
An Approach to Dynamic Service Management in Pervasive
Computing Systems∗

Lalana Kagal
Computer Science & Electrical Engineering

University of Maryland Baltimore County

1000 Hilltop Circle, Baltimore, MD 21244

lkagal1@cs.umbc.edu

Sasikanth Avancha
Computer Science & Electrical Engineering

University of Maryland Baltimore County

1000 Hilltop Circle, Baltimore, MD 21244

savanc1@cs.umbc.edu

Vladimir Korolev
Computer Science & Electrical Engineering

University of Maryland Baltimore County

1000 Hilltop Circle, Baltimore, MD 21244

vkorol1@cs.umbc.edu

Anupam Joshi
Computer Science & Electrical Engineering

University of Maryland Baltimore County

1000 Hilltop Circle, Baltimore, MD 21244

joshi@cs.umbc.edu

Tim Finin
Computer Science & Electrical Engineering

University of Maryland Baltimore County

1000 Hilltop Circle, Baltimore, MD 21244

finin@cs.umbc.edu

Abstract

In the near future, we will see dramatic changes in comput-
ing and networking hardware. A large number of devices
(e.g., phones, PDAs, even small household appliances) will
become computationally enabled. Micro/nano sensors will
be widely embedded in most engineered artifacts, from the
clothes we wear to the roads we drive on. All of these de-
vices will be (wirelessly) networked using Bluetooth, IEEE
802.15 or IEEE 802.11 for short range connectivity creating
pervasive environments. In this age, where a large number
of wirelessly networked appliances and devices are becoming
commonplace, there is a necessity for providing a standard
interface to them that is easily accessible by any user. This
paper outlines the design of Centaurus, an infrastructure
for presenting services to heterogeneous mobile clients in
a physical space via some short range wireless links. The
infrastructure is communication medium independent; we
have implemented the system over Bluetooth, CDPD and
Infrared, three well-known wireless technologies. All the
components in our model use a language based on Extensi-
ble Markup Language (XML) for communication, giving the
system a uniform and easily adaptable interface. Centaurus
defines a uniform infrastructure for heterogeneous services,
both hardware and software, to be made available to diverse
mobile users within a confined space.

∗This work was supported by NSF Awards IIS 9875433 and CCR
0070802, and the Defense Advanced Research Projects Agency under
contract F30602-00-2-0 591 AO K528.

1 Introduction

In the ubiquitous computing paradigm, information and ser-
vices are accessible virtually anywhere and at any time via
any device - phones, PDAs, laptops or even watches [14, 10].
The “SmartHome” and “SmartOffice” scenarios present a
step towards realizing this vision. Smart homes and offices
consist of intelligent services that are accessible to users via
handheld devices connected over short range wireless links.
These SmartSpaces will use sensors to gather information
about the user and environment, and allow the user to use
more interactive forms of input like voice, eye movements
etc. The intelligent services themselves will be more re-
ceptive to the user’s requirements and use logical reasoning
to provide better and more relevant support to individual
users. The services will be integrated seamlessly into the
environment that the user is familiar with, enabling easy
and automatic usage. This is the vision that guides our re-
search on the Centaurus system. We define a SmartSpace
as a dynamic environment that provides an infrastructure
for providing services to mobile users via some short range
wireless communication link.

Our system is called Centaurus after the constellation
which honors the Centaur Chiron, who was known as a wise
teacher, healer and prophet. The goal is to design an in-
frastructure and communication protocol for providing ser-
vices to heterogeneous mobile clients in the SmartSpaces
scenario. This framework is a part of our larger research
program aimed at realizing ubiquitous computing systems
that are composed of highly intelligent, articulate and so-
cial components. These components automatically become
aware of each other and can exchange information to co-
operatively provide services to the users. In particular, the
idea of ad-hoc sets of entities that are dynamically formed to
pursue individual and collective goals can be used to create
the software infrastructure needed by the next generation



of mobile applications. This infrastructure requires rethink-
ing the neatly layered approach that separates networking,
data management and user interface considerations, as our
system design illustrates.

Centaurus consists of Communication Managers, Service
Managers, Services and Clients. Communication Managers
handle communication between various entities in the sys-
tem. Service Managers are responsible for client and service
management. Within a confined space, the client can access
services provided by the nearest Centaurus System via some
short-range wireless technology. Centaurus acts as an active
proxy by executing services on behalf of any client that re-
quests them. This minimizes the resource consumption on
the client and also avoids having the services installed on
each client that wishes to use them, which is a blessing for
most resource-poor mobile clients.

