
Wireless Networks 8, 619–635, 2002
 2002 Kluwer Academic Publishers. Manufactured in The Netherlands.

Centaurus: An Infrastructure for Service Management in
Ubiquitous Computing Environments

LALANA KAGAL ∗, VLADIMIR KOROLEV, SASIKANTH AVANCHA, ANUPAM JOSHI, TIM FININ and
YELENA YESHA

Department of Computer Science and Electrical Engineering, University of Maryland Baltimore County, 1000 Hilltop Circle, Baltimore, MD 21250, USA

Abstract. In the near future, we will see dramatic changes in computing and networking hardware. A large number of devices (e.g., phones,
PDAs, even small household appliances) will become computationally enabled. Micro/nano sensors will be widely embedded in most
engineered artifacts, from the clothes we wear to the roads we drive on. All of these devices will be (wirelessly) networked using Bluetooth,
IEEE 802.15 or IEEE 802.11 for short range connectivity creating pervasive environments. In this age where a large number of wirelessly
networked appliances and devices are becoming commonplace, there is a necessity for providing a standard interface to them that is easily
accessible by any user. This paper outlines the design of Centaurus, an infrastructure for presenting services to heterogeneous mobile clients
in a physical space via some short range wireless links. The infrastructure is communication medium independent; we have implemented
the system over Bluetooth, CDPD and Infrared, three well-known wireless technologies. All the components in our model use a language
based on Extensible Markup Language (XML) for communication, giving the system a uniform and easily adaptable interface. Centaurus
defines a uniform infrastructure for heterogeneous services, both hardware and software, to be made available to diverse mobile users within
a confined space.

Keywords: mobile computing, service management, ubiquitous computing, pervasive computing

1. Introduction

In the ubiquitous computing paradigm, information and ser-
vices are accessible virtually anywhere and at any time via
any device – phones, PDAs, laptops or even watches [16,20].
The “SmartHome” and “SmartOffice” scenarios present a step
towards realizing this vision. Smart homes and offices consist
of intelligent services that are accessible to users via hand-
held devices connected over short range wireless links. These
“smart spaces” will use sensors to gather information about
the user and environment, and allow the user to use more in-
teractive forms of input like voice, eye movements etc. The
intelligent services themselves will be more receptive to the
user’s requirements and use logical reasoning to provide bet-
ter and more relevant support to individual users. The ser-
vices will be integrated seamlessly into the environment that
the user is familiar with, enabling easy and automatic usage.
This is the vision that guides our research on the Centaurus
system.

Our system is called Centaurus after the constellation
which honors the Centaur Chiron, who was known as a wise
teacher, healer and prophet. The goal is to design an in-
frastructure and communication protocol for providing ser-
vices to heterogeneous mobile clients in the smart spaces sce-
nario. This framework is a part of our larger research pro-
gram aimed at realizing ubiquitous computing systems that
are composed of highly intelligent, articulate and social com-
ponents. These components automatically become aware of
each other and can exchange information to cooperatively
provide services to the users. In particular, the idea of ad hoc

∗ Corresponding author.

sets of entities that are dynamically formed to pursue indi-
vidual and collective goals can be used to create the software
infrastructure needed by the next generation of mobile appli-
cations. This infrastructure requires rethinking the neatly lay-
ered approach that separates networking, data management
and user interface considerations, as our system design illus-
trates.

Centaurus consists of Services, Clients, Communication
Managers and Service Managers. Communication Managers
handle communication between various entities in the sys-
tem. Service Managers are responsible for client and service
management. Within a confined space, the client can access
services provided by the nearest Centaurus System via some
short-range wireless technology. Centaurus acts as an active
proxy by executing services on behalf of any client that re-
quests them. This minimizes the resource consumption on the
client and also avoids having the services installed on each
client that wishes to use them, which is a blessing for most
resource-poor mobile clients.

All clients and services communicate via Centaurus Com-
munication Markup Language (CCML) (described in sec-
tion 5) which is based on Extensible Markup Language
(XML1). We found that this W3C Standard is very useful in
describing ontologies, and defining properties and interfaces
of services. It will also help in integrating Centaurus with
emerging semantic languages like DARPA Agent Markup
Language (DAML + OIL) [10]. The Communication Man-
ager is flexible and allows any medium to be used for com-
munication, but for implementation purposes, we have used

1 http://www.w3.org/XML



620 KAGAL ET AL.

Infrared [11], CDPD [18] and Bluetooth [4]. Our framework
is very robust and can recover easily from crashes due to the
automatic state recovery.

This paper is organized as follows. Section 2 discusses
other work in the area of “smart environments”, and com-
pares Centaurus with them. Section 3 describes the features
of the system with an example. The design of Centaurus is
outlined in section 4. The Centaurus Capability Markup Lan-
guage is described in section 5. Implementation details are
sketched out in section 6 and certain important functionality
of Centaurus is discussed in section 7. Some experiments
with the Centaurus system are described in section 8. We
present some possible directions of our future research work
in section 9 and conclude with a summary in section 10.

2. Related work

In the last couple of years, a number of technologies that
deal with “SmartHomes” and “SmartOffices” have emerged.
Among them are the Berkeley Ninja Project [6], the Portolano
project [5] at the University of Washington, Stanford’s Inter-
active Workspaces Project [17], Berkeley’s Document-Based
Framework for Internet Application Control [8,9] and Ac-
tive Spaces [12,15] at the University of Illinois at Urbana-
Champaign.

The team at Stanford has developed hardware and soft-
ware testbeds that include large display devices as well as
personal mobile computing devices such as laptops and PDAs
connected through a wireless LAN. They are creating an in-
frastructure for multiple users to communicate with multiple
devices with the ability to move work between different de-
vices. They have also designed ICrafter, a service framework
for these workspaces that generates user interfaces of groups
of services for requesting clients [14].

University of Washington’s Portolano project is in the
early stages and is involved in “invisible computing” a term
invented by Donald Norman [13] to describe ubiquitous com-
puting, where devices supporting distributed services blend
into the user’s environment and become practically “invisi-
ble”. The user would invoke these services not just by in-
put but also through augmenting forms of interfacing like
user movement, proximity of devices, identification tags,
etc.

An Active Space [12,15] is a physical space including its
different physical and virtual components, managed by an op-
erating system, Gaia OS, which acts as a layer of abstraction
over the particular properties of an Active Space. The Gaia
OS manages the resources of an active space. Gaia does not
define high-level policies regarding the behavior of the enti-
ties in the space. It concentrates on providing an infrastruc-
ture for the physical space and projecting a unified interface.
This model, by insisting that the services be implemented
as CORBA services, restricts the application developers. In
Centaurus services in any language will be seamlessly inte-
grated into the system, as long as they use CCML to com-
municate. The Active Spaces project does not seem to be

easily extended to support mobile users or different modes
of communication, i.e., Bluetooth, IR, CDPD and Ethernet.
Centaurus has been specifically designed to allow flexibility
in communication.

The Ninja project tries to link different services, through
a range of devices ranging from PCs to cell phones and Per-
sonal Digital Assistants [6]. It has incorporated intelligence
into the infrastructure and has the ability to adapt the content
to a specific device.

