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Abstract

It is well-known that TCP performs poorly in a wireless environment. This paper presents an empirical performance

analysis of TCP on cellular digital packet data, Bluetooth and wireless LAN. We also present CentaurusComm, a

message based transport protocol designed to perform well in low bandwidth networks and resource poor devices. In

particular, CentaurusComm is optimized to handle data exchanges consisting of short message sizes. The application

used to perform all the experiments is typical of common applications that would use these protocols and network

technologies. Typical mobile devices used in the experiments included Palm Pilots. We present results of performance

evaluation of TCP and CentaurusComm on different wireless technologies.
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1. Introduction

Wireless networks of the present and future are

envisioned to range from body area networks to

satellite wide area networks (WANs). These will
include Bluetooth 1 based systems, 802.11 based

wireless LANs (WLANs) 2 and WANs based on

packet radio technologies like cellular digital

packet data (CDPD) [22] and general packet radio

service (GPRS). 3 At an abstract level, data ex-

change in wireless networks is very similar to that

in wired networks, except for smaller data sizes.
Connection-less and connection-oriented data

transfer mechanisms exist in most wireless systems.

The amount of data exchanged is typically of the

order of hundreds of bytes. Maximum transfer

units (MTU) specified by kernels optimized for

wireless networks also tend to be of the order of

hundreds of bytes for typical applications. TCP
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has been the protocol of choice for reliable, con-

nection-oriented data transfer on wired networks.

Adapting TCP to wireless networks has thus be-

come an important area of research.

TCP performance has been extensively re-

searched on wired networks that have high band-
width and throughput, and low latency and delays

[2,9,10,16]. As expected, TCP performs very well

on wired networks. However, research on TCP

performance over wireless networks has shown

that it fails under certain conditions. Non-con-

gestion losses (losses due to wireless channel errors

or client mobility) mostly contribute to the poor

performance of TCP. This is because TCP im-
plicitly assumes that all losses are due to conges-

tion and reduces the window on the sender [17]. If

the losses are not due to congestion, then TCP

unnecessarily reduces throughput leading to poor

performance.

We propose a new protocol called Centaurus-

Comm that provides reliable, message oriented

data transmission. This protocol has been de-
signed to cater to resource poor devices exchang-

ing small amounts of data in low bandwidth

networks. We evaluate the performance of this

protocol and show that, under certain conditions,

it performs better than TCP. In Section 3, we ex-

plain the reasons for proposing a new protocol as

opposed to making further modifications to TCP.

A thorough quantitative analysis of TCP and
CentaurusComm performance on different types

of wireless networks like CDPD, WLAN and

Bluetooth is essential in order to understand their

behavior on each type of wireless network. It is

possible to analyze the performance of TCP and

CentaurusComm by simulating these different

networks and associated environments using sim-

ulators like ns-2 [1]. Such simulations can provide
very accurate information on the behavior of such

protocols. We believe that the main drawback of

such analyses is that the effects of uncontrolled

parameters such as signal strength, channel error

rates, channel ‘‘busyness’’ and noise cannot be

accurately studied. The reason for this is that it is

difficult to model these parameters in simulators.

For example, error rates can be modeled in ns-2
using the two-state Markov model with a bit error

rate of 10�6 signifying that the channel state is

‘‘good’’ and a bit error rate of 10�2 signifying that

it is ‘‘bad’’. The problem with this kind of mod-

eling is that these two values may never be seen

during an actual transmission on a CDPD net-

work. Error rates might actually vary between a

certain range around these two fixed values. If, due
to these variations in error rates, the channel state

cannot be characterized as ‘‘good’’ or ‘‘bad’’, then

TCP performance cannot be accurately studied or

explained. Of course, it is possible to design a more

complex simulator that uses an algorithm that

could model error rates with greater accuracy. We

believe that direct measurement is a much simpler

and more accurate method of analyzing and
studying TCP performance in wireless networks.

We now present a brief overview of the three

wireless network technologies considered in this

paper. CDPD is a packet switched communica-

tions network based on TCP/IP that normally op-

erates as an overlay on top of the existing advanced

mobile phone services (AMPS) infrastructure. It is

in fact a digital cellular system designed for data
transport that can operate independently or on any

cellular system that uses 30 kHz channelization

(e.g. AMPS analog systems in North America).

CDPD is a representative wireless WAN (WWAN)

that provides data rates of up to 19.2 Kbps. Blue-

tooth is a fast emerging wireless technology that

provides short range, moderate bandwidth con-

nections. It operates in the globally available 2.4
GHz ISM frequency band and provides data rates

of up to 432 Kbps (symmetric) and 721 Kbps

(unsymmetric). The Bluetooth specification has

two power levels defined; a lower power level that

covers the shorter personal area within a room, and

a higher power level that can cover a medium

range, such as within a home. It supports both

point-to-point and point-to-multipoint connec-
tions. With the current specification, up to seven

�slave� devices can be set to communicate with a
�master� radio in one device. Several of these �pic-
onets� can be established and linked together in ad
hoc �scatternets� to allow communication among

continually flexible configurations. The WLAN

technology also utilizes the 2.4 GHz ISM frequency

band. To communicate over this band, the WLAN
uses the IEEE 802.11b standard. This standard

covers two aspects of the WLAN protocol: media
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access control layer (MAC) and physical transport

layer (PHY). The MAC layer uses the carrier sense

multiple access with collision avoidance (CSMA/

CA) as a method of access. The PHY layer uses

either frequency hopping or direct sequence spread

spectrum (FHSS/DSSS) to transmit. Typical
modes of connectivity in a WLAN are ‘‘ad hoc’’

and ‘‘infrastructure’’. The ad hoc mode allows

peer-to-peer communication without any wired

support. The infrastructure mode allows devices to

communicate over the air with an access point (AP)

that is connected to the wired network. The current

WLAN, based on the IEEE 802.11b, provides data

rates of up to 11 Mbps.
The rest of the paper is organized as follows:

Section 2 discusses some well-known solutions for

improving TCP performance over wireless net-

works and also describes prior work on empirical

performance measurement of TCP. We describe

the CentaurusComm protocol in detail in Section

3. Section 4 describes in detail, the performance

metrics for TCP and CentaurusComm, and the
measured CDPD parameters. This section also

details the experimental setup for measuring TCP

and CentaurusComm performance over CDPD,

WLAN and Bluetooth. Section 5 details and an-

alyzes the experimental results. Section 6 presents

our conclusions and describes future work.

2. Prior work on improving TCP performance in

wireless networks

There are two classes of solutions to the TCP

performance problem in wireless networks. The

problem can be solved either by modifying TCP,

e.g. Indirect-TCP (I-TCP), or by replacing it with a

protocol that is optimized for wireless networks,
e.g. CentaurusComm.

Most of the prior research work has focused on

making the TCP/IP stack smarter by modifying

TCP. Proposed solutions either involve violating

end-to-end semantics [3,7], modifying TCP code

on the mobile client, the wired source or both [4,8]

or introducing TCP-aware smarts in the base sta-

tion [5]. Other solutions that attempt to improve
TCP performance while retaining the end-to-end

semantics include [19] and [20].

