Personal Agents on the Semantic Web *

Anugeetha Kunjithapatham, Mithun Sheshagiri, Tim Finin,
Anupam Joshi, Yun Peng

Department of Computer Science and Electrical Engineering
University of Maryland Baltimore County
Baltimore MD 21250 USA
{anul,mitsl,finin,joshi,ypeng}@cs.umbc.edu

Abstract. We describe an architecture for persistent personal
agents (PPAs) designed to work on the semantic web. A PPA
assists its user with everyday activities, such as maintaining a
calendar, coordinating activities with other people, and answer-
ing simple queries on their behalf. Our PPAs use the semantic
web languages RDF and DAML+OIL to define and use ontolo-
gies, to understand markup on web resources, and to encode the
content in ACL messages exchanged with other PAs. We demon-
strate the feasibility of our approach through a prototype which
receives event recommendations, reasons about them, shares in-
formation with peer PPAs, and decides whether or not to add
events to its user’s calendar. The PPAs encode their knowledge
in Jess and use FIPA languages, protocols and infrastructure
to communicate with other agents. An extension to the FIPA
framework allows the DAML Query Language DQL to be used to
query other agents. A discovery mechanism has been developed
that allows PPAs to find and negotiate information exchange
with peer PPAs. We also present a simple approach to reason-
ing about the trust-worthiness of a query and allow a PPA to
infer whether the requested information could be shared based
on the user’s privacy preferences.

1 Introduction

The Semantic Web is a vision to simplify and improve knowledge reuse on the
Web. Efforts are underway to define the format and meaning of the language
of such a Semantic Web. The structured data on the Semantic Web could serve
both humans and computers, while a part of it will be formalized knowledge and
will be used only by machines. The EU-NSF strategic workshop report on the
semantic web[10] identifies ”the applications for the masses such as intelligent
personal assistants (like being the travel assistant)” as one of the key applica-
tions enabled by the semantic web. Personal assistants gather and filter relevant
information and composes it into a coherent picture with regard to the user’s
preferences.

* This research was supported in part by DARPA contract F30602-97-1-0215.



To realize the real power of the Semantic Web, software agents that collect
Web content from diverse sources, process the information and exchange the
results with other agents need to be created. Software agents, characterized by
their sense of autonomy, the agent’s ability to control its own behavior to a
certain degree and other social abilities such as the ability to exchange data
with other agents, responsiveness to the environment, and pro-activeness are
expected to perform roles on the Semantic Web similar to what an average
user performed on the conventional web. The effectiveness of such agents will
increase exponentially as more machine-readable web content and automated
services become available. As described in [14], agents could help humans to cope
with supposed information overload and to assist users in performing repetitive,
common tasks.

A personal software assistant equipped with a model of its user’s preferences
operating on the Semantic Web can help to automate a wide range of activities.
This could range from identifying content on the web useful to the user(from
recommender agents) to managing the user’s calendar. For the personal agents
to successfully operate over the Semantic Web, it should possess the ability to
process and manipulate the semantic markup, maintain an internal knowledge
base and draw inferences from the accumulated knowledge. Inference is one of
the driving principles of the Semantic Web, because it will allow the creation of
software applications that derive a use from the Semantic Web data.

Personal agents offer a means for bringing the notion of personalization to the
user’s side with the ability to identify data directly from the Semantic Web and
from other agents operating over the Semantic Web based on its internal model
for the user. Thus the agent paradigm would allow a de-centralized, distributed,
peer-peer type of an architecture in the place of conventional web-based infor-
mation providers and recommender systems that act like centralized systems for
disseminating information.

In this paper, we present our ongoing work involving Personal Agents and
Semantic Web technologies. Our model architecture for a personal assistant that
manipulates the user’s calendar after reasoning over the information in its knowl-
edge base and the information obtained from sources like the Xtalks system[9],
peer Personal Agents and other Semantic Web resources, is described. Scenar-
ios involving collaboration between peer Personal Agents or ‘buddy’ agents are
envisioned and described in detail. The Personal Agent and the other agents
in the multi-agent system are implemented using the Java Agent Development
Environment(JADE)[3]. The Knowledge base of the agent consists of axioms
and ontologies written in semantic mark-up languages, rules are expressed using
the Java Expert System Shell (JESS)[13] and the agents interact using FIPA
Interaction protocols and DAML+OIL[20] for the content.

Subsequent sections describe the notion of Personal Agents and Semantic
Web in more detail, describes the functioning of the Personal Agent and the
other agents in the multi-agent system. Agent discovery mechanisms that en-
ables an agent to identify the communities that its user would want to exchange
any information with or call for simple solicitation and recommendation of infor-



mation are explained. A formal and expressive querying mechanism that uses the
DAML Query Language(DQL)[19] for query description is also illustrated. We
also present a reasoning system that helps a PA reason over the trust-worthiness
of a query and decide if the the requested information could be shared with the
requestor based on the user’s privacy preferences.