Centaurus differs from Ninja in its service leasing abilities
and state management. Unlike the Ninja project, Centaurus
infrastructure delegates the state management to the services
themselves, with the Service Manager serving as the cache.
The advantage of such an approach is the decreased complex-
ity of distributed state management and increased fault toler-
ance. Even in the event of a Service Manager going down, it
can recover easily because although it does not store any state
information, the services send it regular status to maintain
their lease. For security and information assurance, Ninja uti-
lizes encryption between all entities within the system. This
implies a high computational overhead on the endpoints of
the communication regardless of whether the endpoint is a
PDA, cell phone, or a powerful workstation. We are incor-
porating a simplified Public Key Infrastructure and distrib-
uted trust [2,3] principles to provide a security infrastructure
for Centaurus [19]. Centaurus does not make the assumption
that the end points are computationally robust. The entities
in the Centaurus system will enjoy non-repudiation, authen-
tication, and protection from replay attacks via the simplified
PKI. SmartSpaces lack central control that necessitates the
use of distributed trust, which will also provide more flexi-
bility than traditional security mechanisms. Moreover, while
Centaurus is protocol and communications medium indepen-
dent, Ninja is not. Ninja tends to concentrate on Web-based
services, whereas our system is able to support services based
on any platform, as long they can communicate with either
the Service Manager through sockets, or one of the Commu-
nication Managers through the native protocol and possess
the ability to process Centaurus Capability Markup Language
(CCML) messages. We also do not distinguish between hard-
ware and software services, allowing the user to use either
in the same way. Since all communication between services
and clients in Centaurus is done with the use of XML, there
is no need for complicated Operators and Paths used by the
Ninja project to convert between different data representa-
tions.

Though both the Ninja project and Centaurus are aimed at
providing a uniform infrastructure for a multitude of devices
to use heterogeneous services, Centaurus is more applicable
for “smart homes” and “smart offices”. This is because of
its independence from specific communication infrastructure
allowing it to be easily implemented in the wide range of en-
vironments. In addition, Centaurus architecture is less prone
to the failures of its components because of the use of mul-
tiple communication modules and automatic state recovery
(described in section 4.3) in the event of the Service Manager
failure.



CENTAURUS 621

3. A use case for Centaurus

Consider John walking into a meeting room with his PDA
phone. He is late and the meeting has already started, but it
is 8:00 AM and he needs a cup of coffee. He looks around
for a coffee maker, but cannot see one. In the meantime the
Centaurus client on John’s PDA registers itself with the Cen-
taurus system in the room by sending its CCML description.
The Centaurus system sends the client a list of currently regis-
tered services in CCML. The CCML is rendered by the client
in a form appropriate to the device. This allows heteroge-
neous devices to use Centaurus without any modification to
the client or the interface. John looks at the list and seeing a
coffee maker selects it. The client on his PDA reads this in-
put and sends it back to the Centaurus system. The Centaurus
system notes John’s need to use the coffee maker and sends
John’s PDA a CCML description of the coffee maker and its
interface. The description includes the location of the coffee
maker, which is in the next room. The interface is rendered by
the client and John enters ‘1’ in the text box marked Number
of Cups and this message is sent back to Centaurus. Cen-
taurus validates this message and then sends it to the coffee
maker service. The coffee maker service parses the CCML to
retrieve the command and executes it. The execution causes
the coffee maker to change its state, and so it sends a status
update to Centaurus. Centaurus knows that John’s PDA is
trying to use the coffee maker, so it sends the status update to
John’s PDA as well. John gets an instant update of the coffee
maker and knows that his coffee is being brewed. When the
coffee is brewed, John is sent a message and he walks over to
the next room to pick it up.

4. System design

The main design goal of Centaurus is to develop a framework
for building portals, using various types of mobile devices, to
the world of “things” that users can communicate with and
control. Centaurus provides a uniform infrastructure for het-
erogeneous services, both hardware and software services, to
be made available to the users everywhere where they are
needed.

Centaurus consists of several components: the Centaurus-
Comm Transport Protocol, Communication Managers, Ser-
vice Managers, Services, and Clients. CentaurusComm
Transport Protocol is an efficient, message-object based trans-
port protocol which abstracts out the medium specific infor-
mation. Communication Managers handle all the communi-
cation with the Centaurus client using different modules of
CentaurusComm protocol. The Communication Manager is
capable of communicating over varied media such as Ether-
net, Infrared, CDPD and Bluetooth. Service Managers con-
trol access to the services and act as gateways between the
services and clients. Services are objects that offer certain
functionality to Centaurus clients. Services contain informa-
tion to enable them to locate the closest Service Manager and
register themselves with it. Once registered, the services can

be requested by any client communicating with any Commu-
nication Manager. The client provides an interface to the user
to interact with the services.

Figure 1 shows the different components and the relation-
ships between them.

4.1. The transport protocol in Centaurus: CentaurusComm

4.1.1. System architecture
Figure 2 shows the design of the CentaurusComm architec-
ture from the perspective of data exchanges. Figure 3 shows
the interaction of the components in the architecture based on
the exchange of control messages.

CentaurusComm consists of one or more lower level proto-
col modules (designated as Level I), one higher level module
(designated as Level II) and an application program interface.
Level I modules are communication medium dependent; the
Level II module is medium independent. The API is respon-
sible for accepting the objects from the application layer for
transmission and notifying it when messages are received.

The protocol is implemented as a collection of data struc-
tures and state machines. The principal data structures in-
clude the transmit queue and the receive queue. As the proto-
col is designed to run on a wide range of low power systems
such as PDAs and low power embedded computers, it does
not depend on any advanced operating system features such
as signals and multithreading, that are typically not part of
such systems. This is in contrast to TCP, which requires sub-
stantial support from the OS for signaling. CentaurusComm
is designed such that the the transmission, reception and re-
covery procedures are divided into many small subprocedures
that last for a very short time. With the exception of domain
name resolution, which occurs very infrequently, the protocol
never blocks. This design gives an impression of concurrent
execution of the user program and the protocol modules.

The Level I and Level II protocol modules share data items
in order to communicate with each other. The Level I mod-
ule copies the contents of any received data packet (excluding
the headers) to the common area and runs the Level II state
machine. The Level II state machine examines the contents
of the received packet, based on which, it changes state. If,
based on the new state, a response is in order, the Level II
module places the response in the common communication
area. In addition, if the Level II state indicates that the ses-
sion is finished, the Level II module sets a specific flag in the
common area.

4.1.2. The Level I module
The principal driver of the CentaurusComm protocol is a
worker routine that is part of the Level I module(s). On
startup, the user application must always call this routine. The
main purpose of the worker routine is to perform message
transmission and handle message reception. Based on the
status of the transmit and receive queues, the network con-
nections and the Level II state machine, the worker routine
takes one of the following actions:



622 KAGAL ET AL.

Figure 1. Components of Centaurus.

Figure 2. Interaction between components of CentaurusComm protocol
(data).

• If data is present in the transmit queue, schedule it for
transmission.

• If data is present in the receive queue, run the Level II state
machine in order to process it.

• In peer-to-peer type networks, examine the table of out-
going messages and trigger the Level II state machine in
order to start transmission.

• In IrDA-based networks, cause the “master” to periodi-
cally establish connections with the “slaves” and trigger
the Level II state machine to start a session.