I-TCP was introduced in [3]; it proposed that

the TCP connection be split at the wired-wireless

network border, thus maintaining two connec-

tions––one over the wired network and another

over the wireless network. Thus, the TCP on the

wired host is unaware of non-congestion related
losses on the wireless part of the connection. An-

other protocol similar to I-TCP, called MTCP was

proposed in [7]. The main difference between

I-TCP and MTCP is that, in the latter, the last

byte of TCP is acknowledged to the wired host

only after the mobile client receives it.

The explicit bad state notification (EBSN)

protocol in [4] allows the base station to perform
retransmissions locally and causes it to send a

message to the wired host to prevent the latter

from unnecessarily timing out. In the fast-

retransmission approach [8], which is useful mainly

during hand-offs, the mobile client generates a

certain number of duplicate acknowledgments that

cause the wired host to retransmit the lost seg-

ment(s) without waiting for the timeout period to
expire. The Snoop protocol in [5] specifies that the

base station should detect segment losses and lo-

cally retransmit the segment until the mobile client

receives it.

The solution proposed in [20] is to modify the

design of congestion control and reliability in TCP.

Congestion control is done at the receiver using

rate-based and inter-packet delay based mecha-
nisms. Thus, the sender modifies the transmission

rate (increase, maintain or decrease) based on the

observations of the receiver. Reliability in [20]

eliminates the need for a retransmission timeout.

Based on information received in ACKs, the sender

decides whether or not a retransmission is required.

This protocol was proposed specifically to improve

TCP performance over the CDPD network. In this
work real-time performance measurements have

been done but the authors warn against using the

results to quantify TCP performance, because the

experiments were performed in uncontrolled con-

ditions.

In [19], the WTCP protocol resides on the base

station alongside TCP. Data received by TCP is

processed by WTCP. On receipt of data from a
wired host, WTCP buffers the segment and time-

stamps it. This segment is transmitted to the
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mobile host based on sequence number and win-

dow information present on the base station. Out-

of-order segments are simply buffered at the base

station and transmitted when appropriate. ACKs

from the mobile host are processed at the base

station and corresponding ACKs are sent to the
wired host. Thus, end-to-end semantics are main-

tained in this protocol.

It may also be possible to improve TCP per-

formance by monitoring real-time parameters in-

dicating the state of the wireless connection

(between the mobile client and base station) on the

mobile client. Based on statistical computa-

tions on these parameters, the client could make
decisions that would affect TCP on the wired host.

For example, the TCP stack on the client in a

CDPD network can be modified to defer trans-

mission if it observes that the signal strength is

close to a level that may indicate potential loss of

data. In Freeze-TCP [21] the mobile client moni-

tors the signal strength to anticipate an impending

handoff. If it detects one, it advertises a window
size of zero to switch the sender to a persist mode

and prevent it from reducing the size of its con-

gestion window.

As another example, it may be possible for the

client to detect that the cell in which it is currently

is busy 90% of the time and thus decide to defer

transmission. Similarly, it may be possible to

modify the TCP on the wired host to use some of
the statistics, like the number of packets dropped

or received in error, gathered by various entities in

the system to make decisions regarding transmis-

sions and receptions. Another solution would be

to transfer responsibility directly to the application

which would ‘‘peek’’ at some current statistics

gathered by the lower layers to make transmission

related decisions.
Work related to empirical TCP performance

measurement over some wireless networks has

been done and described in [5,13,18]. In [18],

throughput was chosen as the performance metric

and location dependent performance was mea-

sured and analyzed. WLANs have location de-

pendent characteristics, therefore the variation in

TCP throughput based on different locations of
the mobile client was studied. In [13], interaction

between TCP and radio link protocol (RLP)

(GSM network specific link layer protocol) was

the basis of performance analysis. TCP�s utiliza-
tion of the bandwidth the RLP provides to it, was

the primary performance metric. This work con-

cludes that link layer solutions can alone solve the

problem of poor TCP performance. Various so-
lutions discussed above were actually implemented

and TCP performance was evaluated over a

WLAN in [5]. This work also concludes that a

reliable, TCP-aware link layer provides very good

performance.

3. CentaurusComm transport protocol

We now discuss a solution that seeks to re-

place TCP on the ‘‘wireless gateways’’ with a

protocol better suited to wireless networks. One of

the main motivations for designing such solutions

is the set of typical applications that use them.

Mobile and wireless users typically run applica-

tions like web browsers, FTP clients and email
clients on their devices. These applications mostly

generate relatively short messages as opposed to

continuous streams of data. Our approach de-

scribed here is optimized to handle short messages

more efficiently than TCP. The CentaurusComm

transport protocol that we propose is based on the

idea of exchanging message objects rather than

data segments that are timed by the ACK mecha-
nism of TCP. Message objects consist of a number

of short sized (typically 64 or 128 bytes) data

packets.

3.1. The case for CentaurusComm

Most of the prior work on improving TCP

performance in wireless networks aims at reducing
the negative effects of TCP�s congestion control

mechanisms. Protocols like WTCP implement a

completely different congestion control mechanism

in order to ensure that non-congestion losses are

not handled in the same manner as congestion

losses. Modifications to TCP, such as the addition

of selective acknowledgments (SACK) [15], have

also been proposed as solutions to the problems
posed by TCP�s congestion control mechanism in

both wired and wireless networks. Ref. [5] dis-
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cusses additions to TCP with SACK specifically

tailored for wireless networks. However, all of

these approaches, including those described in

detail in the previous section, require TCP stack

modifications on the mobile host, base station,

wireless gateway and/or wired hosts that need to
interact with the wireless devices. Such a require-

ment poses difficulties in deploying the solution

across a wide range of networks and platforms.

CentaurusComm, on the other hand, can be im-

plemented on top of any wireless technology

without any modifications to the underlying stack.

We believe that neither the wireless gateways

which support the wireless devices nor the wireless
devices themselves will experience enough con-

gestion to justify the implementation of a heavy-

weight congestion control mechanism in our

protocol. We note that the likelihood of conges-

tion on the wireless device is negligible because it

seldom establishes more than one link layer con-

nection to the gateway or another wireless device.

Now, consider the possibility of congestion due to
inbound traffic (in the wireless device-to-wireless

gateway direction). We contend that congestion

cannot be caused in this direction for the following

reasons. One obvious reason is the typically low

bandwidth of the wireless hop as compared to the

rest of the network. This ensures that even though

the number of wireless devices that the wireless

gateway may support is large, the devices cannot
cause significant congestion. In addition, we note

that wireless devices do not generate large enough

amounts of data to cause buffers on the gateway to

overflow. A third reason, specific to our protocol,

is its use of message objects coupled with an ac-

knowledgment mechanism, which ensures that no

unnecessary retransmissions need to be performed,

thus reducing the likelihood of congestion at the
gateway. Finally, we believe that a majority of the

wireless clients will engage in conversations of a

short duration with the gateway, reducing the

possibility of congestion. Next, we consider con-

gestion on the gateway due to outbound traffic (in

the wired nodes to wireless devices direction). The

primary cause of congestion on the gateway in this

direction is due to the fact that the wired nodes
send data at higher rate then the effective band-

width of the wireless link. Techniques like pacing

[11] or the rate-based transmission control in

WTCP slow down the rate from the wired node so

that the wireless gateway does not become con-

gested.

