is a surrogate or substitute for

an object under study. In turn, the surrogate enables an entity, such as a software system, to

reason about the object. Knowledge representation is also a set of ontological commitments

specifying the terms that describe the essence of the object, in other words, meta-data or data

about data describing their relationships. According to Welty et al. [119], an ontology, at

its deepest level, subsumes a taxonomy. Similarly, Noy and McGuinness [88] state that the

process of developing an ontology includes arranging classes in a taxonomic hierarchy.

Ontologies, unlike taxonomies, provide powerful constructs that include machine in-

terpretable definitions of the concepts within a specific domain and the relations between

them. Ontologies not only provide IDSs with the ability to share a common understanding

of the information at issue but also further enable IDSs with improved capacity to reason

over and analyze instances of data representing an intrusion. Moreover, within an ontology,

characteristics such as cardinality, range and exclusion may be specified and the notions of

inheritance and multiple inheritance are supported. We are not dispensing with taxonomies.

To the contrary, we are leveraging the classification schemes that they provide in the creation

of our ontology.

The relationship among objects in a data model defined by an ontology may be highly

complex. An ontology may be represented, for example, as a set of statements in an ontology

specification language, a set of n-triples (Subject, Predicate and Object) or as a Resource De-

scription Framework (RDF) graph. The precise definition of the RDF data model is defined

as:

i. A set called Resources.

(a) A subset of Resources called Properties

ii. A set called Literals.

iii. A set called Statements, where each element is a triple of the form: U sub, pred, obj V .
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Where pred is a member of Properties, sub is a member of Resources, and obj is either

a member of Resources or Literals.

Figure 7.1 shows the basic graphical representation of the RDF data model.

Subject
(Resource)

Object
(Resource

or
Literal)

Predicate

FIG. 7.1. Graph of the RDF Data Model

In applying ontologies to the problem of intrusion detection, the power and utility of the

ontology is not realized by the simple representation of the attributes of the attack. Instead,

the power and utility of the ontology is realized by the fact that we can express the relation-

ships between collected data and use those attributes and their constructs, relationships, and

saliency to deduce new and additional knowledge about attacks and intrusions. Moreover,

specifying an ontological representation of the data model defining an intrusion decouples it

from the logic of the IDS. This decoupling of the data model enables heterogeneous IDSs to

share data without a prior agreement as to the semantics of the data. To effect this sharing,

an instance of the ontology is shared between IDSs in the form of a set of DAML+OIL (or

RDF) statements. If the recipient does not understand some aspect of the data, it obtains the

ontology in order to interpret and use the data as intended by its originator.

The following two examples illustrate the benefits of ontologies. The first example

is trivial and is used to show the differences between an ontology and a taxonomy. The

second example, which is based on our experimentation, illustrates the deductive power of

an ontology.

The class “family” (abbreviated for our purposes) is specified as a taxonomy using an

XML Document Type Definition (DTD) and as an ontology using DAML+OIL. The DTD is

depicted in Figure 7.2, and an instance of the DTD is illustrated in Figure 7.3.
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<?xml version="1.0"?>
<!ELEMENT name (#PCDATA)>
<!ELEMENT son (#PCDATA)>
<!ELEMENT daughter (#PCDATA)>
<!ELEMENT sex (#PCDATA)>
<!ELEMENT mother (#PCDATA)>
<!ELEMENT person (name, son*, daughter*, sex?, mother?)>
<!ELEMENT family (person+)>

FIG. 7.2. DTD specification of a family

<family>
<person>

<name>Bob</name>
<son>Jake</son>
<daughter>Jane</daughter>
<daughter>June</daughter>
<sex>male</sex>

</person>
<person>

<name>Bea</name>
</person>
<person>

<name>Jake</name>
<mother>Bea</mother>

</person>
<person>

<name>Jane</name>
<mother>Bea</mother>

</person>
<person>

<name>June</name>
<mother>Bea</mother>

</person>
</family>

FIG. 7.3. Instance of the DTD specified Family

A rule-based expert system that operates over the DTD and the XML annotated in-

stance could not answer the question “list all females and their female children”. In order

to correctly answer (the answer is Bea and her children Jane and June), domain knowledge

regarding the nature of familial relationships is required. That required additional knowledge

is not and cannot be encoded in a DTD.

Alternatively, the DAML specified “Family” depicted in Figure 7.4 imparts the requisite

domain knowledge, specifically, that daughters and mothers are restricted to female persons

and that there is a parent-child relationship between mothers and daughters. Given the on-

tology of Figure 7.4 and the data in Figure 7.3, it follows that since Jane and June are Bob’s
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daughters, they are female, and that Jane and June’s mother is Bea, and because a mother is

a female person, we may infer that Bea is a female with female children — namely Jane and

June.
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<daml:Ontology rdf:about= "" >
<daml:versionInfo>$ Id: Family.daml $</daml:versionInfo>

<rdfs:comment>
An example ontology

</rdfs:comment>
</daml:Ontology>

<daml:Class rdf:about="Family#Family" rdfs:label="Family">
</daml:Class>

<daml:Class rdf:about="Family#Person" rdfs:label="person">
</daml:Class>

<daml:Class rdf:about="Family#mother" rdfs:label="mother">
<rdfs:subClassOf>

<daml:Class rdf:about="Family#person">
</rdfs:subClassOf>
<rdfs:subClassOf>

<daml:Restriction daml:sex="Family#female"/>
</rdfs:subClassOf>
<rdfs:subClassOf>

<daml:Class rdf:about="Family#Family">
</rdfs:subClassOf>

</daml:Class>

<daml:ObjectProperty rdf:about="Family#mother_of" rdfs:label="mother_of">
<rdfs:domain rdfs:about="Family#mother">
<rdfs:range rdf:"resource&daughter"/>

</daml: ObjectProperty>

<daml:ObjectProperty rdf:about="Family#name rdfs:label=name>
<rdfs:domain rdfs:about="Family#person >
<rdfs:range rdf:resource&Literal"/>

</daml: ObjectProperty>

<daml:ObjectProperty rdf:about="Family#sex rdfs:label=sex>
<rdfs:domain rdfs:about="Family#person >
<rdfs:range rdf:resource&Family#male"/>
<rdfs:range rdf:resource&Family#female"/>

</daml: ObjectProperty>

<daml:Class rdf:about="Family#Daughter" rdfs:label="daughter">
<rdfs:subClassOf>
<daml:Class rdf:about="Family#child">
</rdfs:subClassOf>
<rdfs:subClassOf>

<daml:Restriction daml:sex="Family#female"/>
</rdfs:subClassOf>
<rdfs:subClassOf>

<daml:Class rdf:about="Family#Family">
</rdfs:subClassOf>

</daml:Class>

FIG. 7.4. DAML+OIL Specified Family
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The following example is more complex than the “family” and allows us to demonstrate

how our ontology, in concert with a reasoning system, correlates and aggregates events. JTP,

which is referenced during the example, will be discussed in the next subsection.

The Mitnick attack is multi-phased; consisting of a Denial of Service (DoS) attack, TCP

sequence number prediction and IP spoofing. When this attack first occurred in 1994, a

SynFlood attack was used to effect the DoS, however, any DoS attack would have sufficed.

The following, which is illustrated in Figure 7.5, details the sequencing of the Mitnick attack.

In the attack, >  is the ultimate target and > � has a trust relationship with >  .
1. The attacker initiates a SynFlood attack against > � to prevent > � from responding to

>  .
2. The attacker sends multiple TCP RST packets to the target, >  , in order to predict the

values of TCP sequence numbers generated by >  .
3. The attacker then pretends to be > � by spoofing > � ’s IP address, sending a TCP SYN

packet to >  . The SYN packet is the first step of the 3-way TCP handshake required to

establish a TCP session between > � and >  .
4. >  responds by sending a TCP SYN/ACK packet to > � , however, > � does not see

this packet because its input queue is full due to the excessive number of half open

connections caused by the SynFlood attack. If it did receive this packet, it would send

a TCP RST message to >  causing it to abort the TCP 3-way handshake. The attacker

does not see this packet either.

5. Using a TCP sequence number of >  that he was able to calculate in step 2, the attacker

sends a TCP ACK packet to >  . This completes the 3-way TCP handshake.

6. >  now believes that it has a TCP session with > � and the attacker has a one way

session with his target, >  , that he can use to issue commands to it.

Our ontology declares that the Mitnick class consists of independent instances of:
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FIG. 7.5. Illustration of the Mitnick Attack

i. A denial of service (DoS) attack against a host > � , beginning at some time O . Note,

we need only specify DoS and do not need to enumerate all of its possible types.

ii. The receipt of a TCP probe by >  . Again we do not need to enumerate all possible

types of TCP probes.

iii. The “seeming” established TCP connection between > � and >  .
Therefore, if we have concurrent instances of these three events, a sound and complete rea-

soning system that supports our ontology specification language will be able to correlate and

aggregate them into a single more comprehensive event.

Figure 7.6 illustrates our DAML+OIL specification of a System, TCP Connection, Syn-

Flood attack, and an RstProbe. The SynFlood is a subclass of a DoS and the RstProbe is

a subclass of a Probe. The TCP connection, which is itself a property, has the additional

property “inverseOf”, meaning that if � is connected to õ , then õ is connected to � . We also

declared the property “experiencing”, which ranges over the class “Consequence”, meaning

that it can take on those values of that class and its subclasses, and is in the domain of the

class System. In plain English, we are saying that a System may experience a SynFlood
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<daml:Class rdf:ID="SynFlood">
<rdfs:subClassOf rdf:resource="#DoS" />
<daml:intersectionOf rdf:parseType="daml:collection">

<daml:Restriction>
<daml:onProperty rdf:resource="#tcpEstb"/>
<daml:hasClass rdf:resource="#Amount_WA_Normal"/>

</daml:Restriction>
<daml:Restriction>
<daml:onProperty rdf:resource="#tcpSynRec"/>
<daml:hasClass rdf:resource="#Rate_WA_Normal"/>

</daml:Restriction>
</daml:intersectionOf>

</daml:Class>

<daml:Class rdf:ID="RstProbe">
<rdfs:subClassOf rdf:resource="#Probe" />

<daml:intersectionOf rdf:parseType="daml:collection">
<daml:Restriction>
<daml:onProperty rdf:resource="#icmpOutMsg"/>
<daml:hasClass rdf:resource="#Rate_WA_Normal"/>

</daml:Restriction>
<daml:Restriction>
<daml:onProperty rdf:resource="#tcpEstabRst"/>
<daml:hasClass rdf:resource="#Rate_WA_Normal"/>

</daml:Restriction>
<daml:Restriction>
<daml:onProperty rdf:resource="#tcpOutRst"/>
<daml:hasClass rdf:resource="#Rate_WA_Normal"/>

</daml:Restriction>
</daml:intersectionOf>

</daml:Class>

<daml:ObjectProperty rdf:ID="connectedTo">
<rdf:type rdf:resource=

"http://www.daml.org/2001/03/daml+oil#UniqueProperty"/>
<rdfs:domain rdf:resource="#System"/>
<rdfs:range rdf:resource="#System"/>
<daml:inverseOf rdf:resource="#connectedTo" />

</daml:ObjectProperty>

FIG. 7.6. DAML+OIL Specification: SynFlood, RstProbe, and TCP Connection Classes

attack, a Probe, or anything else that is defined as a “Consequence”.

The Mitnick attack has two victims, one of which is a stepping stone. We defined the

class SystemUnderMitnickAttack as being comprised of both victims — SystemUnderDoSAt-

tack and SystemUnderProbeAttack, and the relationship that holds between them (i.e., the

property “connectedTo”).

The DAML+OIL property “intersectionOf” enables the aggregation of classes. We used

this property to correlate and aggregate the other classes that make up the Mitnick attack

into the class SystemUnderMitnickAttack. It consists of the intersection of a host � that is

experiencing a DoS attack, a host õ that is experiencing a Probe, and a TCP connection
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between hosts � and õ . Figure 7.7 illustrates the DAML+OIL specification of the Mitnick

attack.

<daml:Class rdf:ID="SystemUnderDoSAttack">
<daml:intersectionOf rdf:parseType="daml:collection">

<daml:Class rdf:about="#System"/>
<daml:Restriction>
<daml:onProperty rdf:resource="#experiencing"/>
<daml:hasClass rdf:resource="#DoS"/>

</daml:Restriction>
</daml:intersectionOf>

</daml:Class>

<daml:Class rdf:ID="SystemUnderProbeAttack">
<daml:intersectionOf rdf:parseType="daml:collection">

<daml:Class rdf:about="#System"/>
<daml:Restriction>
<daml:onProperty rdf:resource="#experiencing"/>
<daml:hasClass rdf:resource="#Probe"/>

</daml:Restriction>
</daml:intersectionOf>

</daml:Class>

<daml:Class rdf:ID="SystemUnderMitnickAttack">
<daml:unionOf rdf:parseType="daml:collection">

<daml:Class>
<daml:intersectionOf rdf:parseType="daml:collection">

<daml:Class rdf:about="#SystemUnderDoSAttack"/>
<daml:Restriction>

<daml:onProperty rdf:resource="#connectedTo"/>
<daml:hasClass rdf:resource="#SystemUnderProbeAttack"/>

</daml:Restriction>
</daml:intersectionOf>

</daml:Class>
<daml:Class>
<daml:intersectionOf rdf:parseType="daml:collection">

<daml:Class rdf:about="#SystemUnderProbeAttack"/>
<daml:Restriction>

<daml:onProperty rdf:resource="#connectedTo"/>
<daml:hasClass rdf:resource="#SystemUnderDoSAttack"/>

</daml:Restriction>
</daml:intersectionOf>

</daml:Class>
</daml:unionOf>

</daml:Class>

FIG. 7.7. DAML+OIL Specification: Mitnick Attack

To test our DAML+OIL specification’s ability to recognize the Mitnick attack, we gen-

erated a SynFlood attack against > � (68.54.120.173) and a RST Probe against > 
(130.85.93.64). We also generated a spoofed IP connection from >  to > � . We col-

lected the corresponding kernel data, mapped it to FOL symbols and asserted them into Java

Theorem Prover’s (JTP) knowledge base (KB) as facts. These instances are illustrated in

Figure 7.8.



112

<System rdf:ID="sys_130.85.93.64">
</System>

<System rdf:ID="sys_68.54.102.173">
</System>

<rdf:Description rdf:about="#sys_68.54.102.173">
<connectedTo rdf:resource="#sys_130.85.93.64" />

</rdf:Description>

<rdf:Description rdf:about="#sys_68.54.102.173">
<hasNetwork rdf:resource="#sys_68.54.102.173_net1" />

</rdf:Description>

<Network rdf:ID="#sys_68.54.102.173_net1">
<icmpOutMsg><Rate_WA_Normal /></icmpOutMsg>
<tcpEstabRst><Rate_WA_Normal /></tcpEstabRst>
<tcpOutRst><Rate_WA_Normal /></tcpOutRst>

</Network>

<rdf:Description rdf:about="#sys_130.85.93.64">
<hasNetwork rdf:resource="#sys_130.85.93.64_net2" />

</rdf:Description>

<Network rdf:ID="#sys_130.85.93.64_net2">
<tcpSynRec><Rate_WA_Normal /></tcpSynRec>
<tcpEstb><Amount_WA_Normal /></tcpEstb>

</Network>

FIG. 7.8. DAML+OIL Instances: System, Connection, SynFlood, and RstProbe

The instances illustrated in Figure 7.8 consist of a single connection from 130.85.93.64

to 68.54.120.173, a SynFlood attack, and a RstProbe. The process of asserting our on-

tology, as rules, and the instances, or facts, into our KB resulted in the reasoner entailing

additional acts; specifically that the system 68.54.102.173 experienced a DoS, system

130.85.93.64 experienced a Probe (because of support for inheritance), and that sys-

tem 68.54.120.173 is also connected to system 130.85.93.64 (because of the “in-

verseOf” property of “connectedTo”.

Queries to the KB take the form (predicate, subject object)where any one

of “predicate”, “subject”, or “object” may be preceded by a question mark “?”, indicating

that it is an unbound variable. The query asks the KB if there are any “triples” that match

the specified variables and if there are, the KB responds with the bindings that complete the

triple.
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We queried the KB for the existence of a Mitnick attack by asking:

(rdf:type ?host IDS:SystemUnderMitnickAttack)

JTP responded with:

Bindings 1:

?host = |http://security.umbc.edu/IDS#|::|sys_68.54.102.173|

Bindings 2:

?host = |http://http://security.umbc.edu/IDS#|::|sys_130.85.93.64|

Our DAML+OIL specification of the Mitnick attack includes both of the victims. To deter-

mine the relationship that held between the two victims of the Mitnick attack (i.e., which was

the primary target and which was the stepping stone) we queried the KB as follows:

(rdf:type?host IDS:SystemUnderDoSAttack)

and

(rdf:type?host IDS:SystemUnderProbeAttack}}

JTP responded with:

Bindings 1:

?host = |http://security.umbc.edu/IDS#|::|sys_68.54.102.173|

and

Bindings 1:

?host = |http://security.umbc.edu/IDS#|::|sys_130.85.93.64|

indicating that the SystemUnderProbeAttack was the primary target and the SystemUnder-

ProbeAttack was the secondary target.

Although we only asserted a single instance of a network connection into the KB, the

reasoner created two instances of the connection class. This is because the connectedTo
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property of the ontology (see Figure 7.6) states that an inverse relationship holds whenever

we have a network connection. We queried our KB for all of the connections that it was

aware of by asking:

(IDS:connectedTo ?host1 ?host2)

JTP responds with:

Bindings 1:

?host2 = |http://security.umbc.edu/IDS#|::|sys_130.85.93.64|

?host1 = |http://security.umbc.edu/IDS#|::|sys_68.54.102.173|}}

Bindings 2:

?host2 = |http://security.umbc.edu/IDS#|::|sys_68.54.102.173|}}

?host1 = |http://security.umbc.edu/IDS#|::|sys_130.85.93.64|}}

The previous two examples illustrated that way that a reasoning system uses facts anno-

tated in a semantic language to deduce additional facts. The next section provides the reader

with background on the types of reasoning systems that are available.

7.4 Reasoning Systems

There are two type of reasoning systems — backward-chaining and forward-chaining.

Backward-chaining reasoners process queries and return proofs for the answers, while

forward-chaining reasoners process assertions substantiated by proofs and draw conclusions.

In a forward-chaining system, once a fact is asserted the system entails all possible infer-

ences and they persist until they are retracted. Although it takes more time to load the KB,

the benefits are realized by the short response time required to answer a query. By contrast,

backward-chaining reasoning systems, sometimes called goal-directed inference engines, do

not entail knowledge from asserted facts until the system is queried. This type of logic system

loads its rule set quickly, however queries take more time.

During our initial research, we prototyped the logic portion of our system using Drexel’s

DAMLJessKB [67] reasoning system, an extension to the Java Expert System Shell (JESS)
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[38]. JESS is a Java implementation of the C Language Integrated Production System

(CLIPS) [40]. We found that although DAMLJessKB was sound, it was not complete. Sound-

ness means that everything provable is true and completeness means that everything true is

provable. DAMLJessKB was not complete because it did not fully implement the rules of

DAML, hence it could not entail all of the additional knowledge that was inferable.

In addition to DAMLJessKB, Stanford’s Java Theorem Prover (JTP), Ian Horrock’s Fast

Classification of Terminologies (FaCT) [49], and the Renamed ABox and Concept Expression

Reasoner (RACER) [46] also implement DAML+OIL’s rules. Both DAMLJessKB and JTP

are forward chaining reasoning systems. We chose JTP because of its Java API.

Like DAMLJessKB, JTP can be embedded in a Java program and it employs an object

oriented modular architecture of general purpose reasoning components. Upon initialization,

we parse the DAML+OIL statements representing the ontology into triples and assert them

into the reasoner’s knowledge base (KB) as rules. Additional information marked up as in-

stances of the ontology are also parsed and asserted into the KB as facts. The KB can now be

queried regarding the nature of the facts. As stated, queries take the form: (?predicate

?subject ?object). The reasoner responds with the existential bindings to the un-

bound (?x) query variables.

7.5 Defining the Target-Centric Ontology

We have abstracted our ontology into three layers corresponding to Input, Means, and

Consequence categories introduced in Chapter 6. As will be detailed, the abstractions pro-

vided by our layered ontology architecture ensure that our approach will work across hetero-

geneous systems.

The Lower Ontology corresponds to the Input category. At this layer, the feature vectors

that failed to conform to the model are used to instantiate classes that represent the different

types of attacks. The Lower Ontology is only meaningful to IDSs that also use our 118

low-level kernel attributes as metrics.

The Middle Ontology associates the classes produced by the Lower Ontology with run-
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ning processes, active network connections, and systems. For example it will take a class

that represents a buffer overflow attack and associate it with a process. The Middle Ontology

corresponds to the Means and is meaningful to all other IDSs.

The Upper Ontology corresponds to the Consequence category. At this layer, classes

that were defined in the Middle Ontology are associated with the affected systems. As we de-

tail each layer of the ontology we step through an example buffer overflow attack to illustrate

the reasoning process.

Before we can properly address the ontology, we need to explain the process of map-

ping instances of the feature vectors that represent non-conforming kernel level data to FOL

symbols so that they may be asserted into our KB and reasoned over.

7.5.1 Mapping Nonconforming Data to the Ontology

There are three types of feature vectors detailed in Chapter 4: process vectors that con-

tain 34 elements, network vectors that contain 66 elements, and system vectors that contain

18 elements. FOL reasons over logical symbols, and cannot process the real numbers that our

feature vectors are comprised of. Consequently, before we can reason over the anomalous

feature vectors, we need to map them to the symbols employed by our ontology.

We employed clusters of feature vectors to model the system’s normal state. In addition

to the clusters, we have maintained vectors containing the mean and standard deviation of

each feature in the exemplar data sets. The mean is calculated according to Equation 5.1 and

the standard deviation is calculated according to Equation 5.2.

Our feature set characterizes the low-level kernel data as rates, quantities, or Boolean

values. On input, we map each feature to a class that is the symbolic representation of its

type of measure. The corresponding FOL symbols are specified by three quantifying classes:

Rate, Quantity, and BoolValue. Binary features are mapped to the classes “true” or “false”.