When the Level I module establishes the connection with the
peer it resets the state machine of the Level II protocol to the
initial state As long as the physical connection exists, every
packet that is received by the Level I module is sent to the
Level II protocol module.

Session setup and start up, as performed by Level I, are
communication medium dependent. On media such as In-
frared, one of the devices is selected to be a master. This is
the only device that can start a session. The master device
is responsible for discovering all the devices in the neighbor-
hood that it can communicate with and polling these devices
for messages by establishing a session with each device in a
round-robin fashion. For media that allow multiple nodes to
communicate at the same time (either in point-to-multipoint
or multipoint-to-multipoint mode) the device that has an out-



CENTAURUS 623

Figure 3. Interaction between components of CentaurusComm protocol
(control).

going message is responsible for establishing the session with
recipient. On such devices the Level I module is responsi-
ble for maintaining the state of sessions for different devices
and loading the correct state for each session. Every time a
packet is received from a particular device, the Level I mod-
ule looks up the sender devices in its session table and if an
entry exists for the device, it sets up the state machine of
Level II module according to the entry in the session table.
When the Level II module finishes processing the packet the
Level I module saves the new state back in the session table.
This switching method is not the most efficient but it provides
for a reasonable argument against implementing a specialized
Level II protocol module for each possible communication
medium or having to use multithreading or multiprocessing
features of the operating system (if they exist).

4.1.3. The Level II module
The Level II module performs reliable transmission of mes-
sages. It provides message segmentation and reassembly,
keeps track of lost packets and performs retransmission us-
ing the acknowledgment mechanism described above. In ad-
dition, it provides some rudimentary time synchronization
mechanisms along with identification and deletion of old mes-
sages. The current version of the Level II code works on
PalmOS and Linux (both user space and kernel space).

The Level II module consists of a session based protocol.
Session management (setup, shutdown) is still the responsi-
bility of the Level I module. In general, a single session may
consist of a single message from each end point to the other.
Thus, at most two messages can be transmitted in one session.
Under certain conditions, a session may not be able to han-
dle all the data packets sent by an end point. In such cases,
the message may span multiple sessions. Multiple sessions
may be required if the underlying communication medium
does not allow more than two entities to communicate at the
same time, thus requiring some type of time division multi-
plexing. Infrared and Bluetooth are typical examples of such
media. Multiple sessions per message may also be required
if bad network conditions that cause the loss of the control
packet, which contains signaling information. For reasons of
time and memory conservation, the CentaurusComm protocol
does not provide any mechanism for retransmission of control
packets. As is well known, time and memory considerations
are always important in the context of low power devices like
PDAs. Therefore, when a packet that carries control informa-
tion is lost, the session cannot continue and will hang till a
watchdog timer destroys it. After the session is destroyed by
the watchdog timer, a new session is created and the message
transmission resumes. The acknowledgment mechanism en-
sures that data packets received in the previous session will
not be retransmitted.

As described in above, the Level II state machine is trig-
gered by the Level I state machine. Depending on the type of
network – IrDA-based or peer-to-peer – the Level II state ma-
chine is initialized to the idle or the wait state, respectively.
(We use the abbreviation L2SM to denote the Level II State
Machine in the rest of this section.) The L2SM message se-
quence chart is shown in figure 4. We describe below the
message exchanges and corresponding state transitions (as far
as the transmission initiation concerned) for both IrDA-based
and peer-to-peer networks.

Initial state transitions specific to IrDA-based networks.
The L2SM changes to the wait state on all slave devices, af-
ter receiving a HELO message from the local Level I module.
On the designated master device, once the Level I connection
has been established with one or more slaves, a HELORESP
message is sent to the L2SM. The L2SM on the master device
then transitions to the connected state. This is done as an ad-
ditional safeguard to prevent the master device from commu-
nicating with devices that do not support the CentaurusComm
protocol. As the link latency in IrDA-based networks is quite
low (around 500 ms), this safeguard does not cause unaccept-
able overhead. (However, the overhead in peer-to-peer net-
works is too high and does not justify use of the safeguard.
Hence, the difference in initial state transitions of the L2SM.)
In this state, it transmits a POLL message on the IrDA inter-
face to determine if the slave devices have data to send, and
transitions back to the wait state. When the L2SM on a slave
device receives the POLL message, it transitions to the poll
received state.



624 KAGAL ET AL.

Figure 4. Message exchange sequence for CentaurusComm protocol.



CENTAURUS 625

Initial state transition specific to peer-to-peer networks.
The L2SM transitions from the wait state to the poll received
state upon receiving a POLL message from the local Level I
module.

The remaining state transitions, as described in this and the
following subsections are common to both types of networks.

After transitioning to the poll received state, the Level II
module scans the table of outgoing message objects to find
the one that should be delivered to its peer. On small mobile
devices, this table typically contains only one slot which is
either full or empty, so the selection of the object is trivial.
On server class systems, this table will have multiple entries,
therefore linear search is used to select the outgoing object.
Once the object is selected, the Level II state machine sends
an OBJ message (which contains the class of the message ob-
ject, its size and the timestamp) to its peer (via the Level I
module) and transitions to the send command state. As soon
as the Level I module places the message on the network
stack, it informs the Level II module via the SENT message.
This forces the Level II state machine back into the wait state.

Upon reception of an OBJ message the L2SM on the peer
transitions to the obj received state. In this state, it examines
the class and timestamp on the object and decides whether
to accept or reject the object. Objects are rejected if either
the class of the object is unacceptable or if the device already
has a newer copy of the object of this class. If the device de-
cides to reject this object it sends back a REJ message and
transitions back to the wait state. Otherwise it sends back a
PROCEED message that contains the bitmap, which indicates
all the received data packets that are part of this message ob-
ject. If this is a new message object, this bitmap has all its
bits set to 0. In this case, the L2SM transitions to the proceed
sent state. After the Level I has sent this message to the peer
and confirmed the transmission, the L2SM transitions to the
packet receive state.

If the device that sent the OBJ message receives a REJ
message in response, the L2SM transitions to the ack-rej re-
ceived state. In this state, it removes the object from the table
of outgoing objects. In addition, it responds with a NOPE
message and the L2SM transitions back to the wait state. On
receiving the NOPE message, the L2SM on the peer transi-
tions to the nope received state. In this state, it determines
if it has any object to send. If so, it sends it the OBJ mes-
sage; message exchanges and state transitions following this
are exactly as describe in the previous section. If this device
has nothing to send to the peer, the session is closed and the
L2SM returns to either the idle state or wait state.

If the device that sent the OBJ message receives a
PROCEED message in response, the L2SM transitions to the
proceed received state. In this state, the Level II module first
updates its copy of the bitmap using the one present in the
PROCEED message. The L2SM enters the packet transmit
state. It then starts transmitting those data packets, in the mes-
sage object, that correspond to the bitmap entries marked 0.
The data packets consist of two fields – the packet header
and the payload. The packet header consists of two fields

– a 2-byte constant corresponding to the string “PK” and
a 4-byte slot number. The process of packet transmission is
as follows. After determining the correct data packet number
to start sending from, the device prepares the packet by set-
ting the destination slot number in the packet header followed
by the payload. This packet is copied to the common com-
munication area and a flag is set. This signals to the Level I
module that data is ready for transmission. The L2SM transi-
tions to the wait for packet send state. After the Level I mod-
ule has transmitted the packet it informs the Level II module
which causes the L2SM to transition back to the packet trans-
mit state, after updating the bitmap.

