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ABSTRACT 
One of the most critical steps to integrating heterogeneous e-Business applications using different 

XML schemas is schema mapping, which is known to be costly and error-prone. Past research on 

schema mapping has not made full use of semantic information imbedded in the hierarchical 

structure of the XML schema. In this chapter, we investigate the existing schema mapping 

approaches and propose an innovative semantic similarity analysis approach to facilitate XML 

schema mapping, merging and reuse. Several key innovations are introduced to better utilize 

available semantic information. These innovations includes: 1) a layered structure analysis of 

XML schemas, 2) layer-specific semantic similarity measures, and 3) an efficient semantic 

similarity analysis using parallel and distributed computing technologies. Experimental results 

using two different schemas from a real world application demonstrate that the proposed 

approach is valuable for addressing difficulties in XML schema mapping.  

 

 

INTRODUCTION 

The electronic business (e-Business) requires interoperability between different e-Business 

systems for the seamless exchange of information either within or across enterprises. One of the 

most critical steps to achieving a successful integration and interoperability between 

heterogeneous e-Business systems is schema mapping, which is known to be costly and error-

prone. Schema mapping is, roughly speaking, to identify how information can be shared between 

heterogeneous schemas and how they can be mapped, merged, or reused for integration and 

interoperability of their e-Business systems. 

 

A schema typically defines the syntax of business documents (or instances), but it also contain 

semantic information, i.e., the meaning of elements in business documents. Sometimes, the 

schema refers to other semantic sources such as ontology, dictionary, or documentation for 

additional semantic information. The typical way for schema mapping is to identify semantically 

identical or similar elements between the two schemas. Many approaches have been proposed, 

but the challenge is still daunting because of the complexity of schemas and immaturity of 

technologies in semantic representation, measuring, and reasoning. 



 

The goal of this chapter is to investigate the existing schema mapping approaches and to propose 

an innovative semantic similarity analysis approach to facilitate XML schema mapping, merging 

and reuse. Several key innovations are introduced to better utilize available semantic information. 

These innovations includes: 1) a layered structure analysis of XML schemas, 2) layer-specific 

semantic similarity measures, and 3) an efficient semantic similarity analysis using parallel and 

distributed computing technologies. Experimental results using two different schemas from a real 

world application demonstrate that the proposed approach is valuable for addressing difficulties 

in XML schema mapping.  

 

 

BACKGROUND 

The Challenges for Data Mappings between Heterogeneous XML Schemas 

Over the past decades, the eXtensible Markup Language (XML) has emerged as one of the 

primary languages to help information systems in sharing structured data. Especially, XML 

schemas have been widely used in the e-Business for enterprises to exchange the business 

documents with their partners in a supply chain. The popularity of the XML and XML schema 

leads to an exponential growth of Business-to-Business (B2B) transactions. This success, 

however, leads to several problems: 1) individual enterprises often create their own XML 

schemas with information most relevant to their own needs; 2) different enterprise groups define 

different but similar XML schemas; and 3) the enterprises often extend or redefine the existing 

standard XML schema for their own needs. To successfully integrate heterogeneous e-Business 

systems, therefore, it is now critical to integrate their respective different XML schemas. This is 

what is called schema mapping. 

 

The schema mapping is the process of identifying if and how two schemas are semantically 

related (Miller et al, 1994; Rahm & Bernstein, 2001; Shvaiko & Euzenat, 2005). It is one of the 

most important steps to integrate heterogeneous e-Business systems; however, it is typically 

largely performed manually by human engineers who are at best supported by some graphical 

interface tools. This manual mapping process is known to be very labor-intensive, costly, and 

error-prone (Gal, 2006; Rahm & Bernstein, 2001). As the e-Business systems grow to handle 

more complex databases and applications, their schemas become larger and more complicated. 

This further increases the search space to be examined as well as the number of correspondences 

to be identified. As a result, it is critical to automate the schema mapping task as much as possible 

to reduce the costs of labor-intensive data integration work and to reduce the mapping errors. 

 

The XML schema mapping can be classified into two types depending on the types of the e-

Business standard schemas: component schema and document schema. The component schema 

only contains reusable and extensible components (types or elements) as global type definition 

(e.g., OAG Common Core Component schema), while the document schema contains a global 

root element to define one valid XML document (e.g., Purchase Order Schema). The document 

schema may reuse or extend the components defined by the component schema. For schema 

integration, the component schema mapping mainly identifies the relations between global 

components (types or elements), while the document schema mapping mainly identifies relations 

between leaf nodes (elements or attributes). In this research, we focus on the component schema 

mapping. 