2 Background and Related Work

2.1 Personal Assistants

A Personal Assistant(PA) is a software agent that acts semi-autonomously for
and on behalf of a user, modelling the interests of the user and providing services
to the user or other users and PAs as and when required. It is unobtrusive but
ready when needed and rich in knowledge about the users and their areas of
work [32]. This is the generalized notion of a Personal Agent from the agents
standards body, Foundation for Intelligent Physical Agents (FIPA) [11].

Learning Personal Agents have been used for the information filtering from
the WWW [18], [2], [29]. In case of the WebWatcher [2] and the agent described
in [29] the agent tries to find an ”interesting” link in a Web Page that has already
been pre-selected by a user. Similarly in News-weeder the user is subscribed to
news-groups which are of interest to the user and have a large proportion of
relevant articles.

In [27] the authors investigate how a Personal Agent could be structured
to acquire a user profile, which enables it to distinguish between relevant and
irrelevant documents in text form on the WWW. This user profile is then used
to accomplish the task of notifying users about conference announcements and
requests for proposals that match their research interests. WebMate [8] is a per-
sonal software agent that accompanies a user when he browses and searches and
provides intelligent help. It learns user interests incrementally and automatically
provides documents that match the user interests

The RETSINA (Reusable Environment for Task-Structured Intelligent Net-
worked Agents) Calendar Agent(RCAL) [28], works symbiotically with Microsoft’s
Outlook 2000 and the Semantic Web. It can parse and reason about schedules,
such as conference programs or recurring appointments that are marked up on
the Semantic Web. RCAL can import and store schedules within Outlook 2000
and refer to these events to check if they have been updated, or to see if the user
is free at a given time slot.

In general, the functions of a Personal Agent can be viewed as carrying
out one or more of the following activities: Managing a user’s diaries, filtering
and sorting email, managing a user’s desktop environment, managing a user’s
activities, plans and tasks, locating and delivering multimedia information, rec-
ommending entertainment, purchasing desired items, and, planning travel. The
reference architecture of a Personal Agent as described by FIPA is shown in
Figure 1



o *‘ﬂE"l b
B IR
3
g #genda | Direcioy P”;:IL g 5
z H Bt
o ]
Usst et T l—'—‘ § ifermi g
2 e 2
E - Inferedica Engine - g ;,E
& £
| f
' Agert-Aget nleriace
\ : J oL

Fig. 1. FIPA Personal Assistant Reference Model

2.2 DAML and the Semantic Web

The Semantic Web is an extension of the current web in which information is
given well-defined meaning, better enabling computers and people to work in
cooperation. The primary component of such a Semantic Web is the content
available. Extensible Markup Language(XML)[6] and the Resource Description
Framework(RDF)[21] form the underlying basis for representing such content.
XML allows users to add arbitrary structure to their documents but says nothing
about what the structures mean. Meaning is expressed by RDF, which encodes
it in sets of triples, each triple being rather like the subject, verb and object of an
elementary sentence. The third basic component of the Semantic Web comprises
collections of information called ontologies. In philosophy, an ontology is a theory
about the nature of existence, of what types of things exist. An ontology, in the
context of the Semantic Web, is a document or file that formally defines the
relations among terms [5]. The different layers of the semantic web as adapted
from [4] are shown in Figure 2

The DAML+OIL[20] language is an extension to XML and the Resource
Description Framework (RDF). The language provides a rich set of constructs
with which to create ontologies and to markup information so that it is machine
readable and understandable. It leverages and extends the expressability of RDF
and RDF-Schema (RDFS) [33].

ITTalks [9] is a web portal offering access to information about talks, semi-
nars and colloquia related to information technology (IT). It is organized around
domains, which typically represent event hosting organizations such as univer-
sities, research laboratories or professional groups, and which are represented
by independent web sites. ITTalks utilizes DAML+OIL for its knowledge base
representation, reasoning, and agent communication. With information denoted
in a semantically machine-understandable format like DAML+OIL[20], the com-



Rules ‘ Trust ‘

Data Proof |

g

Data Logic g
v

‘ Ontology vocabulary | 5

o

ROF + rdfschema 2!

Unicode

Fig. 2. Layers on the Semantic Web

puter can deduce additional information, a task which is difficult in a traditional
database system.

The agent system described in this work derives and complements the work
described in [9]. While [9] describes the notion of Semantic Web portals and
agents improving the utility of each other, this work describes a Personal Agent
architecture in the context of Semantic Web portals and its notion of being a
semantic recommender residing at the user side and performing tasks on the
user’s behalf including collaboration with peer Personal Agents.