It then checks the bitmap and the object size, and contin-
ues to transmit packets as long as the bitmap contains any ‘0’s.
We note that the synchronous nature of session set up allows
the L2SM to remain in the packet transmit state for the du-
ration of transmission instead of switching between this and
the wait for packet send states. If a control message is lost
because of the problems with local network stack or during
the transmission the whole session will be terminated by the
watchdog timer.

While L2SM on the source device is in the packet transmit
state, the destination L2SM is in the packet receive state. The
header of every data packet received is checked for the “PK”
string. The payload is copied into the object receive buffer at
the slot indicated in the packet header. The bit corresponding
to this slot is set to 1 in the bitmap.

After the source device completes sending all data packets
in the message object, L2SM sends a DONE message to the
peer and transitions back to the wait state. When the peer re-
ceives the DONE message, the L2SM transitions to the done
received state. In this state, it checks its message bitmap; if
all the expected data packets from the object have been re-
ceived then it responds with the ACK message. It also up-
dates the timestamp of the last received object in its table of
accepted objects. It then sends an indication to the application
that the message has been received. The application is re-
sponsible for processing the received message before it calls
the worker routine again, because the contents of the mes-
sage buffer might get overwritten on the subsequent run of
the worker routine. The L2SM transitions back to the wait
state. When the L2SM on the data source receives the ACK
message, it transitions into the ack-rej state. If the data source
is the master in IrDA-based networks or the “server” in peer-
to-peer networks, it closes the session causing the physical
connection to be terminated as well. If the data source is a
slave or “client”, then it sends a NOPE message to the other
side and transitions back to the wait state. On receipt of a
NOPE message, the master or server L2SM then behaves as
described above.

If the destination L2SM receives the DONE message and
determines via its bitmap that one or more segments of the
message still have their corresponding bits set to 0, it sends a
new PROCEED message and a new bitmap to the sender and
transitions back to the proceed sent state.



626 KAGAL ET AL.

4.2. Communication Manager

This component is responsible for the communication be-
tween the client and other components of Centaurus. The
Communication Manager uses a specific TCP port to com-
municate with the Service Manager. This is so that Commu-
nication Managers and Service Managers need not be on the
same system. When the Communication Manager receives
information from a client, it sends this information to the Ser-
vice Manager. When it receives data from a Service Man-
ager, it validates the data and looks at the header to decide
which client to send it to. Currently we have communication
modules for Bluetooth, IR and CDPD allowing Centaurus to
communicate with clients using those communication media.

4.3. Service Manager

The Service Manager (SM) acts as a mediator between the
services and the client. When a service starts up, it has to
register with the Service Manager, sending its CCML file.
This file contains its name, identification and the interfaces
it implements. When a new client comes along, the Service
Manager sends it a ServiceList object. This ServiceList ob-
ject is updated dynamically, according to the services regis-
tered with the Service Manager, so the client always has the
updated list of services. After registering, a client can se-
lect a service from the list provided by the Service Manager,
which causes the Service Manager to send it the CCML de-
scription for that service. The Service Manager then updates
its database to reflect that the client is interested in the service
that is just requested. Whenever the Service Manager gets a
status update of the service, it will send it to all interested
clients. The client will continue to receive status reports from
the service, until it deregisters itself. The client sends the
new CCML file to the Service Manager, after invoking the
interfaces of the service. On receiving this CCML, the Ser-
vice Manager validates the client and the CCML. If the ser-
vice is still available, the Service Manager sends the CCML
to it, otherwise it is queued for sometime. Once this time-
out expires, an error is returned to the client. The SM is also
responsible for service leasing. It allows services to register
for a certain amount of time. If it does not receive any status
update (see section 4.4) within that time, the registration is
deleted.

Though the Service Manager does manage some state,
most of the state is distributed among the clients and services.
In case a Service Manager fails, the services keep pinging it at
increasing intervals until it comes up again. Then they rereg-
ister themselves with it. Similarly the Service Manager stores
a list of services that a client is interested in, so it can be sent
status updates from those services. However, every time the
client notifies the Service Manager of a service it is interested
in, the Service Manager forces the client to update its own
CCML description to reflect the new service. As soon as the
failed Service Manager is up again or if a replacement Service
Manager is used, the clients register themselves. Their CCML
description informs the Service Manager what services they

are interested in. By forcing the services to be responsible for
maintaining their own state, by deregistering any timed out
services, and making clients store the list of services they are
interested in, the Service Manager manages automatic state
recovery.

In the current design, the main task of the Centaurus Ser-
vice Manager can be described as the following:

1. Communicate with the client through CCML.

2. Inspect the incoming ‘command’ or ‘update’.

3. Dispatch the command to the appropriate services or the
Service Management subcomponents.

4. Handle all status updates, and make sure all interested par-
ties are informed of the updates.

5. Interact with services using CCML.

6. Provide service registration services and discovery ser-
vices.

4.4. Services

A service performs a certain action on behalf of the client.
These services could range from controlling a light switch or a
coffee pot to printing a document or even a memo pad service,
where clients can leave messages for each other. Each service
registers with a Service Manager by sending its CCML file,
along with its name, identification, location, a brief descrip-
tion of its functionality and its leasing period. Every time
its status changes, it informs the Service Manager. If its sta-
tus has not changed during the leasing period and it wants to
renew its lease, it has to send a short renew message to the
Service Manager. It accepts requests only from the Service
Manager that it is registered with.

4.5. Client

A client is a special kind of service in that it has to respond to
commands and regularly send status updates. A client talks to
the Communication Manager and registers itself with a Ser-
vice Manager. This registration is similar to the registration
of services. On registration, it receives the ServiceList, which
contains the current list of services. The ServiceList is a ser-
vice itself, and causes the Service Manager to send the new
list of services, every time its status changes, that is, each time
a new service registers, or an existing service deregisters.

By choosing a Service, the client expresses interest in it.
The Service Manager sends the client the CCML description
of the Service. The client displays the CCML file for the user,
who can invoke the specified functions on the Service, by
choosing one of its interfaces. After the user changes values
of certain variables, specified in the CCML for the particular
service, the client sends CCML back to the Service Manager
in the form of a command. The client will receive status up-
dates from all services that it expresses interest in through
the Service Manager, until it specifically informs the Service
Manager that it no longer wants to receive these messages.
Clients and the Service Managers only exchange CCML mes-
sages.



CENTAURUS 627

Figure 5. The DTD for CCML.

5. Centaurus Capability Markup Language (CCML)

The CCML is divided into system, data, addons, interfaces,
and info, as shown in figure 5.

The system portion contains the header information, the
id, timestamp, origin, etc. There are two variables, update
and command. A CCML file can only have one or the other.
An update variable is used to inform other Centaurus compo-
nents about status updates of services and clients, whereas the
command is only used by clients to send a command to a cer-
tain service. The system also contains the listening section for
a service or client. It specifies all the services that a service
or client is interested in. All information regarding the vari-
ables and their types are contained in the data section. Using
the addons section, one can add a related service to another

service, for example, add an Alarm Clock service to a Lamp
Control service. We are not currently using this section.