  

Schema Mapping Techniques 



Many schema mapping methods have been proposed (summarized in surveys by Rahm & 

Bernstein, 2001; Shvaiko & Euzenat, 2005). Typically, these methods first attempt to identify 

semantic relationships between the elements of two schemas. According to Shvaiko & Euzenat 

(2005), the schema mapping techniques can be distinguished as two main alternatives by the 

granularity of the mapping: element-level and structure-level. The element-level approaches 

determine the mapping elements in the target schema for each element of the source schema; 

whereas structure-level approaches refer to mapping combinations of elements that appear 

together in a structure. In the ideal case of structure-level approach, all components of the 

structures in the two schemas fully match. These techniques can be further classified by different 

types of elementary mapping techniques.  

 

Figure 1 shows a simplified version of the classification of schema mapping techniques suggested 

by (Shvaiko & Euzenat, 2005) based on frequently used techniques. Note that all ontology related 

techniques are omitted, corpus-based metric includes all the techniques using corpus (including 

linguistic resources), and graph-based metric includes all the techniques related to the graph 

analysis techniques (including taxonomy-based metric). 

 

Figure 1. Classification of schema mapping approaches 

 

The simplest mapping technique is a string-based metric which computes similarity between 

terms or their descriptions using its lexical information. There are a variety of string-based 

metrics, such as the widely used cosine similarity and Jaccard coefficient measures (Rijsbergen, 

1979; Sneath, 1957). The string-based metric can be enhanced using a language-based metric 

which is a kind of preprocessor for the input string such as tokenization, lemmatization, and 

elimination (Madhavan et al, 2001; Shvaiko & Euzenat, 2005).  

 

Corpus-based metric can also improve the string-based metric by obtaining more accurate and 

less ambiguous semantics (e.g., synonyms or hyponyms) for words in the element labels. Not 

only can the common knowledge corpora such as WordNet (Miller, 1995) but also domain 

specific corpora can be used to enrich the meaning of the words. One of the important resources 

in a corpus is the lexical taxonomy among words (e.g., parents, children, ancestor, and descendant 

relationships). Some researches have been proposed based on a lexical taxonomy of the corpus 

(Qin et al., 2009; Yang & Powers, 2005). 

 

Another important resource obtained from corpus is the contents linked to topically related words. 

Topically related words form the Topic Signatures (Lin & Hovy, 2000) which provide word 

vectors related to a particular topic. Topic Signatures are built by retrieving a group of words that 

related to a target word from corpus. The topic signature can be defined as a family of related 

terms {t, <(w1,s1)…(wi,si)…>}, where t is the topic (i.e. the target concept) and each wi is a word 

associated with the topic, with strength si. 

 

Corpus also provides the statistical information related to the importance of words. The different 

importance individual entities and relationships have plays the different roles in semantic 

similarity measurement. The information content (IC)-based metric was proposed to utilize this 

statistical information (Resnik, 1995; Lin, 1998). This approach measures the similarity between 

two entities (e.g., two words, two objects, or two structures) A and B based on how much 

information is needed to describe common(A, B), the commonality between them (e.g., the 

features or hypernyms that two words share). According to information theory (Cover & Thomas, 

1991), entities appear widely in many objects have less information than those appear rarely. In 

other words, more specific entities carry more information than generic and common entities as 

an indication of similarity between two specific objects. Therefore, the more specific the 



common(A, B) is, the more similar A and B will be. By the information theory, the information 

content of a concept or word C is defined as )(log)( CPCI  . Then common(A, B) can be 

measured by the information content of the most specific common hypernyms of A and B, and the 

similarity between A and B is given as  

 

( , ) ( , )
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Sim A B I C P C

 
    (1) 

(where S(A, B) is the set of all concepts that subsume both A and B, I(C) is the information 

content of C, and P(C) can be calculated as word frequencies in a corpus). 