2.3 Rule Based Systems for Agents

[34] describes an end-user programming system that makes it easy for users
to state rules for their agents to follow. The system automatically determines
conflicts between rules and guides users in resolving the conflicts. The authors
propose that much of the knowledge that such an agent needs can be expressed
as rules of the form when these conditions are true, take these actions. They
represent rules using CLASSIC, a description logic which permits users to create
structured descriptions of sets of objects (known as concepts) and individual
objects.

DAMLJessKB [15] facilitates reading DAML files, interpreting the informa-
tion as per the DAML language, and allowing the user to query on that infor-
mation. The software leverages the existing RDF API (SiRPAC) to read in the
DAML file as a collection of RDF triples. It uses Jess (Java Expert System Shell)
as a forward chaining production system, which exercises the rules of the DAML
language on the data facts. The basic flow of this library is as follows as stated
in [15]:

— Read in Jess rules and facts representing the DAML language

— Have RDF API read in the DAML file and create SVO triples

— Take triples and assert into Jess’ rete network in VSO form, with some slight
escaping of literals and translation



— Hawve Jess apply the rules of the language to the data
— Apply the agent’s rules, queries, etc
— Serialize relevant facts back to DAML

3 System Design

Our Personal Agent architecure provides the basic infrastructure for manipulat-
ing the user’s schedule, an internal representation of the agent’s knowledge in
its knowledge base(KB) and reasoning with information in its KB obtained from
sources like the semantic web, peer Personal Agents and other forms of recom-
mender agents. The utility of such a Personal Agent is in making the knowledge
available through such sources of direct value to the end-user.

To demonstrate the utility and working of such a Personal Agent, complex
scenarios involving recommender agents from the semantic web and peer Per-
sonal Agents were designed. In the current model of the web, various types of
recommender systems are prevalent that recommend different things ranging
from research papers [24][23] to TV content [17]. In many such systems, the user
profile information is developed through the use of implicit machine learning
techniques or by collecting explicit user preferences or in most cases, a combi-
nation of both. Such systems are limited by the amount of information that the
user provides voluntarily. It would be reasonable to assume that an user would
not want to divulge his complete set of preferences in a particular domain for
want of privacy and other security considerations such as the amount of trust the
user places on such a recommender system. And infact such systems are bound
to be constrained by the scalability factor, in terms of the amount of preferences
it could store.

One good solution to this problem would be to introduce the notion of a
Personal Agent that resides at the side of the user, is trust-worthy and has a
more complete model of the user’s preferences in a particular domain making it
much more capable of delivering the correct recommendations to its user. The
model here would be that a third-party recommender system is not aware of
specific user preferences but works with a more general model with another level
of filtering being performed by the user’s personal agent. A simple example of
such a situation would be a talk-recommender system like ”Xtalks” [35] being
aware of the fact that the user is very interested in talks in the area of wireless
computing but not the fact that the user never likes to attend talks by Mr. Foo
Bar on the subject.

Also, conventional web-based information providers and recommender sys-
tems act like centralized systems disseminating information. The Personal Agent
model allows a de-centralized, distributed, peer-peer type of an architecture. For
instance, a system like ‘Xtalks’ would recommend talk announcements only to
registered users. But a peer-peer multi-agent model would provide capabilities
for even unregistered entities to receive the information. The multi-agent system
designed and implemented to demonstrate these ideas consist of the following
agents - the user’s personal agents, recommender agents like the ‘Xtalks’ Agent
and information agents like the ‘Mapquest’ Agent.



3.1 The Xtalks Agent

This agent acts as a third-party recommender agent that recommends talk an-
nouncements to registered users. Users register their Personal Agents with the
Xtalks agent to have them receive talk announcements. Also, users can express
their interests, schedule and location constraints through a DAML profile. The
Xtalks agent monitors the Xtalks [35] system for new talk announcements. When
new talk announcements get added to the system, the Xtalks agent informs reg-
istered Personal Agents about the talk announcement.

3.2 The Mapquest agent

The ‘Mapquest’ agent built around the Mapquest [22] system provides informa-
tion about distance, driving time and driving directions between two addresses.
The required information is scraped from the Mapquest [22] system, massaged
into a form suitable for inter-agent communication and sent to the request-
ing agents. The Mapquest agent exposes its service using the FIPA Request
Interaction Protocol[l]. In the future, one could assume that web-pages from
Mapquest [22] are augmented with semantic markup or the information being
available as a web-service thereby eliminating the need for an intermediary agent
to convert web-page content into agent-friendly representations.