The CCML for a client always has one or more actions
in its data section that a Service Manager can invoke on it.
This is used by the SM to change the state of the device. We
have defined two actions for clients, namely, AddService and
RemoveService:

• AddService. When this action is set, the client adds the
value of this variable to its InterestList; i.e., the list of ser-
vices that it is interested in. It is also added to the listening
portion of the CCML.

• RemoveService. This is set by the Service Manager, if the
Service that the client is interested in, is no longer avail-
able. It causes the client to stop listening or using the Ser-



628 KAGAL ET AL.

vice and remove the Service from its InterestList. It is
removed from the listening portion of the client’s CCML.

The interface section contains information about the in-
terfaces that the object (Service/Client) implements. This
section generally causes the variables in the data section to
change their values.

Other details like the description, and icon for representa-
tion are in the info section.

6. Implementation

The previous section outlines our overall design, but to facil-
itate the implementation, we had to make some assumptions
and sacrifice some of the features and flexibility. These as-
sumptions in no way compromise the design or results; they
only helped in quicker implementation.

The client tries to find the nearest Communication Man-
ager and register with it. Once registered, the Communica-
tion Manager polls the client regularly for information. This
polling completely eliminates the problem of collision, that
occurs in a client push method, when more than one client
sends information at the same time. We implemented one Ser-
vice Manager and two services for testing. We assume that the
client application is installed on the handheld device before it
enters the “SmartRoom”. Communication between any two
components in the Centaurus System is done via sockets. The
Service Manager and the Communication Manager have two
dedicated sockets each, one for listening and one for sending
information. As the Service Manager and the Communication
Manager are at the heart of all communication, we wanted to
speed up this process. By giving them a dedicated socket for
each type of communication, we reduced the time spent in the
creation of a new socket for each connection. Each Service
also has a socket for information from the Service Manager.
The Service Manager listens to a certain socket for receiving
CCML from all the services. All these sockets are predefined
in the Properties file for each component. The information
flowing in the system is strictly in the form of CCML.

The Service Manager and the services have been imple-
mented in Java, whereas we chose C for the communication
modules and the client, for increased efficiency in resource
management. We have found that most of the service discov-
ery architectures are implemented in Java, like Jini [1] and
E-Speak [7]. If we decide to incorporate a more sophisti-
cated service discovery technique, integration will be rela-
tively easy as the Service Manager and services are already
in Java.

6.1. Communication Manager

The Communication Manager constitutes several modules
of CentaurusComm Transport Protocol for communication.
Communication modules that handle communication via IR,
CDPD and Bluetooth have been implemented. These mod-
ules form Level II of the CentaurusComm protocol described

in section 4.1. These modules are used both by the Com-
munication Manager as well as the client. However, client
functionality is quite different from Manager functionality.

The IR module for the Communication Manager listens on
a fixed port for updates from the Service Manager. It im-
plements a complicated Infrared protocol. An enhanced and
modified Linux IrDA stack forms the core of the IR mod-
ule. Modifications to IrDA stack were necessary for better
handling of disconnections and discovery. The module es-
tablishes and maintains two TCP/IP connections with Service
Manager and communicates via IR with mobile clients. It
listens to both sides for incoming CCML messages and trans-
mits them to the appropriate destination. The client version
of the module has been optimized for the IrDA stack on Pal-
mOS. The module uses the built-in IR port on the Palm Pilot
for communication.

The CDPD module for the Communication Manager has
been implemented by combining it with the UDP protocol.
Thus, the message objects are sent and received as UDP mes-
sages with the Level I of CentaurusComm providing reliabil-
ity. The Manager listens for messages from the client on a
fixed UDP port and on a fixed TCP port for messages from
the Service Manager. The client version of the CDPD mod-
ule has been highly optimized for Palm Pilots. In a manner
similar to the IR module, it attempts to discover the Commu-
nication Manager by sending discovery messages to the fixed
UDP port. One very important feature of this module is that
it does not attempt to transmit until it determines that the sig-
nal from the CDPD modem to the base station is stable. This
test for signal stability is performed before every attempt at
transmission.

The Bluetooth module for the Communication Manager
and client is a preliminary version that also uses UDP for
sending and receiving CCML. The Communication Manager
version initializes the Bluetooth hardware, sets up the Blue-
tooth protocol stack and starts up the PPP daemon. It also
starts up the Bluetooth Service Discovery Protocol (SDP)
server. The client version is slightly different. It first ini-
tializes the Bluetooth hardware and sets up the Bluetooth pro-
tocol stack. It then begins device discovery. On discovering
the Bluetooth device that the Communication Manager is us-
ing, it establishes a PPP connection with the stack after ap-
propriate service discovery. It then attempts to discover the
Manager and establish a session with it. Once the session is
established, it is ready to send and receive CCML messages.

The functionality of the Communication Manager can be
summarized as:

• Read properties file and retrieve poll period and port num-
ber to send to Service Manager and port number to receive
from Service Manager.

• Based on poll period, periodically poll all clients in the
room. If a client replies with a message, forward the mes-
sage to the Service Manager.

• Wait for message from Service Manager on port. If re-
ceive a message on input port, check header and forward
to appropriate client and go back to waiting.



CENTAURUS 629

6.2. Service Manager

The Service Manager has to listen to two ports, one for in-
coming messages from services and one for messages from
the Communication Manager. When a Service registers itself,
the Service Manager adds it to its list of services by record-
ing the CCML and the port number the Service listens to.
It also starts a timeout for the leasing period of the Service.
If it does not receive an update or a ‘ping’ within the time-
out, it removes the Service from its list. Every new client is
added to the clients list. All the services it is interested in
are added to the Service-Client list with both the service and
client IDs. Whenever the Service Manager receives an up-
date from a Service, it updates its services list and reads its
Service-Client list and sends the new CCML to every client
in that list. When a client sends an update, the Service Man-
ager changes the clients list. It then reads the list of services
that the client is now interested in, and appropriately modifies
the Service-Client list.

The control flow for the Service Manager is:

• Read properties file and retrieve port numbers to wait on
for Services and Communication Manager.

• Wait for CCML message on both ports.

• If CCML message on port from Communication Manager,
then message from a client. Check which client sent the
message.

– If unknown client, then create a new ID and set the ac-
tion, AddService to ServiceList in the CCML file for
the client and returns this CCML to the Communication
Manager.

– If client in already registered, check if update or com-
mand.

∗ If it is an update, read the list of services that the
client is listening to, and pick out the new services
that the client was not previously listening to. Sends
the CCML of those services to the client via the Com-
munication Manager. Add the Service-Client pair to
InterestList.

∗ If it is a command, extract the name of the service,
and send it to the appropriate Service.

• If CCML message on port for services, check the type of
the message.

– If registration message, enter its information into a table
and set a timeout. If the service does not send an update
without the timeout, delete from the table.

– If update from service, forward this update to all clients
in the Service-Client list that are interested in this par-
ticular Service.

– If a ping message, renew the lease of the associated Ser-
vice.

• If the lease period of a service expires and no status update
or ping message received from the service, the service is
deregister service.

