
96 Computer

C O M M U N I C A T I O N S

T he rapid evolution and expan-
sion of wireless-enabled envi-
ronments have increased the
need for sophisticated service
discovery protocols (SDPs).

Typically, service discovery involves a
client, service provider, and lookup or
directory server. Service registration
and lookup, or matching, are impor-
tant components of most common
SDPs including Jini, the service loca-
tion protocol (SLP), Salutation, UPnP
(universal plug and play), and UDDI
(universal description, discovery, and
integration).

To discover a service, a client uses one
of these protocols to issue a query to a
central server or an individual service
provider. The service description in the
query may contain a specific name and
set of one or more attributes. The server
or provider attempts to match the
query’s pattern with the pattern of a ser-
vice its database contains, then it returns
the appropriate response to the client.

These SDPs assume the existence of

• continuous and robust network
connectivity,

• support from network protocols
such as IP,

• support from transport protocols
such as TCP (transmission-control
protocol) and UDP (user data-
gram protocol), and

• network layer mechanisms such as
multicasting.

However, some or all of these require-
ments may not be met in wireless net-
works, especially those formed in an
ad hoc manner. For example, tempo-
rary disconnections occur frequently in
such networks, and the negative
impact on TCP performance in turn
decreases SDP performance.

Bluetooth (http://www.bluetooth.
com) short-range wireless technology
operates in the globally available 2.4-
GHz ISM (industrial, scientific, and
medical) frequency band and provides
data rates of up to 432 Kbps (symmet-
ric) and 721 Kbps (unsymmetric). The
Bluetooth protocol stack currently
includes specifications that define the
SDP, RFCOMM (for cable replace-
ment), the logical link control and
adaptation protocol (L2CAP), a host
controller interface (HCI), the link
manager protocol (LMP), the base-
band protocol, and a radio frequency
(RF) protocol.

The Bluetooth specification defines a
lower power level that covers the per-
sonal area within a room and a higher

power level designed to cover a
medium range, such as within a home.
The specification supports both point-
to-point and point-to-multipoint con-
nections. Up to seven slave devices can
be set to communicate with a master
radio in one configuration. Ad hoc
scatternets can link several such
piconets together to allow communi-
cation among continually flexible con-
figurations.

UNIVERSALLY UNIQUE IDENTIFIERS
The Bluetooth SDP is optimized for

ad hoc networks and resource-con-
strained devices. In place of large strings

that other SDPs use for pattern-match-
ing service requests, the Bluetooth SDP
uses 128-bit universally unique identi-
fiers (UUIDs), one of which is associ-
ated with every service and attribute of
that service.

The UUID-based approach is well
suited to service discovery in ad hoc net-
works formed between, for example, a
headset and cellular phone. The headset
service is simple and straightforward
enough, in terms of possible attributes,
to be associated with a UUID. The
phone can specify the headset service’s
UUID in its service discovery request
and expect to receive either a positive
or negative response—no inexact
matching is possible or required.

However, UUID-based description
and matching of services are often
inadequate. For example, consider a
wireless hotspot such as an airport ter-
minal or shopping mall where patrons
use handheld devices to discover infor-
mation about available services from
one another as well as a central busi-
ness directory. A shopper equipped

Enhanced Service
Discovery in
Bluetooth
Sasikanth Avancha, Anupam Joshi, and Timothy Finin
University of Maryland, Baltimore County

Semantic matching improves
the quality of service
discovery by ensuring more
positive responses to
requests.

June 2002 97

with a PDA is searching for a luggage
store that carries 18-, 22-, and 24-inch
leather suitcases costing less than $500;
she prefers the largest size but would
take either of the other two if they are
the only sizes available.

Using regular Bluetooth SDP, the
PDA would specify a series of UUIDs
associated with the luggage store ser-
vice in its request—one each for the
service and its attributes. If the store
determines that it carries 18- and 22-
inch suitcases costing less than $500,
but not 24-inch ones, the request will
fail. Also, because the current version
of Bluetooth SDP does not support ser-
vice registration, the luggage store
would likely not be able to register its
services with the mall directory, deny-
ing the user this useful facility.

Mall, airport terminal, and other
hotspot services are associated with a
larger number of more complex attrib-
utes than a simple headset service.
Specifying requests in terms of UUIDs,
even if possible, would lead to a situa-
tion in which a simple positive or neg-
ative response is meaningless.

SEMANTIC SERVICE DISCOVERY
To address this problem and increase

the quality of service discovery, we
have enhanced the Bluetooth SDP
matching mechanism to use semantic
information associated with services
rather than simple UUIDs in hotspot
environments. This includes priorities,
expected values of service attributes,
and some index of a match’s close-
ness—for example, matching two out
of three attributes is deemed a success.