The ACK mechanism in TCP, while suitable

for wired networks with high bandwidth and low
delays, could cause unnecessary retransmissions

leading to reduced throughput in wireless net-

works that typically have low bandwidth and high

delay. As we show in Section 5.2.1, it is quite

possible for the TCP ACKs from the receiver to be

delayed in transit causing the sender to unneces-

sarily retransmit data, due to the retransmission

timeout. This problem is very easily exacerbated
by repeated retransmissions and duplicate ACKs

leading to complete breakdown of transmission,

eventually resulting in forced termination of the

TCP session. TCP with SACK seeks to remedy

this problem by allowing the receiver to inform the

sender via ACKs, of up to 4 (in general 3) blocks

of contiguous data separated by ‘‘holes’’ due to

lost data segments. In [14], Allman et al. have
analyzed TCP performance over satellite links,

which experience long delays. TCP with SACK

exhibits improved performance as compared to

TCP Reno, over such links. However, in [6], Bala-

krishnan et al. have shown that TCP with SACK

does not help improve performance if window si-

zes are small, which is the typical case of TCP

implementations on wireless devices (e.g., in Pal-
mOS). In addition, TCP with SACK suffers from

the same congestion control related problems of

standard TCP, if only one data segment is lost per

window of transmission, as opposed to multiple

segments. CentaurusComm, in contrast, uses a

simple bitmap-based acknowledgment mechanism.

This is similar to the SMART mechanism [12]. The

main idea in SMART is for the sender to build a
bitmask of correctly received packets at the sender,

instead of carrying it in the ACK header. Thus,

each ACK consists of two parts: the cumulative

ACK, and the sequence number of the packet that

caused the ACK to be initiated. This mechanism is

further simplified in CentaurusComm. Both the

sender and receiver maintain a bitmap, the former

of packets transmitted and the latter of packets
received. No signaling information is exchanged

between the sender and receiver during data
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transmission. Only after completing data trans-

mission does the sender signal the receiver. The

receiver checks its bitmap and determines whether

or not all expected data packets have been re-

ceived. We show in the following sections, how

this method of checking is sufficient for the re-
ceiver to ensure that it has received all expected

data packets. If some data packets have been lost,

the receiver simply signals the sender via its own

bitmap. The sender uses the received bitmap and

its own, to determine which packets need to be

retransmitted. If all packets were received, the re-

ceiver signals this fact via a different message. The

main issue with this acknowledgment mechanism,
we believe, is the possibility of increased timeouts

at the sender, if either of the signaling messages are

lost. However, these timeouts do not result in any

unnecessary transmissions; only in increased ses-

sion time.

Increasing the window size of TCP on both

the wireless device and the gateway would seem

to be another reasonable way of eliminating
TCP problems in wireless networks. However,

on small wireless devices like the Palm Pilot,

memory is a scarce resource. It could be argued

that the window size could be set to some small

multiple of the segment size, say 2–4 segments.

This could lead back to the original problem

of TCP losses if larger data packets, say between

4 and 8 KB, are to be exchanged. For example,
typical email sizes could range from a few hun-

dreds of bytes for text only to about 8 KB when

sent with attachments. The problem is that

on small devices, the TCP segment size is limited

to 256 or 512 bytes, resulting in a larger number

of segments, say 8–16, being transferred. If a

few of these are delayed in transit, they could set

off the chain of events leading to invocation of
congestion control by TCP, resulting in reduced

throughput.

The idea of using a message based protocol over

CDPD rather than TCP is also found in the Aether

intelligent messaging (AIM) protocol [11]. Unfor-

tunately, only a high level white paper that de-

scribes the protocol is publicly available, making it

impossible for us to compare our approach with it.
However, it does appear that AIM has an ap-

proach similar to CentaurusComm.

3.2. System architecture

Fig. 1 shows the design of the CentaurusComm

architecture from the perspective of data ex-

changes. Fig. 2 shows the interaction of the com-
ponents in the architecture based on the exchange

of control messages. CentaurusComm consists of

one or more lower level protocol modules (desig-

nated as Level I), one higher level module (desig-

nated as Level II) and an application program

interface. Level I modules are communication

medium dependent; the Level II module is medium

Fig. 1. Interaction between components of CentaurusComm

protocol (data).

Fig. 2. Interaction between components of CentaurusComm

protocol (control).
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independent. The API is responsible for accepting

the objects from the application layer for trans-

mission and notifying it when messages are re-

ceived.

The protocol is implemented as a collection of

data structures and state machines. The principal
data structures include the transmit queue and the

receive queue. As the protocol is designed to run on

a wide range of low power systems such as PDAs

and low power embedded computers, it does not

depend on any advanced operating system features

such as signals and multithreading, that are typi-

cally not part of such systems. This is in contrast to

TCP, which requires substantial support from the
OS for signaling. CentaurusComm is designed such

that the transmission, reception and recovery pro-

cedures are divided into many small sub-proce-

dures that last for a very short time. With the

exception of domain name resolution, which occurs

very infrequently, the protocol never blocks. This

design gives an impression of concurrent execution

of the user program and the protocol modules.
The Level I and Level II protocol modules

share data items in order to communicate with

each other. The Level I module copies the contents

of any received data packet (excluding the headers)

to the common area and runs the Level II state

machine. The Level II state machine examines the

contents of the received packet, based on which, it

changes state. If, based on the new state, a re-
sponse is in order, the Level II module places the

response in the common communication area. In

addition, if the Level II state indicates that the

session is finished, the Level II module sets a spe-

cific flag in the common area.

3.3. The Level I module

The principal driver of the CentaurusComm

protocol is a worker routine that is part of the

Level I module(s). On startup, the user application

must always call this routine. The main purpose of

the worker routine is to perform message trans-

mission and handle message reception. Based on

the status of the transmit and receive queues, the

network connections and the Level II state ma-
chine, the worker routine takes one of the fol-

lowing actions:

• If data is present in the transmit queue, schedule

it for transmission.

• If data is present in the receive queue, run the

Level II state machine in order to process it.

• In peer-to-peer type networks, examine the ta-
ble of outgoing messages and trigger the Level

II state machine in order to start transmission.

• In IrDA-based networks, cause the ‘‘master’’ to

periodically establish connections with the

‘‘slaves’’ and trigger the Level II state machine

to start a session.

When the Level I module establishes the connec-
tion with the peer, it resets the state machine of the

Level II protocol to the initial state. As long as the

physical connection exists, every packet that is

received by the Level I module is sent to the Level

II protocol module.

