On Using a Warehouse to Analyze Web Logs

Authors: , Anupam Joshi, Yelena Yesha

Book Title: Distributed and Parallel Databases


Abstract: Analyzing Web Logs for usage and access trends can not only provide important information to web site developers and administrators, but also help in creating adaptive web sites. While there are many existing tools that generate fixed reports from web logs, they typically do not allow ad-hoc analysis queries. Moreover, such tools cannot discover hidden patterns of access embedded in the access logs. We describe a relational OLAP (ROLAP) approach for creating a web-log warehouse. This is populated both from web logs, as well as the results of mining web logs. We discuss the design criteria that influenced our choice of dimensions, facts and data granularity. A web based ad-hoc tool for analytic queries on the warehouse was developed. We present some of the performance specific experiments that we performed on our warehouse.

Type: InCollection

Tags: adaptive websites, data mining, data warehouse, ecommerce, web logs, web mining

Google Scholar: search


455.pdfdownloads: 292

Log in