3.3 The User’s Personal Agent

The central entity of the system is the user’s Personal Agent which reasons with
all the knowledge input from different sources and arrives at meaningful conclu-
sions on behalf of the user. The Personal Agent is equipped with a ‘brain’ that
essentially stores various types of information in the form of triples and comprises
of a rule-based reasoning engine that manipulates the information in its KB to
draw meaningful conclusions. In addition to interacting with recommender sys-
tems like Xtalks, the personal agent also collaborates with peer Personal Agents
both recommending and receiving recommendations about talk announcements
and arriving at a conclusion based on the following factors.

— User’s interest in the talk announcement topics

— User’s schedule constraints (both in terms of availability and feasibility to
attend the talk)

— Decisions of other Personal Agents the user would like his Personal Agent
to interact with in arriving at o decision

User’s interest in the talk: The user agent is assumed to have a good model
of the user’s preferences for the particular domain, in this case, topics in Com-
puter Science. It is available to the Personal Agent through an explicit DAML
profile in which the user’s interests are represented as topics in the ACM topic
hierarchy[25]. The talk announcements are also available as DAML URIs with
the topics marked up from the ACMtopic hierarchy. Rules specifying the follow-
ing statements are loaded in the brain which help the agent in determining the
interest of the user in that talk



— If the user is interested in a particular topic in the hierarchy, he is also
interested in all the sub-topics of that topic

— If the user is interested in a particular topic and the topic of the talk happens
to be the same, then the user is interested in the talk.

To determine all the sub-topics of a topic in the ACM hierarchy, a rule of
the form, ”The sub-topics of a sub-topic of a (parent) topic are also sub-topics
of the (parent) topics” is inserted in the reasoner .

User’s schedule constraints: The following conditions are checked to deter-
mine the feasibility of scheduling the talk on the user’s calendar.

— Whether the user has an empty slot in his calendar for the period of that talk

— Whether the talk location is reachable in available time from the location of
the previous appointment of the user

— Whether the next appointment of the user (after the talk) is reachable from
the location of the talk in available time.

The time calculations are computed through interaction with the Mapquest
Agent.

Peer-Personal Agents Interaction: The notion of interaction between peer
Personal Agents draws its roots from the concepts of instant-messaging and its
popularity in helping to form online communities. This agent interaction scenario
tries to mimic the real world phenomena of forming buddy lists and engaging
in group messaging. The user specifies the set of so called ‘buddy-agents’ which
represent the group of Personal Agents of the user’s buddies.

As in any instant-messaging/buddy-list application, the formation of buddy-
list is preceded by a set of subscription and reply messages that establish the
identity of the buddies with each other. The user could specify his list of buddies
through publicly accessible DAML-URIs that specify agent details such as names
and transport addresses. A Personal Agent can locate and subscribe to peer
Personal Agents through the DAML URIs thereby expressing their willingness
to both recommend and accept talk recommendations from the peer agents.

Thereafter, Personal Agents can exchange recommendations and decisions
among themselves. The following are the responses an agent can send in the
reply to a request from another Personal Agent regarding a decision to attend a
particular talk.

— if talk does mot match interest, response value is 0.

— if talk matches interest but there is schedule conflict, response value is 1.

— if talk matches interest and passes Buddy Recommendation Test(*), response
value is 2.

— if user confirms about his willingness to attend talk, response value is 3.

(*) The buddy recommendation test succeeds if average score received from
buddy agents exceeds a threshold. In this case the threshold could be the median
value of 1.5.



There is a possibility of an occurrence of a dead-lock. A simple scheme em-
ployed to avoid deadlocks is, whenever an agent receives a query about a talk
that it itself is waiting for replies from buddy-agents, then it immediately re-
turns a special value of 1.5 (middle of all levels). This might also be used when
the agent receiving the recommendation is not aware of the talk that is being
recommended and hence does not really have a decision. Note that this request
for a decision could itself act as a talk recommendation when it happens that
the receiving agent is not aware of the talk.

In addition to multi-agent interactions to arrive at a decision in scheduling
a talk, the Personal Agent can also be loaded with special rules to over-ride the
default behavior.

Such rules could be of the following form: (These are merely examples and
are in no way an exhaustive set of rules that can possibly be derived in such
a situation. These examples are just to show the richness in adopting such an
approach)

— If the talk is on a specific topic, schedule the talk irrespective of other con-
siderations.

— If the speaker of the talk is a specific person, schedule the talk irrespective of
other considerations.

— If a specific buddy of mine decides to attend the talk, schedule the talk if
the talk is of interest to me, irrespective of what my other buddies decide,
provided there are no schedule conflicts.

The Personal Agent also exhibits a pro-active kind of behavior in some situ-
ations. For example, if the user had specified his home location to be Baltimore,
a system like ‘Xtalks’ would recommend talks to the user in and around Balti-
more oblivious of a user’s travel plans. In such situations, the Personal Agent
monitors the user’s calendar to figure out if it encounters a situation wherein
the user has an appointment scheduled on the calendar that is away from the
default home location, indicating that the user is travelling. It might also happen
that the Personal Agent would have never received a talk recommendation for a
talk happening away from the user’s home location. In such a case, the Personal
Agent queries the ‘Xtalks’ system for talks that could be happening at the new
location.