 

A variety of graph-based techniques have been proposed for structure-level mapping. Typically, 

the graph-based metric quantifies the commonality between components by taking into account 

the lexical similarities of multiple structurally-related sub-components of these terms (e.g., child, 

parents, and leaf components). Because most schemas can be viewed as hierarchical graphs 

containing terms and their parent-children relationships, many mapping algorithms have been 

developed based on either top-down or bottom-up traversal techniques to analyze all elements 

(Rahm & Bernstein, 2001). Among the existing approaches, TransScm (Milo & Zohar, 1998) and 

Tess (Lerner, 2000) are based on the top-down approach, while Cupid (Madhavan et al., 2001) 

and Similarity Flooding (Melnik et al., 2002) take the bottom-up approach. Another technique of 

graph-based metrics is a taxonomy-based technique that can be applied to „IS-A‟ taxonomy such 

as ontology. For example, the edge counting is a well-known traditional approach based on 

conceptual distance in taxonomy (Rada et al., 1989). 

 

The graph-based metric typically provides a more comprehensive measure than do the string-

based and corpus-based similarity metrics because it looks beyond the individual labels and 

considers terms‟ relationships to others. However, it often fails to recognize the semantics in the 

language and corpus. 

 

Each of the existing similarity measures has its strengths and weaknesses. More importantly, each 

typically makes use of only part of the available semantic information. Therefore, a mapping that 

uses just one approach is unlikely to find as many good mapping candidates as does the hybrid 

approaches that combine several mapping approaches (Rahm & Bernstein, 2001). A few hybrid 

mapping approaches have been proposed. For example, Jeong (2008) used a machine learning to 

combine several mapping approaches. Giunchiglia (2004) proposed a common hybrid system 

called S-Match which allows a single component be plugged in, unplugged or customized. These 

hybrid approaches choose different mapping criteria that can capture different semantic 

information in the schema and then combine them in a particular way to increase the accuracy of 

the mapping result. However, they fail to examine and make full use of the semantic information 

imbedded in the hierarchical structure of the XML schema. The hierarchical structure can be 

divided into several layers according to the level of hierarchy. Typically, different layers may 

carry different semantic information of the data elements, which may require different, layer-

specific approaches to gauge the similarities. Therefore, it is beneficial to establish layered 

specific metrics for semantic similarity analysis of the XML schemas (Kim et al., 2007). 

 

Quality of Mapping Measures  

To evaluate the quality of the mapping measures, several performance evaluation scoring 

functions have been proposed (Do et al., 2003). The typical method to evaluate the mapping 

measures is to compares the derived mappings to the real mappings. The human mapping 

integrators first have to manually generate a set of real mappings which can be used as “gold 



standard” to be compared to the automatically derived mappings. The comparison of the real 

mapping to derived mapping is shown in Figure 2. 

 

Figure 2. Real mappings vs. Derived mappings 

 

The set of derived mappings can be categorized as true positives (i.e., B); false positives (i.e., C); 

false negatives (i.e., A); and true negatives (i.e., D). Note that among all derived mappings, only 

the true positives are considered correct mappings. Based on these categories, two basic measures 

of mapping quality, Precision and Recall, can be computed. 

 

Precision expresses the proportion of correct mappings among all the derived mappings, which 

can be defined as: 
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Recall expresses the proportion of the found correct mappings among all the correct mappings, 

which can be defined as: 
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Precision = 1 indicates that all the mappings derived by the mapping measures are correct, while 

Recall = 1 means that all correct mappings are found by the mapping measures. A trade-off 

between recall and precision is provided by the F-measure: 

RecallPrecision

RecallPrecision
2Measure-F




  (4) 

 

Although formal F-Measure supports different relative importance to be attached to Precision and 

Recall, Eq. (4) is a special case when Precision and Recall are considered equally important. 

 

Parallel and Distributed Computing Technologies for Large-scale Schema 

Mapping 

As more complicated and large-scale schemas and more sophisticated mapping algorithms have 

been introduced, large-scale schema mapping has become a challenging problem in terms of the 

computational cost. Several research groups have actively studied the issues concerning large-

scale schema mapping. (He & Chang, 2004) proposed a “holistic schema matching” approach 

that can match many schemas at the same time and find all matches at once. Another similar 

approach (Saleem & Bellahsene, 2008) creates a mediated schema tree from a large set of input 

XML schema trees and defines mappings from the contributing schema to the mediated schema.  