6.3. Client

The client attempts to discover and communicate with the
Communication Manager through a certain medium. Once
discovered, it registers with the Centaurus system. There are
several functions of a client, requesting an action, updating
status, and receiving updates. It maintains a list of services
that it is interested in, called InterestList. Whenever a client
receives a command from the Service Manager, its checks
the action specified, AddService or RemoveService, and adds
or removes services accordingly from its InterestList. If it
receives an update, it checks if the Service is in its Inter-
estList. If the Service is in its InterestList, the client renders
the CCML and waits for user input. If the Service is not in
its InterestList, the client discards the message. If the user
changes any variables of the Service’s interface, the client
modifies the Service’s CCML and sends it to the Commu-
nication Manager, which in turns forwards the command to
the Service Manager. The Service Manager makes sure that
the CCML is sent to the appropriate Service.

The main functionality of a client is described as:

• If entering new space, discover a Communication Man-
ager. Send CCML description to Service Manager through
Communication Manager. Register with Service Manager.

• If received a CCML message from Communication Man-
ager, check type of message.

– If it is an update, display the status update for the user.
If the user makes any changes to the interface of the
Service, generate new CCML and send it to the Com-
munication Manager, when next polled.

– If it is a command, validate the CCML. If there is any
AddService action, add the value to listening list in
CCML description. Set the update variable in CCML
header. If the action is RemoveService, remove speci-
fied Service from list.

6.4. Services

We have developed one hardware related service for control-
ling a lamp and one software service for playing MP3 files.
There is another Service, ServiceList, that is an inherent part
of the protocol, and is used for providing an updated list of
services to the client.

We have implemented a Service class and ServiceInter-
face class that handle validation of the CCML, the register-
ing of the Service with the Service Manager and the send-
ing of the updates. All services implemented in Java should,
for conformity, extend the Service class, and implement the
ServiceInterface class. The ServiceInterface class contains
a commandHandler function that has to be implemented by
every Service that implements the interface. This is the
function that handles changes to the CCML file of the Ser-
vice. A Java Service needs only implement a constructor and
this commandHandler to be integrated into a Centaurus sys-
tem.



630 KAGAL ET AL.

Figure 6. ServiceList.

The Service class forces a service to register as soon as it
starts up. A service reads its properties file and retrieves the
Service Manager’s port number. After creating its CCML file,
it sends its CCML and the port number that it is listening to,
to the Service Manager’s Service port. The Service Manager
validates the CCML and adds the Service to its list of ser-
vices. However, the Centaurus system also handles non-Java
services as long they can use CCML and either communicate
via sockets with the Service Manager or with a Communica-
tion Manager through some native protocol.

The algorithmic description for the Service class is as fol-
lows:

• On starting up, register with Service Manager specified in
properties file. Send CCML description, lease period and
port number to the Service Manager. Make sure update
variable is set.

• Wait for message on port.

• On receiving message, check type of message. If it is a
command from the Service Manager, try to carry out the
command. Update CCML to reflect the new status and
send it to the Service Manager.

• If no status change within lease period and if need to renew
lease, send a lease renew to the Service Manager.

6.4.1. ServiceList
Each time, a Service registers or is no longer available, the
ServiceList triggers the Service Manager to send the updated
list of services to all the clients. This does not use the Ser-
vice class or the ServiceInterface class. It is contained com-
pletely in the Service Manager. It is a special Service because

Figure 7. Client turns on Lamp.

it is handled in same way as other services are, but within the
Service Manager itself. Figure 6 shows a screen shot of the
ServiceList received by the client (a Palm Pilot).

6.4.2. Lamp control
Using X102 devices and FireCracker,3 we were able to con-
trol a lamp in the room and figure 11 shows its CCML de-
scription. We can extend this to control any device because
X10 is a power-line carrier protocol that allows compati-
ble devices to communicate with each other via the exist-
ing 110V wiring. FireCracker is a Java class that allows a
computer to communicate with the X10 device. The Ser-
vice constructor makes sure that the X-10 device works. The
commandHandler function looks for the value of the inter-
faces. If the ‘Powered’ interface has a value that is dif-
ferent from the status of the Power variable, then the com-
mandHandler proceeds, otherwise the command is discarded.
If the value is true, the lamp is set on, otherwise the lamp
is set off. The CCML file is changed and an update is
sent to the Service Manager. A CCML description of a
lamp which is currently off is shown in figure 12. Fig-
ure 7 shows a screen shot of the Client using the Lamp Ser-
vice.

Figure 8 shows that the order of the services has changed
after the Client selected one of them. Thus, all clients lis-
tening to these services will know that some other client is
currently using one of services.

2 http://www.x10.com
3 http://www.x10.com/welcome/firecracker



CENTAURUS 631

Figure 8. Updated ServiceList.

6.4.3. MP3 Player
We are using a popular MP3 player for Unix, mpg123,4 that
has a Java wrapper around it to allow us to plug it into the
rest of the system. The constructor for the Service reads
all the .mp3 files from a specified directory and creates its
CCML files dynamically. It has a number of CCML inter-
faces, one for each song it can play. The client displays this
list for the user and waits for her input. The client returns all
songs checked to the service via the Service Manager. Fig-
ure 13 shows a CCML command sent to the MP3 Player.
The commandHandler function in the MP3 Player checks the
CCML interface and reads the songs selected. These songs
are checked against the current list of songs. If they are valid,
and not currently being played they are fed into mpg123. As
the status is changed, a status update is sent to the Service
Manager.

Figure 9 shows a shot of the list of songs in MP3 format
provided by the MP3 Service. In figure 10 we see that the
Client has selected 3 songs it wants the MP3 Player to play.

7. Functional interaction between Centaurus
components

There are certain crucial functions of the system that require
several components to collaborate in order to be completed.
This section discusses how a client requests a service, how
the ServiceList service is used, and how status updates are
propagated through the Centaurus system.

4 http://mpg123.org

Figure 9. List of songs provided to Client.

Figure 10. Client selects songs to play.

7.1. Requesting a Service

When a client receives the list of services from the Service
Manager, it displays this list for the user. The user can select
a Service to use. The client then creates a command for the
ServiceList. It changes the data portion of the ServiceList,



632 KAGAL ET AL.

Figure 11. An example ServiceList that shows two services, an MP3 player
and a Lamp.

Figure 12. A CCML description of the Lamp service.

with the value of the Service selected as ‘true’. This is sent
back to the Service Manager. As it is a command for the
ServiceList, which is part of the Service Manager, the Service
Manager handles it. From the system section, the Service
Manager retrieves the name of the client and checks the data
section for the services. It then retrieves the latest CCML for
the client from its clients list and creates a command for the

Figure 13. A CCML description of a command sent to the MP3 Player. Each
song is an interface which can be turned on or off.

client. It sets the AddService action to the services selected
and sends the CCML back to the client. The client processes
this CCML as it would any AddService action by adding the
Service to its listening section. It also adds the Service to its
InterestList. When the client is next polled it sends its updated
CCML.

From the updated CCML, the Service Manager reads the
list of services that the client is listening to, and picks out
the new services that the client was not previously listening
to. It sends their CCML to the client via the Communica-
tion Manager. It then, adds the new Service-Client pair to its
Service-Client list.

Once the client gets the CCML of the Service, it displays
it for the user. The user can use the interfaces to perform
actions. The client modifies the Service’s CCML to make a
command, sets the new values and sends when polled.

The Service Manager realizes that it is a command and
sends it to the appropriate Service. The Service carries out
the command and sends the update to the Service Manager,
which propagates the update back to the client.