A situation wherein there is some cancellation of a particular appointment
from the user’s calendar indicating that a potentially interesting talk could not
have been scheduled because of earlier schedule conflict is also taken care of.
Given the model of the Personal Agent, the decision of not scheduling such a talk
because of schedule conflicts resides in its brain. So, the Personal Agent requests
for information from the ‘Xtalks’ agent for that particular talk. Alternately, the
Personal Agent adopts a lazy approach and request for talks during the period
of the cancelled appointment and try to schedule it on the user’s calendar. Such
functionalities are modelled as additional plug-ins that augment the capabilities
of the personal agent.



4 Key Implementation Insights

4.1 Agent Interaction Mechanisms

All the agents are implemented using the Java Agent Development Environment
(JADE). JADE [3] is a software framework to develop agent applications in
compliance with the FIPA specifications for interoperable intelligent multi-agent
systems. JADE can be considered an agent middle-ware that implements an
Agent Platform and a development framework. Inter-Agent communication is
through the FIPA-ACL [30] which specifies a standard message language by
setting out the encoding, semantics and pragmatics of the messages. Each agent
resides in its own individual platform with agent communication enabled using
the Internet Inter-ORB Protocol (IIOP) and communicates with agents in other
platform using the IIOP transport mechanism provided by JADE.

Ktalks
Interface

o o
FIPA Request 2,
Response Protocal ki
Mapquest Agent

. Scenarios
Perindic g 12
¥ "
erying FIPA Request
! Y Response Protocol
| Xtalks Agent
1
I \
1
1
| g

1 — Xtalks Announcement

2 —User Agent Personal =
Soliciatation = Agent (1) ¥ s
y i .
3—Buddy List K o \‘
.
& 3
2 g
» M »
Personal Personal
Agent (2) Agent (3)

Fig. 3. Multi-Agent Scenario and Interactions

The Xtalks agent also exposes a query interface through an ontology, which
defines the set of supported queries that an agent could pose to the Xtalks agent.
Different Personal Agents exchange talk recommendations as defined by the
buddy list ontology. Messages could be either talk recommendations, which are
also used by the Xtalks agent or a ‘query-if’ in FIPA-ACL language act, asking
the other agent whether (it believes that) a given proposition is true [31]. The
sending agent requests the receiver to inform it of the truth of the proposition.
In this case, the proposition is the sending agent’s belief regarding the interest
of the other agent (user) in the talk.

Thus all agent interactions use DAML4OIL as the content language in the
FIPA-ACL message. A Personal Agent can acquire more knowledge from its peer



Personal Agents through queries. As a step towards framing a generalized peer
to peer querying mechanism, we have developed an ontology[12] for represent-
ing a query in DAML+OIL, based on the DAML Query Language (DQL)[19].
Queries are framed using this ontology and the query descriptions are packed
into FIPA ACL messages. The interaction between the agents is modeled after
the FIPA Request Interaction Protocol[1]. This mechanism would enable peer
personal agents to query each other about any information that an agent can
store in its knowledge base. Examples of talk recommendation messages and
the query-if messages that confirm to the buddy-ont [26] ontology are provided
below.

Talk recommendation received from xtalks agent:
<rdf:RDF
xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#"
xmlns:daml="http://www.daml.org/2000/10/daml-ont#"
xmlns="http://daml.umbc.edu/ontologies/buddy-ont#”
>
< Talk-Recommendation>

<URL>http://www.ittalks.org/q.link/daml/ 20020613131516< /URL>
< /Talk-Recommendation>
< /rdf:RDF>

A buddy recommendation-request:
<rdf:RDF
xmlns:rdf="http://www.w3.0rg/1999/02/22-rdf-syntax-ns#"
xmlns:daml="http://www.daml.org/2000/10/daml-ont#”
xmlns="http://gentoo.cs.umbc.edu/subhash/buddy-ont#”
>
< Talk-Interest>
<URL>http://www.ittalks.org/q.link/daml/ 20020613131516< /URL>
<Value>3< /Value>
< /Talk-Interest>

< /rdf:RDF>

The Query consists of a Query Pattern, an answer KB pattern, an indication
of the may-bind /must-bind variables and optionally consists of a query premise,
an answer bundle bound size and a justification request. A Query Pattern is
viewed as a collection of DAML+OIL expressions, in which some literals and/or
URIRefs are replaced by variables. An answer to the query contains a binding
of a URIRef or a literal to each of the must-bind variables of the query pattern
and zero or more of the may-bind variables. The variables are bound to terms
which occur in the DAML+OIL language or in the answer KB; the answerKB
is the knowledge base which contains the query pattern with all the variables
in the query replaced by the inferred bindings if a binding exists, and all other
variables replaced by new RDF blank nodes.