The remaining features are mapped to a quantifying class based upon the number of standard

deviations ( Ü ) that the feature is from its mean ( Û ). Table 7.2 presents these mappings and

Figure 7.9 illustrates the DAML+OIL specification of the quantifying classes.
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Class Type Value of Feature [
x WB normal [@?®� � Ü
x B normal � � ÜBA [C?©� Ü
x normal � ÜDA [ A�Ü
x A normal Ü ? [ A � Ü
x WA normal [ ¬¡� Ü
Amount Inf [ � =H�

Table 7.2. Mapping from Feature Values to FOL Symbols. � denotes either “Rate” or
“Amount”

<daml:Class rdf:ID="Rate">
<daml:oneOf rdf:parseType="daml:collection">

<Rate rdf:ID="Rate_WB_Normal"/>
<Rate rdf:ID="Rate_B_Normal"/>
<Rate rdf:ID="Rate_Normal"/>
<Rate rdf:ID="Rate_A_Normal"/>
<Rate rdf:ID="Rate_WA_Normal"/>

</daml:oneOf>
</daml:Class>

<daml:Class rdf:ID="Amount">
<daml:oneOf rdf:parseType="daml:collection">

<Amount rdf:ID="Amount_WB_Normal"/>
<Amount rdf:ID="Amount_B_Normal"/>
<Amount rdf:ID="Amount_Normal"/>
<Amount rdf:ID="Amount_A_Normal"/>
<Amount rdf:ID="Amount_WA_Normal"/>
<Amount rdf:ID="Amount_Inf"/>

</daml:oneOf>
</daml:Class>

<daml:Class rdf:ID="BoolValue">
<daml:oneOf rdf:parseType="daml:collection">

<BoolValue rdf:ID="True"/>
<BoolValue rdf:ID="False"/>

</daml:oneOf>
</daml:Class>

FIG. 7.9. DAML+OIL Specification: Quantifying Classes



118

7.5.2 Lower Ontology

The Lower ontology, illustrated in Figure 7.10, is comprised of classes that are specified

as collections of attributes with restricted values. The attributes are restricted to the values

that we recorded when we conducted our experimental attacks.
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The following list enumerates the classes within the Lower ontology. Each of these

classes represent the Means of an attack and are comprised of combinations of the low-level

kernel attributes that have been mapped to FOL symbols.

a). anomSelfDist. This class consists of a single property — the self-distance metric. If it

is instantiated, it is aggregated into other classes in the Middle ontology.

b). anomProcess. This class was used to detect trojaned binaries. We observed that vari-

ations in the self-distance, unkRetAdd, and codeSize properties were the most impor-

tant indicators. The codeSize property served to differentiate a trojaned process from

a buffer overflow.

c). bufferOverFlow. Buffer overflows remain the most preventable but most lethal vulner-

ability in a process. They are caused by programming errors and they may result in

DoS or a root shell.

d). procWMemoryConsum. This type of attack is a class of DoS. It may be remotely

effected by exploiting a vulnerable network attached process, or locally by recursively

forking new processes or allocating huge blocks of memory. During the local DoS

attack, at the system level we observed that memUsed, swapUsed, cpuOne, numProcs,

conSwitch, rateProc and numUsers properties greatly varied.

e). sysWMemConsum. This class is the same as the above, however, from the system’s

perspective. It is comprised of the kernel data that is sampled at the “global” system

level,

f). synProbe. Probes are used by attackers to reconnoiter a remote network or system. The

simplest probe consists of sending a TCP SYN to an IP address and Port. If the remote

system responds with a SYN/ACK, the attacker knows that there is a service running

at the address and port number.

g). rstProbe. A rstProbe is a type of port scan. An attacher wanting to probe a system

will send one of the following: FIN, FIN/URG/PUSH, URG, URG/PUSH, URG/FIN,
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PUSH, PUSH/FIN or NULL Flags. On a Unix machine, each will elicit a RST/ACK on

a closed port, and no response from an opened port. A Windows machines will reply

with RST/ACK. When this occurs, the icmpOutMsg, icmpOutEchoResp, tcpEstabRst,

and tcpOutRst properties greatly exceed their mean.

h). synFlood. The SynFlood attack is a type of DoS. The attacker sends thousands of

spurious TCP EST requests (the first part of the TCP 3-way handshake) to the target.

In response, the target will send a TCP SYN/ACK and reserve buffer space for the

new connection. When this occurs, memory consumption increases and the tcpSynRec

property exceeds its norm for several cycles.

i). exIcmpEchoReq. The ping of death is a type of DoS. It is crude, but remains effective

at slowing down a system’s network. The attacker, using a spoofed IP address, sends

thousands of large (65,000) byte ICMP echo requests to the target. The target responds

by sending an ICMP echo reply of the same size. During this attack, the rates of the

ipInRecvs and icmpInEcho properties increase.

j). iPFrag. Also known as the Land attack. To carry out this attack, IP packet fragments

with overlapping Fragment Offset fields are sent to the target. Most implementations

of TCP/IP have had this vulnerability removed. Although this attack will no longer

crash a machine, it will, however, degrade network performance. During this attack,

the rate of the ipInOutReq exceeds its norm.

k). netAnomPackets. We observed that the ipReasmOks increased during the remote DoS

attacks directed against network connected processes.

l). exIpPacketSize. This class is instantiated whenever the network is subjected to a sus-

tained flow of large IP packets. For example, the ping of death attack uses large (65,000

byte) icmp echo requests. Due to the large packet size, the icmp echo requests (pings)

are fragmented as they traverse the network. The target of the attack is forced to de-

fragment the incoming packets.
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m). tcpPortScan1 & tcpPortScan2. There are several types of TCP port scans, each type

use different combinations of TCP Flags. Almost all of the variations are covered

by these two classes. The middle ontology accepts either type of instance when the

corresponding class is created at that layer..

n). trojan ps. ps is a system binary that lists all running processes, process owners, process

ID (PIDS), etc. The trojaned version of ps hides specific processes.

o). trojan netstat.netstat is a system binary that lists network connections, routing tables,

interface statistics, masquerade connections, and multi-cast memberships. The tro-

janed version of netstat hides specific network connections.

We use a buffer overflow attack to illustrate our ontology and the reasoning process.

Figure 7.11 illustrates the DAML+OIL specification of the bufferOverFlow class, which is

defined as a subclass of both the class Means and the class InputValidErr. If an anomalous

feature vector that has been mapped to the FOL symbols used by our ontology matches the

restrictions imposed by this class, an instance of a the bufferOverFlow class will be instan-

tiated. The instantiation is not associated with a specific process or system and therefore

remains “anonymous”.

At this point in the reasoning process, we only have an anonymous instances of the

classes BufferOverFlow, InputValidErr and Means. Additional associations will be made in

the Middle Ontology where more meaningful classes will be created.

7.5.3 Middle Ontology

Figure 7.12 illustrates a subset of the Middle Ontology. The figure shows all of the

bases classes, which include the class System and its properties netReceived, experiencing,

connectedTo, and hasProcess. The figure also depicts the classes processUnderBufferOver-

Flow and processUnderInpValErr and their relationships to the other classes and properties.

As we continue with the buffer overflow example, which follows the illustration, it will be
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<daml:Class rdf:ID="BufferOverFlow">
<rdfs:subClassOf rdf:resource="#Means"/>
<daml:intersectionOf rdf:parseType="daml:collection">

<daml:Restriction>
<daml:onProperty rdf:resource="#selfDist"/>
<daml:hasClass rdf:resource="#Amount_WA_Normal"/>

</daml:Restriction>
<daml:Restriction>
<daml:onProperty rdf:resource="#lockedVM"/>
<daml:hasClass rdf:resource="#Amount_WA_Normal"/>

</daml:Restriction>
<daml:Restriction>
<daml:onProperty rdf:resource="#vmCodeSize"/>
<daml:hasClass rdf:resource="#Amount_WA_Normal"/>

</daml:Restriction>
<daml:Restriction>
<daml:onProperty rdf:resource="#totVmSize"/>
<daml:hasClass rdf:resource="#Amount_WA_Normal"/>

</daml:Restriction>
</daml:intersectionOf>

</daml:Class>

FIG. 7.11. DAML+OIL Specification: Buffer Overflow Class

helpful to the reader to refer to the figure as we explain the classes and their properties and

relationships.
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Figure 7.13 shows the DAML+OIL specification of the ProcessUnderInputValidErr

class and its subclass, ProcessUnderBufferOverFlow. The ProcessUnderBufferOverFlow

class is instantiated when we have an instance of the BufferOverFlow class and we have an

instance of the Process class that can be associated with that instance of the BufferOverFlow

class.

We have also defined the class ProcessUnderInputValidErr as the intersection of a Pro-

cess with the property hasInducedState that consists (has the value) of the class InValidError.

Because the class BufferOverFlow is a subclass of the class InputValidErr, the instantiations

will chain and the ProcessUnderInputValidErr will also be instantiated.

<daml:Class rdf:ID="ProcessUnderInputValidErr">
<daml:intersectionOf rdf:parseType="daml:collection">

<daml:Class rdf:about="#Process"/>
<daml:Restriction>
<daml:onProperty rdf:resource="#hasinducedstate"/>
<daml:hasClass rdf:resource="#InValidError"/>

</daml:Restriction>
</daml:intersectionOf>

</daml:Class>

<daml:Class rdf:ID="ProcessUnderBufferOverFlow">
<rdfs:subClassOf rdf:resource="#ProcessUnderInputValidErr" />
<daml:intersectionOf rdf:parseType="daml:collection">

<daml:Class rdf:about="#Process"/>
<daml:Class rdf:about="#BufferOverFlow"/>

</daml:intersectionOf>
</daml:Class>

FIG. 7.13. DAML+OIL Specification: ProcessUnderInputValidErr and
ProcessUnderBufferOverFlow Classes

To recap, the reasoner has deduced that the anomalous feature vector matched the class

BufferOverFlow and that the feature vector belonged to a specific instance of the class Pro-

cess, therefore the reasoner created the classes ProcessUnderBufferOverFlow, ProcessUn-

derInputValidErr and InputValidErr.

The Middle Ontology includes all of the aggregates that are formed from its base classes

(i.e., System, Consequence, etc.) and the classes that are instantiated in the Lower Ontology.

The range of values for the hasProcess property are instances of the class Process. The class

Process has just one property, hasInducedState. The range of values for hasInducedState are
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taken from the Lower Ontology, which are restricted to members of the class Means and its

subclasses.

The range of values for the property connectedTo are limited to classes representing

other systems. The range of the property experiencing is limited to instances of the class

Consequence and its subclasses. Finally, the range of the property netReceived is limited

to instances of the class network, where the network class has the 66 properties defined in

Chapter 4.

In addition to the classes that we have just discussed, the Middle Ontology has the

following classes, all of which are instantiated in a similar manner.� ProcessUnderMemoryExploit. This class is instantiated when a process allocates so

much memory that it degrades system performance to the point of near exhaustion. It

is the intersection of a process and an instance of anomalous memory metrics.� ProcessUnderTrojan. This class is instantiated at the intersection of a system having a

process and the process’ profile being out of character with its model.� ProcessUnderBufferOverFlow. Typically, a buffer overflow causes a process to crash.

If the buffer overflow was successful, the attacker will be given a shell that runs in

place of the process or as the process’ child. If it was unsuccessful, the process will

crash and terminate, in effect becoming a DoS. This class will be instantiated when the

former occurs and the process fails to conform to the process’ model.� ProcessUnderExploit. This class is instantiated when a process is found to exhibit

behavior defined by any of its subclasses (e.g.: atomicity error, etc).� ProcessUnderInputValidErr. This class is instantiated when a process is found to ex-

hibit behavior defined by any of its subclasses (e.g.: buffer overflow, malformed input,

etc).� NetworkWithAnom. This class is instantiated when a system network has received

network traffic that fails to fit the model of normalcy. It is used as a precursor to
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network attacks and probes.� NetworkUnderRSTProbe. This class is instantiated when a system’s network interface

has received traffic that matches the profile of a RstProbe.� NetworkUnderSYNProbe. This class is instantiated when a system’s network interface

has received traffic that matches the profile of a SYN Probe.� NetworkUnderExIpPacketSize. This class is instantiated whenever the system’s net-

work interface has received excessively large IP packets.� NetworkUnderSynProbe. This class is instantiated whenever the system’s network in-

terface has been subjected to a Syn Probe.� NetworkUnderTcpPortScan. This class is instantiated whenever the system’s network

interface has been subjected to a TCP portscan. This class merges all of the different

types of tcp port scans that are identified in the lower ontology.

7.5.4 Upper Ontology

The classes defined in the Upper Ontology are meaningful to other IDSs. They provide

information that a specific system is under a specific type of attack. The classes at this

level convey information that corresponds to the Consequence category defined in Chapter 6.

Figure 7.14 illustrates a subset of the Upper Ontology.
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Continuing with the buffer overflow example, Figure 7.15 illustrates the DAML+OIL

specification of the SystemCompromisedByBufferOverFlow class. It is instantiated whenever

the hasProcess property of the System class has a value that is an instance of the

ProcessUnderBufferOverFlow. It also states that the System’s experienced property be set to

the UnAuthRoot class.

<daml:Class rdf:ID="SystemCompromisedByBufferOverFlow">
<rdfs:subClassOf rdf:resource="#SystemUnderInputValidErr" />
<rdfs:subClassOf>

<daml:Restriction>
<daml:onProperty rdf:resource="#experiencing"/>
<daml:hasClass><unAuthRoot /></daml:hasClass>

</daml:Restriction>
</rdfs:subClassOf>
<daml:intersectionOf rdf:parseType="daml:collection">

<daml:Class rdf:about="#System"/>
<daml:Restriction>
<daml:onProperty rdf:resource="#hasProcess"/>
<daml:hasClass rdf:resource="#ProcessUnderBufferOverFlow"/>

</daml:Restriction>
</daml:intersectionOf>

</daml:Class>

FIG. 7.15. DAML+OIL Specification: SystemCompromizedByBufferOverFlow Class

In addition to the SystemCompromizedByBufferOverFlow, the Upper Ontology specifies

the classes that identify a specific system as being subjected to a specific attack. Included

in the Upper ontology are five Meta classes that identify the consequences experienced by a

particular system. The classes of the Upper ontology follow:

a). SystemUnderDoS. Whenever a system experiences any type of denial of service an

instance of this class will be created and bound to the system. This is one of the Meta

classes.

b). SystemUnderProbe. This class is instantiated whenever the system has experienced a

Probe or any of its subclasses. For example, whenever the class rstProbe is created an

instance of its superclass is also created. This is one of the Meta classes.

c). SystemUnderUnAuthRoot. This class indicates that the system has experienced an

unauthorized privilege escalation to the Root level. It is created whenever there is
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an instance of an attack that results in the attacker gaining root access. This is one of

the Meta classes.

d). SystemUnderUnAuthUser. This class indicates that the system has experienced an

unauthorized privilege escalation to the User level. It is created whenever there is an

instance of an attack that results in the attacker gaining user access. This class is one

of the Meta classes and like all the Meta classes it is instantiated in addition to the

other descriptive class. Consequently, if the KB was queried about the class that a

particular system has membership in, the Meta classes, providing they apply, would be

also returned in response to the query.

e). SystemUnderLossOfConf. This class is instantiated when the system has experienced

a loss of confidentiality that was not the result of privilege escalation. This is one of

the Meta classes.

f). SystemUnderRstProbe. This is a subclass of the SystemUnderProbe class.

g). SystemUnderExploit. This class is a superclass for attacks that induce logic exploits

(e.g.: race conditions, atomicity errors). It is comprised of properties that are common

to all of its subclasses.

h). SystemUnderInputValidErr. This class is a superclass for attacks that induce input

validation errors (e.g.: buffer overflows). It is comprised of properties that are common

to all of its subclasses.

i). SystemUnderMitnickAttack. This class is created whenever the circumstances detailed

in Figure 7.7 (Mitnick Attack) exist.

j). SystemUnderMemConsAttack. This class is a dual of the class SystemUnderDoSAttack.

It will also be created if a DoS consists of an attack that allocates an inordinate amount

of memory.
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k). SystemCompromisedByBufferOverFlow. This class is created at the intersection of a

Process falling victim to a buffer overflow attack and a System having ownership of

that process. This class creates an instance of the unAuthRoot class as a property of the

targeted system.

l). SystemCompromisedByTrojan. This class states that a system has been compromised.

It is created if the class ProcessReplacedByTrojan has been instantiated and it is used

to signal the systems state.

m). SystemUnderMemConsAttack. This class is instantiated whenever the system falls vic-

tim to an attack that causes it to consume memory. It is created as a union of all of the

different types of memory attacks.

n). SystemUnderSynFloodAttack. This class is created whenever the system is the victim

of a Syn Flood attack. Instantiation of this class assures that the affected system’s

“experiencing” property will be set to the DoS class.

o). SystemWithAnomProcess. This is a general class that is created whenever the system

owns a process that has anomalous self distance measures. Some of the buffer over-

flow attacks and trojaned binaries exhibited non-specific anomalies before they fully

manifested their distinguishing characteristics. This class catches the early stages of

those attacks.

p). SystemWithAnomNetwork. This is a general class that is created whenever a network

interface has been subjected to anomalies that may be the early stage of an attack or

provide some supporting evidence for a process that is under attack.

q). SystemUnderTcpPortScan. As the name implies, this class is created when a System

is experiencing a TCP port scan. The creation of this class ensures that the affected

system’s “experiencing” property will consist of the Probe class.

r). SystemUnderExIpPacketSizeAttack. This class is created whenever the network proto-

col stack of the system is experiencing a stream of excessively large IP packets.
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The complete DAML+OIL specification of our ontology is found in Appendix E.

7.6 Experiments

We used our ontology, in conjunction with JTP, to reason over the feature vectors that

were classified as true negatives and false negatives during the experiments detailed in Chap-

ter 5. We defined true negatives as those feature vectors that did not fit the model of normal

behavior and were correctly classified as such. False negatives are the normal feature vectors

that were incorrectly classified as not fitting the model. Our goal is twofold. Although our

model performed very well in differentiating between normal and abnormal, it did not iden-

tify the nature or type of attack. Therefore our primary goal is to classify the true negatives

according to the type of attack or intrusion that they represent. Our secondary goal is to

provide an orthogonal test to reduce the misclassification rate.

Our ontology specifies the models of attack and we are testing for conformance to the

model. Therefore during this stage of our process we defined a false positive as an instance of

normal data that was misclassified as being intrusive. Likewise, we defined a false negative

as an instance of abnormal data that was classified as not belonging to any of the classes

that are used to represent an attack. We are also concerned with mis-characterized attacks.

For example, a mis-characterization occurs when a DoS attack is erroneously identified as

belonging to some other class of attack. We did not count a mis-characterization as a false

negative because it was recognized as an attack.

7.6.1 Data

Chapter 5 detailed the experiments that we conducted in order to determine an effective

means of modeling the quiescent system state. We found that the FCMdd Clustering algo-

rithm using the Mahalanobis metric resulted in the highest F-Measure. Table 7.3 details the

number of feature vectors that did not fit the model of normalcy and were forwarded to the

reasoning process (Phase-2) for classification.

We mapped the values from each feature vector to the FOL symbols (the classes Rate,
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Reference Number Attack Means Normal Malicious
Number Type

1 unAuthRoot Buffer Overflow 8 2,000
2 DoS Logic Exploit 84 2,000
3 Loss of Conf. Logic Exploit 14 2,000
4 User to Root Buffer Overflow 14 2,000
5 DoS Malformed Input 0 2,000
6 Trojan ls 0 2,000
7 Trojan netstat 0 2,000
8 Trojan ps 0 2,000
9 Trojan top 0 2,000

10 TCP Portscan Syn Scan 18 752
11 Syn Flood 1/2 Open Conn. 0 2,000
12 Ping of Death Large ICMP ER 0 2,000
13 IP Frags Overlap. IP Frag 0 2,000
14 Syn Flood Syn Scan 0 2,000
15 Local DOS Excessive Forks 6 2,000
16 DoS Malformed Input 6 2,000

Table 7.3. Data Set Resulting from FCMdd Clustering using Mahalanobis Distance

Amount, and BoolValue) specified in Table 7.2. We asserted those instances into the KB and

queried it about the class type of the assertion. For example, the attack annotated as Reference

Number 2 is a denial of service attack that sends malformed input to the Apache web server.

This particular attack exploited a logic error that caused the Web server to allocate memory

without ever deallocating it. If the attack were to continue, the system would crash due to

memory exhaustion. We used IP addresses to uniquely identify our test systems and each of

its feature vectors.

Figure 7.16 illustrates a subset of the DAML+OIL specification of the assertions made

from the the DoS attack listed as Reference 2:

Our queries took the following form:

(rdf:type IDS:sys_130.85.93.33 ?host)

JTP responded with all of the classes that sys 130.85.93.33 had membership in:

Query succeeded.
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<?xml version=’1.0’ encoding=’ISO-8859-1’?>
<rdf:RDF
xmlns:rdf ="http://www.w3.org/1999/02/22-rdf-syntax-ns#"
xmlns:rdfs="http://www.w3.org/2000/01/rdf-schema#"
xmlns:daml="http://www.daml.org/2001/03/daml+oil#"
xmlns:xsd ="http://www.w3.org/2000/10/XMLSchema#"
xmlns:IDS ="http://security.umbc.edu/IDS#"
xmlns ="http://security.umbc.edu/IDS#">

<IDS:System rdf:ID="sys_130.85.93.64">
</IDS:System>

<rdf:Description rdf:about="#sys_130.85.93.64">
<IDS:hasProcess rdf:resource="#sys_130.85.93.64_ap2.0_359"/>

</rdf:Description>

<Process rdf:ID="sys_130.85.93.64_ap2.0_359">
<selfDist><Amount_WA_Normal /></selfDist>
<vmCodeSize><Amount_WA_Normal /></vmCodeSize>
<totVmSize><Amount_WA_Normal /></totVmSize>
<lockedVM><Amount_WA_Normal /></lockedVM>
<numMinFault><Amount_WA_Normal /></numMinFault>
</Process>

<rdf:Description rdf:about="#sys_130.85.93.64">
<IDS:hasProcess rdf:resource="#sys_130.85.93.64_ap2.0_360"/>

</rdf:Description>

<Process rdf:ID="sys_130.85.93.64_ap2.0_360">
<selfDist><Amount_WA_Normal /></selfDist>
<vmCodeSize><Amount_WA_Normal /></vmCodeSize>
<totVmSize><Amount_WA_Normal /></totVmSize>
<lockedVM><Amount_WA_Normal /></lockedVM>
<numMinFault><Amount_WA_Normal /></numMinFault>
</Process>

FIG. 7.16. DAML+OIL Specification: DoS Assertions

Bindings 1:

?host = |http://security.umbc.edu/IDS#|::|System|

Bindings 2:

?host = |http://www.w3.org/2000/01/rdf-schema#|::|Resource|

Bindings 3:

?host = |http://security.umbc.edu/IDS#|::|procWMemCons|

Bindings 4:

?host = |http://security.umbc.edu/IDS#|::|SystemUnderDoSAttack|

Bindings 5:

?host = |http://www.daml.org/2001/03/daml+oil#|::|Thing|



135

Bindings 6:

?host = |http://security.umbc.edu/IDS#|::|SystemUnderMemoryAttack|

Bindings 7:

?host = |http://security.umbc.edu/IDS#|::|SystemUnderExploit|

The reasoning process informed us that sys 130.85.93.33 belonged the SystemU-

nderDoSAttack, SystemUnderMemoryAttack, and SystemUnderExploit classes and that it was

experiencing memory consumption (MemConsum). This procedure was carried out for each

of the referenced attacks.