To support this matching mechanism
and allow more efficient service dis-
covery, we have introduced a service
ontology described in a semantic lan-
guage and a Prolog-based reasoning
engine that uses the ontology.

Traditionally, the assumption is that
sophisticated matching mechanisms
impose heavy computational and mem-
ory burdens that only server class sys-
tems can handle. However, our
experiments reveal that devices such as
Compaq’s iPAQ Pocket PC, which sup-

ports at least 32 Mbytes of RAM,
could handle even a heavyweight
engine with no visible performance
degradation.

SYSTEM DESIGN
The process of semantic matching is

dependent on a well-defined ontology.
Using the ontology effectively and rea-
soning about the information it pro-
vides require a powerful engine. We
implemented the reasoning engine in
XSB, a research-oriented logic pro-
gramming system for Unix- and Win-
dows-based systems.

Service ontology
Describing services ontologically is

superior to UUID-based descriptions
because it provides a structure for rea-
soning about and deriving knowledge
from the given descriptions. An ontol-
ogy also describes relationships be-
tween different entities in the system
more clearly. Further, the ontology can
facilitate inexact matching by specify-
ing rules and constraints on attributes
—for example, by imposing a priority
on each option.

We use the semantically rich DAML+
OIL—Darpa Agent Markup Language
and Ontology Inference Layer (http://
www.daml.org/2001/03/daml+oil-index.
html)—to describe our ontology. The
World Wide Web Consortium (http://
www.w3c.org) and the US Defense
Advanced Research Projects Agency
(http://www.darpa.mil/) are developing
this language as an extension to the
Resource Description Framework and
Extensible Markup Language (XML).

Using DAML+OIL as our descrip-
tion language offers two main advan-
tages. First, it’s easier to use the syntax

and rules of an existing language than
to create a new one. Second, because
DAML+OIL is becoming a standard
for use in the semantic Web, services
developed for the Internet using this
language can easily be installed on
Bluetooth-enabled devices and dis-
seminated in Bluetooth networks.

Reasoning engine
The key to correct functioning of our

reasoning engine is a knowledge base
with sufficient and complete informa-
tion about service instances. Large
amounts of factual data must be loaded
into the knowledge base before the pro-
gram can use them. XSB, a variant of
Prolog that also interfaces easily with
C, offers a powerful method for assert-
ing clauses that can improve program
speed and indexing for compiled code.
In addition, XSB can run on a small-
footprint device such as the iPAQ
because its overall memory require-
ment on Linux is less than 2 Mbytes.

DAML allows description of ser-
vices in a highly structured, object-ori-
ented manner, but it cannot take the
place of a reasoning engine that derives
meaning from this structured data. The
XSB engine splits available data into
extensional knowledge (facts present
in the description) and intentional
knowledge (facts derived from other
facts). It thus extracts the relationships
that DAML describes and uses them to
arrive at a solution to a given service
discovery query.

The engine first performs pattern
matching to determine whether it can
answer the query directly. Upon failure,
it evaluates other possible solutions,
which match the requested query
attribute values within an error range
based on the specified closeness index.

Figure 1 illustrates our system’s ser-
vice registration and semantic matching
mechanisms. We use the Bluetooth
stack for Linux developed by Axis
Communications to implement the
enhancements. The regular SDP in this
stack uses XML files to describe services
and associate them with UUIDs. Thus,
the matching process involves parsing

Using an ontology to
describe services can

facilitate inexact
matching by specifying
rules and constraints on

attributes.

98 Computer

C o m m u n i c a t i o n s

a discovery request in DAML+OIL for
a printer service associated with eight
attributes.

Response time
In the first experiment, a client sent

100 service discovery requests associ-
ated with a single attribute to the
server, and we measured and calcu-
lated the average response time. The
client then associated two attributes

and validating the request before com-
paring requested and available UUIDs.

PERFORMANCE EVALUATION
To evaluate service registration and

semantic matching performance, we
used two Linux-based laptops to com-
pare the response and processing times
for service discovery queries in the
enhanced Bluetooth SDP system with
those in the regular system. We created

with the printer service in a second set
of 100 messages. We repeated this pro-
cedure until the request contained all
eight attributes.

The results showed that

• the enhanced SDP system’s re-
sponse time is three to 14 times
greater than that of the regular sys-
tem for requests containing one to
eight attributes, respectively. This
is primarily due to the transmission
time because request messages in
the enhanced SDP system are 40 to
50 times larger than corresponding
requests in the regular system.