All clients and services communicate via Centaurus Com-
munication Markup Language (CCML) (described in sec-
tion 3.6) which is based on Extensible Markup Language1

(XML). We found that this W3C Standard is very useful in
describing ontologies, and defining properties and interfaces
of services. It will also help in integrating Centaurus with
emerging semantic languages like DARPA Agent Markup
Language (DAML+OIL) [5]. The Communication Manager
is flexible and allows any medium to be used for commu-
nication, but for implementation purposes, we have used
Infrared[1], CDPD[12] and Bluetooth[3].

This paper is organized as follows: Section 2 discusses
other work in the area of “smart environments”, and com-
pares Centaurus with them. The design of Centaurus is out-
lined in Section 3 we conclude with a summary in Section
4.

2 Related Work

In the last couple of years, a number of technologies that
deal with ‘SmartHomes’ and ’SmartOffices’ have emerged.
Among them are the Berkeley Ninja Project [6], the Por-
tolano project[13] from the University of Washington, Stan-
ford’s Interactive Workspaces Project [11], and Active Spaces
[9, 7] from University of Illinois at Urbana-Champaign.

The Ninja project tries to link different services, through
a range of devices ranging from PCs to cell phones and Per-
sonal Digital Assistants [6]. It has incorporated intelligence
into the infrastructure and has the ability to adapt the con-
tent to a specific device.

Centaurus differs from Ninja in its service leasing abili-
ties and state management. Unlike the Ninja project, Cen-
taurus infrastructure delegates the state management to the
Services themselves, with the Service Manager serving as
the cache. The advantage of such approach is the decreased
complexity of distributed state management and increased
fault tolerance. Even in the event of Service Manager go-
ing down, it can recover easily because although it does not
store any state information, the Services send it regular sta-
tus to maintain their lease. Ninja tends to concentrate on
web based services, whereas our system is able to support
Services based on any platform, as long they can communi-
cate with either the Service Manager through sockets, or one
of the Communication Managers through the native proto-
col and possess the ability to process Centaurus Capability
Markup Language(CCML) messages. We also do not dis-
tinguish between hardware and software Services, allowing
the user to use either in the same way. Since all of the com-

1http://www.w3.org/XML

munication between Services and Clients in the Centaurus
project are done with the use of XML, there is no need for
complicated Operators and Paths used by the Ninja project
to convert between different data representations.

Though both the Ninja project and Centaurus are aimed
at providing a uniform infrastructure for a multitude of de-
vices to use heterogeneous services, Centaurus is more ap-
plicable for ‘SmartHomes’ and ‘SmartOffices’ because of its
independence of any kind of specific communication infras-
tructure; so it could be easily implemented in the wide range
of environments. In addition, Centaurus architecture is less
prone to the failures of its components because of the use
of multiple communication modules and automatic state re-
covery in the event of the Service Manager failure.

University of Washington’s Portolano project is in the
early stages and is mainly involved in ’invisible computing’
a term invented by Donald Norman [8] to describe ubiqui-
tous computing, where devices supporting distributed ser-
vices blend into the user’s environment and become prac-
tically ’invisible’. The user would invoke these services not
just by input but also through augmenting forms of interfac-
ing like user movement, proximity of devices, identification
tags, etc. However they are still in the preliminary phases,
so we are unsure of how the system will actually be imple-
mented or perform.

Stanford’s Interactive Workspaces Project [4] which en-
deavors to provide a system for interconnecting and inte-
grating heterogeneous COTS legacy devices and software
components. In addition, to provide interoperability, their
endpoints communicate through a mediating infrastructure
that transforms data so it will be compatible from one de-
vice type to another. The concept of data translation differs
significantly from the Centaurus approach where XML is
used as the sole format for data exchange.

An Active space [9, 7] is a physical space including its
different physical and virtual components, managed by an
operating system, Gaia OS, which acts as a layer of abstrac-
tion over the particular properties of an Active Space. The
Gaia OS manages the resources of an active space. Gaia
does not define high-level policies regarding the behavior of
the entities in the space. It concentrates on providing an
infrastructure for the physical space and projecting a uni-
fied interface. This model, by insisting that the services be
implemented as CORBA services, restricts the application
developers. In Centaurus services in any language will be
seamlessly integrated into the system, as long as they use
CCML to communicate. The Active Spaces project does not
seem to be easily extended to support mobile users or differ-
ent modes of communication i.e., Bluetooth, IR, CDPD and
Ethernet, whereas Centaurus has been specifically designed
to allow flexibility in communication protocols.