Session setup and start up, as performed by

Level I, are communicationmedium dependent. On

media such as InfraRed, one of the devices is se-
lected to be a master. This is the only device that

can start a session. The master device is responsible

for discovering all the devices in the neighborhood

that it can communicate with and polling these

devices for messages by establishing a session with

each device in a Round-Robin fashion. For media

that allow multiple nodes to communicate at the

same time (either in point-to-multipoint or multi-
point-to-multipoint mode) the device that has an

outgoing message is responsible for establishing the

session with the recipient. On such devices the Level

I module is responsible for maintaining the state

of sessions for different devices and loading the

correct state for each session. Every time a packet

is received from a particular device, the Level I

module looks up the sender devices in its session
table and if an entry exists for the device, it sets up

the state machine of Level II module according to

the entry in the session table. When the Level II

module finishes processing the packet, the Level I

module saves the new state back in the session

table. This switching method is not the most effi-

cient, but it provides for a reasonable argument

against implementing a specialized Level II protocol
module for each possible communication medium

or having to use multithreading or multiprocessing

features of the operating system (if they exist).
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3.4. The Level II module

The Level II module performs reliable trans-

mission of messages. It provides message segmen-

tation and reassembly, keeps track of lost packets
and performs retransmission using the acknowl-

edgment mechanism described above. In addition,

it provides some rudimentary time synchroniza-

tion mechanisms along with identification and

deletion of old messages. The current version of

the Level II code works on PalmOS and Linux

(both user space and kernel space).

3.4.1. Level II sessions

The Level II module consists of a session

based protocol. Session management (setup,

shutdown) is still the responsibility of the Level I

module. In general, a single session may consist of

a single message from each end point to the other.

Thus, at most two messages can be transmitted

in one session. Under certain conditions, a session
may not be able to handle all the data packets sent

by an end point. In such cases, the message

may span multiple sessions. Multiple sessions

may be required if the underlying communication

medium does not allow more than two entities

to communicate at the same time, thus requir-

ing some type of time division multiplexing. In-

fraRed and Bluetooth are typical examples of
such media. Multiple sessions per message may

also be required if bad network conditions cause

the loss of the control packet, which contains sig-

naling information. For reasons of time and

memory conservation, the CentaurusComm pro-

tocol does not provide any mechanism for re-

transmission of control packets. As is well-known,

time and memory considerations are always im-
portant in the context of low power devices like

PDAs. Therefore, when a packet that carries

control information is lost, the session cannot

continue and will hang till a watchdog timer de-

stroys it. After the session is destroyed by the

watchdog timer, a new session is created and the

message transmission resumes. The acknowledg-

ment mechanism ensures that data packets re-
ceived in the previous session will not be

retransmitted.

3.4.2. Transmission initiation

As described in Section 3.3, the Level II state

machine is triggered by the Level I state machine.

Depending on the type of network––IrDA-based

or peer-to-peer––the Level II state machine is ini-
tialized to the idle or the wait state, respectively.

(We use the abbreviation L2SM to denote the

Level II state machine in the rest of this section.)

The L2SM message sequence chart is shown in

Fig. 3. We describe below, the message exchanges

and corresponding state transitions (as far as the

transmission initiation is concerned) for both

IrDA-based and peer-to-peer networks.

Initial state transitions specific to IrDA-based net-

works. The L2SM changes to the wait state on all

slave devices, after receiving a HELOmessage from

the local Level I module. On the designated master
device, once the Level I connection has been es-

tablished with one or more slaves, a HELORESP

message is sent to the L2SM. The L2SM on the

master device then transitions to the connected

state. This is done as an additional safeguard to

prevent the master device from communicating

with devices that do not support the Centaurus-

Comm protocol. As the link latency in IrDA-based
networks is quite low (around 500 ms), this safe-

guard does not cause unacceptable overhead.

(However, the overhead in peer-to-peer networks is

too high and does not justify use of the safeguard.

Hence, the difference in initial state transitions of

the L2SM.) In this state, it transmits a POLL

message on the IrDA interface to determine if the

slave devices have data to send, and transitions
back to the wait state. When the L2SM on a slave

device receives the POLL message, it transitions

to the poll received state.

Initial state transition specific to peer-to-peer net-

works. The L2SM transitions from the wait state to

the poll received state upon receiving a POLL

message from the local Level I module.

The remaining state transitions, as described in

this and the following sub-sections are common to

both types of networks.
After transitioning to the poll received state, the

Level II module scans the table of outgoing mes-
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sage objects to find the one that should be deliv-

ered to its peer. On small mobile devices, this table

typically contains only one slot which is either full

or empty, so the selection of the object is trivial.

On server class systems, this table will have mul-

tiple entries, therefore linear search is used to select
the outgoing object. Once the object is selected, the

Level II state machine sends an OBJ message

(which contains the class of the message object, its

size and the timestamp) to its peer (via the Level I

module) and transitions to the send command state.

As soon as the Level I module places the message

on the network stack, it informs the Level II

module via the SENT message. This forces the
Level II state machine back into the wait state.

Upon reception of an OBJ message, the L2SM

on the peer transitions to the obj received state. In

this state, it examines the class and timestamp on the

object and decides whether to accept or reject

the object. Objects are rejected if either the class of

the object is unacceptable or if the device already

has a newer copy of the object of this class. If the

device decides to reject this object it sends back a

REJ message and transitions back to the wait state.
Otherwise it sends back a PROCEED message that

contains the bitmap, which indicates all the received

data packets that are part of this message object. If

this is a new message object, this bitmap has all its

bits set to 0. In this case, the L2SM transitions to the

proceed sent state. After the Level I has sent this

message to the peer and confirmed the transmission,

the L2SM transitions to the packet receive state.

3.4.3. Message object transmission

If the device that sent the OBJ message receives

a REJ message in response, the L2SM transitions

Fig. 3. Message exchange sequence for CentaurusComm protocol.
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to the ack-rej received state. In this state, it re-

moves the object from the table of outgoing ob-

jects. In addition, it responds with a NOPE

message and the L2SM transitions back to the wait

state. On receiving the NOPE message, the L2SM

on the peer transitions to the nope received state. In
this state, it determines if it has any object to send.

If so, it sends it the OBJ message; message ex-

changes and state transitions following this are

exactly as described in the previous section. If this

device has nothing to send to the peer, the session

is closed and the L2SM returns to either the idle

state or wait state.

If the device that sent the OBJ message re-
ceives a PROCEED message in response, the

L2SM transitions to the proceed received state. In

this state, the Level II module first updates its

copy of the bitmap using the one present in the

PROCEED message. The L2SM enters the packet

transmit state. It then starts transmitting those

data packets, in the message object, that corre-

spond to the bitmap entries marked 0. The data
packets consist of two fields––the packet header

and the payload. The packet header consists of

two fields––a two-byte constant corresponding to

the string ‘‘PK’’ and a four-byte slot number. The

process of packet transmission is as follows. After

determining the correct data packet number to

start sending from, the device prepares the packet

by setting the destination slot number in the
packet header followed by the payload. This

packet is copied to the common communication

area and a flag is set. This signals to the Level I

module that data is ready for transmission.