 

Alternatively, one can address the performance of computationally intensive similarity analysis in 

large-scale schema mapping by parallel and distributed computing technologies. The parallel 

computing is a computation technology in which multiple concurrent processes work 

simultaneously and cooperate with each other for a single task, while the distributed computing 

deals with the development of applications that execute on different computers interconnected by 

networks. Thus, the parallel and distributed computing can refer to a computation technology in 

which many calculations are carried out simultaneously, operating on multiple computers 

interconnected by networks for a single task. The parallel and distributed computing in local 

networks is also called cluster computing and called grid computing in wide-area networks. 

 



Many parallel and distributed computing technologies have been introduced (Asanovic et al., 

2006). There is a well-known cluster computing technology called Hadoop (Borthaku, 2007; 

Dean et al., 2008) which is a Java software framework that supports data intensive distributed 

applications. Hadoop uses a new programming model called Map/Reduce for processing and 

generating large data sets. This platform allows programmers without any experience with 

parallel and distributed systems to utilize easily the resources of a large distributed system. 

 

For grid computing technology, Globus Alliance provides an open source toolkit called Globus 

Toolkit (Foster & Kesselman, 1997). The Globus Toolkit makes extensive use of Web Services to 

define interfaces and structures of its components, which provide flexible, extensible, and widely-

adopted XML-based mechanisms for describing, discovering, and invoking network services. The 

grid computing can also be implemented using the Message Passing Interface (MPI) (Asanovic et 

al., 2006) standard which is an Application Programming Interface (API) specification that 

allows many computers to communicate with one another. MPI-like Message Passing for Java 

(MPJ) (Carpenter, 2000) provides a Java software toolkit for the MPI standard. These tools have 

different technical backgrounds and performance trade-offs. Table 1 shows different features of 

Hadoop, Globus Toolkit and MPJ. 

 

Table 1. Comparison of Hadoop, Globus toolkit and MPJ 

 Hadoop Globus toolkit MPJ 

SW requirement Java, SSHD Java, Ant Java 

System Setup System-specific System-independent System-independent 

Security SSH WS-Security No support 

Data manage DFS GridFTP No support 

Type Clustering Grid Grid 

 

The Hadoop and Globus Toolkit have advantages for easy handling of a large distributed system 

but require extra software installation and management for clusters and Web Services, 

respectively. On the other hand, MPJ requires a simple environment configuration and 

programming architecture, but does not provide any security or data management functionalities. 

 

 

LAYERED SEMANTIC SIMILARITY ANALYSIS OF XML SCHEMAS 

As mentioned earlier, many schema mapping methods have been proposed, but most of them fail 

to sufficiently investigate and utilize semantic information imbedded in the hierarchical structure 

of the XML schemas. The data elements in the XML schema can be divided into several layers 

according to the level of the hierarchy. To utilize these layers for schema mapping, we propose a 

layered semantic similarity analysis which divides data elements in the XML schema into 

different layers and then measures semantic similarities at each layer using layer specific metrics. 

 

Layered Semantic Structure of XML Schemas 

An XML schema defines a set of global components, each of which can be represented as a tree 

with a set of linked nodes. Each node in a tree has zero or more child nodes. There are three types 

of nodes: 1) the root, 2) the leaves, and 3) the intermediate nodes (those with both a parent and 

some children). Leaf nodes are called “atoms” since they are the smallest units and cannot be 

further divided. Each tree thus can be divided into three layers: 1) the top layer (containing the 

root of the tree), 2) the atom layer (containing leaf nodes), and 3) the inner layer (containing 

intermediate nodes). Note that some trees may have empty inner layers, whereas others may have 

only one node that is considered to be in both the top and atom layers.  



 

According to the XML schema best practices (Stephenson, 2004), XML schema designers have 

moved away from complex multi-level type hierarchy to a simple 2~3 level hierarchy where most 

of the structural assemblies are done by composition. The design by composition leads the top 

layer labels to contain specific and representative terms (e.g., camera, vehicle) of a global 

component while the bottom layer labels to contain more common and shared terms (e.g., unit, 

size, and code). This implies that each layer typically captures the semantic information of a 

global component from different perspectives. Through its label and namespace, a top layer (the 

root node) specifies the data object that the global component is intended to describe. The bottom 

or atom layer (leaf nodes) includes the atomic elements that the designer felt necessary to 

describe the global component. The inner layer (nodes in between) provides the structural 

information of the global component by specifying how the atomic elements are grouped into 

intermediate nodes and, eventually, into the global component (the root). The linguistic 

information in the labels of both atomic and intermediate nodes may also help to qualify the 

semantics of the global component. 