3 System Design

The main design goal of Centaurus is to develop a framework
for building portals, using various types of mobile devices,
to the world of “things” that users can communicate with
and control. Centaurus provides a uniform infrastructure for
heterogeneous services, both hardware and software services,
to be made available to the users where ever they are needed.

Centaurus consists of several components: The Centau-
rusComm Transport Protocol, Communication Managers,
Service Managers, Services, and Clients. CentaurusComm
Transport Protocol is an efficient, message-object based trans-
port protocol which abstracts out the medium specific infor-
mation. Communication Managers handle all the communi-



FAX

Client 1

Client 3

Client 2

Music System

Lamp

Communicating with Service Manager 
(registration, service list, service access)

C
o
m

m
u
n
icatio

n
 L

ay
er

S
erv

ice M
an

ag
er

Service Manager accesses services on 
behalf of clients

Services send service updates

Figure 1: The different components in a Centaurus system

cation with the Centaurus client using different modules of
CentaurusComm Protocol. The Communication Manager is
capable of communicating over varied media such as Ether-
net, Infrared, CDPD and Bluetooth. Service Managers con-
trol access to the services and act as gateways between the
services and clients. Services are objects that offer certain
functionality to Centaurus clients. Services contain informa-
tion to enable them to locate the closest Service Manager
and register themselves with it. Once registered, the ser-
vices can be requested by any client communicating with
the Communication Manager. The client provides an inter-
face to the user for interaction with the services provided in
the SmartSpace. Figure 1 shows the different components
and the relationships between them.

3.1 The Transport Protocol in Centaurus : Centaurus-
Comm

CentaurusComm consists of one or more lower level proto-
col modules (designated as Level I), one higher level module
(designated as Level II) and an application program inter-
face. Level I modules are communication medium depen-
dent; the Level II module is medium independent. The API
is responsible for accepting the objects from the application
layer for transmission and notifying it when messages are
received.

The protocol is implemented as a collection of data struc-
tures and state machines. The principal data structures in-
clude the transmit queue and the receive queue. As the pro-
tocol is designed to run on a wide range of low power systems
such as PDAs and low power embedded computers, it does
not depend on any advanced operating system features such
as signals and multithreading, that are typically not part of
such systems. This is in contrast to TCP, which requires
substantial support from the OS for signaling. Centaurus-
Comm is designed such that the the transmission, recep-
tion and recovery procedures are divided into many small
sub-procedures that last for a very short time. With the
exception of domain name resolution, which occurs very in-
frequently, the protocol never blocks. This design gives an
impression of concurrent execution of the user program and
the protocol modules.

3.2 Communication Manager

This component is responsible for the communication be-
tween the client and other components of Centaurus. The
Communication Manager uses a specific TCP port to com-
municate with the Service Manager. This is so that Com-
munication Managers and Service Managers need not be on
the same system. When the Communication Manager re-
ceives information from a client, it sends this information to
the Service Manager. When it receives data from a Service
Manager, it validates the data and looks at the header to
decide which client to send it to. Currently we have com-
munication modules for Bluetooth, IR and CDPD allowing
Centaurus to communicate with clients using those commu-
nication media.

3.3 Service Manager

The Service Manager(SM) acts as a mediator between the
services and the client. When a service starts up, it has to
register with the Service Manager, sending its name, iden-
tification, description, interfaces it implements and leasing
period in CCML. The SM is also responsible for service leas-
ing. It allows services to register for a certain amount of
time. If it does not receive any status update or a ’ping’
from the service within that time, the registration is deleted.
When a new client comes along, it has to register itself with
the Service Manager as well. The Service Manager sends
it a ServiceList object. This ServiceList object is updated
dynamically, according to the services registered with the
Service Manager, so the client always has the updated list
of services. The user can select a service from this list which
the client sends back to the Service Manager. The Service
Manager replies with the CCML description for that ser-
vice and updates its database to reflect that the client is
interested in the service that it just requested. The client
displays the CCML of the service and waits for the user’s
input. The user can invoke any interface of the service caus-
ing the client to generate the appropriate CCML command
and send it back to the Service Manager. On receiving this
CCML, the Service Manager validates the client and the
CCML. If the service is still available, the Service Manager
sends the CCML to it, otherwise it is queued and a time-
out is set. Once this timeout expires, an error is returned
to the client. Whenever the Service Manager gets a status
update of the service, it will send it to all interested clients.
The client will continue to receive status reports from the
service, until it de-registers itself.