4.2 The Personal Agent’s Reasoning System

Our Personal Agent architecture is independent and easily extensible, with new
capabilities being added seamlessly. The personal agent can interpret information
in the DAML+OIL[20] language. Internally, DAMLJessKBJ[15] is used to read in
DAML file and interpret its contents which are later asserted into Jess[13]. The



original version of DAMLJessKB represents the interpreted facts in the (Prop-
ertyValue subclass man person) format. In our system, an alternative represen-
tation of the facts has been introduced. Ordered facts such as (property subclass
man person) are actually equivalent to an unordered fact such as (property (_data
subclass man person)), i.e., the slot data is all stored in one multi-slot. Matching
data in multi-slots is less efficient than matching data in normal slots because,
there exists an extra indirection through an array. Hence we chose to store the
facts in an unordered format using normal slots, which looks like (property (p
subclass) (s man) (o person))). We specifically chose Jess as the rule inference
engine since it is optimized for these kind of unordered facts. Also, Jess is written
in Java and hence easily integrates with the Personal Agent and can easily be
packaged and deployed. The key idea with our Personal Agent architecture is
that user could download and add components developed by third-party vendors
that the user trusts which can augment the functionality of the Personal Agent.
For example, a Personal Agent with components designed for interaction with
a ‘Xtalks’ agent could be augmented with an ‘Amazon’ component that helps
it interact with an ‘Amazon’ agent to receive different kinds of recommenda-
tions such as books, movies etc., The most rudimentary way of envisioning a
plug-in would be as a JADE behavior that the agent can pick-up and execute
at runtime. In such a situation, a plug-in manager would simply search a pre-
configured directory for new behaviors and add them to the list of behaviors
currently executed by the Personal Agent.

The Personal Agent interacts with the user through Microsoft Outlook. The
user’s calendar is assumed to be stored on Microsoft Outlook. Additionally, any
appointment that the Personal Agent schedules for the user is stored on the
Microsoft Outlook calendar for the user. The java-based agent interacts with
Microsoft Outlook using Bridge2Java [7]. Bridge2Java is a tool that allows Java
programs to communicate with ActiveX objects. It allows easy integration of
ActiveX objects into a Java Environment. Using the Java Native Interface and
COM technology, Bridge2Java allows an ActiveX object to be treated just like
a Java object.

Another useful user-interface extension explored and developed with the Per-
sonal Agent through Microsoft Outlook is the ‘Outlook Today Extensions for
Xtalks’ [16]. This downloadable component offers a user interface that displays
both the list of most recent talks announcements available from Xtalks and
those scheduled by the Personal Agent in the user’s calendar serves to show the
filtering done by the Personal Agent through its internal reasoning process.

Exchange of information among peers: The Personal Agent possesses
various kinds of data in its KB: some persistent data, that is present all through
its lifetime and some dynamic data acquired through various interactions and
reasoning during its lifetime. This information might be useful to the peer per-
sonal agent’s and hence could be shared with the interested party. While in-
teractingwith a peer, the PA will encounter a situation when it would have to
determine the trust-worthiness of the requested information exchange. Though
its impossible for a PA to come up with the decision emulating it’s user’s pref-



erences, a simple and straight-forward mechanism that would allow the PA to
reason over the information requested and the user’s privacy preferences stored
in its KB could help the PA come to a conclusion. In the subsequent paragraphs,
we briefly describe the mechanism that we implemented for the PAs to reason
over in-coming queries to determine the trust-worthiness of the potential infor-
mation exchange. The mechanism allows the PA to decide if it should send a
relevant answer to the query or to send a refuse message.

The facts in the PA’s Knowledge base are categorized as sharable, non-
sharable or sharable with the user’s consent. In our model architecture, most
of the personal information, past/present appointments and class schedule in-
formation of the user are classified as sharable facts. Non-sharable facts consist
of confidential information. Facts such as the current location (determined by
sensors), future appointments etc. are categorized as facts sharable with user’s
consent. The PA on receiving a query responds based on the type of information
requested.

— If the information is categorized as sharable, the PA replies with a relevant
answer immediately

— If the information is categorized as not sharable, the PA sends a refuse mes-
sage

— If the information is categorized as sharable with user’s consent, the PA
sends a mail to its user about the request and replies according to the user’s
response.

We also framed various other rules based on the user’s relationship with the
requestor and some other rules based on the requestor’ role. To enable the PA to
identify the appropriate rules to execute, we have come up with a set of rules and
their order of execution. Some of the implemented rules based on the relationship
with the requestor are mentioned below:

— If the requestor is o family member share any requested information.