Similarly, we were able to query the KB regarding the class membership of each of the

asserted instances. Those queries took the form:

(rdf:type IDS:sys_130.85.93.64_ap2.0_360 ?process)

JTP responded with all of the classes that sys 130.85.93.33 ap2.0 360 had member-

ship in:

Query succeeded.

Bindings 1:

?host = |http://www.w3.org/2000/01/rdf-schema#|::|Resource|

Bindings 2:

?host = |http://security.umbc.edu/IDS#|::|procWMemConsum|

Bindings 3:

?host = |http://security.umbc.edu/IDS#|::|Process|

Bindings 4:

?host = |http://www.daml.org/2001/03/daml+oil#|::|Thing|

7.6.2 Results and Discussion

The FCMdd clustering algorithm only misclassified 150 (0.468%) of the 32,000 in-

stances of normal data and 1,248 instances of anomalous data. The reasoning process, there-

fore, is mostly an exercise in correctly characterizing the anomalous data.
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Instances of normal data that were characterized as any type of an intrusion were

counted as a false positive. Likewise, instances of anomalous data that were not charac-

terizes as an intrusive were counted as false negatives. We use the F-Measure given in Table

5.7 as a performance measure. The confusion matrix that we used for our experiments is

given in Table 7.6.2 below.

Actual Classification Predicted Classification
Anomalous E Anomalous

Anomalous True Positive False Negative
Normal False Positive True Negative

Table 7.4. Confusion Matrix for Actual and Predicted Classifications

Our results, which are recorded in Table 7.5, show an average F-Measure of .977606 for

the second phase (classification) of our process. The combined F-Measure of both Phase-1

and Phase-2 was .971878. The stealthy port scan was responsible for reducing the overall

F-Measure.

Self-distance was the most significant factor when reasoning about processes. All pro-

cesses that had a self-distance exceeding 2 Ü were classified as anomalous processes. When

the instances of the buffer overflow attack in Reference 1 were reasoned over, the first 132

samples were classified as belonging to the more general class ProcessUnderExploit. This

is because properties that were needed to specify the more specific category, ProcessUnder-

BufferOverFlow, did not immediately appear in the data. The reasoner excluded all of the

instances of benign feature vectors that were misclassified during the initial clustering phase.

Similarly, the effects of the DoS (Reference 2 — induced memory leak) were not ap-

parent until after 200 instances. We also misclassified 2 of the 84 false negatives. With our

ontology, the reasoner was only able to characterize the process’ behavior during the “Direc-

tory Traversal” attack in Reference 3 as anomalous. Both the buffer overflow in Reference

4 and the DoS in Reference 5 were almost immediately discernible because the required

properties (classes that represented values greater than 3 Ü ) manifested themselves from the

outset.
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Reference % False % False # MisCharacterizations F-Measure
Number Positives Negatives

1 0 0 132 1.00
2 2 .06 200 0.9924
3 7 0 577 0.9847
4 50 0 11 0.9982
5 0 0 7 1.00
6 0 0 81 1.00
7 0 0 324 1.00
8 0 0 112 1.00
9 0 0 17 1.00

10 100 50 0 0.6646
11 0 0 0 1.00
12 0 0 0 1.00
13 0 0 0 1.00
14 0 0 211 1.00
15 0 0 0 1.00
16 0 0 0 1.00

Average .977606

Table 7.5. Experimental Results: Phase-2

The four trojaned binaries were easily characterized because of the variances between

code size, resident set size, and self-distance properties of the test data and those of the model.

The properties and relationships of the ontology’s characterization of the network pro-

tocol stack were sufficient to classify four of the five network attacks. Regarding the TCP

port scan, we could not separate the false negatives and true negatives from the first phase

nor could we detect all instances of the port scan. This poor performance is attributable to

this being a stealthy probe, crafted to “fly under the statistical radar”.

7.7 Chapter Conclusions

The primary function of the reasoning process was to classify data according to the type

of attack or intrusion that the feature vector represented. The reasoner accurately classified

the overwhelming majority of attacks and and intrusions, and it somewhat reduced the per-

centage of the already small number of false positives. Although it was successful in the
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majority of the cases, the reasoner performed poorly on the stealthy port scan, consequently

reducing the overall performance measure achieved during the first phase of the process.



Chapter 8

Intrusion Detection and Response Protocols for

Mobile Ad Hoc Networks

Mobile ad hoc networks (MANETs) are fundamentally different from their wired-side

counterparts. MANETs provide no fixed infrastructure, base stations or switching centers.

Moreover, the nodes of a MANET are computationally constrained and have limited power.

The routing protocols utilized in MANETS are dependent on each node serving as a router.

Examples of these routing protocols include: AODV [94], DSR [57], ZRP [47] and TORA

[91], as well as cluster based optimizations as described in [55], [69] and [74].

The nature of MANETs not only introduces new security concerns but also exacerbates

the problem of detecting and preventing aberrant behavior. Whereas in a wired network an

intruder could be a host that is either inside or outside of the network and could be subjected

to varying degrees of access control and authentication, in a MANET, an intruder is part

of the network infrastructure. Moreover, at the outset, an intruder in a MANET could be a

trusted and integral component of the network infrastructure and only later exhibit aberrant

behavior.

Existing intrusion detection and response mechanisms for MANETs capitalize on the

collaborate nature of mobile ad-hoc routing. These mechanisms rely upon promiscuous

packet snooping to detect the mishandling of data in mobile ad-hoc networks. Our work

improves and enhances existing mechanisms. Our research also revealed that the routing

139
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protocols typically employed by mobile ad-hoc networks lack sufficient functionality to en-

able robust intrusion detection, hence we have added modules that provide the necessary

functionality. These modules are applicable to all of the routing protocols used in MANETs,

not just DSR.

Snooping protocols leverage two properties inherent in most mobile ad hoc protocols.

The first property is that each node in the network maintains a list containing the addresses

of those nodes with which it is in immediate proximity or on the path from a source to a

destination. The second property, as is the case in the 802.11 [52] and MACAW [9] link

layer protocols, is that a node is able to “hear” the RTS/CTS negotiation of its neighbors.

Accordingly, each node that participates in the intrusion detection process ‘snoops” on its

neighbor’s transmissions in order to ensure that they have not been modified or mis-routed.

The notion of “snooping” is also employed in DSR, which is used for “reflecting shorter

routes” as an optimization of the route maintenance process.

In our extension, which is viable for DSR and other ad hoc routing protocols, the snoop-

ing nodes listen to all other nodes in their proximity. This is in sharp contrast to both Watch-

dog [81] and Neighborhood Watch [13], which only work with DSR, watching the forward

node on the patch from source to destination. We have experimented with, and provide de-

tailed results for, two response mechanisms. In the passive response mode, upon determining

that another node is aberrant, a node will unilaterally cease interaction with that node. Al-

though each node acts independently, eventually the intrusive node will be blocked from

using all network resources. In the active response mode, each node relies upon a Cluster

Based hierarchy. When a node detects an aberrant neighbor, it informs its Cluster Head,

which in turn initiates a voting procedure. If the majority determine that the suspected node

is in fact intrusive, an alert will be broadcast throughout the network and the intrusive node

will be denied network resources.

8.1 Background

Watchdog, introduced by Marti et al. [81], was the first snooping intrusion detection pro-
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tocol for MANETs . Watchdog relies upon DSR and each node participates by “watching” its

downstream node, on the route from source to destination, to ensure that it has re-transmitted

the packet without modification. Marti et al. hold that if source routing is not used then a

misbehaving node could simply broadcast to a non-existent node to fool the watchdog. While

this is true, packet modification is not covered up by simply broadcasting to a non-existent

node. To mitigate the effects of a misbehaving node, Marti et al. also introduced Pathrater,

which selects a path from source to destination based upon a “reliability” metric, instead of

the shortest path. This approach, as observed in [13], relieves the malicious node from the

requirement of participating in the routing process, which may be construed as a reward.

Buchegger and Le Boudec [13] build upon Marti et al.’s work by replacing Watchdog

with Neighborhood Watch. Their work is also limited to DSR, and snoops its downstream

neighbor. They introduce a Trust Manager, Reputation System, and a Path Manager. Essen-

tially each node is required to run a finite state machine to calculate trust, which in turn is

used to rank the other node’s reputation and then determine routes with the highest security

metric. Buchegger and Le Boudec did not seem to consider the resource constraints imposed

upon most mobile ad hoc devices, nor did they provide analysis of their protocol with respect

to network performance, true positives or false positives.

We believe that our work extends and improves both of these efforts by expanding the

malicious detection to collaborate with routing protocols other than DSR, and offering a more

robust identification procedure by the incorporation of a cluster voting scheme.

Zhang et al. [123] propose a distributed and collaborative approach to intrusion de-

tection using an Anomaly Detection Model. They use information-theoretic measures to

describe the characteristics of the normal flow of information across the mobile ad hoc net-

work. They use the RIPPER [18] and SVM Light [56] classifiers, trained using normal data

to predict what is to be the next normal event given n previous events. If the next event n is

not what the classifier had predicted then it is deemed to be an anomaly.

They consider two classes of attacks: Route Logic Compromise and Traffic Pattern Dis-

tortion. Route Logic Compromise attacks include malicious packet mis-routing and dropping
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while Traffic Pattern Distortion includes the malicious alteration of packet contents. In train-

ing the classifier they use (1) local routing information to include cache entries and and traffic

statistics and (2) a position locater or some uncompromisable form of GPS. In response to a

detected intrusion they suggest using a majority-based distributed consensus algorithm where

nodes communicate intrusion specific information and then initiate multi-layered response

procedures.

Zhang et al. advocate a static routing model, whereas the fundamental nature of a mobile

ad hoc network is dynamic. Our approach differs from that proposed by Zhang et al. because

we do not make prior assumptions about normal or anomalous behavior and by piggy-backing

onto the network infrastructure, we allow for dynamic change within an ad hoc environment.

8.2 Attack Classes

We have identified message mis-routing and message modification as the primary con-

cerns in MANETS. These classes of attack are due to the collaborative routing paradigm

employed in MANETs. Our approach requires us to address one additional type of attack, a

distributed denial of service attack, where two malicious nodes, acting in collusion, attempt

to exploit the intrusion detection process to deny service to a third node.

8.2.1 Message Modification Attacks

It was pointed out in [124] that due to the absence of encryption and due to the vul-

nerable nature of the transmission medium (viz.: radio) MANETS are susceptible to attacks

where a node can maliciously modify the contents of a packet if it is on the route between the

source and the destination. Such alterations may lead to the subsequent failure of applications

using that modified data, hence these attacks must be detected and responded to.

A message modification attack will need to recalculate the packet’s checksum and mod-

ify that field in the packet’s header appropriately. If the attacker fails to do so, the packet

will be discarded when it reaches its destination because the checksum computation, which

is performed to detect transmission errors, will fail.
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Malicious checksum alteration is a type of denial of service attack. To mount it, the

attacker modifies the checksum so that it will not match the packet, consequently, when the

packet arrives at its final destination the checksum computation will fail and the packet will be

discarded. Our protocol will detect this type of attack and the offending node will eventually

be denied access to network resources.

8.2.2 Message Mis-Routing Attack

The message mis-routing attack occurs when a malicious node discards packets that

need to be forwarded to the next hop node in the route from source to destination. The of-

fending node exacerbates the situation by not sending “Route Error” messages to the sender

of the message, consequently the source will continue to send messages which will be mali-

ciously dropped. If a reliable transport level connection is not used, this will cause a huge loss

of packets in the network until the source times out and initiates an unnecessary “re-Route

Discovery” procedure.

Another type of message mis-routing attack happens when the malicious node changes

an entry in the packet’s route list and forwards the packet to the next, albeit wrong, hop.

Ultimately this will cause network congestion and unnecessary “route truncation” and “re-

Route Discovery” procedures to be initiated.

8.2.3 Denial of Service Attack

As will be detailed, the active approach to our intrusion detection method employs a vot-

ing scheme to raise an alarm condition resulting in the identity of an intruder being broadcast

throughout the network. It is conceivable that two malicious nodes could act in collusion and

falsely declare an otherwise innocent node as an intruder. The end result is that the innocent

node would be denied service. As will be detailed in Section 8.4.3, our approach addresses

and mitigates this type of attack.
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8.3 Snooping Protocol Extensions

We assume the presence of symmetric omni-directional links within the ad hoc network.

When a node that is not on the path from source to destination is able to hear transmissions

of two intermediate nodes, : and � , that are on the source route, it becomes a snooping or

monitor node for node � . Its intrusion detection function is to ensure that node � does not

alter the contents of the packet or misroute the packet. It accomplishes this by comparing

certain information contained in the packet F as it is inbound to intermediate node � with the

same information as contained in packet F�G as it is outbound from node � .

This section details the data structures and algorithms maintained and executed at each

node to facilitate our Intrusion Detection and Response Protocol.

Figure 8.1 illustrates the scenario where node B snoops on Node 3 by examining packet

F as it is inbound to node 3 from node 2 and packet F�G as it is outbound from node 3 to node

4.
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FIG. 8.1. Node A snoops on Node 2, Node B snoops on Node 3, etc.
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8.3.1 Data Structures

Each node employing our Intrusion Detection and Response Protocol maintains four

data structures: the ID Snoop Table, IDStatus Table, BadNode Table and the Threshold Ta-

ble. For every packet snooped, the monitoring node makes an entry in its
� � ���Ê$�$�F�O9�X	f"/S ,

recording information which will be used to detect intrusions. The format of the
� � ����$5$�FO9�(	f"/S follows:

Table
� � ����$5$HF�O9�X	f"/S

1: SrcAddr

2: DstAddr

3: PacketSeqNumber

4: PrevHopAddr

5: CurrentHopAddr

6: NextHopAddr

7: CHECKSum

8: TIMEStamp

An entry in the
� � ����$5$HFüO9�(	f"/S is uniquely identified by the ��Q?RH:_`(`HQ , � ���I: `HQ�Q and

the Z��(R � S+�ì� SKJ }ML ÐÞ	fS�Q .
Referring to Figure 8.1, when node � is snooping on node 6 , node � is the Z�Q�S�Ã�N§$HFO: `(`(Q ,

node 6 is the 
 L Q5Q�S��\�PNã$�FO:_`(`HQ and node = is the
} S+�!�PNã$HFQ:_`(`HQ .

The monitoring node creates an entry in the IDStatus Table for every node that it is

snooping upon. This table contains the total number of times that the monitoring node has

detected an intrusion of a particular class for a particular node. The format of the IDStatus

Table is as follows:

Table
� � �A�8��� L �ÌO9�(	f"/S

1: NODE Address
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2: ModificationCount

3: MisRouteCount

The Threshold Table holds threshold values for the attack classes. When a node exceeds

the threshold value for a particular attack class, the protocol assumes that the anomalous

behavior displayed by the node is in fact malicious and that link errors are not the cause of

anomalies. The format of the Threshold Table is:

Table O ~7Q?S3�3~!$�"/`_O9�(	Y"/S
1: ModThreshold

2: MisRouteThreshold

3: TimeOutPeriod

The BadNode Table holds the address of nodes that have been deemed to be intrusive.

Whenever a node receives any packet or request from a node that is listed in the BadNode

Table that request or packet is ignored. This effectively denies the intrusive node access to

any resources in the MANET. The format of the BadNode Table is as follows:

Table ���(` } $5`(S+O �(	f"/S
1: NODEAddress

8.3.2 Algorithms

The ����$5$�F�-%Z��(R � S+� F 4 method forms the core of our intrusion detection protocol. All

packets that the monitoring node receives (that are not explicitly addressed to the monitor)

are passed to this method. The algorithm implemented by the ����$5$HF method follows:

method ���Ê$�$�F -%Z��(R � S+�QF 4
1: if F �� data packet then

2: Ï�S+� L Q��
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3: end if

4: if F = Route Error Packet � (F ^ ID Snoop Table) then

5: ID Snoop Table R ID Snoop Table - F
6: Ï�S+� L Q��
7: end if

8: if (F ^ ID Snoop Table) � (CurrentHopAddr ^ Neighbor Table) then

9: Z�S�Q?[Ê$3Q�Ð � ��-SF 4
10: h®� � S4T��\�zQ5õ�-SF 4
11: Ï�S+� L Q��
12: end if

13: if F ^ ID Snoop Table then

14: Z�S�Q�[Ê$3Q5Ð � �ã-UF 4
15: Ï�S+� L Q��
16: end if

17: if CurrentHopAddr ^ Neighbor Table then

18: h®� � S4T��\�zQ5õ�-SF 4
19: Ï�S+� L Q��
20: else

21: Discard the packet

22: Ï�S+� L Q��
23: end if

Accordingly, the Snoop algorithm does one of the following:

i. Ignores non-data carrying packets.

ii. If a Route Error Packet is detected, AND the ID Snoop Table contains an entry (or

entries) for the node being reported as unreachable, the entry (or entries) are removed

from the ID Snoop Table.

iii. If there is an entry for the packet in the ID Snoop Table (implying that the packet
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was snooped during its previous hop), AND the CurrentHopAddr is also in the node’s

neighbor table, then run Z�S�Q�[\$5Q5Ð � � -EZ��XR � S+�VF 4 and h®� � S4T��\�zQ5õ¢-EZ��XR � S+�VF 4 on the

packet.

iv. If there is an entry for the packet in the ID Snoop Table, implying that the packet was

snooped during its previous hop, run Z�S�Q?[Ê$5Q5Ð � ��-%Z��(R � S+�OF 4 on the packet.

v. If there is no entry for the packet in the ID Snoop Table and if the monitor node has

an entry for the next hop recipient in its neighbor table (implying that it will be able to

hear the next hop relay the packet), make an entry in the ID Snoop Table by runningh®� � S4T��c�zQ�õ -EZ��(R � S+�OF 4 on the packet.

vi. If there is no entry for the packet in the ID Snoop Table and if the monitor node does

not have an entry for the next hop recipient in its neighbor table, drop the packet.

As stated, the ���Ê$�$�F method calls the h®� � S4T��\�zQ5õ and the Z�S�Q?[Ê$3Q�Ð � � methods. Theh©� � S4T��\�zQ5õ method creates an entry in the ID Snoop Table, storing the relevant header and

routing information, as follows:

method h®� � S4T��c�zQ�õ�-EZ��(R � S+�OF 4
1: Store corresponding header and routing information from F into the

� � ���Ê$�$�F.O9�(	f"%S
2: O � hWT.�+�8�(Ð.F�R System time O .

The O � hWT��+�8�HÐ.F field in the ID Snoop Table is used to detect message mis-routing

attacks where the node fails to forward the packet and to clear the table of “old “ entries.

The Z�S�Q?[Ê$3Q�Ð � ��-SFQG 4 method tests for message modification attacks and message mis-

routing attacks. It does so by comparing the entry in the ID Snoop Table derived from the

inbound packet, F , to information derived from the outbound packet, FXG . To test for a sus-

pected message modification attack, the Z�S�Q?[Ê$5Q5Ð � ��-UFYG 4 method compares the checksum in

the packet FQG to that which was in packet F , as is recorded in the checksum field of the corre-

sponding entry in the ID Snoop Table. To detect a mis-routing attack, the protocol performs
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a test to ensure that the specified path was followed.

The Z�S�Q�[Ê$3Q5Ð � � method makes entries into the
� � �A�8��� L �+O9�(	f"%S when it detects a node

exhibiting anomalous behavior. The algorithm implemented by the Z�S�Q�[Ê$3Q5Ð � � method fol-

lows:

method Z�S�Q?[Ê$3Q�Ð � ��-EZ��XR � S+�OF G 4
1: Find the entry in ID Snoop Table for FYG
2: Compare the checksum contained in FYG with that in the entry found above.

3: if checksum(FOG ) �� checksum(F ) then

4: For the PrevHopAddr’s entry in the ID Status Table

ModCount R ModCount + 1

5: end if

6: if h®$�`(
�$ L �c� ¬ h©$�`�O ~7Q?S3�3~!$�"/` then

7: RAISEAlarm(PrevHopAddr)

8: end if

9: if F - } S+�!�PNã$HFQ:_`(`HQ 4,�� FQG/-E
 L Q�Q�S��\�PN§$HFO: `(`(Q 4 then

10: For the PrevHopAddr’s entry in the ID Status Table

MisRouteCount R MisRouteCount + 1

11: end if

12: if h©)C�'Ï�$ L �8S'
�$ L �c�¸¬ h<)C�'Ï�$ L �8S+O ~7Q?S3�3~!$5"%` then

13: RAISEAlarm(PrevHopAddr)

14: end if

15:
� �b����$5$HF.O �(	f"/SZR � � ����$5$HF�O �(	f"/S - F
To test for message mis-routing attacks, for each time period T, the monitor node calls

the Z�S�Q?[Ê$3Q�Ð¤h©)d�'Ï�$ L �8S method to test for entries in the ID Snoop Table that have exceeded

the TimeOutPeriod specified in the Threshold Table. Whenever a node displays anomalous

behavior by dropping or mis-routing a packet, the MisRouteCount entry in that node’s entry

in the
� �b�A�8��� L �¸O9�(	f"/S is incremented.
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method Z�S�Q?[Ê$3Q�Ð¤h©)d�'Ï�$ L �8S
1: for all F ^ IDS Snoop Table do

2: if [ -E��õ7�+�8S�Ð �z)]ÐÞS_�¨O � hWT��A�8�HÐ.F 4 ¬ h©)C�'Ï�$ L �8S+O_~7Q�S3�3~Ä$5"/` ] � [
} S+�!�PNã$�FO:_`(`HQ^ Neighbor List] then

3: For the NextHopAddr’s entry in the ID Status Table

MisRouteCount R MisRouteCount + 1

4: IDS Snoop Table R IDS Snoop Table - F
5: end if

6: if [ -E��õ7�+�8S�Ð �z)]ÐÞS_�¨O � hWT��A�8�HÐ.F 4 ¬ h©)C�'Ï�$ L �8S+O_~7Q�S3�3~Ä$5"/` ] � [
} S+�!�PNã$�FO:_`(`HQ¥^ Neighbor List] then

7: IDS Snoop Table R IDS Snoop Table - F
8: end if

9: if h©)C�'Ï�$ L �8S'
�$ L �\��¬Ih©)C�'Ï�$ L �8S+O ~7Q�S3�5~!$5"/` then

10: RAISE Alarm(CurrentHopAddr)

11: end if

12: end for

In addition to testing for message mis-routing attacks, the PerformMisRoute method also

clears old entries in the ID Snoop Table. If, in the event that a node moves out of range of its

“monitoring” node after it has received a packet but before it forwards the packet, it could ap-

pear to the monitoring node that the packet was maliciously dropped. The PerformMisRoute

method tests and corrects for this condition.