• the increased response time is not
unacceptable from the user’s per-
spective. In absolute terms, regular
SDP response time ranges from
approximately 0.05 to 0.1 seconds,
whereas enhanced SDP response
time ranges from 0.2 to 1.2 sec-
onds. Considering that the largest
request size in the enhanced SDP
was 1,724 bytes, a 1.2-second
response time seems reasonable.

In addition, we believe that the qual-
ity of results in the enhanced system
ensures that clients will have to repeat
few, if any, requests due to negative
responses from the server.

Processing time
The second experiment followed the

same procedure except that we cap-
tured only the time the server took to
process a service discovery request.
This is important because in regular
Bluetooth SDP the parsing and match-
ing mechanisms are fairly simple,
whereas both mechanisms are complex
in the enhanced system.

The results demonstrated that

• the processing time for simple and
enhanced SDP is comparable for
a given set of attributes in a
request, and

• the processing time for enhanced
SDP is nearly constant, irrespec-
tive of the number of attributes in
the request.

Find perfect
match(es)

Rank
preferences

No

Extract
DAML query

Listen for
DAML query

Send
response

Parse
DAML query

Validate
DAML request

Create
constraints

Preferences?Found?

Find closest
match(es)

Yes

Yes

No

DAML = Darpa Agent Markup Language
UUID = Universally unique identifier

Figure 1. Service registration and semantic matching mechanisms. (a) The service regis-
tration process involves parsing a request and validating its content and lease time, re-
sulting in either addition or deletion of the request to or from the knowledge base. (b) The
semantic matching process parses and validates the DAML request, creates a ranked list
of attributes, and determines the closest value that matches each attribute’s specified
value.

Extract service
ID and lease time

Listen for
registration

request

Send
response

Extract
DAML content

Validate
DAML content

Append to
knowledge base

Lease
expired?

Unload from
knowledge base

De-registerYes

Valid?

Yes

Lease
not expired?

Yes

No

No

(a)

(b)

The penalty paid for using a com-
plex matching technique with a heavy
reasoning engine such as XSB appears
to be insignificant compared to the rel-
atively lightweight mechanism of pars-
ing an XML file and comparing
UUIDs.

B ecause we used DAML and
Prolog, which are independent of
the underlying wireless technol-

ogy, to design and implement these
enhancements, they can easily be pack-
aged into a separate module and
plugged into any other protocol stack
at the appropriate layer. We envision
our semantic service discovery solution
being introduced into wireless LAN,
IEEE 802.15.1, and wide-area wireless
networks such as Cellular Digital
Packet Data.

Given the rapid deployment of wire-
less technologies in hotspots such as
cafes, shopping malls, and restaurants
throughout the world, we believe that

semantic service discovery will play an
important role in future mobile-com-
merce applications.

In peer-to-peer (P2P) environments
involving the sale and exchange of
small items, devices need to discover
services or information that others are
willing to provide or sell. This discov-
ery cannot be based solely on fixed val-
ues such as UUIDs or service names
because the peers have formed the net-
work in an ad hoc manner.

Semantic service discovery is ideal in
such a situation—a peer can simply
issue a semantic query and expect to
receive a positive response. We are cur-
rently designing and developing a P2P
m-commerce application using seman-
tic service discovery in which users can
buy and sell information such as news
clips, weather reports, and stock quotes.

Other future work includes address-
ing energy consumption issues by
reducing the amount of data transmit-
ted and received in service discovery

and registration requests, while main-
taining all semantic information com-
pletely. We also plan to investigate
quantifying improvement in the qual-
ity of service discovery. �

Sasikanth Avancha is a graduate stu-
dent in the Department of Computer
Science and Electrical Engineering at
the University of Maryland, Baltimore
County. Contact him at savanc1@csee.
umbc.edu.

Anupam Joshi is an associate profes-
sor in the Department of Computer
Science and Electrical Engineering at
the University of Maryland, Baltimore
County. Contact him at joshi@csee.
umbc.edu.

Timothy Finin is a professor in the
Department of Computer Science and
Electrical Engineering at the Univer-
sity of Maryland, Baltimore County.
Contact him at finin@csee.umbc.edu.

June 2002 99

This supplemental CD will contain peer-reviewed multimedia

content such as 2D and 3D simulations and animations, standalone

interactive tutorials, and demonstrations of application examples.

The CD will not duplicate any current electronic or print content.

Subscribe today!

http://computer.org/cga

Check it out
A Free CD-ROM

with Your
CG&A Subscription

IEEE

AND A PPLICAT IONS

	Index:
	CCC: 0-7803-5957-7/00/$10.00 © 2000 IEEE
	ccc: 0-7803-5957-7/00/$10.00 © 2000 IEEE
	cce: 0-7803-5957-7/00/$10.00 © 2000 IEEE
	index:
	INDEX:
	ind:
	Intentional blank: This page is intentionally blank