The L2SM transitions to the wait for packet

send state. After the Level I module has trans-

mitted the packet, it informs the Level II mod-

ule which causes the L2SM to transition back to
the packet transmit state, after updating the bit-

map.

It then checks the bitmap and the object size,

and continues to transmit packets as long as the

bitmap contains any �0�s. We note that the syn-
chronous nature of session set up allows the L2SM

to remain in the packet transmit state for the du-

ration of transmission instead of switching be-
tween this and the wait for packet send states. If a

control message is lost because of the problems

with local network stack or during the transmis-

sion, the whole session will be terminated by the

watchdog timer.

While L2SM on the source device is in the

packet transmit state, the destination L2SM is

in the packet receive state. The header of every
data packet received is checked for the ‘‘PK’’

string. The payload is copied into the object re-

ceive buffer at the slot indicated in the packet

header. The bit corresponding to this slot is set to

1 in the bitmap.

3.4.4. Transmission completion

After the source device completes sending all
data packets in the message object, L2SM sends a

DONE message to the peer and transitions back to

the wait state. When the peer receives the DONE

message, the L2SM transitions to the done received

state. In this state, it checks its message bitmap; if

all the expected data packets from the object have

been received then it responds with the ACK

message. It also updates the timestamp of the last
received object in its table of accepted objects. It

then sends an indication to the application that the

message has been received. The application is re-

sponsible for processing the received message be-

fore it calls the worker routine again, because the

contents of the message buffer might get over-

written on the subsequent run of the worker rou-

tine. The L2SM transitions back to the wait state.
When the L2SM on the data source receives the

ACK message, it transitions into the ack-rej state.

If the data source is the master in IrDA-based

networks or the ‘‘server’’ in peer-to-peer networks,

it closes the session causing the physical connec-

tion to be terminated as well. If the data source is a

slave or ‘‘client’’, then it sends a NOPE message to

the other side and transitions back to the wait
state. On receipt of a NOPE message, the master

or server L2SM then behaves as described in Sec-

tion 3.4.3.

If the destination L2SM receives the DONE

message and determines via its bitmap that one

or more segments of the message still have

their corresponding bits set to 0, it sends a new

PROCEED message and a new bitmap to the
sender and transitions back to the proceed sent

state.
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4. Performance metrics and experimental setup

4.1. TCP performance metrics

• Round trip time (RTT): It is one of the most im-
portant measures of network performance. In

our experiments, we havemeasured RTT on both

the client and server. The client is primarily

the initiator of connections, as described below.

Thus, the client has the most accurate measure

of RTT of packets on the channel. This is because

the client starts recording time just before trans-

mitting the request on the channel and stops
recording immediately after receiving the reply.

We record two approximations to the RTT on

the server. These are approximations, because

the server is not aware of the beginning of

transmission from the client, nor is it aware of

the time that the client received its reply. The

first RTT includes the client request, server reply

and a ‘‘good bye’’ message from the client.
These three messages together constitute a ses-

sion in all our experiments. The server tries to

obtain a sense of the ‘‘real’’ RTT by starting to

record time before replying and stopping re-

cording after receiving the ‘‘good bye’’ message.

This is the second approximation to the RTT.

• Retransmitted TCP segments: This metric pro-

vides an indication of how TCP is being affected
by the current state of the network. Retransmis-

sions on a wireless network may occur due to

two reasons:

� loss of signal between wireless client and base

station,

� congestion at some intermediate base station/

wired node leading to packet drops.

The TCP implementation in Linux 2.2.17 on
our test server performs fast retransmits––re-

transmit only the segment not received by the

client. Therefore, in the best case only one

segment is retransmitted and in the worst

case, the entire window is retransmitted. We

record the number of retransmitted segments

per request-reply-good bye session on both

the server and the client.
We attempt to obtain more information on re-

transmissions by recording the number of bytes

and packets actually transmitted by the Ethernet

driver on the server and the modem on the client.

This information is more useful when obtained

on the client than on the server because the

latter may receive and transmit packets to other

clients concurrently. We perform this experi-

ment because we are able to analyze the effect of
different message sizes on the number of re-

transmissions that TCP must perform. This

could give us an idea of what the optimum size

packet might be to transmit over the wireless

channel. This information is recorded per ses-

sion on both the server and client.

4.2. CentaurusComm performance metrics

• Round trip time: This parameter is measured

on the client in a similar manner as described

above. However, no RTT measurements are ob-

tained on the server. Unlike TCP/IP, where the

message has to traverse three layers before a

timestamp can be applied to it, a message object

has to traverse four layers. Thus, the accuracy
of measurement is further reduced on the ser-

ver. In order to obtain accurate RTT measure-

ments on the server, we recorded and analyzed

the output produced by the tcpdump program.

4.3. Measured CDPD parameters on client

• Relative signal strength indication (RSSI): RSSI
is a parameter representing the received signal

strength of both the wireless client and the base

station. It is used by the client to determine

whether a hand-off procedure or a power

change must be initiated. This value is measured

in dBm and on CDPD networks a value of

�113 dBm indicates the absence of signal. This

parameter very clearly indicates whether or not
a client can receive and transmit data from its

current location. We record the value of RSSI

by querying the modem every second.

• Forward block error rate (BLER): This parame-

ter measures the state of the channel from the

perspective of noise and errors in transmission

due to noise. This measurement is performed

on the forward channel (base station to wireless
client). The CDPD network uses the Reed-Sol-

omon forward error correcting code (FEC) on
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transmitted blocks of data. Each block consists

of 420 bits including data, the FEC, and encryp-

tion information. Each block is split into 7

60-bit microblocks that are transmitted contin-

uously. The BLER is calculated on the forward
and reverse channels by the modem. The for-

mula for calculating BLER is:

BLER ¼ ðBS� CBRÞ100=TBS ð1Þ
where BS is blocks sent, CBR is correctable

blocks received, TBS is total number of blocks

sent.
A correctable block is one that had no errors or

had errors correctable by the Reed–Solomon

code. The Reed–Solomon code can correct er-

rors in up to eight symbols per block. Each

CDPD symbol consists of 6 bits. The reverse

BLER is measured on the reverse channel

(wireless client to base station).

• Cell busy: This is a measure of how busy the cell
that supports the client is. This is also measured

as a percentage. The client will not be able to

transmit or receive data if the cell becomes

too busy to support this client. Thus, the client

can try to reach a base station in an adjoining

cell that may not be busy.

4.4. General experimental setup

We used the typical client server scenario to

perform experiments. The client programs were

executed on an Intel Pentium running Linux 2.2.17

and Palm Pilots running PalmOS 3.5 using Omni-

Sky modems for communication over CDPD. For

evaluation of TCP and CentaurusComm perfor-

mance on Bluetooth, we executed the client pro-
grams on an Intel Pentium running Linux 2.2.17

using the Bluetooth stack developed by Axis

Communications, Inc. We used Bluetooth hard-

ware developed by Ericsson. A concurrent server

executed on an Intel Pentium running Linux 2.2.17.