 

Figure 3 shows the labeled graph examples of two different XML schemas describing global data 

element “vehicle” (e.g., make, model, model year, dealer information, mileage at failure, mileage 

at repair and etc). The two schemas were defined by two different workgroups at the Automotive 

Industry Action Group (AIAG): (a) Truck and Heavy Equipment (T&HE) and (b) AIAG 

Resource schemas (AIAG-R).  

Figure 3. Three layers of XML schema 

 

The labels in their top layer nodes indicate that both are intended to represent the same object 

“vehicle”. However, the designers‟ thoughts differ with regard to what atomic elements are 

needed (e.g., in (a) “VehicleInformation” only includes generic atomic elements such as the 

“code” and the “description”, whereas in (b) “Vehicle” includes more specific atomic elements 

such as “TaxID”, “Address”, “Name”, and so on). They also differ on how these atomic elements 

should be organized (see their different inner layers). In fact, the VehicleInformation in the 

T&HE schema has 12 intermediate nodes and 198 atoms, while the numbers for the Vehicle in 

the AIAG schema are 81 and 972, respectively. Also note that the same set of ingredients (atoms) 

can produce data elements of different semantic information depending on how they are cooked 

(i.e., structured) or packaged (i.e., the identity of the top layer node). For example, several party 

elements (CustomerParty, DealerParty, and SellingParty) defined in AIAG-R schema all contain 

the same atoms and intermediates but are intended for semantically different data objects. 

 

The complex relationship between nodes at different layers requires layer-specific semantic 

analysis tools and a mechanism to combine these layer-based similarities. For this reason, we 

utilize three similarity measures. The first one, called atom-level similarity, measures the 

similarity between two atom layers of two global components. The second one, called label 

similarity, measures the similarity between the labels (names). The last one, called structure-level 

similarity, measures the similarity between two inner layers of two elements. These three 

measures and the process for their combination are described in the following sections. 

 

Atom-level Similarity Measures 

Atom-level similarity between two global components is primarily determined by the atoms they 

share. However, not every atom is equal in determining semantic similarity. The sharing of an 

atom that is widely used by many components of the two global components is not as strong an 

indication of similarity as the sharing of a rarely used atom (Lin, 1998; Resnik, 1995). To account 

for the degree of importance of individual atoms, an IC-based measure for atom layer similarity is 



proposed. Specifically, let A(x) and A(y) denote the sets of atoms of global components x and y, 

respectively. Then, the atom level similarity between x and y is defined as 
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This can be seen as combining the IC-based measure with the Jaccard coefficient where the 

numerator measures common(x, y) and the denominator is a normalization factor (Lin, 1998). The 

probability of each atom is taken as its frequency in any corpus related to the source and target 

schemas. For instance, we can use a corpus formed by all labels in both the source and target 

schemas or by all words extracted from some domain specific documents. 

 

Eq. (5) is based on the assumption that the source and target schemas share a significant number 

of atoms. Two atoms can be treated as either completely similar (with a similarity score of 1) if 

they have the same label or completely dissimilar (with a similarity score of 0) if they do not. Eq. 

(5) can be generalized for use in situations where similarity scores between many atom pairs are 

between 0 and 1 (Peng, 2006). For that, we partition A(x) into two sets: A1(x) contains those 

components of x that have similar counterparts in A(y) (i.e., with non-zero pair-wise similarity), 

and A2(x) = A(x) – A1(x). For every )(xAci  , we define its map to A(y) as   
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Then the similarity of x to y is given as 
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Label Similarity Measures 

The label or name x of a node is a word or concatenation of words (or their abbreviations). One 

approach for label similarity measure is string-based metric, which computes similarity between 

two labels. As discussed in the previous section, the string-based metric can be enhanced using 

language-based metric and linguistic resources. Therefore, before similarity is compared, a pre-

process called “label normalization” is conducted to obtain full words (denoted as L(x)) from the 

concatenations and abbreviations. For example, L(VehicleInformation) = {vehicle, information}. 

To better ascertain the semantics of these words and to deal with the problem of synonyms, each 

word is expanded using its description, which can be obtained from a variety types of sources 

such as WordNet, schema annotation, web search, business related documentation, and so on. 