Depending on which approach is being used (passive or active), the Ï[: � �\T]: "%�HQ5Ð
method in the above algorithm results in one of two different responses. We detail the re-

sponses in the following section.
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8.4 Response to Intrusions

Our intrusion detection protocol allows for either an active or passive response to intru-

sions. With either response mode, the outcome is the isolation of the offending node from

the network. In the passive mode, a node makes a unilateral decision based on its own ob-

servations of anomalous behavior. The more frequent and aberrant the behavior on the part

of an intrusive node, the sooner the intrusive node will be isolated and denied access to the

underlying network infrastructure.

The active response mode offers a higher level of assurance than does the passive mode.

The increased assurance level is due to a majority voting scheme and consequently, the flood-

ing of the intrusive node’s identity throughout the network. The active mode, however, is

more complex to implement.

8.4.1 Passive Response

Once the threshold value, which mitigates the effects of link error, for message mis-

routing or message modification has been exceeded, an alarm is raised. In the passive mode,

the node that raised the alarm removes the intrusive node from its neighbor table and will

no longer participate in route discoveries, Hello Messages or collaborative routing with the

intrusive node. Additionally, the intrusive node’s address is recorded in the BadNode Table.

As we will show in the section detailing our experiments, the more dense the network, the

more nodes that simultaneously declare a node intrusive and prevent the malicious node from

utilizing network resources. If the node in question continues to act intrusively each node in

the network will eventually make a unilateral decision to disassociate itself with the intruder.

8.4.2 Active Response

Tay et al. [55] propose the Cluster Based Routing Protocol (CBRP) where nodes form

clusters, each with an elected cluster head. The role of the cluster head is to optimize the

route discovery process. We utilize the cluster heads to enable a voting protocol and active
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responses to intrusions. In CBRP, a neighbor cluster head is a minimum of 2 hops away.

When a node raises an alarm it forwards that alarm to all of its cluster heads. In turn, the

cluster head initiates the voting scheme described below. It is important that no node be able

to spoof identities of other nodes, as this will enable it to foil the voting scheme by generating

spurious votes. Accordingly, we assume that some kind of mechanism to authenticate each

node is available. Secondly the voting scheme may fail if the majority of the cluster heads

are in fact malicious nodes. If this were to be the situation, the malicious cluster heads could

vote in an incorrect manner and foil the protocol. However, we feel that the likelihood of

malicious nodes being elected as cluster heads to the majority of the clusters is relatively

small.

8.4.2.1 Data Structures Each cluster head participating in the voting scheme is required

to maintain the following four data structures. The first two data structures are available from

the underlying Cluster-Based Protocol while the remaining two are exclusively used for the

voting process:

i. Neighboring Cluster Head Information. This table maintains information about all

the cluster heads within its vicinity. This is used by the node that initiates the voting

process to calculate which other cluster heads to include in the voting process for the

current suspect.

ii. Two-hop Neighborhood Information. This table contains two hop topology informa-

tion for every node. This information will be used by the cluster heads that participate

in the voting process to decide if the suspect node, for which the voting process has

been initiated, is in their neighborhood. If the suspect node is within two hops of a

cluster head it will either vote positive or negative, otherwise it will vote neutral.

iii. Suspect Table. An entry to this table is made whenever a member node raises an alarm

about a suspected node. This table holds the identity of the suspected node, the identity

of the monitoring node and the type of intrusion detected.
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iv. Voting History Table. This table records all the voting processes currently in progress

(both initiated and voted by the cluster head), and all those voting processes whose

outcome was either positive or negative.

The last two data structures are required to avoid multiple instances of the same voting

process from being initiated for a single suspected node. These tables also prevent a sin-

gle monitoring node from raising an alarm at different cluster heads and all of them voting

positively based on the information obtained exclusively from a single monitoring node.

8.4.3 The Voting Protocol

The voting protocol employs two key strategies: Distributed Voting and Majority Vot-

ing. They are detailed as follows:

i. Distributing Votes:

Whenever the voting process is initiated, all of the participating nodes send their votes

to all other participating nodes. Each node, upon receipt of the votes, locally decides

the outcome of the vote. This avoids the need for a voting coordinator.

ii. Majority Voting. Any vote is successful if a majority of the participating nodes vote

positively.

The Protocol:

i. When the threshold is reached at a node, the node sends this information to all of its

cluster heads. This information contains the identity of the monitoring node and the

identity of the suspected node.

If a node suspects its cluster head of being an intruder it will only send the alarm

information to its alternative cluster head, if it exists. If the node does not have an

alternative cluster head it will forward the alarm information to a cluster head that is

two hops away. This two-hop information is contained in its Cluster Adjacency Table

as described in [55].
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ii. When a cluster head receives information about a potentially intrusive node, it adds this

information to its suspect table. This information is used to respond to voting requests

from other cluster heads.

iii. The cluster head checks the voting history to ascertain if a vote is currently in process

for this suspect node:

(a) If the cluster head finds that a vote is in progress, it does not initiate a new round

of voting. This prevents issuing concurrent voting requests for the same suspect

node.

(b) If no vote is currently in process for the suspect node, the cluster head initiates the

voting process. It sends a VOTE-REQ packet to all its neighboring cluster heads.

The VOTE-REQ includes a list of cluster heads that are to participate in this vote.

The VOTE-REQ also contains the identity of the suspect node and the identity of

the monitoring node which raised the alarm.

iv. When a cluster head receives a VOTE-REQ for the same suspect node that it has just

initiated the voting process for, it resolves the conflict by giving preference to the

initiator with the higher address. The non-initiating cluster heads vote in the following

manner:

(a) Vote positive if it finds an entry in the suspect table for the same suspected node

but reported by a different monitoring node from that included in the VOTE-REQ.

(b) Vote neutral if the suspected node is not in its Two hop neighborhood because

this means that the suspected node is not a neighbor of any of adjacent cluster.

Hence this cluster head cannot judge the behavior of the suspected node.

(c) Vote negative if the suspected node is in its Two hop neighborhood but does not

find an entry in the suspect table for that suspected node. This indicates that

the members of this cluster head have not noticed anything malicious about the
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suspected node even though the suspected node is a neighbor to some of the

members.

v. Every participating cluster head decides the outcome of the voting independently. The

vote is positive if it has received a majority of votes in the affirmative, where a ma-

jority is calculated from the number of participating cluster heads listed in the original

VOTE-REQ. Otherwise, the vote is deemed to be negative.

vi. If the vote is deemed positive at a cluster head, it sends out a FINAL-RESPONSE

packet which is flooded throughout the network. This FINAL-RESPONSE is to in-

struct all the nodes in the network to stop communicating with the malicious node. It

includes the identity of the malicious node and a list of cluster heads that voted positive

in the voting process.

vii. A node in the network that is unaware of these process cannot arbitrarily trust a sin-

gle FINAL-RESPONSE message because the message could have been sent by a

malicious node in order to make other nodes stop communicating with an innocent

node. Hence a node, upon receiving the FINAL-RESPONSE, waits to receive the

FINAL-RESPONSE from enough participating cluster heads to conclusively verify

positive results.

viii. Upon receiving FINAL-RESPONSE from all of the required nodes, a node enters the

malicious node in its BadNode Table as described in Section 8.4.1

8.5 Protocol Modules

As previously stated, prior work has based efforts on the ad hoc routing protocol DSR.

An obvious advantage is gained by each packet carrying the source route. This means that

any snooping node can quickly determine where the packet should have come from, and

where the packet should go to, on the next packet hop. Although using DSR is advantageous

to our host based IDS, it has also drawn criticism for being insecure. Be that as it may, it
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is easier to detect malicious activity when correct packet handling can be determined based

solely on the contents of the packet header.

We have extended our base snooping algorithm to work with other routing schemes such

as AODV. While each packet does not carry the route from source to destination, a snooping

node can determine if the current hop is the final destination. This allows the snooping node

to listen for the packet to be forwarded without modification. Obviously, a mis-route can

not be determined, but any modification to the packet, or packet dropping, can easily be

determined and logged.

In the case of dropped packets, we chose to ignore the broadcast packets in this particular

effort. Protocols within ad hoc networks that broadcast can have mechanisms to limit/prevent

widespread flooding. For example, a simple rule can prevent a node from re-broadcasting a

packet that the node has already handled. This type of behavior could be misinterpreted as

malicious. An idea for incorporation would be to log these as broadcast misbehaviors, and

use them only in conjunction with other misbehaviors for determining bad nodes. In other

words, misbehaviors with dropping broadcast packets would not be considered, by them-

selves, enough evidence on which to alarm. We do log broadcast packets for determining

packet modifications.

In order to implement the algorithms, two additional pieces of support code need to be

in place. It is important to recognize that performance of the intrusion detection algorithm is

only as good as the underlying protocol that keeps track of the node’s current one hop neigh-

bors. The only routing protocol in the GlomoSim network simulator [5] having a neighbor

table is AODV. Unfortunately, the table is only updated when nodes are expected to route

traffic. The fundamental basis for our algorithms is knowing current one hop neighbors in

order to determine correct packet handling. The implementation of AODV’s neighbor table

was determined to be woefully inadequate for our purposes.

We chose to implement a neighbor function that periodically sends Hello messages to

announce its presence. The messages are received and tracked in a one hop neighbor table.

If a node does not receive a Hello packet from one of its neighbors for three consecutive
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Hello periods, then the neighbor is assumed to have moved out of range and is removed

from the neighbor table.

The second piece of code added was a dynamic clustering scheme based on the Dis-

tributed and Mobility-Adaptive Clustering (DMAC) algorithm as described in [6]. The algo-

rithm was slightly modified to use the Neighbor function to determine changes in Clusters

and to initiate the appropriate actions (i.e. new Cluster Head elections). It should be noted

that we are using DMAC to maintain a cluster hierarchy for voting, and not as a routing

protocol.

8.6 Experiments

The algorithms were simulated using GlomoSim version 2.03. We used the simula-

tion environment detailed in [81] as a starting point. The following subsection details our

simulation environment, metrics, and experimental results.

8.6.1 Simulation Environment

i. Grid Size. We set the grid size to 2,000 by 2,000 meters.

ii. Nodes. We had 50 nodes in total. There were always 16 nodes involved in constant bit

rate (CBR) connections, and we varied the number of bad nodes.

iii. Packet Traffic: 10 CBR connections were generated simultaneously, where 4 nodes

were the source for two streams each, and 2 nodes were the source for a single stream

each; destination nodes only receive one CBR stream.

iv. Mobility. Mobility used the random waypoint model with maximum speed set to 20

meters per second, and the pause time set to 15 seconds.

v. Routing Protocol. The routing protocol was set to AODV and DSR.

vi. MAC Layer. We used 802.11, peer-to-peer mode for the MAC layer.
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vii. Radio. We used the “no fading” radio model with the radio range set to 376 meters.

viii. Simulation Time. We set the simulation time to 200 seconds.

ix. Dropped Packet Time Out. We set the timeout period for dropped packets to 10 sec-

onds.

x. Dropped Packet Threshold. We set the dropped packet threshold to 10 packets.

xi. Clear Delay. An event expiration timer. We set it to 100 seconds. (e.g.: the amount of

time that a node considered an event without coming to a final determination).

xii. Misroute Threshold. We set this parameter to 5 events. This is applicable to routing

protocols using Source Routes such as DSR, but is not applicable in AODV.

xiii. Modification Threshold. We set this to 5 events.

xiv. Neighbor Hello period. We set this to 30 seconds.

8.6.2 Metrics

We measure false positives, true positives, and packet throughput each as a function of

the percentage of bad nodes in the network. False positives and True positives are counted

as a single tally for each node making the identification. By using this method there may be

greater than 50 total False or True positives counted. All results are averaged over a number

of simulation runs.

8.6.3 Results and Discussion

Results were obtained by averaging 100 simulation runs for 200 seconds each. The

graphs in Figure 8.2 illustrate the successfully delivered packets. The graphs in Figure 8.4

show the true positives, while those in Figure 8.3 show false positives. Each graph plots its

respective metric as a percentage of bad nodes in the network. This measurement was chosen

so that we could compare our performance to the work of Marti et al.
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FIG. 8.2. Percentage of Packets Delivered: (a) DSR, (b) AODV

Given our simulation environment, only 60% of the packets using DSR were success-

fully delivered and 83% of the packets using AODV were delivered. As expected, the packet

delivery rate is the same for when there are no intrusion detection mechanisms active on the

network and when the passive response protocol is employed. This indicates that the passive

response incurs no additional overhead. As the density of malicious nodes increases, the per-

centage of packets successfully delivered for both the Active and Passive response protocols

converges at 25%. Because Marti et al. selected paths based upon a reliability rating (e.g.:

Pathrater) their malicious node avoidance mechanism incurred more overhead than ours.

False positives are those nodes that were incorrectly labeled as malicious. As expected,

the performance of both the Passive and Active response protocols improved, with respect to

false positives as the density of the malicious nodes increased.

According to [81] there are two contributing factors that influence the rate of false posi-

tives — speed and collisions. The node’s speed can cause monitoring nodes to believe packets

have been dropped, when the mobiles move out of range prior to packet relaying. Collisions

at the monitoring node may also lead to a node’s failure to detect a packet relay.

True positives are malicious nodes that were correctly identified. In our protocol, the
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FIG. 8.3. Percentage of False Positives: (a) DSR, (b) AODV

successful identification of a malicious node is dependent upon the likelihood that a third

node will be in proximity to the relaying node and the relaying node’s -1 hop neighbor.

Consequently, our results show that as the density of malicious nodes increases so does the

detection rate. Our experiments indicated that AODV outperforms DSR and that the detection

rates of the passive response protocol reach 90% under AODV. As is the case in any intrusion

detection system, there is a Min-Max trade off between false negatives and false positives. By

requiring a majority vote, the Active Response attempts to minimize false positives, which is

not the case with the Passive Response.

8.7 Chapter Conclusions

We have extended our snooping algorithm to work not only with DSR, but also AODV.

While each packet does not carry the route from source to destination in AODV, a snooping

node can determine whether the current hop is the final destination. This allows the snooping

node to listen for the packet to be forwarded without modification. Obviously, a mis-route

cannot be determined, but any modification to the packet, or dropping of the packet can easily

be recognized and logged.
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FIG. 8.4. Percentage of True Positives: (a) DSR, (b) AODV

Our intrusion detection and response protocol for MANETs performed better than the

one proposed by Marti et al. in terms of false negatives and percentage of packets delivered.

It should be noted that Marti et al. do not report on the rate of true positives. We do not know

how it compared in regard to true positives because they did not report their detection rate.

Because Buchegger and Le Boudec did not report any results, the work of Marti et al. is the

only work available for comparative purposes.



Chapter 9

Intrusion Detection in Wireless Sensor Networks

Improvements in wireless networking and micro-electro-mechanical systems (MEMS)

have contributed to the formation of a new computing domain – distributed sensor networks.

These distributed sensor networks are characterized by limited power supplies, low band-

width, small memory sizes and a different traffic model. The traffic model of the mobile

ad-hoc networks addressed in Chapter 8 is typically many-to-many whereas the traffic model

of a sensor network is more of a hierarchical model or many to one. MEMS are significantly

more resource constrained than the typical “mobile” or “handheld” device. The threat to a

sensor network is different from the threat to a mobile ad-hoc network. As such, existing

network security mechanisms, including those developed for Mobile Ad-Hoc Networks, are

a poor fit for this domain. Research into authentication and confidentiality mechanisms de-

signed specifically for sensor data and network control protocols is needed. Given the fact

that little prior work ([95] being the exception) exists in this space, there is a need to identify

the problems and challenges and to propose solution techniques.

This chapter addresses the security problems that sensor networks face. We identify the

threats and vulnerabilities to sensor networks, starting from the radio layer and progressing

to the application layer. We state why the security mechanisms that are presently used in

mobile ad-hoc environments are inadequate or not appropriate for sensor networks. Our

contribution to this area is the creation of lightweight techniques for securing existing sensor

network routing and data movement approaches, such as directed diffusion [53], spin [71]
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and data dissemination [11, 79]. Our protocol includes a mechanism to detect aberrant and

intrusive sensor nodes and remove them from the sensor network.

9.1 Background

There is relatively little work in the area of securing sensor networks. Like their mobile

ad-hoc counterparts, sensor networks lack a fixed infrastructure and the topology is dynami-

cally deployed. Addressing the security of mobile ad-hoc networks, Kostov et al. [68] point

out that if the routing protocol can be subverted and messages altered in transit, then no

amount of security on the data packets can mitigate a security threat at the application layer.

Consequently, they introduce “Security Aware Ad-hoc Routing” (SAR). SAR characterizes

and explicitly represents the trust values and relationships associated with ad-hoc nodes and

uses these values to make secure routing decisions. They address two problems: Ensuring

that data is routed through a secure route composed of trusted nodes and the security of the

information in the routing protocol. To motivate their scenario, they use the example of two

military generals wishing to communicate via an ad hoc network using a generic form of the

AODV protocol. They employ a route discovery protocol where only nodes with a security

metric equivalent to the sender and receiver participate in the routing process. Their work

appears to be based on the Bell-La Padula Confidentiality Model [7]. Their model, how-

ever, is dependent on self-enforcement where nodes with a lower than required security level

voluntarily opt out of participating in the hop-by-hop routing process.

Perrig et al. [95] introduce “SPINS: Security Protocols for Sensor Networks” comprised

of Sensor Network Encryption Protocol (SNEP) and É TESLA. The function of SNEP is

to provide confidentiality (privacy), two-party data authentication, integrity and freshness.É TESLA is used to provide authentication to data broadcasts. SPINS presents an architecture

where the base station accesses nodes using source routing.

In SNEP, each ��$5`XSpi shares a unique master key ^�i with the base station. This master

key is used to derive all other keys. For data encryption, SNEP employs a one time encryption

key produced by using a key derived from ^üi and an incremental counter (message indicator)
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as inputs to the RC5 cryptographic algorithm. The RC5 algorithm outputs a binary string that

is used as the one time key. The message is XORed with the one time key, transmitted, and

the counter is incremented in preparation for the next message. The base station, aware of

the node’s counter value and the derived key, produces the identical one time key, and XORs

the encrypted message with the one time key to produce the clear text.

Our security protocol differs from SPINS in two fundamental and essential ways.

i. SPINS uses source routing, making the network vulnerable to traffic analysis. Our pro-

tocol relies upon broadcasts where the entire communication is end-to-end encrypted

in order to mitigate the threat posed by traffic analysis.

ii. We provide a mechanism for detecting certain types of aberrant behavior, behavior that

may be due to either a compromise or malfunction of an individual node. In either

case, we are able to remove the node from the network.

9.1.1 Threats to Sensor Networks

There are many vulnerabilities and threats to a WSN. They include outages due to

equipment breakdown and power failures, non-deliberate damage from environmental fac-

tors, physical tampering, and information gathering. We have identified the following threats

to a WSN:

i. Passive Information Gathering: If communications between sensors, or between sen-

sors and intermediate nodes or collection points are in the clear, then an intruder with

an appropriately powerful receiver and well designed antenna can passively pick off

the data stream.

ii. Subversion of a Node: If a sensor node is captured, it may be tampered with, electron-

ically interrogated and perhaps compromised. Once compromised, the sensor node

may disclose its cryptographic keying material, and access to higher levels of com-

munication and sensor functionality may be available to the attacker. Secure sensor
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nodes, therefore, must be designed to be tamper proof and should react to tampering

in a fail complete manner where cryptographic keys and program memory are erased.

Moreover, the secure sensor needs to be designed so that its emanations do not cause

sensitive information to leak from the sensor.

iii. False Node: An intruder might “add” a node to a system and feed false data or block

the passage of true data. Typically, a false node is a computationally robust device

that impersonates a sensor node. While such problems with malicious hosts have been

studied in distributed systems, as well as ad-hoc networking, the solutions proposed

there (group key agreements, quorums and per hop authentication) are in general too

computationally demanding to work for sensors.

iv. Node Malfunction: A node in a WSN may malfunction and generate inaccurate or

false data. Moreover, if the node serves as an intermediary, forwarding data on behalf

of other nodes, it may drop or garble packets in transit. Detecting and culling these

nodes from the WSN becomes an issue.

v. Node Outage: If a node serves as an intermediary or collection and aggregation point,

what happens if the node stops functioning? The protocols employed by the WSN need

to be robust enough to mitigate the effects of outages by providing alternate routes.

vi. Message Corruption: Attacks against the integrity of a message occur when an intruder

inserts itself between the source and destination and modifies the contents of a message.

vii. Denial of Service: A denial of service attack on a WSN may take several forms. Such

an attack may consist of jamming the radio link or exhausting resources or mis-routing

data. Karlof and Wagner [60] identify several DoS attacks including: “Black Hole”,

“Resource Exhaustion”, “Sinkholes”, “Induced Routing Loops”, “Wormholes”, and

“Flooding” that are directed against the routing protocol employed by the WSN.

viii. Traffic Analysis: Although communications might be encrypted, an analysis of cause

and effect, communications patterns and sensor activity might reveal enough informa-



166

tion to enable an adversary to defeat or subvert the mission of WSN. Addressing and

routing information transmitted in the clear often contributes to traffic analysis.

9.2 Security Protocol

Security is a broad term that encompasses the characteristics of authentication, integrity,

privacy, non-repudiation, and anti-playback. In the case of our sensor network the security

requirements are comprised of authentication, integrity, privacy (or confidentiality), anti-

playback and an intrusion detection and correction mechanism. The recipient of a message

needs to be able to be unequivocally assured that the message came from its stated source.

Similarly, the recipient needs to be assured that the message was not altered in transit and

that it is not an earlier message being re-played in order to veil the current environment.

Finally, all communications need to be kept private so that eavesdroppers cannot intercept,

study and analyze, and devise counter measures in order to circumvent the purposes of the

sensor network.

9.2.1 Single Collection and Authentication Point (Base Station) Model

Our model assumes the family of sensor routing protocols where each sensor commu-

nicates either directly or indirectly with a base station. In turn, the base station correlates

and aggregates information from each sensor. Accordingly, the base station will need to ver-

ify the authenticity of the sensor, the integrity of the communication, and to ascertain that it

is not a replay of an earlier communication. Recall the assumption that the base station is

computationally robust and secure. In our protocol each sensor j shares a unique 64-bit Key

Keyi with the base station. Our protocol provides for a multi-hop scenario where the range

of a base station is extended employing nodes that are adjacent to the base station to serve

as intermediaries for non-adjacent nodes. Figure 9.1 depicts an example of such a sensor

network topology.