Though the Service Manager does manage some state,
most of the state is distributed among the clients and ser-
vices. In case a Service Manager fails, the services keep
pinging it at increasing intervals until it comes up again.
Then they re-register themselves with it. Similarly the Ser-
vice Manager stores a list of services that a client is inter-
ested in, so it can be sent status updates from those services.
However, every time the client notifies the Service Manager
of a service it is interested in, the Service Manager forces the
client to update its own CCML description to reflect the new
service. As soon as the failed Service Manager is up again or
if a replacement Service Manager is used, the clients regis-
ter themselves. Their CCML description informs the Service
Manager what services they are interested in. By forcing the
services to be responsible for maintaining their own state,
by de-registering any timed out services, and making clients
store the list of services they are interested in, the Service
Manager is capable of automatic state recovery leading to
greater fault tolerance.



3.4 Services

A service performs a certain action on behalf of the client.
These services could range from controlling a light switch
or a coffee pot to printing a document or even a memo
pad service where clients can leave messages for each other.
Each service registers with a Service Manager by sending
the CCML description of its name, identification, location,
a brief description of its functionality and its leasing period.
Every time its status changes, it informs the Service Man-
ager. If its status has not changed during the leasing period
and it wants to renew its lease, it has to send a short renew
message to the Service Manager. It accepts requests only
from the Service Manager that it is registered with.

We have developed one hardware related service for con-
trolling a lamp and one software service for playing MP3
files. There is another Service, ServiceList, that is an in-
herent part of the protocol, and is used for providing an
updated list of services to the Client.

We have implemented a Service class and ServiceInter-
face class that handle validation of the CCML, the register-
ing of the Service with the Service Manager and the sending
of the updates. All Services implemented in Java should,
for conformity, extend the Service class, and implement the
ServiceInterface class. The ServiceInterface class contains
a commandHandler function that has to be implemented
by every Service that implements the interface. This is the
function that handles changes to the CCML file of the Ser-
vice. A Java Service need only implement a constructor and
this commandHandler to be integrated into a Centaurus sys-
tem.

The Centaurus system also handles non-Java Services
as long they can use CCML and either communicate via
sockets with the Service Manager or with a Communication
Manager through some native protocol.

• ServiceList

Each time, a Service registers or is no longer available,
the ServiceList triggers the Service Manager to send
the updated list of Services to all the Clients. This
does not use the Service class or the ServiceInterface
class. It is contained completely in the Service Man-
ager. It is a special Service because though it is han-
dled in same way as other Services are, it is contained
entirely within the Service Manager itself.

• Lamp-Control

Using X102 devices and FireCracker3, the Lamp Con-
trol Service is able to control a lamp in the room. We
can extend this to control any device because X10 is a
power-line carrier protocol that allows compatible de-
vices to communicate with each other via the existing
110V wiring. FireCracker is a Java class that allows
a computer to communicate with the X10 device. If
the ‘Powered’ interface has a value that is different
from the status of the Power variable, then the com-
mand is processed proceeds, otherwise the command is
discarded. If the value is true, the lamp is set on, oth-
erwise the lamp is set off. The CCML file is changed
and an update is sent to the Service Manager, which
forwards it to all the Clients that are interested in the
lamp service.

• MP3-Player

2http://www.x10.com/
3http://www.x10.com/welcome/firecracker/

We are using a popular MP3 player for Unix, mpg123
[2], that has a Java wrapper around it to allow us to
plug it into the rest of the system. The constructor for
the Service, reads all the .mp3 files from a specified
directory and creates its CCML file. It has a number
of CCML interfaces, one for each song it can play. The
Service checks the CCML command received and reads
the songs selected. These songs are checked against
the current list of songs. If they are valid, they are fed
into mpg123. A new CCML status file is generated
and sent to the Service Manager.

3.5 Client

A client is a special kind of service in that it has to re-
spond to commands and regularly send status updates.
A client communicates with the Communication Man-
ager and registers itself with a Service Manager. This
registration is similar to the registration of services.
On registration, it receives the ServiceList, which con-
tains the current list of services. The ServiceList is a
service itself, and causes the Service Manager to send
the new list of services, every time its status changes,
that is, each time a new service registers, or an existing
service de-registers.