 

The descriptions of all the words in L(x) are then put together under two constraints to form a 

vector of words, W(x). First, for a fair comparison, W(x) should be independent of the lengths of 

descriptions, which vary greatly from word to word. To achieve this, the normalization of the 

W(x) is one possible approach, which make the length of descriptions for all W(x) the same. 

Second, words in L(x) are not equally important in defining x‟s semantic information (e.g., 

“vehicle” is certainly more important than “information” in the label “VehicleInformation”). 

There are several approaches to address the weighted sets of words such as noun phrase analysis 

from natural language processing. One easiest way is to duplicate more important words and to 

truncate less important words in the L(x). The importance of the words can be obtained from its 

information contents. Finally, the similarity of labels x and y can be measured by W(x) and W(y) 



using a variety of string-level similarity measures, such as Jaccard coefficient and cosine 

similarity. Using cosine similarity, the similarity can be defined as 
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(8) 

 

(where fx(i) and fy(j) are the frequencies of the term i and j in W(x) and W(y), respectively). 

 

Another way to better ascertain the semantics of words is to collect for each word in L(x) the 

Topic Signatures that appear most distinctively in documents related to the target word. In order 

words, we construct lists of closely related words for each word in L(x). For example, given „car‟, 

we can find the related word set {ford, vehicle, truck, audi, safety, …}. A topic signature is a 

vector which can be defined as 

 

})...,)...(,(),,(,{ 2211  ii swswswtTS  (9) 

(where t is the given target word (i.e., topic) and wi is a related word with its relatedness weight 

si ). 

 

We can build the topic signatures from the documents searched at the Internet using the query of 

the target word. Figure 4 shows the strategy to build such lists. 

 

Figure 4. Procedure to build Topic Signatures 

 

We first build queries which are used to search in the Internet (i.e., Google Search) those 

documents related to the given target word. The query may include domain restriction (e.g., “car 

site:ford.com”) to search only in the given domain (e.g., “ford.com”). Query engine retrieves a 

collection of the relevant documents. For each collection, we extract the words and their 

frequencies, then retrieve a list of most relevant words (i.e., A in Figure 4) based on their 

frequencies. Because the most relevant words may include the common words such as stop words, 

we collect a list of the most common words (i.e., B in Figure 4) which are frequently appear in 

any documents except the relevant documents, and finally remove the words in B from. Then, the 

resulting list of the most relevant words is the topic signature which can be considered as a vector 

of words, W(x). Similar to the WordNet descriptions approach, W(x) will be normalized so that 

all W(x) have the same number of words, and the similarity measure using topic signatures can be 

obtained by Eq. (8). 

 

Any type of structure-level similarity measure can be used to compute inner-layer similarity, but 

currently we only extend the label similarity measure for the inner-layer‟s similarity measures 

(i.e., SimI = SimT where x (and y) is the union of labels of all inner nodes).  

 

Combined Similarity Score 

A variety of algorithms for combining individual similarity measures (SimA, SimT, SimI) can be 

used, such as average (a, b, c), max (a, b, c), additive (1 – (1 – a)(1 – b)(1 – c)), and weighted 

sum Sim (x, y) = wA SimA + wT SimT + wI SimI . The weighted sum was found the most useful 

because it allows the adjustment of weights to best reflect the importance of measures at 

individual layers. However, finding the best weights is a challenge. For the experiments results, 

the weights are obtained from the domain experts or learned from human semantic mapping data.  

 

Efficient Schema Mapping Using Grid Computing 



The time complexity of XML schema mapping largely depends on three factors: the number of 

elements that an XML schema defines, the structural complexity of each element, and the 

complexity of the mapping algorithm. Recently, more complicated XML schemas and highly 

complex mapping algorithms have been introduced. For instance, AIAG-R and TH&E schemas 

used for the experiments have hundreds top-level elements and each top-level element contains 

thousands of intermediate and atom nodes, all of which need to be looked at during the mapping 

process. It can take more than an hour to conduct the semantic analysis and complete the 

mapping.  

 

To address this problem, we use a grid computing technology called MPJ to distribute the heavy 

workload of the XML schema mapping analysis among a cluster of processors connected. The 

MPJ, developed to enable high-performance computing (HPC) using Java, is well-suited to 

handling computations where a task is divided up into subtasks, with most of the processes used 

to compute the subtasks, and only a few processes (often just one) for managing the tasks. The 

manager is called the "master" and the others the "slaves". 

