
Warehousing and Mining Web Logs
Karuna P Joshi, Anupam Joshi, Yelena Yesha

CSEE Department
University of Maryland, Baltimore County

Baltimore, MD 21250, USA
+1 (410) 455-3500

{kjoshi1, ajoshi,yeyesha}@cs.umbc.edu

Raghu Krishnapuram
Dept of Mathematics and Computer Science

Colorado School of Mines
Golden, CO 80401, USA

+1 (303) 273-3877

rkrishna@mines.edu
ABSTRACT

Analyzing Web Logs for usage and access trends can not only
provide important information to web site developers and
administrators, but also help in creating adaptive web sites. While
there are many existing tools that generate fixed reports from web
logs, they typically do not allow ad-hoc analysis queries.
Moreover, such tools cannot discover hidden patterns of access
embedded in the access logs. We describe a relational OLAP
(ROLAP) approach for creating a web-log warehouse. This is
populated both from web logs, as well as the results of mining
web logs. We also present a web based ad-hoc tool for analytic
queries on the warehouse. We discuss the design criteria that
influenced our choice of dimensions, facts and data granularity,
and present the results from analyzing and mining the logs.
Keywords

Web Mining, clustering, user interface, ad hoc analysis, web logs.

1. INTRODUCTION
Web mining can be viewed as the extraction of structure from an
unlabeled, semi-structured data set containing the characteristics
of users/information respectively [2]. The logs kept by web
servers provide a classic example of such data. Analyzing and
exploring regularities in the behavior of the users accessing a web
site can improve system performance, enhance the quality and
delivery of Internet information services to the end user, and
identify population of potential customers for electronic
commerce [1]. Many approaches have been suggested to mine
information from web access log records collected from servers
[3][4][5][8]. Typically data has to be scrubbed and preprocessed
as a precursor to mining. Such data can also be stored in a data
warehouse and be amenable to OLAP like queries. The objective
of this paper is to outline a design used to create a ROALP
warehouse from raw and mined web log. We also describe the
web based analysis tool we have created that helps users in
querying the warehouse in an ad-hoc manner.

Of late, new tools promising to apply data warehousing and
mining techniques on web logs have entered the market. These
include SurfAid & SpeedTracer from IBM, Bazaar Analyzer etc.

However, most of these tools do not really build a warehouse, and
their notion of mining is limited for the most part to simple
aggregate statistical analysis; with Speedtracer [17] being the
exception (based on the tools publicity blurb, we assume that it
uses the path traversal pattern mining work of Chen et al. [16]).
For the most part, they continue the tradition of utilities such as
AccessWatch and http-analyze. Such tools use Java, Perl scripts
or shell scripts, to generate reports about web site utilization
towards the analysis of Web log data. A listing of many such
utilities can be found at [10]. Most of these tools generate canned
reports about number of Kbytes transferred, access organized by
domains etc. Their fixed reporting format does not help in
analyzing log data from every perspective and customizing these
reports requires essentially rewriting the utility. Moreover, these
tools typically cannot discover hidden patterns of access
embedded in the access logs.
Broadly speaking, 'Web Mining' has been defined as applying
data mining techniques on web data to discover knowledge.
However, the data that is actually mined is varied, and different
approaches have been followed. Some researchers have applied
mining techniques on the web logs maintained by the servers so as
to discover user access and traversal patterns [1] [15][7][16][8].
In this paper, we have primarily concentrated on this research
direction. Most of the research in this vein interprets web logs to
be a semi-structured source of data that can be analyzed using
existing mining techniques. In this approach, the aim is to
discover the in-built relationships between the various attributes
of the log like URLs, IP addresses etc. For instance, Han et al. [1]
have mined information from web logs by implementing a
MOLAP warehouse containing web log data and mining
information off it. Krishnapuram et al. have developed new robust
fuzzy clustering algorithms and used them on web logs, where as
Shahabi et al. [15] have developed clustering algorithms for user
navigation patterns. Other researchers have interpreted web logs
essentially as text files and applied phrasal mining techniques to
the logs [13][14].

2. PREPROCESSING WEB LOGS
As a precursor to creating the warehouse, we need to clean our
web log data. The format of the log data is not suited for import
into the database (Oracle). Figure 1 is a pictorial representation of
our system. Our warehouse consists of two components, the
access log part that allows users to analyze the web logs and the
mining part that allows users to analyze traversal patterns. In the
preprocessing phase, we have created different files for populating
the warehouse.

Figure 1: System Architecture Block Diagram.