7.2. Using the ServiceList

The ServiceList is used to provide an updated list of services
to the clients. When the Service Manager gets the CCML of
a new client, it sets the AddService action in data section of
the CCML to ServiceList.

<data>
<attribname = "AddService"type = "action" value

= "ServiceList"/>
</data>

It also sets the command variable in the header. This new
CCML is sent back to the client. The client realizes that it
is a command and checks the actions. The client then adds



CENTAURUS 633

the ServiceList to its currently empty list, InterestList which
is the list of services that the client is interested in.

<listening>
<id name = "ServiceList"/>
</listening>

When the client is polled next by the Communication Man-
ager, it sends its updated CCML. The Service Manager reads
the listening section, and finds the ServiceList. It updates its
Service-Client list and sends the list of services in CCML to
the client. Whenever the list of services changes, the Service
Manager goes through its Service-Client list and sends the
new list to all the clients that are interested in the ServiceList.
In this way, the ServiceList works like any other Service, ex-
cept that it is contained within the Service Manager. If both
our services have registered then the data portion of the Ser-
viceList would look like

<data>
<attribname = "MP3Player1.0"type = "bool"value = "false"/>
<attribname = "Lamp-001"type = "bool"value = "false"/>
</data>

7.3. Status update

If a Service Manager receives an update from a Service, it
checks its Service-Client list for all the clients interested in
this Service. It sends the updated CCML to these clients.

When a Service Manager receives an update from a client,
it carries out certain functions on it. It checks the listening
section and retrieves the list of services that the client is lis-
tening to. It picks out the new services, ones that the client
was not previously listening to. It sends their CCML to the
client via the Communication Manager. Then for each new
Service, it adds a new Service-Client pair to its Service-Client
list.

8. Experiments with Centaurus using IR, CDPD and
Bluetooth

The Service Manager and services were initialized and run
on a Pentium II based system running Linux 2.2.14 con-
nected to a 100BaseT network. This system also directly con-
trolled the Lamp and executed the MP3 Player whenever re-
quested by the client. The wireless interface devices – IrDA
and Bluetooth – were connected on serial ports to another
Pentium II based system running Linux 2.2.17. This sys-
tem was also on the 100BaseT network. The Communica-
tion Manager was started up on this system after being inte-
grated with the required communication module (IR, CDPD
or Bluetooth) based on the medium being used for the exper-
iments.

In order to experiment with Centaurus using IR, multiple
PDAs running an instance of the client over CentaurusComm
were brought within line-of-sight of the IR dongle connected
to the Linux system. As expected, the client on each PDA
was able to establish a session with the Communication Man-
ager. A form containing the list of services (Lamp and MP3

Player) was then displayed by the PDAs. The services were
successfully manipulated (turning on/off the Lamp and get-
ting the MP3 Player to play a list of specified songs) from the
PDAs.

An OmniSky CDPD modem was connected to each PDA
used in the experiment. CDPD is a technology that sup-
ports IP type networks. Therefore, unlike IR, no line-of-
sight requirements exist. The modem is able to communi-
cate with a base station (cell tower), operated by the ser-
vice provider, wirelessly. The base station communicates
with the Linux system over the wired network. While per-
forming the experiments, we noted that as long as the sig-
nal on the modem was unstable, the client did not attempt
to establish a session with the Communication Manager. In
a dynamic environment, multiple PDAs can attempt to ma-
nipulate the same service. Therefore, it is necessary that
as a particular service is being used by a particular PDA,
other PDAs interested in the same service be notified of this
fact. It is the responsibility of the Service Manager to han-
dle these issues. Our experiments showed that the Service
Manager does indeed transmit updates to all PDAs whenever
required. In one experiment, we enabled two PDAs to sub-
scribe to the Lamp service and allowed one of them to turn
the lamp on. The Service Manager immediately sent an up-
date to the other PDA indicating the new status of the Lamp
service.

The client using the Bluetooth communication module was
set up on Pentium II based laptops running Linux 2.2.18.
Each Bluetooth device was attached to the serial port of a lap-
top. As soon as the client was started up discovery discovery
and the following processes were executed as described in
section 6. Experiments with Bluetooth as the medium were
also successful.

9. Ongoing work

We are building on this basic framework by adding attrac-
tive interfaces for the portable devices, creating new services,
enabling more intelligent brokering of services, and adding
mechanisms to support privacy and security. We briefly de-
scribe our ongoing work on these in the next few paragraphs.
We are also transitioning our system to work in situations
where the services themselves come from devices on the ad-
hoc network.

9.1. Recommender Service

We are also working on a Recommender Service. Instead of
returning a list of all possible services that are available to a
client, this service recommends a list of services that might
be in the interest of the client based on the existing envi-
ronment context. For example, the system returns a coffee-
maker control service during the morning to the user, and in
the evening it returns a light control service. It may also no-
tice that the user generally wants to listen to to the same list
of songs and provide the list as soon as the user steps into the
room.



634 KAGAL ET AL.

9.2. Service Managers hierarchy

We would like to arrange the Service Managers into a hierar-
chy so that the services could connect to the closest Service
Manager, and the location of a Service Manager need not be
coded into the services. This will also allow the services to be
shared across the Service Managers, so a user could enter one
room and use the printer in another room by using the printer
Service on the Service Manager in the other room [19].

9.3. DAML

Most of the information on the web today is described in
HTML which is not very powerful or expressive. The World
Wide Web Consortium (W3C) developed XML to help de-
scribe information better. As a step towards the Semantic
Web, DAML is an effort to allow the use of ontologies to
describe objects and their relationships to other objects.

We are working to replace CCML with DAML because of
its expressibility and its effectiveness in constructing ontolo-
gies. DAML’s ability to include rules will allow us to increase
the intelligence of the system. Clients and services will be
able to define their own axioms and rules that the system can
incorporate, which will help the system serve both clients and
services better.

10. Summary

We have successfully developed the first version of Cen-
taurus. We believe that our infrastructure is appropriate
and effective for deploying services in an indoor environ-
ment. Such environments are typified by handheld clients
connecting to services on the fixed infrastructure using wire-
less ad hoc networks such as those based on Bluetooth. The
first stage development, including the Service Manager, Com-
munication Manager, MP3 player services, Lamp services
etc. have verified that our vision of dynamic service discov-
ery and management over ad hoc wireless networks is feasi-
ble.

Acknowledgements

This research was supported in part by the IBM EECOMS
program, the DARPA DAML program under contract F30602-
97-1-0215, NSF 9875433, NSF 0070802.

References

[1] K. Arnold, A. Wollrath, B. O’Sullivana, R. Scheifler and J. Waldo, The
Jini Specification (Addison-Wesley, Reading, MA, 1999).

[2] M. Blaze, J. Feigenbaum, J. Ioannidis and A. Keromytis, The role of
trust management in distributed systems, in: Secure Internet Program-
ming, LNCS Vol. 1603 (Springer, Berlin, 1999) pp. 185–210.

[3] M. Blaze, J. Feigenbaum and J. Lacy, Decentralized trust management,
in: IEEE Proceedings of the 17th Symposium (1996).

[4] Bluetooth, http://www.bluetooth.com

[5] M. Esler, J. Hightower, T. Anderson and G. Borriello, Next century
challenges: Data-centric networking for invisible computing, in: Fifth
Annual ACM/IEEE International Conference on Mobile Computing
and Networking (MobiCom’99) (ACM Press, August 1999) pp. 256–
262.