Given our security requirements, the entire communication between the base station and

a node is encrypted. The format of all communications (sensor nodes and the base station)
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FIG. 9.1. Example Network Topology

consist of a preamble, header and payload. The preamble is empty if the communication

originates from the base station and is directed to a sensor, otherwise it contains the address

of the sending node. The header contains the recipient’s address, nonce and a command and

is encrypted under key Ki , which is shared between the base station and node j. The payload

contains data exchanged between the node and the base station. As will be explained, the

payload is encrypted under the shared key of the destination node, which may be different

from the key used to encrypt the header. This difference comes into play when the commu-

nication needs to be relayed by an intermediate node. Figure 9.2 depicts the communication

format.
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Preamble Header Payload

   < Addr_1( ), EKeyj {Addr_2(j),DTG,COMMAND}, EKeyj {data}>

FIG. 9.2. Message Format

Where:� Addr 1 is empty if the communication is from the base station to a sensor.� Addr 1 contains the address of the transmitting node if the communication is directed

to the base station. The inclusion of Addr 1 enables the base station to immediately

select the correct key; instead of trying keys until it locates the correct one.� Addr 2 contains the address of the destination node if the communication is from the

base station to a node. If the communication is from a node to the base station, Addr 2

will contain the address of the sending node.� DTG is the date-time-group and is a nonce used to prevent replay attacks.� COMMAND is a command to the sensor.

9.2.2 Topology Discovery and Network Setup

The base station is deployed with the unique ID and symmetric encryption key of each

node in the micro sensor network. Similarly, each node is deployed with the unique key

that it shares with the base station and, as in SPINS, its clock is synchronized with the base

station’s clock. We note that sensors do not obtain their keys ”over the air” from the base

station; rather every sensor is programmed with a unique key. Upon initialization of the

sensor network the base station learns the network topology, creates and optimizes a routing

table and provides a mechanism to non-adjacent (out of radio range) nodes that enables them

to securely reach the base station.
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At start up, the base station sends a HELLO message to each node. If the node replies

with a HELLO-REPLY, then the node is adjacent to the base station and the base station adds

that node to its route table. Those nodes that did not reply are assumed to be more than one

hop away and non-adjacent to the base station. For these non-adjacent nodes, the base station

sends a message containing the RELAY command and a payload, to be forwarded to the non-

adjacent node, to each of the adjacent nodes. In a RELAY message, the header is encrypted

under the adjacent node’s key and the payload, which encapsulates a header and payload

intended for the non-adjacent node, is encrypted under the non-adjacent node’s key. The

relaying (adjacent) node prepends the original preamble to the payload and transmits the new

message. The header of the message received by the non-adjacent node contains a HELLO

command and the payload contains a mechanism that will be used by the non-adjacent node

to reach the base station through the intermediate (adjacent) node.

This mechanism, referred to as _ , is a header containing the RELAY command en-

crypted under the adjacent node’s key. The adjacent node simply places the header of the

incoming message containing the RELAY command in the payload of the outgoing message

containing the HELLO command. To respond to the HELLO message, the non-adjacent node

constructs a HELLO-REPLY message encrypting it under the key it shares with the base sta-

tion and places it in the payload. The preamble containing the base station’s address and _
are pre-pended to the payload and the message is transmitted. In turn, the adjacent node re-

ceives the transmission, decrypts the header and upon seeing the RELAY command, prepends

the preamble to the payload and transmits it to the base station. Once the base station dis-

covers which nodes are adjacent to it and all of the paths by which the non-adjacent nodes

are reachable, it optimizes its route table so as to not overburden an adjacent node with the

task of relaying messages. If the optimization process results in a different route, the base

station sends the affected non-adjacent node an updated _ . The secure topology discovery

and network setup algorithm is presented in Figure 9.3:
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C R all sensors in Sensor Network
Route Table Ra`
Temp Route Table Rb`�

j c C do
Base Station d j � ? Addr 1(), EKeyi¸U Addr 2(j), DTG, HELLO V , null ¬
if ( j d Base Station � ? Addr 1(j), EKeyi,U Addr 2(j), DTG, HELLO-REPLY V , null ¬ )

then
Route Table R Route Table + j()
C R C - j�

k c C do�
j c Route Table do

Base Station d j � ? Addr 1(), EKeyi U Addr 2(j), Null, RELAY V , EKey Ø'U Addr 2(k),
DTG, HELLO V(¬
j d k � ? Addr 1( ),Ek Ø9U Addr 2(k), DTG, HELLO V , e,V(¬
if (k d j � ? Addr 1( ), header, payload ¬ where:

header = e = EKeyi¸U Addr 2(j), null, RELAY V
payload = Addr 1(k), EKeyi�U DTG, Addr 2(k),HELLO-REPLY V , null ¬�H��`

j d Base Station � ? Addr 1(k), EKey Ø�U DTG, Addr 2(k), HELLO-REPLY V , null ¬ )
then

Temp Route Table R Temp Route Table + k(j)
Optimize(Temp Route Table)
Route Table R Route Table + Temp Route Tablef Note: The DTG is only verified by the final destination; consequently it is null for inter-
mediate nodes.

FIG. 9.3. Secure Topology Discovery and Network Setup Protocol



171

As depicted in Figure 9.1, the base station maintains three tables. Their purpose and

function follows:

The Route Table contains the primary route, indicated by an *, and alternate routes to

a node. An entry of the form A:() indicates that the node is directly connected to the base

station whereas an entry such as D:(A) indicates that A is an intermediate node between the

base station and node D.

The Key Table contains the unique key shared by node m and the base station.

The Activity Table contains the most recent Date Time Group (DTG) received by the

base station from a particular node, a count (X) of corrupted messages sent by the node, and

a count (Y) of other nodes dependent upon this node to relay messages. The values of X and

Y are used to detect aberrant behavior on the part of an individual node.

We use a cipher text auto-key system employing a 64-bit key (detailed in [26]) for data

encryption. Accordingly, the strength of a cryptosystem is dependent upon both its key length

and the soundness of the encryption algorithm. Current cryptographic doctrine recommends

using keys of 128 bits, however, this requirement is predicated upon the notion that the en-

crypted communication remains secure against cryptanalysis and brute force attacks for a 30

year period. In contrast, we require that the sensor network’s communications withstand a

brute force attack for the life of the network and a short period thereafter.

To prevent traffic analysis, the entire communication is encrypted (with the exception

of the preamble which is null except for traffic intended for the base station). Accordingly, a

node will need to decrypt all communications that it “hears”. This adds very little overhead

because when the node decrypts the first 64 bits of the the message, the recipient’s address

(Addr 2) is revealed. If a valid address is present then the node will continue to decrypt the

message, otherwise it will discard it.

As previously stated, authentication is achieved through the use of a shared secret, which

is the 64-bit key Ki , shared between the base station and node j. Message integrity is achieved

through the selection of an encryption algorithm that exhibits strong properties of diffusion

and confusion. Accordingly, an attack aimed at altering the message will only be against
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the form of the message and not its substance. Anti-Play back is achieved by the use the

Date-Time-Group. Finally, privacy is achieved as a result of encrypting all communications.

9.2.3 Inserting Additional Nodes into the Network

The insertion of an additional node into the existing sensor network is easily accom-

plished. In our model the unique identity and the key K of the node to be added are loaded

into the base station, the new node’s clock is synchronized with that of the existing network

and the base station repeats the topology discovery algorithm.

9.2.4 Isolating Aberrant Nodes

An aberrant node is one that is not functioning as specified. Identifying and isolating

aberrant nodes that are serving as intermediate nodes is important to the continued operation

of the sensor network.

A node may cease to function as expected for several reasons:� It has exhausted its source of power.� It is damaged.� It is dependent upon an intermediate node and is being blocked because the intermedi-

ate node has fallen victim to the previous two bullets.� It is dependent upon an intermediate node and is being deliberately blocked because

the intermediate node has been compromised.� An intermediate node has been compromised and it is corrupting the communication

by modifying data before forwarding it.� It has been compromised and it communicates fictitious information to the base station.

Our protocol, detailed in Figure 9.4, effectively mitigates against the class of attack (or

failure) where an intermediate node is involved.
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�
j c U (Current Time O - DTG) ¬hgbV do

if (j is adjacent) then
Base Station d j : Zjilkmk
if j �d Base Station : POLL-REPLY then

j :_Rp�z)]Ã()%�zõon 0�0
else
if (j is non-adjacent) then

Base Station d � ù «  Ò *8« � : Z]i]kpk
if
� ù «  Ò *8« � �d Base Station : POLL-REPLY then� ù «  Ò *z« � :_Rp�z)]Ã()E�zõqn 0�0
Base Station d � * s x r «dy+* x r d j : Zjilkmk
if j d Base Station : POLL-REPLY then

Base Station d � * s x r «]y�* x r d j : UPDATE-PSI
else

Route Table = Route Table - m
else

Base Station d � ù «  Ò *z« � d j : Zjilkmk
if j �d Base Station : POLL-REPLY then
Route Table = Route Table - m�

j c Ur:_Rp�z)]Ã()E�zõqsI¬�O ~7Q?S3�3~!$5"%`�V do
if (j is adjacent) then�

n c Primary-Adjacent-List(j)
Base Station d � * s x r «dy+* x r d n : UPDATE-PSI

Route Table = Route Table - m
else

Base Station d � * s x r «dy�* x r d j : Zjilkmk
if j �d Base Station : POLL-REPLY then

Route Table = Route Table - m�
j c Route Table do

if :_Rp�z)]Ã()%�zõqt<¬�O ~7Q?S3�3~!$5"%` then
Route Table = Route Table - m

FIG. 9.4. Network Repair Algorithm
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In order to mitigate against an intermediate node that corrupts the data being relayed

to the base station, the base station keeps a counter of corrupted packets. Such a tactic

constitutes a denial of service against the sending node because the base station will in ll

probability, request a retransmission, consequently depleting the node of power.

Periodically, the base station checks the activity table associated with a node, testing for

a prolonged period of inactivity and for a high incidence of corrupted messages originating

from the node. If the node is directly connected (i.e., it does not rely upon an intermediate

node), this could be evidence of aberrant behavior on the part of the node. If the node relies

upon an intermediate node, this could be evidence of aberrant behavior on either the part of

the node or the intermediate node.

In either case, the base station polls the node. If the base station does not receive a poll-

reply within the time out period, it will re-poll the node via an alternative path, if it exists. If

it receives a reply, it will transmit a new e to the node which reflects the alternate route and

increment the intermediate nodes counter (Y) of route failures.

9.3 Experiments

Our experimental goals were to measure the efficiency of the network setup protocol

and the intrusion detection and repair algorithm. We used power consumption and time to

converge as our metrics. We used the SensorSim [90] extension of the NS network simula-

tor [89] for our experiments. All of our protocol, to include cryptographic functionality, is

implemented at the routing layer.

9.3.1 Assumptions

We make the following assumptions regarding our simulated sensor network:� We make no attempt to counter the threat from a widespread denial of service attack

against the RF layer. As pointed out in [95], such attacks are fairly straightforward to

mount against fixed frequency RF communication links that are found in the sensors.
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A denial of service is in itself an alarm.� The base station is computationally robust, having the requisite processor speed, mem-

ory and power to support the cryptographic and routing requirements of the sensor

network. The base station is part of a trusted computing environment.� The communication paradigm is either base station to sensor or sensor to base station.� The radio range of a sensor is 15 meters.� Given the radio range of a sensor, the single hop area of coverage with the base station

at the center is: 706 square meters, ×�Q� .� The sensing range of a sensor is 1 meter, providing an area of coverage of 3.141 square

meters.� Given the single hop area of coverage provided by the base station and a sensor’s area

of coverage, it will require 224 sensors to saturate the one hop area.

9.3.2 Simulation

We used the simple radio and battery models of the simulator. This model assumes a

current draw of 12 Ðu: to transmit a message, 1.8 Ðu: to receive a message and 2.9 Ðu:
for the CPU to process a message. We also assume a data rate of 19,200 kbps and message

length of either 24 or 48 bytes.

We conducted experiments to measure energy expenditure of each sensor function (Tx,

Rx and CPU) during network setup time for four different network topologies. We simulated

a geographic environment measuring 5654 square meters. We divided this environment into

two concentric circles: the inner circle, with a radius of 15 meters, and the outer circle, with a

radius of 30 meters. The base station was located at the center. The sensor placement within

our experimental topologies is as follows:

1. 30 nodes randomly placed in the inner circle and 70 nodes randomly placed in the outer

circle.
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2. 50 nodes randomly placed in the inner circle and 50 nodes randomly placed in the outer

circle.

3. 70 nodes randomly placed in the inner circle and 30 nodes randomly placed in the outer

circle.

4. 100 nodes randomly placed across the entire area.

9.3.3 Results

9.3.3.1 Network Setup We measured the energy consumed (Y axis) by each component

of the sensor (the transmitter, receiver and CPU) for the entire network of 1 base station and

99 sensors, plotting it against the time taken (X axis) for the particular network topology to

converge. We used a log plot so that small values would be discernible.

Figure 9.5 shows the results for Topology #1. Topology discovery and network setup

occurred in 54 seconds of simulation time with a total energy expenditure of 37.8 :��'S'R for

all nodes in the sensor network.
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FIG. 9.5. Network Setup: 30 Adjacent and 70 Non-adjacent Nodes

Figure 9.6 shows the results for Topology #2. It took 55 seconds of simulation time

for topology discovery and network setup. The total network energy consumption was 38.5
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:_�'S'R .
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FIG. 9.6. Network Setup: 50 Adjacent and 50 Non-adjacent Nodes

The energy expenditure and time taken for Topology #3 is illustrated in Figure 9.7.

Energy consumption was 22.4 :_�'S'R and it took 32 seconds of simulation time for the network

to converge.
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FIG. 9.7. Network Setup: 70 Adjacent and 30 Non-adjacent Nodes

Figure 9.8 illustrates the random distribution of sensors in Topology #4. It took 75

seconds of simulation time and energy consumption was 52.5 :��'S'R .
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FIG. 9.8. Network Setup: Random Distribution

In all cases, and as anticipated, the receiver (Rx) component consumed the highest

amount of energy, closely followed by the CPU. The transmitter (Tx) component consumed

the least amount of energy. This is intuitive, as the number of messages received greatly

outweighs those transmitted.

The topology with the densest inner circle and the sparsest outer circle consumed the

least amount of energy and converged the fastest. The topology scenario that was most rep-

resentative of the methods used for physical protection (30 inner nodes and 70 outer nodes)

was near the median for time and energy consumption. Our results indicate, and it is intu-

itive, that as the ratio of adjacent to non-adjacent nodes increases in favor of adjacent nodes,

energy consumption for topology discovery and network setup decreases.

Network setup is the most expensive in terms of energy consumption, which is due to

the volume of messages. However, energy consumption decreases from this point forward for

the life of the sensor network. To put the energy requirements into perspective, suppose that

a sensor network using our security protocol were to maintain its peak rate for a protracted

period. If this were the case, then each sensor equipped with a battery similar to the Eveready

X91 with a capacity of 3,135 mAh would be sustained for approximately 435 hours (Note:

the Berkeley Renee Mote uses two of these batteries [8]). Since our network would have a
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required lifespan of a few days, this time period is well within the bounds of the requirements

for our application class.

9.3.3.2 Intrusion Detection and Network Repair We simulated the causal effects of

aberrant nodes on the network. We used a node’s inactivity during the last g time units as a

measure of its state. Accordingly, we chose values of 15, 5 and 5 for g , X and Y, respectively.

The simulation consisted of causing 5 adjacent and 5 non-adjacent nodes to become inactive

during the simulation, for each of the four topologies described above. During the first 3

seconds of the simulation, and periodically afterward, the sensors transmit data to the base

station, which populates the activity table. For the remaining simulation time period, the

base station periodically launches the network repair protocol described in Figure 9.4 to

update the routing table and transmit UPDATE-PSI messages as required.

Figures 9.9 — 9.12 illustrates the energy consumption over the 20 second simulation

time period for each of the four topologies.
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FIG. 9.9. Network Repair: 30 Adjacent and 70 Non-adjacent Nodes

We found that in each case the network repair algorithm took constant time and energy.

The main reason for the short simulation time is the constant (simulation) time of 0.03 sec-

onds required by the base station for polling each node and repairing the network based on
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FIG. 9.10. Network Repair: 50 Adjacent and 50 Non-adjacent Nodes
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FIG. 9.11. Network Repair: 70 Adjacent and 30 Non-adjacent Nodes

the responses (either direct or relayed). For each topology, this time corresponds to energy

consumption of approximately 7.7 :_�3S'R to repair the entire network.

9.4 Chapter Conclusions

We have identified the threats and vulnerabilities that a sensor network might face. In

response, we have created a lightweight communications protocol and intrusion detection
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FIG. 9.12. Network Repair: Random Placement

and correction mechanism that mitigates those threats. Our protocol considers the dimin-

ished computational capacity that is characteristic of sensor networks. Our experiments have

demonstrated that our protocol is feasible in terms of functionality and considering to a sen-

sor node’s limited resources.



Chapter 10

Conclusions

According to the empirical analysis that we conducted, the most serious attacks are

effected by “insiders” who carry out their attacks via an attached terminal — not via the

network. Consequently, a network-based IDS will fail to detect the most consequential and

damaging attacks. Moreover, the most pervasive network-based IDSs are of the signature

type and they are only able to detect known attacks.

We are aware of the tendency among security practitioners to rely on network-based

signature detectors almost exclusively. To justify their choice, they state that host-based

systems cannot be trusted to provide accurate information. The reason for their mistrust rests

upon the notion that the underlying operating system is not provably secure.

To deflect these criticisms, we have anticipated a worse case scenario — hidden pro-

cesses, which by their nature have the potential to cause a considerable amount of harm. We

have implemented a technique to detect this type of attack and have expanded it to instru-

ment the Linux kernel. We do not claim to have made the operating system impervious to

attack, but we offer reasonable assurances regarding the integrity of the data captured by our

solution which provides identifiable artifacts of an attack. Hopefully this will alleviate the

general concerns voiced about host-based intrusion detectors.

The instrumented kernel gave us access to the kernel’s data structures, which in turn

provided us with potentially hundreds of metrics and measures to evaluate system state. One

of the measures that became available to us was the stream of system calls that are generated
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by a running process. Stephanie Forrest et al. were the first researchers to use system calls

as a measure of a process’ state. In their model, they viewed sequences of system calls as

n-grams and built a lexicon of all of the contiguous words of length � in the stream of system

calls. Tan et al., after extensive analyses, have concluded that this type of a measure will

always result in blind spots. To counter their affects, we developed a unique system call mea-

surement that we refer to as self-distance. We then used the Kullback-Leibler dissimilarity

metric to measure the dissimilarity of the self-distance distributions between a baseline ex-

emplar of a process and an unclassified (aberrant or benign) sample taken from the same type

of process. Our experiments strongly indicate that the Kullback-Leibler dissimilarity mea-

sure, weighted by information gain of the self-distance distributions between an unknown

sample and a baseline exemplar is a suitable measure for distinguishing between processes

that are under attack and those that are not.

We proposed a dual-phase host-based intrusion detection methodology. Our method-

ology is intended to be employed throughout a domain or enterprise, where each system is

responsible for itself and communicates with other systems in order to give each other a 6?F��"v
view of the environment.

During the first phase of our method, we compared samples of low-level kernel data to

a model of normal behavior. Accordingly, we experimented with different clustering tech-

niques, vector measurements, and normalization methods to determine an optimal modeling

strategy. Our experiments showed that the Fuzzy c-Medoid clustering algorithm using the

Mahalanobis distance performed best. We experimented with z-normalization but learned

that the Mahalanobis distance precluded its use. We presented a proof stating the reason for

this.

Once a data sample failed to conform to the model, what to call it or how to classify it

became an issue. The second phase of our intrusion detection process, therefore, is concerned

with classifying the instances of anomalous data so that it can be communicated to other

systems in meaningful form.

Based upon the results of our empirical analysis, we created a target-centric taxonomy
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of attacks categorized by Input, Means and Consequences. These categories serve as the core

for our target-centric ontology.

We argued the case for moving away from taxonomies and their syntactical represen-

tation languages, to ontologies and semantically rich ontology specification languages. We

compared the ontology specification language DAML+OIL to XML, which is currently ad-

vocated by the IETF in its emerging IDMEF standard. Our comparison highlighted the de-

ficiencies of XML and demonstrated how a language like DAML+OIL mitigates those de-

ficiencies. We also demonstrated how an ontology specification language, in concert with

a shared ontology, can simultaneously serve as an attack recognition, attack reporting and

attack correlation language.

Using DAML+OIL, we created a data model of the relationships that hold between

the low-level data that we captured while during our experiments. We initiated real attacks

against our experimental systems and collected the data. We devised a means to map the

instances of the attack data (data that failed to conform to our model of normal behavior),

which were represented as numeric values, to instances of our ontology, which need to be

represented as logical symbols. We used the Java Theorem Prover, a sound and complete

First Order Logic theorem prover, to reason over and classify instances of anomalous data.

Our experiments proved that we were able to classify the attacks and intrusions with a high

degree of accuracy.

The F-Measures of our dual-phase process were .982249 and .977606 respectively, and

the overall F-Measure was .971878. Because of the base-rate fallacy, the limiting factor an

IDS’s performance is not its ability to correctly identify intrusions, but rather its ability to

suppress false alarms. The high F-Measures in conjunction with the posterior probability of

.998 have demonstrated our methodology’s overall effectiveness.

We have presented new and novel techniques that advance the field of intrusion detec-

tion in several areas. We have designed novel mechanisms to detect and mitigate aberrant

behaviors encountered in Mobile Ad Hoc (MANET) and Wireless Sensor (WSN) networks.

Since both of these networks are comprised of resource constrained devices, we designed
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our intrusion detection mechanisms as protocols that monitor network state rather than sys-

tem state. We have experimented with a “snooping” protocol for MANETS, extending prior

research to work with all mobile ad hoc routing protocols, not just DSR.

We have identified the threats and vulnerabilities that a sensor network might face. To

mitigate them, we have created a lightweight communications protocol that includes an in-

trusion detection and correction component. Our experiments and simulations have demon-

strated that our protocol is functionally feasible given a sensor node’s limited resources.

10.1 Future Work

Although our research shows promise, there is considerable work yet to be done. Our

work has been “stand alone”, focusing on a single detector. Research regarding the dynamic

building of distributed ID coalitions needs to begin. These coalitions are to be modeled on

loosely coupled social networks such as those in human environments. Better analytical

methods need to be developed in order to detect attacks that are crafted to “fly under the

statistical radar”. The data set that we extract from a running kernel is highly dimensional.

Although some attributes appear to never fluctuate beyond the statistical norm, could their

exclusion result in a missed attack? Research into reducing the dimensionality of the data

set is needed. In our model of a distributed IDS, the ID units interact as both producers and

consumers of information. Communications between the ID units needs to be supported by a

secure infrastructure that incorporates distributed access control. Policy based access control,

which is in stark contrast to static access control lists, was developed at UMBC under NSF

contract 0242403. Whether or not it is a viable approach for a distributed IDS needs to be

investigated.