In designing the access log warehouse, we included each log entry
as a record in the warehouse, which was created in an Oracle 8
database using star schema. Before loading log entries into the
warehouse, we reformatted them to confirm with the formats that
Oracle SQL Loader accepts. This was done using a Perl script we
created by modifying Follow [11]. Log structure was assumed to
be that prescribed by the Common Log Format, {<domain>
<identity> <authorization> <date> <method> <URL> <protocol>
<status> <size returned>} and any entry not conforming to this
structure was discarded. We also disregarded the identity and
authorization attributes in the web log since they were not being
logged. We have included log entries that resulted in errors or
redirects in our analysis.
For the mining part, we filtered out other unwanted entries like
record accesses to image files that were embedded in the web
pages whose 'hit' had already been logged. For the preprocessing
phase, we created a file listing all the sessions (described in the
next section) obtained from the logs. The session file consists of
Session number and the Domain of that session. A URL file was
created that contained all the URLs in the web log that was
analyzed and a unique number associated with the URL. Once
the sessions were clustered as described in later sections, a cluster
file listed each session and the cluster that it belongs to. Using the
three files as our input, we proceeded to populate the warehouse
for the mined data.

3. DATA WAREHOUSE ARCHITECTURE

In a data warehouse Facts defined along with certain attributes
(called dimensions) are the core data elements being analyzed. In
this system, the web log entries are facts. Nasraoui et al have
suggested the following dimensions [4]: Domain name of the
request, date of the request, method of the request, URL of the
page accessed, Result of the request, and Number of bytes
transmitted.
The fact tables in the warehouse were directly created from the
web logs. The web log data is analogous to the transactional data
in an OLTP system and the main fact table was populated from it.
This table contained all the log entries that were ever made in our
web logs (Figure 2(b)). While such a table can answer any
analysis query, aggregation queries (find how many queries
resulted in a redirect) may take time. Based on some expected
aggregation queries, other fact tables were created that contained
data related to a specific aggregation criterion. For example, we
created separate fact tables for each month of the log. If a user
specified the month in the 'date accessed' field (see figure 4(a)),
then the fact table corresponding to the month queried would be
accessed.
As mentioned earlier, our web analysis does not build on an
existing transactional database, since the web server uses a flat
files to store its transactional data (accesses) without any
normalization. Figure 2(a) illustrates the table structure for a
corresponding normalized, relational database. It has "Dimension"
tables for data such as Request status codes, request methods,
Web protocols etc. The arrows indicate the relationships between
dimensions. The dimension data is typically static and dependent
on the domain. It also helps map "codes" relating to the HTTP
protocol to their descriptions in an efficient manner.
In addition to the fact tables, a normalized schema was added to
the warehouse to populate the mining results so as to facilitate on
line analysis. Figure 3 represnts the Entity-Relationship diagram
of this database which consists of three tables. The URL table
stores the URL description along with the Unique ID (URL_NO)
that is generated by the program. Session Table contains data
pertaining to the Domain that identifies the session, the cluster
number to which the session belongs and the frequency of the
domain. Session-No is the unique identifier for each session. We
know that many URLs (say N) can be accessed in a single session
and also one URL can belong in multiple sessions (say N). To
incorporate the N:N relationship between URLs and Sessions, we
split the relationship into a 1:N relation by introducing a new
table SES_URL table. This table contains the primary identifiers
of both the Session and URL tables and is populated from the
output from the clustering experiment.

Figure 3: Clustering Analysis Database Structure
We have created three views to help in our analysis. Xi View
displays the cardinality (total number of sessions) of each cluster
obtained. Xij View displays each URL in the log along with
Cluster number and the total number of sessions in the cluster that
contain the URL (displayed by field Xij). The third view, Degree
View, displays each URL in the log along with Cluster number, Xi
value, Xij value and the Degree Measure, Xij/Xi. The Degree
measure is the equation for Pij listed in above. The Degree view is
the main view that we use for our analysis. It is also the view
queried by the Web Interface. An additional view, ALL_VIEW,
displays all the main fields in the tables and is also accessed by
the Web Interface.

4. MINING WEB LOGS
To mine knowledge from the web logs we used two data mining
techniques, namely Clustering and Association Rules generation.
For the data mining experiments, we collected a variety of logs
and ran the association rules generator and clustering algorithm
on it. Before mining information from the logs we created
sessions from the logs. For discovering association rules, we used
SGI's Mineset that implements a variation of the Apriori
algorithm [9]. For Clustering we used the Fuzzy C-medoids
algorithm developed by Krishnapuram et al [7]. This approach
allows us to capture a graded (as opposed to binary) notion of
similarity between sessions.

4.1 Session Generation
We now briefly describe the technique [5] to generate user
sessions, after pre-processing the log files. Since web servers do
not typically log usernames (unless identd is used), this technique
defines a user session as accesses from the same IP address such
that the duration of time elapsed between any two consecutive
accesses in the session is within a prespecified threshold (in our
case 45 minutes). This distinguishes it from other approaches
such as [8] which assume that a user's identity is known. Each
URL in the site is assigned a unique number j ∈ {1, ... ,|U|},
where |U| is the total number of valid URLs. Analogous to [5], the
ith user session is encoded as an |U|-dimensional binary attribute

vector)(is with the property

)(i
js =

seotherwi 0

sessionith in jth URL theaccesseduser if 1

This schema will match one user's sessions into multiple user
sessions. However, Krishnapuram et al argue that this will not
affect the study if one is looking for 'typical user profiles'.
Majority of a user's sessions follow a similar pattern, then clearly
no difference is made. If the same user displays a few (different)
access patterns on a site, this notion of multiple user sessions
enables one to capture this behaviour.