In all experiments, the wireless client initiates the

connection to the server that is part of a LAN.

4.4.1. Application model

All experiments were done on a per-session

basis. A session consisted of a request message

from the client, a reply message from the server

and a good bye message from the client. We have

used the typical request/reply scenario found in

most client/server based applications. We have

attempted to model common applications like

email (without attachments), Web browsers and
FTP. Typical message sizes in these applications

range from tens of bytes (e.g., emails) to thousands

of bytes (e.g., WWW and FTP). In order to in-

clude these applications, we have therefore chosen

our minimum and maximum message sizes as 64

and 8192 bytes respectively. In these applications,

the client usually initiates the connection, sends a

request and waits for server response. We per-
formed different sets of experiments in which either

the request message or the reply message size was

constant. This was done in order to model the

application scenarios more accurately (where the

common case is for one side to send small nearly-

fixed size messages and the other to send larger,

variable size messages). The good bye message

consisted of all recorded values on the client, of
various parameters described above.

4.4.2. Palm pilot/cellular digital packet data specific

setup

The experiments consisted of 100 sessions per

variable packet size (128, 1024, 2048, 4096 and

8192 bytes). The following sets of experiments

were performed.

• Variable request size: The client sends a request

packet of size 128 bytes, the server replies with a

constant sized packet (32 bytes in all experi-

ments) and the client replies back with the good

bye packet. This sequence is repeated a 100

times before the client request size is increased

to 1024 bytes.
• Variable reply size: The client sends a constant

request size of 32 bytes, the server replies with

a 128 byte packet and the client replies back

with the good bye packet. This sequence is re-

peated a 100 times before the server reply is in-

creased to 1024 bytes.

Typically, the request, reply and good bye
packets are sent and received after establishing a

TCP connection between the client on the Palm
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and the server on the Linux box. During experi-

ments, we discovered that the limit on the number

of open sockets on the Palm is 15. Thus, after the

first 15 connections are established and sessions

are in progress, attempts to establish more con-

nections fail. It is also known that the connections
remain in the TIME_WAIT state for a while even

after the sockets have been closed. Thus, a large

amount of time is spent in waiting to establish

connections. In the original design of the experi-

ments, 1000 sessions were to be established per

variable packet size. However, due to the above

problem, the overall testing time for 1000 sessions

was well over 8 h. In order to reduce the testing
time, we reduced the number of sessions to 100. In

addition, we decided to establish only one TCP

connection to exchange messages in all 100 ses-

sions with packet sizes varying as described above.

Thus, we eliminated the connection setup time

from the overall testing time. In order to assure

ourselves that connection setup time remains the

same on the average, we included the connection
setup and tear-down for 100 sessions with the cli-

ent request size of 4096 bytes.

A side affect of the long testing time was com-

plete discharging of the battery on the Palm Pilots

even before one set of experiments was completed.

Thus, with the above optimizations, all experi-

ments were completed before the discharging of

the battery.
Another observation we made during testing is

that TCP packets of size 8192 bytes cannot be sent

from Palm Pilots successfully. There seem to be

some problems associated with sending large sized

packets from the Palm. One problem is the small

maximum segment size (MSS) of 536 bytes. A

small MSS means that a large packet will be sent

as many small fragments. We have analyzed the
output of tcpdump on the server and it appears

that the ACKs to all the fragments are not received

by the Palm. Thus, the Palm assumes that the

fragments were lost and retransmits one or more

fragments. This leads to increased traffic and ex-

acerbates the situation. The PalmOS networking

function provides for a finite application timeout

after which the application reports an error. We
have observed that invariably, this timeout expires

when packets of size 8192 bytes are sent. Increas-

ing this application timeout made little difference

to the transmission failure.

We note that CentaurusComm faced none of

the problems discussed in the context of TCP.

Large packet sizes posed no problems and were

successfully transmitted. However, in order to
limit testing time, only 100 sessions were created

per variable packet size.

4.4.3. Bluetooth specific setup

As mentioned above, both the client and server

programs were executed on Linux boxes, to test

TCP and CentaurusComm performance over

Bluetooth. Therefore, we did not face any of the
Palm related problems discussed above. Experi-

ments consisted of 1000 sessions with variable

packet sizes of 64, 128, 1024, 2048, 4096 and 8192

bytes. The experiment sets were generated in the

same manner as for CDPD. However, in order to

exchange TCP/UDP packets over Bluetooth, the

point-to-point protocol (PPP) must be pushed on

top of the Bluetooth stack (consisting RFCOMM,
L2CAP, serial transport driver and lower layers).

PPP requires a connection to exist between the

peers that need to communicate via TCP or

UDP or any other transport protocol. Thus, an

RFCOMM connection was first established be-

tween the two Linux boxes. PPP was then started

and the connection remained established through

all sets of experiments.

4.4.4. WLAN specific setup

Experiments over the WLAN were conducted

using two laptops with similar CPU, memory and

kernel configurations. Both laptops were running

Linux 2.4.2. The laptops communicated with each

other in infrastructure mode via a Cisco Aironet

Base station, using SMC2632W 11 Mbps wireless
PC cards. We noticed that the typical data rates

achieved by the cards was around 4 Mbps. The

client and server programs established 1000 ses-

sions with variable packet sizes of 128, 256, 512,

1024, 2048, 4096 and 8192 bytes. In order to un-

derstand the behavior of both TCP and Centau-

rusComm over WLAN, we conducted two sets of

experiments. In the first set, the two laptops ex-
changed data without any interference. In the

second set of experiments, we set up two more
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laptops with wireless PC cards in the infrastructure

mode. We established a single TCP connection to

port 19 (chargen service) in both directions. The

chargen service continuously generates characters

and transmits them on port 19.

4.4.5. Controlled experimental variables

In this section we define the overall experiment

space and describe the various controlled vari-

ables. We have used five controlled variables in the

experiments. These are packet size (request or

reply), connection setup mode (on/off), time-of-day,

location and client mobility. The last three vari-

ables are described briefly below. Our experimen-
tal space is defined by different combinations of

these five variables. Based on the different values

that these variables are allowed to take, we have

quite a large experimental space consisting of

about 288 (CDPD) to 432 (Bluetooth and WLAN)

possible five-tuples. We allow each variable to take

only a subset of the possible values and thus re-

duce the size of the space considerably.

• Time of day: This variable takes two values.

One value indicates the peak hour periods dur-

ing the day, the other value indicates non-peak

hour periods. For peak hour periods, we chose

a time period between 6:00 PM in the evening to

11:00 PM at night. For the non-peak hour peri-

ods, the time period chosen was 12:00 midnight
to 6:00 AM.