In order to detect attacks that are crafted to be evasive by hiding in the statistical “noise”,

requires sensitive and discerning analytical tools. The following describes some of the issues

pertaining to the data analysis and model generation that are in need of future research.

i. Give a data set, what is the optimal number of partitions (states) represented in the set?
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ii. If the actual number of states is known how do you partition the data set to best model

the different states?

One possible approach is motivated by the information-theoretic engineering literature

(see e.g. [105] where the approach is explored for the Mahalanobis distance).

Let × �fe �+��� e ×ÄØ be a partition of the dataset into
�

clusters. If wH is the centroid of cluster ×Ä 
define the quality (or distortion) of ×Ä , as J7-#×! 4 = �x o�y  `\-zw e ê 4 . Likewise, define the quality of

the partition of
�

as {�Ø = J�-/× � 4Y0 ����� 0 J�-/×ÄØ 4 . To calculate the optimal number of partitions we

denote the quality of the optimal partition
�

of the dataset as { ªØ and plot { ªØ versus
�

. This

plot is referred to as the distortion curve of the cluster and according to Sugar et al. [104]

the optimal number of clusters is at the “kink” of the distortion curve (a more sophisticated

approach based on the analysis of the distortion curve is suggested by Sugar in [105]).

A different approach to identifying the “right” number of clusters is based on optimiza-

tion theory. The problem of finding
�

optimal clusters partition of a dataset by a variety of�
–means algorithms can be stated as a constrained optimization problem (see [64]) with the

quality of an optimal partition given by { ªØ . The constrained optimization problem is associ-

ated with the convex dual optimization problem which, in many cases, is much easier to solve

(see e.g. [113]). We denote the value of the corresponding dual problem by � ªØ , where it is

known that { ªØ � � ªØ (see [97]). To identify the “right” number of clusters we will analyze

the curve { ªØ �¨� ªØ .
Likewise, partition optimality is also an issue. Families of

�
–means clustering algo-

rithms attempt to generate an optimal partition by applying a gradient type method that leads

to a local minimum of the function {�Ø . Enhancements of the batch
�
–means introduced re-

cently by Kogan et al. in [29, 65] lead to significant improvement over the classical batch�
–means algorithms.

Optimizing normalization methods and distance functions remains as a research issue.

One such distance function worth investigating was recently published in [64]. This function,

given in Equation 10.1, is motivated by optimization theory and is a generalization of a
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distance function based upon Kullback-Leibler divergence. It measures the distance between

a data vector ê and a cluster centroid w .

`c-'w e ê 4 � y� iìÑ � ê Ù m�Ú4|~}�� ê Ù mHÚwÄÙ m�Ú 0 y� iËÑ � wÄÙ m�Ú!�
y� iìÑ � ê Ù m�Ú (10.1)
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Appendix A

Format of the ICAT Meta-base

Table A.1 presents the fields of the ICAT meta-base and their possible values. Values

enclosed in “quotes” are explicit values, otherwise they are a short description of the possible

content.
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Field Values
Vulnerability Name A numeric identifier linked to the Common

Vulnerabilities and Exposures database maintained by Mitre
Published Before When the vulnerability was discovered
Summary An overview of the vulnerability
Severity “high”

“medium”
“low”

Exploitable Range “local”
“remote”

Vulnerability Type “Input validation Error”
“Access validation error”
“Exceptional condition handling error”
“Environmental error”
“Configuration error”
“Race condition”
“Design error”
“Other”

Exposed System Component “Operating system”
“Protocol stack”
“Server Application”
“Non-server application”
“Hardware”
“Communication Protocol”
“Encryption module”
“Other”

Loss Type “Availability”
“Confidentiality”
“Integrity”
“Security protection”
“root level access”
“user level access”
“other access”

Reference � the source of the advisory(e.g. Cert or Bugtraq)
Vulnerable Software and Version (e.g. Solaris 2.3)

Table A.1. Fields and Possible Values of the ICAT Meta-base



Appendix B

Format of the CERT Advisories

CERT Advisories, although following a prescribed format, are fairly free form. Table

B.1 provides the format of a CERT/CC Advisory.

Field Values
Name Advisory number and vulnerability name
Original Release Date Date first posted
Last Revised date of latest revision
Source Source of the information
Systems Affected Systems and software affected
Overview A synopsis of the vulnerability
Description A detailed description of the vulnerability
Impact The potential impact of the vulnerability
Solution A solution to the vulnerability
Appendices Information provided by vendors and References

Table B.1. Format of a CERT Advisory
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Appendix C

Format of the Linux Process Descriptor

The Linux process descriptor is defined in the “C” structure task struct and includes

structures of type mm struct, list head, Linux binfmt, completion, timer list, tms, user struct,

tty struct, thread struct, fs struct, files struct, signal struct, sigpending. The purpose of these

structures is included in the listing of the task struct in the form of comments. The listing of

the memory structure, mm struct, follows the process descriptor.

struct task_sruct {

volatile long state;
unsigned long flags;
int sigpending;
mm_segment_t addr_limit;
struct exec_domain *exec_domain;
volatile long need_resched;
unsigned long ptrace;

/* Lock depth */
int lock_depth;

long counter;
long nice;
unsigned long policy;
struct mm_struct *mm;
int processor;

unsigned long cpus_runnable, cpus_allowed;

struct list_head run_list;
unsigned long sleep_time;

struct task_struct *next_task, *prev_task;
struct mm_struct *active_mm;
struct list_head local_pages;
unsigned int allocation_order, nr_local_pages;

/* task state */
struct linux_binfmt *binfmt;
int exit_code, exit_signal;
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int pdeath_signal; /* The signal sent when the parent dies */

/* related PIDs */
unsigned long personality;
int did_exec:1;
pid_t pid;
pid_t pgrp;
pid_t tty_old_pgrp;
pid_t session;
pid_t tgid;

/* boolean value for session group leader */
int leader;

/*
* pointers to (original) parent process, youngest child, younger sibling,
* older sibling, respectively. (p->father can be replaced with
* p->p_pptr->pid)
*/

struct task_struct *p_opptr, *p_pptr, *p_cptr, *p_ysptr, *p_osptr;
struct list_head thread_group;

/* PID hash table linkage. */
struct task_struct *pidhash_next;
struct task_struct **pidhash_pprev;

wait_queue_head_t wait_chldexit;
struct completion *vfork_done;
unsigned long rt_priority;
unsigned long it_real_value, it_prof_value, it_virt_value;
unsigned long it_real_incr, it_prof_incr, it_virt_incr;
struct timer_list real_timer;
struct tms times;
unsigned long start_time;
long per_cpu_utime[NR_CPUS], per_cpu_stime[NR_CPUS];

/* faults */
unsigned long min_flt, maj_flt, nswap, cmin_flt, cmaj_flt, cnswap;
int swappable:1;

/* process credentials */
uid_t uid,euid,suid,fsuid;
gid_t gid,egid,sgid,fsgid;
int ngroups;
gid_t groups[NGROUPS];
kernel_cap_t cap_effective, cap_inheritable, cap_permitted;
int keep_capabilities:1;
struct user_struct *user;

/* limits */
struct rlimit rlim[RLIM_NLIMITS];
unsigned short used_math;
char comm[16];

/* file system info */
int link_count, total_link_count;
struct tty_struct *tty; /* NULL if no tty */
unsigned int locks; /* How many file locks are being held */

/* ipc */
struct sem_undo *semundo;
struct sem_queue *semsleeping;

/* CPU-specific state of this task */
struct thread_struct thread;

/* filesystem information */
struct fs_struct *fs;
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/* open file information */
struct files_struct *files;

/* signal handlers */
spinlock_t sigmask_lock;
struct signal_struct *sig;

sigset_t blocked;
struct sigpending pending;
unsigned long sas_ss_sp;
size_t sas_ss_size;
int (*notifier)(void *priv);
void *notifier_data;
sigset_t *notifier_mask;

/* Thread group tracking */
u32 parent_exec_id;
u32 self_exec_id;

/* Protection of (de-)allocation: mm, files, fs, tty */
spinlock_t alloc_lock;

/* journalling filesystem info */
void *journal_info;

};



Appendix D

Format of the Linux Memory Structure

struct mm_struct {

struct vm_area_struct * mmap;
rb_root_t mm_rb;
struct vm_area_struct * mmap_cache;
pgd_t * pgd;
atomic_t mm_users;
atomic_t mm_count;
int map_count;
struct rw_semaphore mmap_sem;
spinlock_t page_table_lock;

struct list_head mmlist;

/* List of all active mm’s. These are globally strung
* together off init_mm.mmlist, and are protected
* by mmlist_lock
*/

unsigned long start_code, end_code, start_data, end_data;
unsigned long start_brk, brk, start_stack;
unsigned long arg_start, arg_end, env_start, env_end;
unsigned long rss, total_vm, locked_vm;
unsigned long def_flags;
unsigned long cpu_vm_mask;
unsigned long swap_address;

unsigned dumpable:1;

/* Architecture-specific MM context */
mm_context_t context;

};
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Appendix E

DAML+OIL Target Centric Ontology

<?xml version=’1.0’ encoding=’ISO-8859-1’?>
<rdf:RDF
xmlns:rdf ="http://www.w3.org/1999/02/22-rdf-syntax-ns#"
xmlns:rdfs="http://www.w3.org/2000/01/rdf-schema#"
xmlns:daml="http://www.daml.org/2001/03/daml+oil#"
xmlns:xsd ="http://www.w3.org/2000/10/XMLSchema#"
xmlns ="http://security.umbc.edu/IDS#">

<daml:Ontology rdf:about="">
<daml:versionInfo>$Id: att-cent-ont.tex,v 1.7 2004/01/05 23:23:19 junder2 Exp $</daml:versionInfo>

<rdfs:comment>
UMBC IDS ontology
Jeffrey L. Undercoffer 12 December 2003

</rdfs:comment>
<daml:imports rdf:resource="http://www.daml.org/2001/03/daml+oil"/>

</daml:Ontology>

<!-- ############ ########### ############ ############ ########### -->
<!--

Base Classes
-->
<!-- ############ ########### ############ ############ ########### -->

<daml:Class rdf:ID="System">
<rdfs:label>System</rdfs:label>

</daml:Class>

<daml:Class rdf:ID="Process">
<rdfs:label>Process</rdfs:label>

</daml:Class>

<daml:Class rdf:ID="Network">
<rdfs:label>Network</rdfs:label>

</daml:Class>

<daml:Class rdf:ID="Input">
</daml:Class>

<daml:Class rdf:ID="Means">
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</daml:Class>

<daml:Class rdf:ID="Consequence">
</daml:Class>

<daml:Class rdf:ID="UserLocation">
</daml:Class>

<!-- ############ ########### ############ ############ ########### -->
<!--
Consequence: Denial of Service
-->

<!-- ############ ########### ############ ############ ########### -->

<daml:Class rdf:ID="DoS">
<rdfs:subClassOf rdf:resource="#Consequence"/>

</daml:Class>

<daml:Class rdf:ID="SynFlood">
<rdfs:subClassOf rdf:resource="#DoS"/>

</daml:Class>

<daml:Class rdf:ID="PoD">
<rdfs:subClassOf rdf:resource="#DoS"/>

</daml:Class>

<daml:Class rdf:ID="IpFrag">
<rdfs:subClassOf rdf:resource="#DoS"/>

</daml:Class>

<daml:Class rdf:ID="NetFlood">
<rdfs:subClassOf rdf:resource="#DoS"/>

</daml:Class>

<daml:Class rdf:ID="SysCrash">
<rdfs:subClassOf rdf:resource="#DoS"/>

</daml:Class>

<daml:Class rdf:ID="ExcessForks">
<rdfs:subClassOf rdf:resource="#DoS"/>

</daml:Class>

<!-- ############ ########### ############ ############ ########### -->
<!--

Consequence: Probes
-->

<!-- ############ ########### ############ ############ ########### -->

<daml:Class rdf:ID="Probe">
<rdfs:subClassOf rdf:resource="#Consequence"/>

</daml:Class>

<daml:Class rdf:ID="TcpConnect">
<rdfs:subClassOf rdf:resource="#Probe"/>

</daml:Class>

<daml:Class rdf:ID="PingScan">
<rdfs:subClassOf rdf:resource="#Probe"/>

</daml:Class>

<daml:Class rdf:ID="SynScan">
<rdfs:subClassOf rdf:resource="#Probe"/>

</daml:Class>

<daml:Class rdf:ID="RSTProbe">
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<rdfs:subClassOf rdf:resource="#Probe"/>
</daml:Class>

<!-- ############ ########### ############ ############ ########### -->
<!--

Consequence: Privledge Escelation & Access
-->

<!-- ############ ########### ############ ############ ########### -->

<daml:Class rdf:ID="PrivledgeEsc">
<rdfs:subClassOf rdf:resource="#Consequence"/>

</daml:Class>

<daml:Class rdf:ID="unAuthRoot">
<rdfs:subClassOf rdf:resource="#Consequence"/>

</daml:Class>

<daml:Class rdf:ID="unAuthUser">
<rdfs:subClassOf rdf:resource="#Consequence"/>

</daml:Class>

<!-- ############ ########### ############ ############ ########### -->
<!--

Consequence: Loss of Confideniality
-->

<!-- ############ ########### ############ ############ ########### -->

<daml:Class rdf:ID="LossOfConf">
<rdfs:subClassOf rdf:resource="#Consequence"/>

</daml:Class>

<daml:Class rdf:ID="DirectoryExposure">
<rdfs:subClassOf rdf:resource="#LossOfConf"/>

</daml:Class>

<!-- ############ ########### ############ ############ ########### -->
<!--

Means: Input Validation Errors
-->

<!-- ############ ########### ############ ############ ########### -->

<daml:Class rdf:ID="InputValidErr">
<rdfs:subClassOf rdf:resource="#Means"/>

</daml:Class>

<daml:Class rdf:ID="BoundCond">
<rdfs:subClassOf rdf:resource="#InputValidErr"/>

</daml:Class>

<daml:Class rdf:ID="MalformedIn">
<rdfs:subClassOf rdf:resource="#InputValidErr"/>

</daml:Class>

<!-- ############ ########### ############ ############ ########### -->
<!--

Means: Logic Exploits
-->

<!-- ############ ########### ############ ############ ########### -->



211

<daml:Class rdf:ID="LogicExploit">
<rdfs:subClassOf rdf:resource="#Means"/>

</daml:Class>

<daml:Class rdf:ID="ExceptCond">
<rdfs:subClassOf rdf:resource="#LogicExploit"/>

</daml:Class>

<daml:Class rdf:ID="RaceCond">
<rdfs:subClassOf rdf:resource="#LogicExploit"/>

</daml:Class>

<daml:Class rdf:ID="SerialError">
<rdfs:subClassOf rdf:resource="#LogicExploit"/>

</daml:Class>

<daml:Class rdf:ID="AtError">
<rdfs:subClassOf rdf:resource="#LogicExploit"/>

</daml:Class>

<!-- ############ ########### ############ ############ ########### -->
<!--

Means: Configuration Error
-->

<!-- ############ ########### ############ ############ ########### -->

<daml:Class rdf:ID="ConfigError">
<rdfs:subClassOf rdf:resource="#Means"/>

</daml:Class>

<!-- ############ ########### ############ ############ ########### -->
<!--

Locations
-->

<!-- ############ ########### ############ ############ ########### -->

<daml:Class rdf:ID="viaTTY">
<rdfs:subClassOf rdf:resource="#UserLocation"/>

</daml:Class>

<daml:Class rdf:ID="viaNetwork">
<rdfs:subClassOf rdf:resource="#UserLocation"/>

</daml:Class>

<!-- ############ ########### ############ ############ ########### -->
<!--

Quantifying Classes
-->

<!-- ############ ########### ############ ############ ########### -->

<daml:Class rdf:ID="Rate">
<daml:oneOf rdf:parseType="daml:collection">

<Rate rdf:ID="Rate_WB_Normal"/>
<Rate rdf:ID="Rate_B_Normal"/>
<Rate rdf:ID="Rate_Normal"/>
<Rate rdf:ID="Rate_A_Normal"/>
<Rate rdf:ID="Rate_WA_Normal"/>

</daml:oneOf>
</daml:Class>
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<daml:Class rdf:ID="Amount">
<daml:oneOf rdf:parseType="daml:collection">

<Amount rdf:ID="Amount_WB_Normal"/>
<Amount rdf:ID="Amount_B_Normal"/>
<Amount rdf:ID="Amount_Normal"/>
<Amount rdf:ID="Amount_A_Normal"/>
<Amount rdf:ID="Amount_WA_Normal"/>
<Amount rdf:ID="Amount_Inf"/>
</daml:oneOf>

</daml:Class>

<daml:Class rdf:ID="BoolValue">
<daml:oneOf rdf:parseType="daml:collection">

<BoolValue rdf:ID="True"/>
<BoolValue rdf:ID="False"/>

</daml:oneOf>
</daml:Class>

<!-- ############ ########### ############ ############ ########### -->
<!--

Lower Ontology
-->

<!-- ############ ########### ############ ############ ########### -->

<daml:Class rdf:ID="anomSelfDist">
<rdfs:subClassOf rdf:resource="#Means"/>
<daml:unionOf rdf:parseType="daml:collection">

<daml:Restriction>
<daml:onProperty rdf:resource="#selfDist"/>
<daml:hasClass rdf:resource="#Amount_WA_Normal"/>

</daml:Restriction>
<daml:Restriction>

<daml:onProperty rdf:resource="#selfDist"/>
<daml:hasClass rdf:resource="#Amount_A_Normal"/>

</daml:Restriction>
</daml:unionOf>

</daml:Class>

<daml:Class rdf:ID="BufferOverFlow">
<rdfs:subClassOf rdf:resource="#Means"/>
<daml:intersectionOf rdf:parseType="daml:collection">

<daml:Restriction>
<daml:onProperty rdf:resource="#selfDist"/>
<daml:hasClass rdf:resource="#Amount_WA_Normal"/>

</daml:Restriction>
<daml:Restriction>

<daml:onProperty rdf:resource="#unkRetAdd"/>
<daml:hasClass rdf:resource="#True"/>

</daml:Restriction>
<daml:Restriction>

<daml:onProperty rdf:resource="#vmCodeSize"/>
<daml:hasClass rdf:resource="#Amount_A_Normal"/>

</daml:Restriction>
<daml:Restriction>

<daml:onProperty rdf:resource="#totVmSize"/>
<daml:hasClass rdf:resource="#Amount_A_Normal"/>

</daml:Restriction>
<daml:Restriction>
<daml:onProperty rdf:resource="#numMinFault"/>
<daml:hasClass rdf:resource="#Amount_A_Normal"/>

</daml:Restriction>
</daml:intersectionOf>



213

</daml:Class>

<daml:Class rdf:ID="anomProcess">
<daml:intersectionOf rdf:parseType="daml:collection">

<daml:Restriction>
<daml:onProperty rdf:resource="#selfDist"/>
<daml:hasClass rdf:resource="#Amount_WA_Normal"/>

</daml:Restriction>
<daml:Restriction>

<daml:onProperty rdf:resource="#unkRetAdd"/>
<daml:hasClass rdf:resource="#True"/>

</daml:Restriction>
<daml:Restriction>

<daml:onProperty rdf:resource="#resSetSize"/>
<daml:hasClass rdf:resource="#Amount_A_Normal"/>

</daml:Restriction>
<daml:Restriction>
<daml:onProperty rdf:resource="#codeSize"/>
<daml:hasClass rdf:resource="#Amount_A_Normal"/>

</daml:Restriction>
</daml:intersectionOf>

</daml:Class>

<daml:Class rdf:ID="netAnomPackets">
<daml:unionOf rdf:parseType="daml:collection">

<daml:Restriction>
<daml:onProperty rdf:resource="#ipInRecvs"/>
<daml:hasClass rdf:resource="#Rate_A_Normal"/>

</daml:Restriction>
<daml:Restriction>

<daml:onProperty rdf:resource="#ipInRecvs"/>
<daml:hasClass rdf:resource="#Rate_WA_Normal"/>

</daml:Restriction>
</daml:unionOf>
<daml:intersectionOf rdf:parseType="daml:collection">

<daml:Restriction>
<daml:onProperty rdf:resource="#ipInDisc"/>
<daml:hasClass rdf:resource="#Rate_WA_Normal"/>

</daml:Restriction>
<daml:Restriction>

<daml:onProperty rdf:resource="#ipReasmOk"/>
<daml:hasClass rdf:resource="#Rate_WA_Normal"/>

</daml:Restriction>
</daml:intersectionOf>

</daml:Class>

<daml:Class rdf:ID="sysWMemConsum">
<rdfs:subClassOf rdf:resource="#Means"/>
<daml:intersectionOf rdf:parseType="daml:collection">

<daml:Restriction>
<daml:onProperty rdf:resource="#memUsed"/>
<daml:hasClass rdf:resource="#Amount_A_Normal"/>

</daml:Restriction>
<daml:Restriction>

<daml:onProperty rdf:resource="#swapUsed"/>
<daml:hasClass rdf:resource="#Amount_A_Normal"/>

</daml:Restriction>
<daml:Restriction>

<daml:onProperty rdf:resource="#conSwitch"/>
<daml:hasClass rdf:resource="#Rate_A_Normal"/>

</daml:Restriction>
<daml:Restriction>

<daml:onProperty rdf:resource="#swapIn"/>
<daml:hasClass rdf:resource="#Rate_A_Normal"/>

</daml:Restriction>
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<daml:Restriction>
<daml:onProperty rdf:resource="#swapOut"/>
<daml:hasClass rdf:resource="#Rate_A_Normal"/>

</daml:Restriction>
<daml:Restriction>

<daml:onProperty rdf:resource="#pagesIn"/>
<daml:hasClass rdf:resource="#Rate_A_Normal"/>

</daml:Restriction>
<daml:Restriction>

<daml:onProperty rdf:resource="#pagesOut"/>
<daml:hasClass rdf:resource="#Rate_A_Normal"/>

</daml:Restriction>
</daml:intersectionOf>

</daml:Class>

<daml:Class rdf:ID="procWMemCons">
<rdfs:subClassOf rdf:resource="#Means"/>
<daml:intersectionOf rdf:parseType="daml:collection">

<daml:Restriction>
<daml:onProperty rdf:resource="#selfDist"/>
<daml:hasClass rdf:resource="#Amount_A_Normal"/>

</daml:Restriction>
<daml:Restriction>

<daml:onProperty rdf:resource="#stackSize"/>
<daml:hasClass rdf:resource="#Amount_A_Normal"/>
</daml:Restriction>

<daml:Restriction>
<daml:onProperty rdf:resource="#resSetSize"/>
<daml:hasClass rdf:resource="#Amount_WA_Normal"/>

</daml:Restriction>
<daml:Restriction>
<daml:onProperty rdf:resource="#numChildProcs"/>
<daml:hasClass rdf:resource="#Amount_A_Normal"/>

</daml:Restriction>
<daml:Restriction>
<daml:onProperty rdf:resource="#numMinFault"/>
<daml:hasClass rdf:resource="#Amount_A_Normal"/>