— If the requestor is a friend share the sharable information, schedule informa-
tion and appointments.

— If a colleague share only sharable information.

— If Advisor, share SSN, schedule information along with sharable information.

— If academic department staff member, share sharable information, SSN, class
schedule etc.

In the system, the above mentioned rules are expressed as Jess rules[13]. A
Cache component is made use of to keep track of the rejected queries, to allow
the PA determine the urgency of the query, possibly based on the number of
times the PA got the same query. For example: A simple rule like ‘f the query
is asked for the third consecutive time, answer to the query with user’s consent’
is applied to exploit the information in the cache.



4.3 Agent Discovery Mechanism

Before collaboration among a community of agents, an important step in forming
such a community is agent discovery. We have implemented a discovery mecha-
nism which in many ways is similar to buddy look-up like mechanisms in popular
instant messaging systems. Instant messaging applications provide a feature to
search people on the web, based on theirs names, email-ids etc. However all
of these instant messaging systems rely on databases for finding matches. Our
discovery mechanism uses existing infrastructure in the form of search engines.
Search engines are engineered to handle massive amounts of information and by
using search engines to locate agents our technique inherits scalability. Currently
our technique can discover agents based on their owner’s name.

Our approach requires that the agent owner has a homepage and his/her
homepage shows up as a document in the first ‘n’ results(in our implementaion,
we took n=10), when the owner’s name is entered as a query in the search engine
such as Google. Further we also require a HTML META tag to be embedded in
the homepage. This tag contains a pointer to the user’s profile in DAML+OIL.
The entire mechanism consists of two phases- Agent Discovery and Agent Sub-
scription. For the purpose of simplicity we refer to the person initiating the
discovery as the user and the person who owns the agent being discovered as the
owner. The following steps are involved. (1) User enters the name of the agent’s
owner using the agent’s GUI (2) The name is forwarded to Google as a query.
(3) The DAML profile of the owner is obtained from his/her homepage using the
META tag. (4) The profile contains name, organization and other details about
the agent owner. It also contains agent contact information (ip + port). (5) All
matching results are displayed to the user. (6) Based on the information gath-
ered the appropriate agent/owner is chosen. (7) A FIPA Subscription Request is
sent to the owner’s agent. (8) The owner’s agent on receiving the request sends
its owner an email. This mail is in the form of a HTML. The e-mail contains
user’s details and hyperlinks to capture the owner’s decision. (9) In reponse to
the owner’s response a corresponding FIPA INFORM message is sent back to
the user’s agent.

5 Conclusion

The Semantic web is a vision to augment the current web with formalized knowl-
edge and data that can be processed by computers thereby shifting the focus
away from a human-centered interaction. Various technologies including agents,
ontologies and information management are currently being developed to make
the Semantic Web a reality. We have presented an example architecture for a
Personal Agent working on the Semantic Web collaborating with recommender
agents and peer Personal Agents. The Personal Agent operates using a rule-
driven brain operating on Semantic Web data and the user profile. The multi-
agent system interaction through DAML+OIL naturally extends the language
for knowledge representation to being the language for communication. The sys-
tem in general demonstrates the notion for future systems that would operate



on the Semantic Web and integrate well with day-to-day software that the user
utilizes.

As the Semantic Web language evolves, agents and reasoners operating on
them need to evolve constantly. The rule based JESS reasoner could be adapted
to be more "fuzzy” to more closely model real-world decision making process.
Though the agent operates with rigid rules, schemes by which a user can easily
convey these rules in a language that the agent understands is the key for the
success of any personal assistant.

The notion of intelligent Personal Agents never really took-off in the context
of the web as it stands today. But the emergence of the Semantic Web promises
to change that, for, the concepts of intelligent agents and the Semantic Web
are a synergy. Effective and private access to user’s desires, preferences, and
habits coupled with information garnered from the Semantic Web promises to
offer potent personal assistants such as the one described in this paper, that are
bound to make life simpler for their masters.

6 Acknowledgments

We would like to thank Subhash Kumar, a member of the UMBC alumni, cur-
rently with IBM, for his significant contributions to this work. The work pre-
sented in this paper has been extended over his Master’s Thesis.

References

1. Fipa request interaction protocol specification. World Wide Web, http://www.
fipa.org/specs/fipa00026/XC00026F .html.

2. Robert Armstrong, Dayne Freitag, Thorsten Joachims, and Tom Mitchell. Web-
watcher: A learning apprentice for the. In AAAI Spring Symposium on Information
Gathering, pages 6-12, 1995.

3. Fabio Bellifemine, Agostino Poggi, and Giovanni Rimassa. Jade- a fipa-complient
agent framework. In Proceedings of PAAM’99, pages 97-108, 1999.