• Location: Possible locations to perform the ex-

periments include downtown, sub-urban, rural

and small towns. Downtown areas would likely

be more busy at most times during the day. Ru-

ral areas may almost never be fully busy. RSSI

values could vary more rapidly in the down-

town areas as opposed to rural areas. The phys-
ical placement and number of base stations in

each type of area would affect the performance

of TCP on both the client and server.

• Mobility: The wireless client in our experiments

may be static, locally mobile (within a cell) or

mobile between cells. Experiments done on a

static client would show less variability of RSSI,

and BLER. Experiments done when the client is
mobile within a cell would show the effects of

RSSI based on only one or two base stations.

Inter-cell mobility experiments could show

large variability of the uncontrolled variables.

5. Experimental results and discussion

5.1. TCP over Ethernet

In order to compare the performance of TCP

over wired networks to TCP over wireless net-

works, two Linux boxes were connected across a

wired network. One workstation was located on

campus and had 100 BaseT connection to the
campus wide network. The other workstation was

located at the home of one the authors and was

connected to @Home network via 10 BaseT in-

terface. Packet sizes ranged from 64 to 8192 bytes,

as described in the general experimental setup. The

graph in Fig. 4 shows typical TCP performance

over a high speed Ethernet link. The graph clearly

shows that for small message sizes the perfor-
mance of the protocol is extremely good. We can

also infer from the graph that message size is not

related to the transmission time.

5.2. Performance of TCP and CentaurusComm over

CDPD

5.2.1. TCP over CDPD

Three different locations were chosen to mea-

sure performance of TCP over CDPD. Each

location observed different signal strengths, peak

hours and channel busyness. However, our anal-

Fig. 4. Performance of TCP over a wired network.
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ysis indicates that the overall performance of a

completed transmission was not very different. The

graph in Fig. 5(a) shows typical TCP performance

over CDPD with respect to RTT. We were unable

to obtain enough useful data for packets of sizes
256 and 512 bytes. However, we show the expected

plot (dashed curve) if the RTT were to vary lin-

early with the packet size. It should be noted that

the plot is a curve and not a straight line because

the scale on the x-axis is logarithmic to base 2. We

note that there is a sudden increase in RTT when

the packet size increases from 2048 to 4096 bytes.

Analysis of the output of tcpdump indicates that a
large number of retransmissions begin to occur

when transmitting segments of a 4096 byte packet.

These retransmissions cause further segment losses

and thus increase the overall time to transmit the

entire packet, and in some cases it causes the in-

terruption of the whole transmission process. This

is a well-known problem; a good description of

this problem can be found in [20]. An experiment
in which the wireless client was mobile, was also

performed. The speed was about 60 MPH. The

graph for this experiment is shown in Fig. 5(b).

The graphs 4 in Figs. 6–8 show influence of the

measured environmental factors on the perfor-

mance of TCP for specific packet sizes. In Figs. 6

and 7 the TCP packet size per session is 1024 bytes

and in Fig. 8 it is 4096 bytes. The plots of the

measured variables have been scaled and shifted

on each graph. This allows us to visually determine

the effect of RSSI, BLER and cell congestion on

RTT. The diamond shapes on the graphs represent

sessions that were dropped. The string of dia-

monds seen in the graph for the �mobile� experi-
ment represents going through an underwater
tunnel. ‘‘Efficiency’’ is simply the ratio of number

of bytes transmitted to those received per session.

Ideally efficiency should be 1. When more number

of bytes are received for a given packet size, due to

retransmissions, efficiency decreases. The ‘‘RTT

Range’’ shown in these figures is the difference

between maximum and minimum RTT values for

Fig. 5. Performance of TCP over CDPD: (a) static client, (b) mobile client.

Fig. 6. Influence of environmental factors on TCP performance

(mobile client, packet size ¼ 1 K).

4 In these graphs no units have been specified on the y-axis

due to multiple plots per graph.
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the chosen number of data points. We have not

indicated any units on the y-axis in these graphs
because the scale of each plot is different. The x-

axis shows the packet number.

These graphs suggest that signal strength does

not have much influence on the performance ex-

cept when it drops to the zero level. The zero level

is represented in the graph by the dashed line di-

rectly underneath the RSSI plot. The zero level for

a CDPD modem is �113 dBm. We note that block
error rate caused by RF noise and congestion at

the cell cause significant performance degradation.

In Fig. 6, we can clearly see that both efficiency

and RTT are adversely affected by an increase in

BLER. In Fig. 7, we see that a combination of

moderate BLER and cell congestion lead to higher

RTT and lower efficiency values.
Unfortunately due to the nature of the TCP

client we were not able to record instances when

modem is switching cells or gets ejected from the

channel by mobile voice calls. The TCP client uses

the native TCP stack on PalmOS for transmission.

The source code of this stack is proprietary, so we

were unable to keep track of the modem status and

maintain TCP connection at the same time to de-
termine when it would switch cells or possibly be

ejected from a channel. When either cell switching

or channel ejection occurs the transmission process

is often aborted.

5.2.2. CentaurusComm over CDPD

Experimental results indicate that the Centau-

rusComm protocol is not as prone to performance
degradation as TCP over CDPD. The graph in

Fig. 9 shows CentaurusComm performance for

different message sizes. When comparing the RTT

values for CentaurusComm to those of TCP, it

must be noted that TCP measurements do not

include time required to set up a connection. The

typical connection time for TCP under favorable

conditions is about 2 s. So taking the connection
time into account, it could be observed that for

small packet sizes the performance of Centaurus-

Comm is comparable to the that of TCP. For

Fig. 7. Influence of environmental factors on TCP performance

(downtown area, packet size ¼ 1 K).

Fig. 9. Performance of CentaurusComm over CDPD.

Fig. 8. Larger TCP transmissions are more prone to perfor-

mance loss.
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message sizes of 4096 bytes the performance is

better by a factor of about 5. For a message size of

8192 bytes measurements were not possible on

TCP due to very few successful sessions. On the

other hand, with CentaurusComm there were no

lost sessions observed for any message size. How-
ever we did not test CentaurusComm under ex-

treme conditions such as underwater tunnels etc.

The graphs 4 in Figs. 10 and 11 show the rela-

tionship between environmental conditions and

RTT. The packet size in Fig. 10 is 128 and 8192

bytes in Fig. 11. These figures also bring out the

effects of BLER, RSSI and Cell Congestion on

RTT. Most of the large peaks on the RTT plot

were actually caused by the CDPD modem get-

ting ejected from the channel and performing

wide channel scan. We also found that Centaurus-

Comm incurs a constant performance penalty of
about 2 s because of the initial and final synchro-

nization of the sender and receiver. However, this

could be improved by redesigning the protocol so

that it starts sending the beginning of the message

before it gets the PROCEED message from the

receiver. This will greatly improve the performance

in cases when the environmental conditions are

favorable, and it will not significantly reduce the
performance under unfavorable conditions.