</daml:Restriction>
</daml:intersectionOf>

</daml:Class>

<daml:Class rdf:ID="rstProbe">
<rdfs:subClassOf rdf:resource="#Probe"/>
<rdfs:subClassOf rdf:resource="#Means"/>
<rdfs:subClassOf rdf:resource="#Network"/>

<daml:intersectionOf rdf:parseType="daml:collection">
<daml:Restriction>

<daml:onProperty rdf:resource="#icmpOutMsg"/>
<daml:hasClass rdf:resource="#Rate_WA_Normal"/>

</daml:Restriction>
<daml:Restriction>

<daml:onProperty rdf:resource="#icmpEchoResp"/>
<daml:hasClass rdf:resource="#Rate_WA_Normal"/>

</daml:Restriction>
<daml:Restriction>

<daml:onProperty rdf:resource="#tcpEstabRst"/>
<daml:hasClass rdf:resource="#Rate_WA_Normal"/>

</daml:Restriction>
<daml:Restriction>

<daml:onProperty rdf:resource="#tcpOutRst"/>
<daml:hasClass rdf:resource="#Rate_WA_Normal"/>

</daml:Restriction>
</daml:intersectionOf>

</daml:Class>
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<daml:Class rdf:ID="synFlood">
<rdfs:subClassOf rdf:resource="#Means"/>
<rdfs:subClassOf rdf:resource="#Network"/>
<daml:intersectionOf rdf:parseType="daml:collection">

<daml:Restriction>
<daml:onProperty rdf:resource="#tcpEstb"/>
<daml:hasClass rdf:resource="#Amount_WA_Normal"/>

</daml:Restriction>
<daml:Restriction>

<daml:onProperty rdf:resource="#tcpSynRec"/>
<daml:hasClass rdf:resource="#Rate_WA_Normal"/>

</daml:Restriction>
</daml:intersectionOf>

</daml:Class>

<daml:Class rdf:ID="exIcmpEchoReq">
<rdfs:subClassOf rdf:resource="#Means"/>
<rdfs:subClassOf rdf:resource="#Network"/>
<daml:intersectionOf rdf:parseType="daml:collection">

<daml:Restriction>
<daml:onProperty rdf:resource="#tcpEstb"/>
<daml:hasClass rdf:resource="#Amount_Normal"/>

</daml:Restriction>
<daml:Restriction>

<daml:onProperty rdf:resource="#icmpInRecvs"/>
<daml:hasClass rdf:resource="#Rate_WA_Normal"/>

</daml:Restriction>
<daml:Restriction>

<daml:onProperty rdf:resource="#icmpInEcho"/>
<daml:hasClass rdf:resource="#Rate_WA_Normal"/>

</daml:Restriction>
</daml:intersectionOf>

</daml:Class>

<daml:Class rdf:ID="tcpPortscan1">
<rdfs:subClassOf rdf:resource="#Means"/>
<daml:intersectionOf rdf:parseType="daml:collection">

<daml:Restriction>
<daml:onProperty rdf:resource="#icmpOutMsg"/>
<daml:hasClass rdf:resource="#Rate_WA_Normal"/>

</daml:Restriction>
<daml:Restriction>

<daml:onProperty rdf:resource="#icmpOutEchoResp"/>
<daml:hasClass rdf:resource="#Rate_WA_Normal"/>

</daml:Restriction>
<daml:Restriction>

<daml:onProperty rdf:resource="#tcpEstabRst"/>
<daml:hasClass rdf:resource="#Rate_WA_Normal"/>

</daml:Restriction>
<daml:Restriction>

<daml:onProperty rdf:resource="#tcpOutRst"/>
<daml:hasClass rdf:resource="#Rate_WA_Normal"/>

</daml:Restriction>
</daml:intersectionOf>

</daml:Class>

<daml:Class rdf:ID="tcpPortscan2">
<rdfs:subClassOf rdf:resource="#Means"/>
<daml:intersectionOf rdf:parseType="daml:collection">

<daml:Restriction>
<daml:onProperty rdf:resource="#icmpOutMsg"/>
<daml:hasClass rdf:resource="#Rate_A_Normal"/>

</daml:Restriction>
<daml:Restriction>

<daml:onProperty rdf:resource="#icmpOutEchoResp"/>
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<daml:hasClass rdf:resource="#Rate_A_Normal"/>
</daml:Restriction>
<daml:Restriction>

<daml:onProperty rdf:resource="#tcpEstabRst"/>
<daml:hasClass rdf:resource="#Rate_A_Normal"/>

</daml:Restriction>
<daml:Restriction>

<daml:onProperty rdf:resource="#tcpOutRst"/>
<daml:hasClass rdf:resource="#Rate_A_Normal"/>

</daml:Restriction>
</daml:intersectionOf>

</daml:Class>

<daml:Class rdf:ID="exIpPacketSize">
<rdfs:subClassOf rdf:resource="#Means"/>
<daml:intersectionOf rdf:parseType="daml:collection">

<daml:Restriction>
<daml:onProperty rdf:resource="#ipInOutReq"/>
<daml:hasClass rdf:resource="#Rate_WA_Normal"/>

</daml:Restriction>
<daml:Restriction>

<daml:onProperty rdf:resource="#ipReAsmReq"/>
<daml:hasClass rdf:resource="#Rate_WA_Normal"/>

</daml:Restriction>
</daml:intersectionOf>

</daml:Class>

<daml:Class rdf:ID="ipFrag">
<rdfs:subClassOf rdf:resource="#Means"/>
<rdfs:subClassOf rdf:resource="#Network"/>
<daml:intersectionOf rdf:parseType="daml:collection">

<daml:Restriction>
<daml:onProperty rdf:resource="#tcpEstb"/>
<daml:hasClass rdf:resource="#Amount_Normal"/>

</daml:Restriction>
<daml:Restriction>

<daml:onProperty rdf:resource="#ipInOutReq"/>
<daml:hasClass rdf:resource="#Rate_WA_Normal"/>

</daml:Restriction>
</daml:intersectionOf>

</daml:Class>

<daml:Class rdf:ID="trojan1">
<rdfs:subClassOf rdf:resource="#Means"/>
<daml:intersectionOf rdf:parseType="daml:collection">

<daml:Restriction>
<daml:onProperty rdf:resource="#selfDist"/>
<daml:hasClass rdf:resource="#Amount_WA_Normal"/>

</daml:Restriction>
<daml:Restriction>

<daml:onProperty rdf:resource="#codeSize"/>
<daml:hasClass rdf:resource="#Amount_WA_Normal"/>

</daml:Restriction>
<daml:Restriction>

<daml:onProperty rdf:resource="#resSetSize"/>
<daml:hasClass rdf:resource="#Amount_A_Normal"/>

</daml:Restriction>
<daml:Restriction>

<daml:onProperty rdf:resource="#numChildProcs"/>
<daml:hasClass rdf:resource="#Amount_WA_Normal"/>

</daml:Restriction>
</daml:intersectionOf>

</daml:Class>
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<daml:Class rdf:ID="trojan2">
<rdfs:subClassOf rdf:resource="#Means"/>
<daml:intersectionOf rdf:parseType="daml:collection">

<daml:Restriction>
<daml:onProperty rdf:resource="#unkRetAdd"/>
<daml:hasClass rdf:resource="#True"/>

</daml:Restriction>
<daml:Restriction>

<daml:onProperty rdf:resource="#selfDist"/>
<daml:hasClass rdf:resource="#Amount_Inf"/>

</daml:Restriction>
</daml:intersectionOf>

</daml:Class>

<!-- ############ ########### ############ ############ ########### -->
<!--

Middle Ontology
-->

<!-- ############ ########### ############ ############ ########### -->

<daml:Class rdf:ID="ProcessUnderMemoryExploit">
<rdfs:subClassOf rdf:resource="#ProcessUnderExploit" />
<daml:intersectionOf rdf:parseType="daml:collection">

<daml:Class rdf:about="#Process"/>
<daml:Class rdf:about="#procWithMemProb"/>

</daml:intersectionOf>
</daml:Class>

<daml:Class rdf:ID="ProcessUnderInputValidErr">
<daml:intersectionOf rdf:parseType="daml:collection">

<daml:Class rdf:about="#Process"/>
<daml:Restriction>

<daml:onProperty rdf:resource="#hasinducedstate"/>
<daml:hasClass rdf:resource="#InValidError"/>

</daml:Restriction>
</daml:intersectionOf>

</daml:Class>

<daml:Class rdf:ID="ProcessUnderExploit">
<daml:intersectionOf rdf:parseType="daml:collection">

<daml:Class rdf:about="#Process"/>
<daml:Restriction>

<daml:onProperty rdf:resource="#hasinducedstate"/>
<daml:hasClass rdf:resource="#LogicExploit"/>

</daml:Restriction>
</daml:intersectionOf>

</daml:Class>

<daml:Class rdf:ID="ProcessUnderBufferOverFlow">
<rdfs:subClassOf rdf:resource="#ProcessUnderInputValidErr" />
<daml:intersectionOf rdf:parseType="daml:collection">

<daml:Class rdf:about="#Process"/>
<daml:Class rdf:about="#BufferOverFlow"/>

</daml:intersectionOf>
</daml:Class>
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<daml:Class rdf:ID="ProcessWithAnomSelfDist">
<rdfs:subClassOf rdf:resource="#Process" />
<daml:intersectionOf rdf:parseType="daml:collection">

<daml:Class rdf:about="#Process"/>
<daml:Class rdf:about="#anomSelfDist"/>

</daml:intersectionOf>
</daml:Class>

<daml:Class rdf:ID="ProcessUnderTrojan">
<rdfs:subClassOf rdf:resource="#ProcessUnderInputValidErr" />
<daml:unionOf rdf:parseType="daml:collection">
<daml:Class>

<daml:intersectionOf rdf:parseType="daml:collection">
<daml:Class rdf:about="#Process"/>
<daml:Class rdf:about="#trojan1"/>

</daml:intersectionOf>
</daml:Class>

<daml:Class>
<daml:intersectionOf rdf:parseType="daml:collection">
<daml:Class rdf:about="#Process"/>
<daml:Class rdf:about="#trojan2"/>

</daml:intersectionOf>
</daml:Class>
</daml:unionOf>
</daml:Class>

<daml:Class rdf:ID="NetworkUnderSynFlood">
<rdfs:subClassOf rdf:resource="#NetworkUnderDoS" />
<daml:intersectionOf rdf:parseType="daml:collection">

<daml:Class rdf:about="#Network"/>
<daml:Class rdf:about="#synFlood"/>

</daml:intersectionOf>
</daml:Class>

<daml:Class rdf:ID="NetworkUnderTcpPortscan">
<rdfs:subClassOf rdf:resource="#ProcessUnderInputValidErr" />
<daml:unionOf rdf:parseType="daml:collection">
<daml:Class>

<daml:intersectionOf rdf:parseType="daml:collection">
<daml:Class rdf:about="#Network"/>
<daml:Class rdf:about="#tcpPortScan1"/>

</daml:intersectionOf>
</daml:Class>

<daml:Class>
<daml:intersectionOf rdf:parseType="daml:collection">
<daml:Class rdf:about="#Network"/>
<daml:Class rdf:about="#tcpPortScan2"/>

</daml:intersectionOf>
</daml:Class>
</daml:unionOf>
</daml:Class>

<daml:Class rdf:ID="NetworkUnderSynProbe">
<rdfs:subClassOf>

<daml:Restriction>
<daml:onProperty rdf:resource="#experiencing"/>
<daml:hasValue><SYNProbe /></daml:hasValue>

</daml:Restriction>
</rdfs:subClassOf>
<daml:intersectionOf rdf:parseType="daml:collection">

<daml:Class rdf:about="#System"/>
<daml:Restriction>

<daml:onProperty rdf:resource="#hasNetwork"/>
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<daml:hasClass rdf:resource="#SYNProbe"/>
</daml:Restriction>

</daml:intersectionOf>
</daml:Class>

<daml:Class rdf:ID="NetworkUnderRstProbe">
<rdfs:subClassOf rdf:resource="#NetworkUnderProbe" />
<rdfs:subClassOf>

<daml:Restriction>
<daml:onProperty rdf:resource="#experiencing"/>
<daml:hasClass><Probe /></daml:hasClass>

</daml:Restriction>
</rdfs:subClassOf>
<daml:intersectionOf rdf:parseType="daml:collection">

<daml:Class rdf:about="#System"/>
<daml:Restriction>

<daml:onProperty rdf:resource="#hasNetwork"/>
<daml:hasClass rdf:resource="#Probe"/>

</daml:Restriction>
</daml:intersectionOf>

</daml:Class>

<daml:Class rdf:ID="NetworkUnderExIpPacketSize">
<rdfs:subClassOf rdf:resource="#Network" />
<daml:intersectionOf rdf:parseType="daml:collection">

<daml:Class rdf:about="#Network"/>
<daml:Class rdf:about="#exIpPacketSize"/>

</daml:intersectionOf>
</daml:Class>

<!-- ############ ########### ############ ############ ########### -->
<!--

Upper Ontology
-->

<!-- ############ ########### ############ ############ ########### -->

<daml:Class rdf:ID="SystemUnderUnAuthRoot">
<daml:intersectionOf rdf:parseType="daml:collection">

<daml:Class rdf:about="#System"/>
<daml:Restriction>

<daml:onProperty rdf:resource="#experiencing"/>
<daml:hasClass rdf:resource="#unAuthRoot"/>

</daml:Restriction>
</daml:intersectionOf>

</daml:Class>

<daml:Class rdf:ID="SystemUnderUnAuthUser">
<daml:intersectionOf rdf:parseType="daml:collection">

<daml:Class rdf:about="#System"/>
<daml:Restriction>

<daml:onProperty rdf:resource="#experiencing"/>
<daml:hasClass rdf:resource="#unAuthUser"/>

</daml:Restriction>
</daml:intersectionOf>

</daml:Class>

<daml:Class rdf:ID="SystemUnderDoS">
<daml:intersectionOf rdf:parseType="daml:collection">
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<daml:Class rdf:about="#System"/>
<daml:Restriction>

<daml:onProperty rdf:resource="#experiencing"/>
<daml:hasClass rdf:resource="#DoS"/>

</daml:Restriction>
</daml:intersectionOf>

</daml:Class>

<daml:Class rdf:ID="SystemUnderProbe">
<daml:intersectionOf rdf:parseType="daml:collection">

<daml:Class rdf:about="#System"/>
<daml:Restriction>

<daml:onProperty rdf:resource="#experiencing"/>
<daml:hasClass rdf:resource="#Probe"

</daml:Restriction>
</daml:intersectionOf>

</daml:Class>

<daml:Class rdf:ID="SystemUnderLossofConf">
<daml:intersectionOf rdf:parseType="daml:collection">

<daml:Class rdf:about="#System"/>
<daml:Restriction>

<daml:onProperty rdf:resource="#experiencing"/>
<daml:hasClass rdf:resource="#LossofConf"

</daml:Restriction>
</daml:intersectionOf>

</daml:Class>

<daml:Class rdf:ID="SystemUnderExploit">
<daml:intersectionOf rdf:parseType="daml:collection">

<daml:Class rdf:about="#SystemUnderMemoryAttack"/>
<daml:Restriction>

<daml:onProperty rdf:resource="#hasProcess"/>
<daml:hasClass rdf:resource="#ProcessUnderMemoryExploit"/>

</daml:Restriction>
</daml:intersectionOf>

</daml:Class>

<daml:Class rdf:ID="SystemUnderMitnickAttack">
<rdfs:subClassOf>

<daml:Restriction>
<daml:onProperty rdf:resource="#experiencing"/>

<daml:hasValue rdf:resource="#unAuthRoot" />
</daml:Restriction>

</rdfs:subClassOf>
<daml:unionOf rdf:parseType="daml:collection">
<daml:Class>

<daml:intersectionOf rdf:parseType="daml:collection">
<daml:Class rdf:about="#SystemUnderDoSAttack"/>
<daml:Restriction>

<daml:onProperty rdf:resource="#connectedTo"/>
<daml:hasClass rdf:resource="#SystemUnderProbe"/>

</daml:Restriction>
</daml:intersectionOf>

</daml:Class>
<daml:Class>

<daml:intersectionOf rdf:parseType="daml:collection">
<daml:Class rdf:about="#SystemUnderProbe"/>
<daml:Restriction>

<daml:onProperty rdf:resource="#connectedTo"/>
<daml:hasClass rdf:resource="#SystemUnderDoSAttack"/>

</daml:Restriction>
</daml:intersectionOf>

</daml:Class>
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</daml:unionOf>
</daml:Class>

<daml:Class rdf:ID="SystemCompromisedByTrojan">
<rdfs:subClassOf rdf:resource="#SystemUnderInputValidErr" />
<rdfs:subClassOf rdf:resource="#System" />
<rdfs:subClassOf>

<daml:Restriction>
<daml:onProperty rdf:resource="#experiencing"/>
<daml:hasValue rdf:resource="#unAuthRoot" />

</daml:Restriction>
</rdfs:subClassOf>
<daml:intersectionOf rdf:parseType="daml:collection">

<daml:Class rdf:about="#System"/>
<daml:Restriction>

<daml:onProperty rdf:resource="#hasProcess"/>
<daml:hasClass rdf:resource="#ProcessUnderTrojan"/>

</daml:Restriction>
</daml:intersectionOf>

</daml:Class>

<daml:Class rdf:ID="SystemUnderMemConsAttack">
<rdfs:subClassOf rdf:resource="#SystemUnderDoSAttack" />
<rdfs:subClassOf>

<daml:Restriction>
<daml:onProperty rdf:resource="#experiencing"/>
<daml:hasValue rdf:resource="#DoS" />

</daml:Restriction>
</rdfs:subClassOf>
<daml:intersectionOf rdf:parseType="daml:collection">

<daml:Class rdf:about="#System"/>
<daml:Class rdf:about="#MemConsum"/>

</daml:intersectionOf>
</daml:Class>

<daml:Class rdf:ID="SystemUnderDoSAttack">
<rdfs:subClassOf>

<daml:Restriction>
<daml:onProperty rdf:resource="#experiencing"/>
<daml:hasValue rdf:resource="#DoS" />
<daml:hasClass><DoS /></daml:hasClass>

</daml:Restriction>
<daml:intersectionOf rdf:parseType="daml:collection">
<daml:Class rdf:about="#System"/>
<daml:Restriction>

<daml:onProperty rdf:resource="#experiencing"/>
<daml:hasClass rdf:resource="#DoS"/>

</daml:Restriction>
</daml:intersectionOf>

</daml:Class>

<daml:Class rdf:ID="SystemUnderProbe">
<rdfs:subClassOf>

<daml:Restriction>
<daml:onProperty rdf:resource="#experiencing"/>
<daml:hasValue rdf:resource="#Probe" />

</daml:Restriction>
</rdfs:subClassOf>
<daml:intersectionOf rdf:parseType="daml:collection">

<daml:Class rdf:about="#System"/>
<daml:Restriction>

<daml:onProperty rdf:resource="#experiencing"/>
<daml:hasClass rdf:resource="#Probe"/>

</daml:Restriction>
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</daml:intersectionOf>
</daml:Class>

<daml:Class rdf:ID="SystemUnderRstProbe">
<rdfs:subClassOf rdf:resource="#SystemUnderProbe"/>
<rdfs:subClassOf>

<daml:Restriction>
<daml:onProperty rdf:resource="#experiencing"/>
<daml:hasValue rdf:resource="#RSTProbe" />

</daml:Restriction>
</rdfs:subClassOf>
<daml:intersectionOf rdf:parseType="daml:collection">

<daml:Class rdf:about="#System"/>
<daml:Restriction>

<daml:onProperty rdf:resource="#hasNetwork"/>
<daml:hasClass rdf:resource="#RSTProbe"/>

</daml:Restriction>
</daml:intersectionOf>

</daml:Class>

<daml:Class rdf:ID="SystemUnderSynFloodAttack">
<rdfs:subClassOf rdf:resource="#System" />
<rdfs:subClassOf rdf:resource="#SystemUnderDoSAttack" />
<rdfs:subClassOf>

<daml:Restriction>
<daml:onProperty rdf:resource="#experiencing"/>
<daml:hasValue rdf:resource="#DoS"/ >
</daml:Restriction>

</rdfs:subClassOf>
<daml:intersectionOf rdf:parseType="daml:collection">

<daml:Class rdf:about="#System"/>
<daml:Restriction>

<daml:onProperty rdf:resource="#hasNetwork"/>
<daml:hasClass rdf:resource="#NetworkUnderSynFlood"/>

</daml:Restriction>
</daml:intersectionOf>

</daml:Class>

<daml:Class rdf:ID="SystemCompromisedByBufferOverFlow">
<rdfs:subClassOf rdf:resource="#SystemUnderInputValidErr" />
<rdfs:subClassOf rdf:resource="#System" />

<rdfs:subClassOf>
<daml:Restriction>
<daml:onProperty rdf:resource="#experiencing"/>
<daml:hasValue rdf:resource="#unAuthRoot" />

</daml:Restriction>
</rdfs:subClassOf>
<daml:intersectionOf rdf:parseType="daml:collection">

<daml:Class rdf:about="#System"/>
<daml:Restriction>

<daml:onProperty rdf:resource="#hasProcess"/>
<daml:hasClass rdf:resource="#ProcessUnderBufferOverFlow"/>

</daml:Restriction>
</daml:intersectionOf>

</daml:Class>

<daml:Class rdf:ID="SystemWithAnomProcess">
<rdfs:subClassOf rdf:resource="#SystemUnderDoSAttack" />
<rdfs:subClassOf>

<daml:Restriction>
<daml:onProperty rdf:resource="#experiencing"/>
<daml:hasValue rdf:resource="#unAuthUser" />

</daml:Restriction>
</rdfs:subClassOf>
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<daml:intersectionOf rdf:parseType="daml:collection">
<daml:Class rdf:about="#System"/>
<daml:Restriction>

<daml:onProperty rdf:resource="#hasProcess"/>
<daml:hasClass rdf:resource="#ProcessWithAnomSelfDist"/>

</daml:Restriction>
</daml:intersectionOf>

</daml:Class>

<daml:Class rdf:ID="SystemWithAnomNet">
<daml:intersectionOf rdf:parseType="daml:collection">

<daml:Class rdf:about="#System"/>
<daml:Restriction>

<daml:onProperty rdf:resource="#hasNetwork"/>
<daml:hasClass rdf:resource="#netAnomPackets"/>

</daml:Restriction>
</daml:intersectionOf>

</daml:Class>

<daml:Class rdf:ID="SystemUnderTcpPortScan">
<rdfs:subClassOf rdf:resource="#System" />
<rdfs:subClassOf>

<daml:Restriction>
<daml:onProperty rdf:resource="#experiencing"/>
<daml:hasValue rdf:resource="#Probe" />

</daml:Restriction>
</rdfs:subClassOf>
<daml:intersectionOf rdf:parseType="daml:collection">