4. Tim Berners-Lee. The semantic web vision, 2000.

5. Tim Berners-Lee, James Hendler, and Ora Lassila. The Semantic Web. Scientific
American, 2001.

6. T. Bray, J. Paoli, and C. Sperberg-MacQueen. Extensible Markup Language.
http://www.w3.org/TR/1998/REC-xm119980210, 1998.

7. Bridge2Java. World Wide Web, http://www.alphaworks.ibm.com/tech/
bridge2java.

8. Liren Chen and Katia Sycara. WebMate: A personal agent for browsing and search-
ing. In Katia P. Sycara and Michael Wooldridge, editors, Proceedings of the 2nd
International Conference on Autonomous Agents (Agents’98), pages 132-139, New
York, 9-13, 1998. ACM Press.

9. R. Scott Cost, Tim Finin, Anupam Joshi, Yun Peng, Charles Nicholas, Harry Chen,
Lalana Kagal, Filip Perich, Youyong Zou, Sovrin Tolia, and Ian Soboroff. Ittalks:
A case study in the semantic web and daml. In proceedings of the International
Semantic Web Working Symposium, July 2002.



10.
11.
12.
13.
14.
15.
16.
17.
18.
19.
20.

21.

22.
23.

24.

25.

26.

27.

28.

29.

30.

31.

32.

33.

34.

35.

EU-NSF. Research challenges and perspectives of the semantic web - report from
the joint european commission and national science foundation strategic workshop
on the semantic web, 2001.

FIPA. World Wide Web, http://www.fipa.org/.

An Ontology for representing DAML Queries. World Wide Web, http://daml.
umbc . edu/users/dqlontology.daml.

Ernest J. Friedman-Hill. Jess, the expert system shell for the java platform, 2002.
M. Hoyle and C. Lueg. Open sesame: A look at personal assistants, 1997.

Joe Kopena. Damljesskb, http://plan.mcs.drexel.edu/projects/
legorobots/design/software/damljesskb/.

Subhash Kumar. Outlook today extensions for xtalks. World Wide Web, http:
//daml .umbc.edu/download/.

K. Kurapati, S. Gutta, D. Schaffer, J. Martino, and J. Zimmerman. A multi-agent
tv recommender.

Ken Lang. NewsWeeder: learning to filter netnews. In Proceedings of the 12th
International Conference on Machine Learning, pages 331-339. Morgan Kaufmann
publishers Inc. San Mateo, CA, USA, 1995.

DAML Query Language. World Wide Web, http://wuw.daml.org/2002/08/dql.
DARPA Agent Markup Language and Ontology Inference Layer. World Wide
Web, http://www.daml.org/language.

O. Lassila and R. Swick. Resource Description Framework. http://www.w3.org/
TR/1999/REC/rdf-syntax-19990222, 1999.

Mapquest. World Wide Web, http://wuw.mapquest. com.

S. McNee, I. Albert, D. Cosley, P. Gopalkrishnan, S.K. Lam, A.M. Rashid, J.A.
Konstan, and J. Riedl. On the recommending of citations for research papers. In
Proceedings of ACM 2002 Conference on Computer Supported Cooperative Work
(CSCW2002), New Orleans, LA, pages 116-125, 2002.

Stuart E. Middleton. Exploiting synergy between ontologies and recommender
systems.

ACM Classification Ontology. World Wide Web, "http://daml.umbc.edu/
ontologies/classification.

Buddy List Ontology. World Wide Web, http://gentoo.cs.umbc.edu/subhash/
buddy-ont.

A. Pannu and K. Sycara. A learning personal agent for text filtering and notifica-
tion, 1996.

Terry R. Payne, Rahul Singh, and Katia Sycara. Calendar agents on the semantic
web., 2002.

M. Pazzani, L. Nguyen, and S. Mantik. Learning from hotlists and coldlists: to-
wards a www information filtering and seeking agent, 1995.

FIPA ACL Message Structure Specification. World Wide Web, http://www.fipa.
org/specs/fipa00061/XCO0061E .html.

FIPA Communicative Act Library Specification. World Wide Web, http://www.
fipa.org/specs/fipa00037/.

FIPA Personal Assistant Specification. World Wide Web, http://ww.fipa.org/
specs/fipa00083.

S. Staab, M. Erdmann, A. M adche, and S. Decker. An extensible approach for
modeling ontologies in rdf(s), 2000.

Loren G. Terveen and La Tondra Murray. Helping users program their personal
agents. In Proceedings of ACM CHI 96 Conference on Human Factors in Comput-
ing Systems, volume 1, pages 355-361, 1996.

Xtalks. World Wide Web, http://wwu.ittalks.org.