 

For mapping between a source schema with n data elements and a target schema with m data 

elements, we compute the semantic similarities between all possible pairs of source/target 

elements, generating an n×m matrix called the similarity matrix. According to the layered 

semantic similarity analysis, the semantic similarities can be computed by combining three 

different similarities for each of the three layer of XML schema. Because the similarity measure 

for each pair of source/target elements and the different semantic similarities for each layer can 

be computed in parallel, grid computing technology can be applied to enhance performance.  

 

 

EXPERIMENTS AND RESULTS 

Two sets of experiments were conducted; the first set was intended to validate the layered 

approach for semantic schema mapping, the second set to investigate the effect of the grid 

computing in speedup the computation. In these experiments, the Truck and Heavy Equipment 

schema (T&HE) were used as the source schema and the AIAG Resource schema (AIAG-R) as 

the target schema. The experiments and the results are given below.  

 

Experiments and Results for Layered Semantic Similarity Analysis 

A prototype system is implemented to compute SimT, SimI, and SimA as given in Eqs. (5) and (7). 

The system also supports several options to choose different algorithms for different layers of the 

schema structure and several combination rules. The 49 manual mappings from T&HE schema to 

AIAG-R schema produced by human integrators are used as the basis to evaluate the performance 

of the system. For each of the 49 T&HE global components, the system recommends five most 

similar AIAG-R elements. 

 

A series of experiments has been conducted using the prototype system with varying parameters. 

We evaluate performance using a set rather than a single recommendation because the objective 

is not to fully-automate the process but rather to assist the human expert. A recommendation is 

considered a match if it contains the manual mapping. Various similarity measures, individual 

and combined, are used: 

 

1. SimT(WN): top-layer similarity using label similarity measure based on WordNet 

description 

2. SimI(WN): inner-layer similarity using label similarity measure based on WordNet 

description 



3. SimT(TS): top-layer similarity using label similarity measure based on Topic Signature 

4. SimI(TS): inner-layer similarity using label similarity measure based on Topic Signature 

5. SimA: atom layer similarity using atom-level similarity measures based on Information 

Content 

6. Weighted Sum (WN): weighted sum of wA SimA + wI SimI(WN)+ wT SimT(WN), where 

wA : wI : wT = the ratio of the F-Measure of each individual measure and  wA + wI + wT = 

1 

7. Weighted Sum (TS): weighted sum of wA SimA + wI SimI(TS)+ wT SimT(TS), where wA : 

wI : wT = the ratio of the F-Measure of each individual measure and  wA + wI + wT = 1 

 

Figure 5 shows the quality measures Precision, Recall, and F-Measure of different mapping 

results by different similarity measures. 

 

Figure 5. Experiment results of layered semantic similarity analysis 
 

As shown in the Figure 5, the inner-layer (i.e., SimI(WN) and SimI(TS) ) and atom-layer (i.e., 

SimA) measures by themselves generate poor results. This is because, as discussed earlier, the 

same set of atoms and intermediates can be used to produce semantically different elements (just 

like the same ingredients can be made into several kinds of dishes).  

 

The overall performance is mixed. The Weighted Sum (WN) had the F-Measure 0.32 (precision 

0.22 and recall 0.63) and Weighted Sum (TS) was slightly better (F-Measure 0.37, precision 0.25, 

and recall 0.71). The combination weights are currently pre-determined according to the ratio of 

the F-Measure of each individual measure. This result is certainly very encouraging considering 

how difficult the problem is even for experienced integrators (roughly 140 human hours were 

spent in mapping these 49 top elements in T&HE to AIAG-R schema by humans). However, a 

detailed examination of the results reveals that 13 manual mappings obtained by human 

integrators did not appear in any of the recommendations using either individual or combined 

similarity measures. This calls for further investigation.  

 

Another phenomenon to be noted is that more weight should be given to the label similarities (top 

and inner layers). First, only one of the 22 matches found using atom-level similarity was not 

found by either of the two label-similarity measures. Second, the highest number of matches 

found by individual measure was using the top-layer measure. 

 

Experiments and Results Enhanced by Grid Computing 

The prototype system takes about 7 minutes to obtain the similarity analysis result between 

T&HE and AIAG-R schemas. To reduce the execution time, the prototype system is updated 

based on grid enabled MPJ tool. There were a total of 139 global (top) elements defined in the 

T&HE schema that needed to be mapped onto the set of 145 global components of the AIAG-R 

schema. Thus, the semantic distances of 139 x 145 (~20,000) pairs of elements needed to be 

examined. 