<daml:Class rdf:about="#System"/>
<daml:Restriction>

<daml:onProperty rdf:resource="#hasNetwork"/>
<daml:hasClass rdf:resource="#NetworkUnderTcpPortscan"/>

</daml:Restriction>
</daml:intersectionOf>

</daml:Class>

<daml:Class rdf:ID="SystemUnderExIpPacketSizeAttack">
<rdfs:subClassOf rdf:resource="#System" />

<rdfs:subClassOf>
<daml:Restriction>
<daml:onProperty rdf:resource="#experiencing"/>
<daml:hasValue rdf:resource="#DoS" />

</daml:Restriction>
</rdfs:subClassOf>
<daml:intersectionOf rdf:parseType="daml:collection">

<daml:Class rdf:about="#System"/>
<daml:Restriction>

<daml:onProperty rdf:resource="#hasNetwork"/>
<daml:hasClass rdf:resource="#NetworkUnderExIpPacketSize"/>

</daml:Restriction>
</daml:intersectionOf>

</daml:Class>

<!-- ############ ########### ############ ############ ########### -->
<!--

Properties
-->

<!-- ############ ########### ############ ############ ########### -->

<daml:ObjectProperty rdf:ID="experiencing">
<rdf:type rdf:resource="http://www.daml.org/2001/03/daml+oil#UniqueProperty"/>
<rdfs:domain rdf:resource="#System"/>
<rdfs:range rdf:resource="#Consequence"/>

</daml:ObjectProperty>
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<daml:ObjectProperty rdf:ID="connectedTo">
<rdf:type rdf:resource="http://www.daml.org/2001/03/daml+oil#UniqueProperty"/>
<rdfs:domain rdf:resource="#System"/>
<rdfs:range rdf:resource="#System"/>
<daml:inverseOf rdf:resource="#connectedTo" />

</daml:ObjectProperty>

<daml:ObjectProperty rdf:ID="hasNetwork">
<rdf:type rdf:resource="http://www.daml.org/2001/03/daml+oil#UniqueProperty"/>
<rdfs:domain rdf:resource="#System"/>
<rdfs:range rdf:resource="#Process"/>

</daml:ObjectProperty>

<daml:ObjectProperty rdf:ID="hasProcess">
<rdf:type rdf:resource="http://www.daml.org/2001/03/daml+oil#UniqueProperty"/>
<rdfs:domain rdf:resource="#System"/>
<rdfs:range rdf:resource="#Process"/>

</daml:ObjectProperty>

<daml:ObjectProperty rdf:ID="hasinducedstate">
<rdf:type rdf:resource="http://www.daml.org/2001/03/daml+oil#UniqueProperty"/>
<rdfs:domain rdf:resource="#Process"/>
<rdfs:range rdf:resource="#Means"/>

</daml:ObjectProperty>

<!-- System Properties -->

<daml:ObjectProperty rdf:ID="memUsed">
<rdf:type rdf:resource="http://www.daml.org/2001/03/daml+oil#UniqueProperty"/>
<rdfs:domain rdf:resource="#System"/>
<rdfs:range rdf:resource="#Amount"/>

</daml:ObjectProperty>

<daml:ObjectProperty rdf:ID="swapUsed">
<rdf:type rdf:resource="http://www.daml.org/2001/03/daml+oil#UniqueProperty"/>
<rdfs:domain rdf:resource="#System"/>
<rdfs:range rdf:resource="#Amount"/>

</daml:ObjectProperty>

<daml:ObjectProperty rdf:ID="cpuOne">
<rdf:type rdf:resource="http://www.daml.org/2001/03/daml+oil#UniqueProperty"/>
<rdfs:domain rdf:resource="#System"/>
<rdfs:range rdf:resource="#Amount"/>

</daml:ObjectProperty>

<daml:ObjectProperty rdf:ID="cpufive">
<rdf:type rdf:resource="http://www.daml.org/2001/03/daml+oil#UniqueProperty"/>
<rdfs:domain rdf:resource="#System"/>
<rdfs:range rdf:resource="#Amount"/>

</daml:ObjectProperty>

<daml:ObjectProperty rdf:ID="cputen">
<rdf:type rdf:resource="http://www.daml.org/2001/03/daml+oil#UniqueProperty"/>
<rdfs:domain rdf:resource="#System"/>
<rdfs:range rdf:resource="#Amount"/>

</daml:ObjectProperty>

<daml:ObjectProperty rdf:ID="numProcs">
<rdf:type rdf:resource="http://www.daml.org/2001/03/daml+oil#UniqueProperty"/>
<rdfs:domain rdf:resource="#System"/>
<rdfs:range rdf:resource="#Amount"/>

</daml:ObjectProperty>

<daml:ObjectProperty rdf:ID="numUsers">
<rdf:type rdf:resource="http://www.daml.org/2001/03/daml+oil#UniqueProperty"/>
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<rdfs:domain rdf:resource="#System"/>
<rdfs:range rdf:resource="#Amount"/>

</daml:ObjectProperty>

<daml:ObjectProperty rdf:ID="timeUserMode">
<rdf:type rdf:resource="http://www.daml.org/2001/03/daml+oil#UniqueProperty"/>
<rdfs:domain rdf:resource="#System"/>
<rdfs:range rdf:resource="#Rate"/>

</daml:ObjectProperty>

<daml:ObjectProperty rdf:ID="timeUserModeLow">
<rdf:type rdf:resource="http://www.daml.org/2001/03/daml+oil#UniqueProperty"/>
<rdfs:domain rdf:resource="#System"/>
<rdfs:range rdf:resource="#Rate"/>

</daml:ObjectProperty>

<daml:ObjectProperty rdf:ID="timeSysMode">
<rdf:type rdf:resource="http://www.daml.org/2001/03/daml+oil#UniqueProperty"/>
<rdfs:domain rdf:resource="#System"/>
<rdfs:range rdf:resource="#Rate"/>

</daml:ObjectProperty>

<daml:ObjectProperty rdf:ID="timeIdle">
<rdf:type rdf:resource="http://www.daml.org/2001/03/daml+oil#UniqueProperty"/>
<rdfs:domain rdf:resource="#System"/>
<rdfs:range rdf:resource="#Rate"/>

</daml:ObjectProperty>

<daml:ObjectProperty rdf:ID="swapIn">
<rdf:type rdf:resource="http://www.daml.org/2001/03/daml+oil#UniqueProperty"/>
<rdfs:domain rdf:resource="#System"/>
<rdfs:range rdf:resource="#Rate"/>

</daml:ObjectProperty>

<daml:ObjectProperty rdf:ID="swapOut">
<rdf:type rdf:resource="http://www.daml.org/2001/03/daml+oil#UniqueProperty"/>
<rdfs:domain rdf:resource="#System"/>
<rdfs:range rdf:resource="#Rate"/>

</daml:ObjectProperty>

<daml:ObjectProperty rdf:ID="pagesIn">
<rdf:type rdf:resource="http://www.daml.org/2001/03/daml+oil#UniqueProperty"/>
<rdfs:domain rdf:resource="#System"/>
<rdfs:range rdf:resource="#Rate"/>

</daml:ObjectProperty>

<daml:ObjectProperty rdf:ID="pagesOut">
<rdf:type rdf:resource="http://www.daml.org/2001/03/daml+oil#UniqueProperty"/>
<rdfs:domain rdf:resource="#System"/>
<rdfs:range rdf:resource="#Rate"/>

</daml:ObjectProperty>

<daml:ObjectProperty rdf:ID="conSwitch">
<rdf:type rdf:resource="http://www.daml.org/2001/03/daml+oil#UniqueProperty"/>
<rdfs:domain rdf:resource="#System"/>
<rdfs:range rdf:resource="#Rate"/>

</daml:ObjectProperty>

<daml:ObjectProperty rdf:ID="rateProcs">
<rdf:type rdf:resource="http://www.daml.org/2001/03/daml+oil#UniqueProperty"/>
<rdfs:domain rdf:resource="#System"/>
<rdfs:range rdf:resource="#Rate"/>

</daml:ObjectProperty>

<!-- Process Properties -->
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<daml:ObjectProperty rdf:ID="selfDist">
<rdf:type rdf:resource="http://www.daml.org/2001/03/daml+oil#UniqueProperty"/>
<rdfs:domain rdf:resource="#Process"/>
<rdfs:range rdf:resource="#Amount"/>

</daml:ObjectProperty>

<daml:ObjectProperty rdf:ID="unkRetAdd">
<rdf:type rdf:resource="http://www.daml.org/2001/03/daml+oil#UniqueProperty"/>
<rdfs:domain rdf:resource="#Process"/>
<rdfs:range rdf:resource="#BoolValue"/>

</daml:ObjectProperty>

<daml:ObjectProperty rdf:ID="niceValue">
<rdf:type rdf:resource="http://www.daml.org/2001/03/daml+oil#UniqueProperty"/>
<rdfs:domain rdf:resource="#Process"/>
<rdfs:range rdf:resource="#Amount"/>

</daml:ObjectProperty>

<daml:ObjectProperty rdf:ID="codeSize">
<rdf:type rdf:resource="http://www.daml.org/2001/03/daml+oil#UniqueProperty"/>
<rdfs:domain rdf:resource="#Process"/>
<rdfs:range rdf:resource="#Amount"/>

</daml:ObjectProperty>

<daml:ObjectProperty rdf:ID="vmCodeSize">
<rdf:type rdf:resource="http://www.daml.org/2001/03/daml+oil#UniqueProperty"/>
<rdfs:domain rdf:resource="#Process"/>
<rdfs:range rdf:resource="#Amount"/>

</daml:ObjectProperty>

<daml:ObjectProperty rdf:ID="libSize">
<rdf:type rdf:resource="http://www.daml.org/2001/03/daml+oil#UniqueProperty"/>
<rdfs:domain rdf:resource="#Process"/>
<rdfs:range rdf:resource="#Amount"/>

</daml:ObjectProperty>

<daml:ObjectProperty rdf:ID="dataSize">
<rdf:type rdf:resource="http://www.daml.org/2001/03/daml+oil#UniqueProperty"/>
<rdfs:domain rdf:resource="#Process"/>
<rdfs:range rdf:resource="#Amount"/>

</daml:ObjectProperty>

<daml:ObjectProperty rdf:ID="stackSize">
<rdf:type rdf:resource="http://www.daml.org/2001/03/daml+oil#UniqueProperty"/>
<rdfs:domain rdf:resource="#Process"/>
<rdfs:range rdf:resource="#Amount"/>

</daml:ObjectProperty>

<daml:ObjectProperty rdf:ID="vmEnvSize">
<rdf:type rdf:resource="http://www.daml.org/2001/03/daml+oil#UniqueProperty"/>
<rdfs:domain rdf:resource="#Process"/>
<rdfs:range rdf:resource="#Amount"/>

</daml:ObjectProperty>

<daml:ObjectProperty rdf:ID="totVmSize">
<rdf:type rdf:resource="http://www.daml.org/2001/03/daml+oil#UniqueProperty"/>
<rdfs:domain rdf:resource="#Process"/>
<rdfs:range rdf:resource="#Amount"/>

</daml:ObjectProperty>

<daml:ObjectProperty rdf:ID="resSetSize">
<rdf:type rdf:resource="http://www.daml.org/2001/03/daml+oil#UniqueProperty"/>
<rdfs:domain rdf:resource="#Process"/>
<rdfs:range rdf:resource="#Amount"/>

</daml:ObjectProperty>

<daml:ObjectProperty rdf:ID="lockedVm">
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<rdf:type rdf:resource="http://www.daml.org/2001/03/daml+oil#UniqueProperty"/>
<rdfs:domain rdf:resource="#Process"/>
<rdfs:range rdf:resource="#Amount"/>

</daml:ObjectProperty>

<daml:ObjectProperty rdf:ID="numOpenFiles">
<rdf:type rdf:resource="http://www.daml.org/2001/03/daml+oil#UniqueProperty"/>
<rdfs:domain rdf:resource="#Process"/>
<rdfs:range rdf:resource="#Amount"/>

</daml:ObjectProperty>

<daml:ObjectProperty rdf:ID="numChildProcs">
<rdf:type rdf:resource="http://www.daml.org/2001/03/daml+oil#UniqueProperty"/>
<rdfs:domain rdf:resource="#Process"/>
<rdfs:range rdf:resource="#Amount"/>

</daml:ObjectProperty>

<daml:ObjectProperty rdf:ID="numMajFault">
<rdf:type rdf:resource="http://www.daml.org/2001/03/daml+oil#UniqueProperty"/>
<rdfs:domain rdf:resource="#Process"/>
<rdfs:range rdf:resource="#Amount"/>

</daml:ObjectProperty>

<daml:ObjectProperty rdf:ID="numMinFault">
<rdf:type rdf:resource="http://www.daml.org/2001/03/daml+oil#UniqueProperty"/>
<rdfs:domain rdf:resource="#Process"/>
<rdfs:range rdf:resource="#Amount"/>

</daml:ObjectProperty>

<daml:ObjectProperty rdf:ID="numChMajFault">
<rdf:type rdf:resource="http://www.daml.org/2001/03/daml+oil#UniqueProperty"/>
<rdfs:domain rdf:resource="#Process"/>
<rdfs:range rdf:resource="#Amount"/>

</daml:ObjectProperty>

<daml:ObjectProperty rdf:ID="numChMinFault">
<rdf:type rdf:resource="http://www.daml.org/2001/03/daml+oil#UniqueProperty"/>
<rdfs:domain rdf:resource="#Process"/>
<rdfs:range rdf:resource="#Amount"/>

</daml:ObjectProperty>

<daml:ObjectProperty rdf:ID="numCnSwap">
<rdf:type rdf:resource="http://www.daml.org/2001/03/daml+oil#UniqueProperty"/>
<rdfs:domain rdf:resource="#Process"/>
<rdfs:range rdf:resource="#Amount"/>

</daml:ObjectProperty>

<daml:ObjectProperty rdf:ID="numLinkCount">
<rdf:type rdf:resource="http://www.daml.org/2001/03/daml+oil#UniqueProperty"/>
<rdfs:domain rdf:resource="#Process"/>
<rdfs:range rdf:resource="#Amount"/>

</daml:ObjectProperty>

<daml:ObjectProperty rdf:ID="chgPPid">
<rdf:type rdf:resource="http://www.daml.org/2001/03/daml+oil#UniqueProperty"/>
<rdfs:domain rdf:resource="#Process"/>
<rdfs:range rdf:resource="#BoolValue"/>

</daml:ObjectProperty>

<daml:ObjectProperty rdf:ID="rateUTime">
<rdf:type rdf:resource="http://www.daml.org/2001/03/daml+oil#UniqueProperty"/>
<rdfs:domain rdf:resource="#Process"/>
<rdfs:range rdf:resource="#Rate"/>

</daml:ObjectProperty>

<daml:ObjectProperty rdf:ID="rateSTime">
<rdf:type rdf:resource="http://www.daml.org/2001/03/daml+oil#UniqueProperty"/>
<rdfs:domain rdf:resource="#Process"/>
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<rdfs:range rdf:resource="#Rate"/>
</daml:ObjectProperty>

<daml:ObjectProperty rdf:ID="rateChUTime">
<rdf:type rdf:resource="http://www.daml.org/2001/03/daml+oil#UniqueProperty"/>
<rdfs:domain rdf:resource="#Process"/>
<rdfs:range rdf:resource="#Rate"/>

</daml:ObjectProperty>

<daml:ObjectProperty rdf:ID="rateChSTime">
<rdf:type rdf:resource="http://www.daml.org/2001/03/daml+oil#UniqueProperty"/>
<rdfs:domain rdf:resource="#Process"/>
<rdfs:range rdf:resource="#Rate"/>

</daml:ObjectProperty>

<daml:ObjectProperty rdf:ID="chgUid">
<rdf:type rdf:resource="http://www.daml.org/2001/03/daml+oil#UniqueProperty"/>
<rdfs:domain rdf:resource="#Process"/>
<rdfs:range rdf:resource="#BoolValue"/>

</daml:ObjectProperty>

<daml:ObjectProperty rdf:ID="chgGid">
<rdf:type rdf:resource="http://www.daml.org/2001/03/daml+oil#UniqueProperty"/>
<rdfs:domain rdf:resource="#Process"/>
<rdfs:range rdf:resource="#BoolValue"/>

</daml:ObjectProperty>

<daml:ObjectProperty rdf:ID="chgSUid">
<rdf:type rdf:resource="http://www.daml.org/2001/03/daml+oil#UniqueProperty"/>
<rdfs:domain rdf:resource="#Process"/>
<rdfs:range rdf:resource="#BoolValue"/>

</daml:ObjectProperty>

<!-- Network Properties -->

<daml:ObjectProperty rdf:ID="tcpEstb">
<rdf:type rdf:resource="http://www.daml.org/2001/03/daml+oil#UniqueProperty"/>
<rdfs:domain rdf:resource="#Network"/>
<rdfs:range rdf:resource="#Amount"/>

</daml:ObjectProperty>

<daml:ObjectProperty rdf:ID="tcpSynRec">
<rdf:type rdf:resource="http://www.daml.org/2001/03/daml+oil#UniqueProperty"/>
<rdfs:domain rdf:resource="#Network"/>
<rdfs:range rdf:resource="#Amount"/>

</daml:ObjectProperty>

<daml:ObjectProperty rdf:ID="tcpListen">
<rdf:type rdf:resource="http://www.daml.org/2001/03/daml+oil#UniqueProperty"/>
<rdfs:domain rdf:resource="#Network"/>
<rdfs:range rdf:resource="#Amount"/>

</daml:ObjectProperty>

<daml:ObjectProperty rdf:ID="ipInRecvs">
<rdf:type rdf:resource="http://www.daml.org/2001/03/daml+oil#UniqueProperty"/>
<rdfs:domain rdf:resource="#Network"/>
<rdfs:range rdf:resource="#Rate"/>

</daml:ObjectProperty>

<daml:ObjectProperty rdf:ID="ipRasmOk">
<rdf:type rdf:resource="http://www.daml.org/2001/03/daml+oil#UniqueProperty"/>
<rdfs:domain rdf:resource="#Network"/>
<rdfs:range rdf:resource="#Rate"/>

</daml:ObjectProperty>

<daml:ObjectProperty rdf:ID="ipInDisc">
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<rdf:type rdf:resource="http://www.daml.org/2001/03/daml+oil#UniqueProperty"/>
<rdfs:domain rdf:resource="#Network"/>
<rdfs:range rdf:resource="#Rate"/>

</daml:ObjectProperty>

<daml:ObjectProperty rdf:ID="ipInDeliv">
<rdf:type rdf:resource="http://www.daml.org/2001/03/daml+oil#UniqueProperty"/>
<rdfs:domain rdf:resource="#Network"/>
<rdfs:range rdf:resource="#Rate"/>

</daml:ObjectProperty>

<daml:ObjectProperty rdf:ID="ipInOutReq">
<rdf:type rdf:resource="http://www.daml.org/2001/03/daml+oil#UniqueProperty"/>
<rdfs:domain rdf:resource="#Network"/>
<rdfs:range rdf:resource="#Rate"/>

</daml:ObjectProperty>

<daml:ObjectProperty rdf:ID="icmpInMsg">
<rdf:type rdf:resource="http://www.daml.org/2001/03/daml+oil#UniqueProperty"/>
<rdfs:domain rdf:resource="#Network"/>
<rdfs:range rdf:resource="#Rate"/>

</daml:ObjectProperty>

<daml:ObjectProperty rdf:ID="icmpInEcho">
<rdf:type rdf:resource="http://www.daml.org/2001/03/daml+oil#UniqueProperty"/>
<rdfs:domain rdf:resource="#Network"/>
<rdfs:range rdf:resource="#Rate"/>

</daml:ObjectProperty>

<daml:ObjectProperty rdf:ID="icmpInEchoRep">
<rdf:type rdf:resource="http://www.daml.org/2001/03/daml+oil#UniqueProperty"/>
<rdfs:domain rdf:resource="#Network"/>
<rdfs:range rdf:resource="#Rate"/>

</daml:ObjectProperty>

<daml:ObjectProperty rdf:ID="udpIn">
<rdf:type rdf:resource="http://www.daml.org/2001/03/daml+oil#UniqueProperty"/>
<rdfs:domain rdf:resource="#Network"/>
<rdfs:range rdf:resource="#Rate"/>

</daml:ObjectProperty>

<daml:ObjectProperty rdf:ID="udpNoPort">
<rdf:type rdf:resource="http://www.daml.org/2001/03/daml+oil#UniqueProperty"/>
<rdfs:domain rdf:resource="#Network"/>
<rdfs:range rdf:resource="#Rate"/>

</daml:ObjectProperty>

<daml:ObjectProperty rdf:ID="udpInErr">
<rdf:type rdf:resource="http://www.daml.org/2001/03/daml+oil#UniqueProperty"/>
<rdfs:domain rdf:resource="#Network"/>
<rdfs:range rdf:resource="#Rate"/>

</daml:ObjectProperty>

<daml:ObjectProperty rdf:ID="udpOut">
<rdf:type rdf:resource="http://www.daml.org/2001/03/daml+oil#UniqueProperty"/>
<rdfs:domain rdf:resource="#Network"/>
<rdfs:range rdf:resource="#Rate"/>

</daml:ObjectProperty>

<daml:ObjectProperty rdf:ID="icmpOutMsg">
<rdf:type rdf:resource="http://www.daml.org/2001/03/daml+oil#UniqueProperty"/>
<rdfs:domain rdf:resource="#Network"/>
<rdfs:range rdf:resource="#Rate"/>

</daml:ObjectProperty>

<daml:ObjectProperty rdf:ID="icmpOutEchoResp">
<rdf:type rdf:resource="http://www.daml.org/2001/03/daml+oil#UniqueProperty"/>
<rdfs:domain rdf:resource="#Network"/>
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<rdfs:range rdf:resource="#Rate"/>
</daml:ObjectProperty>

<daml:ObjectProperty rdf:ID="tcpToAlg">
<rdf:type rdf:resource="http://www.daml.org/2001/03/daml+oil#UniqueProperty"/>
<rdfs:domain rdf:resource="#Network"/>
<rdfs:range rdf:resource="#Rate"/>

</daml:ObjectProperty>

<daml:ObjectProperty rdf:ID="tcpEstabRst">
<rdf:type rdf:resource="http://www.daml.org/2001/03/daml+oil#UniqueProperty"/>
<rdfs:domain rdf:resource="#Network"/>
<rdfs:range rdf:resource="#Rate"/>

</daml:ObjectProperty>

<daml:ObjectProperty rdf:ID="tcpOutRst">
<rdf:type rdf:resource="http://www.daml.org/2001/03/daml+oil#UniqueProperty"/>
<rdfs:domain rdf:resource="#Network"/>
<rdfs:range rdf:resource="#Rate"/>

</daml:ObjectProperty>

</rdf:RDF>