By choosing a Service, the client expresses interest in
it. The Service Manager sends the client the CCML
description of the Service. The client displays the
CCML file for the user, who can invoke the specified
functions on the Service, by choosing one of its in-
terfaces. After the user changes values of certain vari-
ables, specified in the CCML for the particular service,
the client sends the CCML back to the Service Man-
ager in the form of a command. The client will receive
status updates from all services that it expresses inter-
est in through the Service Manager, until it specifically
informs the Service Manager that it no longer wants
to receive these messages.

3.6 Centaurus Capability Markup Language (CCML)

The CCML is divided into system , data, addons, interfaces,
and info.

The system portion contains the header information, the
id, timestamp, origin, etc. There are two variables, update
and command. A CCML file can only have one or the other.
An update variable is used to inform other Centaurus compo-
nents about status updates of services and clients, whereas
the command is used to send a command to a certain ser-
vice. The system also contains the listening section for a
service or client. It specifies all the services that a service
or client is interested in. All information regarding the vari-
ables and their types are contained in the data section. Using
the addons section, one can add a related service to another
service, for example, add an Alarm Clock service to a Lamp-
Control service. We are not currently using this section.

The CCML for a client always has one or more actions
in its data section that a Service Manager can invoke on it.
This is used by the SM to change the state of the device.
We have defined two actions for clients namely AddService
and RemoveService.

• AddService : When this action is set, the client adds
the value of this variable to the list of services that it
is interested in.



• RemoveService : This is set by the Service Manager, if
the Service that the client is interested in, is no longer
available. It causes the client to stop listening or using
the Service and remove the Service from the list of
services that it is interested in.

The interface section contains information about the in-
terfaces that the object (Service/Client) implements. This
section generally causes the variables in the data section to
change their values.

Other details like the description, and icon for represen-
tation are in the info section.

4 Summary

We have successfully developed the first version of Centau-
rus. We believe that our infrastructure is appropriate and
effective for deploying services in an indoor environment.
Such environments are typified by handheld clients connect-
ing to services on a fixed infrastructure using wireless ad-hoc
networks such as those based on Bluetooth. The first stage
of development, including the Service Manager, Communi-
cation Manager, MP3 player services, Lamp services etc.
have verified that our vision of dynamic service discovery
and management over ad-hoc wireless networks is feasible.

We believe that now that the framework is in place,
adding attractive interfaces for the portable devices, cre-
ating new services, and enabling more intelligent brokering
of Services will follow easily. Although, we have a long way
to go, we believe that Centaurus has brought us a couple of
steps closer to realizing our vision of intelligent, adaptable
and highly perceptive pervasive environments.

References

[1] Infrared Data Association (website).
http://www.irda.org.

[2] Mpg123, mp3 player for linux/unix systems.
http://mpg123.org/.

[3] The Official Bluetooth Website.
http://www.bluetooth.com.

[4] George Candea and Armando Fox. Using Dynamic
Mediation to Integrate COTS Entities in a Ubiquitous
Computing Environment. In Second International Sym-
posium on Handheld and Ubiquitous Computing, pages
248–254, 2000.

[5] I. Horrocks et al. DAML+OIL Language Specifications.
http://www.daml.org/ 2000/12/daml+oil-index, 2001.

[6] Steven D. Gribble et al. The Ninja architecture for
robust Internet-scale systems and services. Computer
Networks, pages 473–497, March 2001.

[7] Fabio Kon, Christopher K. Hess, Manuel Roman,
Roy H. Campbell, and M. Dennis Mickuna. A Flexible,
Interoperable Framework for Active Spaces. In OOP-
SLA’2000 Workshop on Pervasive Computing, October
2000.

[8] Donald Norman. The Invisible Computer. MIT Press,
1998.

[9] Manuel Roman and Roy H. Campbell. Gaia: Enabling
Active Spaces. In 9th ACM SIGOPS European Work-
shop, September 2000.

[10] M. Satyanarayanan. Pervasive Computing: Vision and
Challenges. IEEE Communications, 2001.

[11] Stanford Interactive Workspaces Project.
http://graphics.stanford.edu/projects/iwork/.

[12] M. Taylor, W. Waung, and M. Banan. Internetwork
Mobility : The CDPD Approach. Prentice Hall Profes-
sional Technical Reference, 1999.

[13] Dept of Computer Science University of Washington
and Engineering. Portolano: An Expedition into Invis-
ible Computing. http://portolano.cs.washington.edu/.

[14] M. Weiser. The Computer for the Twenty-First Cen-
tury. Scientific American, September 1991.