 

We tested the execution time with different grid network environments which at maximum 

consist of 5 networked Pentium based Intel laptops to obtain the semantic similarity results using 

three different algorithms. Without the help of grid computing, the execution time was 420 

seconds. By increasing the number of computers in the grid computing network, the execution 

time was reduced. Figure 6 shows that the execution time decreases exponentially as the number 

of processes increases. Note that, due to the networking management and communication cost, 

the speedup is diminishing when the number of machines in the grid increases beyond 4. 

 



Figure 6. The number of machines vs. execution time 

 

 

CONCLUSION 

In this chapter, we introduced a layered semantic similarity analysis to facilitate XML schema 

mapping and a grid enabled service oriented architecture to enhance the efficiency of the 

semantic similarity analysis. We have implemented two prototype systems to evaluate the 

proposed approach. The first system is for the layered semantic similarity analysis which 

recommends for each element in a source XML schema a set of mapping candidates in a target 

schema based on the semantic similarity measures between the elements in these two schemas. 

The second system is for the efficient semantic similarity analysis using parallel and distributed 

computing technologies, developed based on MPJ and service oriented architecture. The 

proposed approach and the prototype systems have the potential to provide valuable assistance to 

the human integrators for the problem of XML schema mapping, merging and reuse.  

 

A series of experiments were conducted with encouraging results. The system found a match to 

the human experts‟ mapping with match rate of 63% (31 out of the 49 manual mappings) in a real 

world application. This result is very encouraging considering how difficult the problem is even 

for experienced integrators. In addition, the second system showed significant improvements in 

performance (speedup of 46% when 4 machines were used in the grid).  

 

The experiments also revealed that the problem is much more complicated than we initially 

thought. One observation is that the similarity scores vary greatly among the manual mappings 

(ranging from 0 to 1). This calls for further examination of similarity measures and the way they 

are combined and for exploring more elaborated mapping procedures. The following immediate 

steps are planned for future research. 

 

1) Automatically determine the combination weights. Some machine learning techniques are 

under consideration, including regression and neural networks. 

2) Increase the use of structural information. Our experiments show that labels at higher levels 

are more important than at lower ones. There is also evidence that the atom layer becomes 

more important when an element‟s structure is shallow. How to better incorporate the 

structural information into the semantic analysis will be investigated. Utilization of other 

features of the XML schema, such as cardinality and data type, will also be investigated. 

3) Explore an iterative mapping procedure. The hypothesis is that the similarity measures for 

complex, difficult, or ambiguous elements will become more accurate when more mappings 

for other easier elements are established with each iteration.  

 

Without proper tools, a harmonized international library of integration specifications such as that 

envisioned by the UN/CEFACT TBG17 is far-fetched. The number of data elements to 

harmonize can grow to hundreds of thousands, taking years, if possible at all, to yield usable 

integration results. The work discussed in this chapter shows promise to assist experts in 

accomplishing integration tasks more efficiently. 
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KEY TERMS & DEFINITIONS 

XML schema: a description to define the structure, content and semantic information of XML 

documents 

 

Business document: the name for messages exchanged between trading partners in the e-Business 

environment. 

 

e-Business integration: a type of integration process that enables integrating trading partners with 

other trading partners to exchange business document across networks such as the Internet and 

incorporates the trading partners' host applications and business processes. 

 

Semantic information: a type of informational content that contains the meaning of data  

 

Schema mapping: a process to identify how information can be shared between heterogeneous 

schemas and how they can be mapped, merged, or reused for integration and interoperability of 

their e-Business systems. 

 

Semantic similarity analysis: a process to analyze some degree of symmetry in either analogy and 

resemblance between two or more concepts, terms, or documents based on the likeness of their 

meaning / semantic information 

 

Information content: a type of information that can be quantified by information theory in a sense 

that, as probability increases, informativeness decreases, so the more abstract a concept is, the 

lower its information content will be. 

 

Parallel Computing: a computation technology in which multiple concurrent processes work 

simultaneously and cooperate with each other for a single task. 

 

Distributed Computing: a computer science technology that a development of applications 

execute on different computers interconnected by networks. 

 