5.3. Performance of TCP and CentaurusComm over

Bluetooth

5.3.1. TCP over Bluetooth

Analysis of TCP performance over Bluetooth

indicates that the RTT remains almost constant
for packet sizes between 64 and 1024 bytes, and

again between 2048 and 4096 bytes. We notice a

jump of around 400 ms in the RTT when the

packet size increases from 1024 to 2048 and again

from 4096 to 8192 bytes. It is possible that this

behavior is due optimization of the TCP buffer size

for certain sizes like 1024 and 4096 bytes. How-

ever, we have not investigated this possibility. The
graph shown on Fig. 12(a) is typical of TCP per-

formance over Bluetooth under the conditions

described above. The analysis of the session dump

shows that due to the low latency of the Bluetooth

network, TCP does not exhibit the congestion

control problem described in [20].

However, we did not perform extensive testing

under different conditions, so it is not known how
Bluetooth networks will behave under hostile

conditions, such as high RF interference and mo-

bility of the client. The testing performed Blue-

tooth testing on Unix workstations, which can

afford to maintain large buffers and windows for

handling transmissions. The behavior of TCP over

Bluetooth might be different for small handhelds

and embedded devices which are viewed as major
market for Bluetooth. Testing TCP over Bluetooth

using smaller devices is part of our future work.

Fig. 10. Influence of environmental factors on performance of

CentaurusComm in CDPD for 1 KB transmissions.

Fig. 11. Influence of environmental factors on performance of

CentaurusComm in CDPD for 4 KB transmissions.
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5.3.2. CentaurusComm over Bluetooth

We conducted some preliminary experiments of

CentaurusComm behavior over Bluetooth net-

works. The same Level I module that was used for

running CentaurusComm over CDPD type of
networks was used in this case as well. Analysis

of CentaurusComm performance over Bluetooth

shows that the protocol scales in linearly with

message size. When comparing TCP and Centau-

rusComm over Bluetooth it should be noted that

TCP shows better performance because it has the

advantage of running in kernel space. In general,

we find that CentaurusComm performs very sim-
ilarly to TCP for small packet sizes (difference in

RTT is around 50 ms up to 512-byte packets). For

packet sizes 1024 bytes and above, the difference in

RTT ranges between 100 and 150 ms. We attribute

this to the slower execution of segmentation and

reassembly in CentaurusComm (user space exe-

cution). One peculiar problem we faced with

CentaurusComm was with 8192 byte sized pack-

ets. For reasons yet undetermined, the average

RTT for 8192 byte packets increases phenome-
nally to around 3.5 s (from an average of around

0.6 s for 4096 byte packets). We are trying to de-

termine the cause(s) of this behavior. The graph in

Fig. 12(b) shows the performance of Centaurus-

Comm over Bluetooth for different message sizes

up to 8192 bytes.

5.4. Performance of TCP and CentaurusComm over

WLAN

5.4.1. TCP over WLAN

Fig. 13(a) shows the performance of TCP over

WLAN under normal conditions. We can see that

Fig. 12. Performance over Bluetooth: (a) TCP, (b) CentaurusComm.

Fig. 13. Performance of TCP over WLAN under normal conditions: (a) Window Size ¼ 2 K, (b) Window Size ¼ 32 K.
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TCP shows excellent performance over WLAN,

almost as good as that over the wired network.

This reinforces that well-known idea that TCP

performs very well over high bandwidth networks.

WLANs now provide bandwidth comparable to

wired LANs and in typical settings are not the
bottleneck. We do notice that a small percentage

of sessions for each packet size show higher than

average RTT values. We attribute this to normal

congestion related issues at the access point that

serves wired/wireless hosts and TCP�s response to
congestion. In Fig. 14, we show a combined graph

of TCP and CentaurusComm performance over

WLAN under adverse conditions as explained in
Section 4.4.4. We have performed the experiment

using only the 8192 byte packet size. The reason

for this is that we observed that small sized packets

were not significantly affected by the generated

interference. The boxplot in the center refers to

unmodified TCP performance under interference.

Compared to the performance of TCP over

WLAN under normal conditions (only 8192 byte
packets), we note a degradation of around 400%.

We explain the other two plots in Section 5.4.2.

5.4.2. CentaurusComm over WLAN

The performance of CentaurusComm over

WLAN is shown in Fig. 15. Comparing this graph

to the TCP performance graph in Fig. 13(a), we

observe that the latter consistently outperforms
CentaurusComm. For all packet sizes, the increase

in RTT for CentaurusComm is around 50%,

compared to TCP. One reason for this perfor-

mance differential could be the fact that the default

window size used by TCP (in Unix kernels) is 32

K. This allows TCP to buffer as many segments of

a particular packet as required, irrespective of its

size. This, in turn, implies that once all segments
have been received, the ACK can be sent back

immediately. We have already noted that Cen-

taurusComm has been designed for resource poor

devices, whose memory capability is quite small.

Thus, typical window sizes on these devices are

around 1–2 K bytes. Thus, segmentation by

CentaurusComm results in segments 64 bytes in

length. As described in Section 3, the final ACK
from the receiver to the sender is not sent until the

entire message is received. This delay leads to an

overall increase in the RTT. In order to attempt to

validate this line of reasoning, we reduced the

window size of TCP to 2048 bytes and performed

the experiments again. Fig. 13(b) shows this graph.

We notice a slight increase in RTT, leading us to

believe that further reduction would result in RTT
values comparable to those shown by Centaurus-

Comm.

The experiments with interference were per-

formed on CentaurusComm as described in Sec-

tion 4.4.4. The plot in the first column in Fig. 14

shows the performance of CentaurusComm under

adverse conditions. The second column shows the

performance of TCP with the standard window
size of 32 KB. The third column shows the

Fig. 14. Performance of TCP and CentaurusComm over

WLAN under adverse conditions.

Fig. 15. Performance of CentaurusComm over WLAN under

normal conditions.
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performance of TCP with the window size reduced

to 2048 bytes. We observe that CentaurusComm

performs better than TCP with 2048 byte window

size, although TCP with 32 KB window size per-

forms the best.

6. Conclusions and future work

In this work we have conducted an empirical
study of the performance of two different transport

protocols over wireless networks. We have shown

that TCP, which performs well on wired networks,

does not work as well in the constrained world of

low bandwidth wireless networks. This confirms

the results obtained from simulations done in

other previous work. The main contributions of

our work are

• to show, using empirical results, that TCP per-

forms very poorly in low bandwidth, high

latency wireless networks like CDPD

• to evaluate the performance of Centaurus-

Comm, a protocol optimized for wireless net-

works

Finally, we also conclude that results obtained

empirically are very important in evaluating per-

formance of protocols in wireless networks. In

addition we conclude that experimental studies

bring out the effects of environmental conditions

in wireless networks on various protocols more

clearly than simulation studies. In the future we

plan to conduct more rigorous testing of these
protocols on Bluetooth and other types of wireless

networks. At the time of writing of this paper,

Level I modules for IrDA on PalmOS and Linux

(kernel module), UDP on PalmOS and Linux (user

space module) have been implemented. Level II

modules have been implemented for PalmOS and

Linux. The versions for Bluetooth on PalmOS and

Linux are under development.
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