[6] S.D. Gribble et al., The Ninja architecture for robust Internet-scale sys-
tems and services, Computer Networks 35(4) (1999) 473–497.

[7] Hewlett-Packard Company, Internet business solutions: E-Speak,
http://www.e-speak.hp.com

[8] T. Hodes and R.H. Katz, A document-based framework for Internet
application control, in: Second USENIX Symposium on Internet Tech-
nologies and Systems (USITS’99) (October 1999).

[9] T.D. Hodes, R.H. Katz, E. Servan-Schreiber and L. Rowe, An architec-
ture for a secure service discovery service, in: 3rd ACM/IEEE Mobi-
Com, Budapest, Hungary (September 1997).

[10] I. Horrocks et al., DAML + OIL language specifications (2001)
http://www.daml.org/2000/12/daml+oil-index

[11] Infra-red, http://www.irda.org
[12] F. Kon, C.K. Hess, M. Roman, R.H. Campbell and M.D. Mickuna,

A flexible, interoperable framework for Active spaces, in: OOPSLA
’2000 Workshop on Pervasive Computing, Minneapolis (October 16,
2000).

[13] D. Norman, The Invisible Computer (MIT Press, 1998).
[14] S.R. Ponnekanti, B. Lee, A. Fox, P. Hanrahan and T. Winograd,

ICrafter: A service framework for ubiquitous computing environments,
in: Ubicomp 2001 (2001).

[15] M. Roman and R.H. Campbell, Gaia: Enabling Active Spaces, in: Pro-
ceedings of the 9th ACM SIGOPS European Workshop, Kolding, Den-
mark (September 2000).

[16] M. Satyanarayanan, Pervasive computing: Vision and challenges, IEEE
Communications (2001).

[17] Stanford Interactive Workspaces Project, http://graphics.
stanford.edu/projects/iwork/

[18] M. Taylor, W. Waung and M. Banan, Internetwork mobility: The CDPD
approach, Prentice Hall professional technical reference, September
1996 (1999).

[19] J. Undercoffer, A. Cedilnik, F. Perich, L. Kagal and A. Joshi, A se-
cure infrastructure for service discovery and management in pervasive
computing, Mobile Networks and Applications (2002).

[20] M. Weiser, The computer for the twenty-first century, Scientific Amer-
ican (September 1991) 94–100.

Lalana Kagal is a Ph.D. student and a Graduate Re-
search Assistant in the Department of Computer Sci-
ence and Electrical Engineering at the University of
Maryland Baltimore County. She obtained both a
Bachelor of Science degree and a Master of Science
degree in computer science from the Pune University
(India) in 1994 and 1996, respectively. Her research
interests are in the fields of artificial intelligence, se-
curity and mobile computing. She is a student mem-
ber of ACM and AAAI.

E-mail: lkagal1@cs.umbc.edu

Vlad Korolev is a graduate student in the Depart-
ment of Computer Science and Electrical Engineer-
ing at the University of Maryland Baltimore County.
He has got a Bachelor of Science degree in computer
science from the University of Maryland Baltimore
County. His research interests are in the fields of mo-
bile computing and computer graphics.
E-mail: vkorol1@cs.umbc.edu



CENTAURUS 635

Sasikanth Avancha is a Ph.D. student of computer
science in the Department of Computer Science and
Electrical Engineering at the University of Maryland
Baltimore County. His research interests include
wireless networks, mobile computing, and distrib-
uted systems. He obtained his M.S. degree in com-
puter science from UMBC and his Bachelor of En-
gineering degree in computer science and engineer-
ing from Bangalore University, India. He has over
5 years of experience in network software develop-

ment and maintenance.
E-mail: savanc1@cs.umbc.edu

Anupam Joshi is an Associate Professor of Com-
puter Science and Electrical Engineering at UMBC.
Earlier, he was an Assistant Professor in the CECS
department at the University of Missouri, Columbia.
He obtained a B.Tech. degree in electrical engineer-
ing from IIT Delhi in 1989, and a Masters and Ph.D.
in computer science from Purdue University in 1991
and 1993, respectively. His research interests are in
the broad area of networked computing and intelli-
gent systems. His primary focus has been on data

management for mobile systems in general, and most recently on data man-
agement in mobile ad hoc networks. He has created intelligent agent based
middleware to support mobile access to networked computing and multime-
dia information resources. He is also interested in Data/Web Mining and
Semantic Web, where he has worked on applying soft computing techniques
to personalize the web space. His other interests include content-based re-
trieval of video data from networked repositories, and networked HPCC.
He has published over 50 technical papers, and has obtained research sup-
port from NSF, NASA, DARPA, DoD, IBM, AetherSystens, HP, AT&T and
Intel. He has presented tutorials in conferences, served as a guest editor
for special issues for IEEE Personal Communications, Communications of
the ACM etc., and serves as an Associate Editor of IEEE Transactions on
Fuzzy Systems. At UMBC, Joshi teaches courses in operating systems,
mobile computing, and Web mining. He is a member of IEEE, IEEE-CS,
and ACM.
E-mail: joshi@cs.umbc.edu

Tim Finin is a Professor in the Department of
Computer Science and Electrical Engineering and
the director of the Institute for Global Electronic
Commerce at the University of Maryland Baltimore
County (UMBC). He has over 30 years of experi-
ence in the applications of AI to problems in infor-
mation systems, intelligent interfaces and robotics.
He holds degrees from MIT and the University of
Illinois. Prior to joining the UMBC, he held posi-
tions at Unisys, the University of Pennsylvania, and

the MIT AI Laboratory. Finin is the author of over 140 refereed publications
and has received research grants and contracts from a variety of sources. He
has been the past program chair or general chair of several major conferences,
is a former AAAI councilor and is AAAI’s representative on the board of di-
rectors of the Computing Research Association.

E-mail: finin@cs.umbc.edu

Yelena Yesha received the B.Sc. degree in computer
science from York University, Toronto, Canada, in
1984, and the M.Sc. and Ph.D. degrees in computer
and information science from The Ohio State Uni-
versity in 1986 and 1989, respectively. Since 1989
she has been with the Department of Computer Sci-
ence and Electrical Engineering at the University of
Maryland Baltimore County, where she is presently a
Verizon Professor. In addition, from December 1994
through August 1999 Dr. Yesha served as the Direc-

tor of the Center of Excellence in Space Data and Information Sciences at
NASA. Her research interests are in the areas of distributed databases, distrib-
uted systems, mobile computing, digital libraries, electronic commerce, and
trusted information systems. She published 8 books and over 100 refereed
articles in these areas. Dr. Yesha was a program chair and general co-chair
of the ACM International Conference on Information and Knowledge Man-
agement and a member of the program committees of many prestigious con-
ferences. She is a member of the editorial board of the Very Large Databases
Journal, and the IEEE Transaction on Knowledge and Data Engineering, and
is the editor-in-chief of the International Journal of Digital Libraries. Dur-
ing 1994, Dr. Yesha was the Director of the Center for Applied Information
Technology at the National Institute of Standards and Technology. Dr. Yesha
is a senior member of IEEE, and a member of the ACM.
E-mail: yeyesha@cs.umbc.edu