4.2 Association Rules
To generate the association rules for the web logs, we first
generated the sessions and URL files. MineSet requires two input
files for generating the association rules - a schema file and a data
file. The schema file describes the structure/fields of the data file.
The data file consisted of the binary session vectors. Each session
can be thought of as a transaction and each URL as an item, in the
association rule context. Thus a session [10110] would imply that

URLs 1,3 and 4 were visited in this session and URLs 2 and 5
were not. The schema file was simply the URL numbers and was
generated using a Perl program. The association file generated by
MineSet was cleaned before the results could be analyzed.

4.3 Clustering
Before generating clusters for our sessions, we have to define a
measure of similarity between our sessions. The similarity
measure that we used for our experiments has been proposed by
Nosraoui et al [6]. They have defined a dissimilarity measure
between all session pairs (i.e., the relation matrix) prior to the
clustering process. Note that since sessions are not object data, a
distance measure in the sense of Minkowski norms is not
automatically available. The following paragraph briefly explains
the similarity measure used.
Consider two user-sessions s(k) and s(m). First consider the case
where URLs accessed in the sessions are considered independent
of the structure of the site. Then, the cosine of the angle between
s(k) and s(l) (called M1) is a measure of similarity. M1 simply
measures the number of identical URLs accessed during the two
sessions relative to the number of URLs accessed in both sessions
and completely ignores the hierarchical organization of the web
site. This adversely affects its ability to capture correct profiles.
Another similarity measure [6] takes into account the site
structure. The web site is modeled as a tree; essentially the
directory structure rooted at the server's document root, with links
(such as redirects and aliases) explicitly brought in. Taking into
account the syntactic representation of two URLs, their similarity
is assessed by comparing the location of their corresponding
nodes on the tree. This is done by comparing the paths from the
root of the tree to the two nodes. The "syntactic" similarity
between the ith and jth URLs is

Su(i,j) = min

−

∩

)1|)||,max(|,1max(

||
,1

jpip

jpip

where pi denotes the path traversed from the root node to the node
corresponding to the ith URL, and |pi| indicates the length of this
path or the number of edges included in the path. This similarity,
which lies in [0,1], measures the amount of overlap between the
paths of the two URLs. Given this similarity between URLs, a
new similarity measure between sessions is defined as

M2 =

∑ =∑ =

∑ =∑ =

|U|
1j

(l)
js|U|

1i
(k)
is

j)(i,Sus(l)
j

|U|
1j s(k)

i
|U|
1i

 -(II)

Due to similarity underestimation by both M1 and M2 in specific
cases, they propose m=max(M1,M2) as a similarity measure. This
similarity is mapped to the dissimilarity measure d=(1-m)2.

4.3.1 Evaluating the results
We interpret the results of applying the clustering algorithm on
the user session data by using the following quantitative measures.
The clustering algorithm [7] assigns user sessions to the closest
clusters based on the similarity measures. This creates C clusters
Xi={s(k) ∈ S | dik < djk ∀j ≠i}, for 1 ≤ i ≤ C. The sessions in cluster
Xi are summarized in a typical session "profile" vector Pi = (Pi1,
… ,Pi|U|)t. The components of Pi represent the degree with which

each URL belongs to a session. This is computed as Dij = p(sj
(k) =

1 | s(k) ∈ Xi) = |Xij| / |Xi|

where Xij = { s(k) ∈ Xi | sj
(k) > 0}.

In other words, it measures the fraction of the clusters in the
session which included this URL. This helps us recognize those
URL which form the "core" of the profile. For some URLs the
degree is greater than 1. This is because we grouped together all
the URLs that belonged to the same directory. Besides
summarizing profiles, the components of the profile vector can be
used to recognize an invalid profile, which has no strong or
frequent access pattern.

5. WEB QUERY TOOL AND
PRELIMINARY RESULTS
We have created a web based thin client as the user interface to
the system. By using a web browser the user interface becomes
platform independent unlike proprietary tools such as Discoverer.
The interface is exported as an HTML forms document from the
web server that interacts with the Warehouse using CGI and
SQLPLUS. The web interface was created using Perl CGI scripts.
The user can enter (or select) a value into the fields, and the
system automatically constructs an appropriate SQL query. The
generated query is piped to SQLPLUS, which runs the query
saved in the file and sends the result back to the interface. The
result page shows the query that was used by the database along
with the retrieved data. It also shows a count of the records
retrieved. The web interface is very simple and user friendly. The
users do not need to be aware of the underlying database
architecture or SQL to use this tool optimally.
We mined a large number of logs for our experiments, like the
UMBC Server logs, UMBC CS Department Server logs, logs of
some research groups, individual home page logs etc. While
analyzing logs for UMBC's main server for instance, we obtained
traversal paths of users accessing the Semester Schedule. Another
traversal path corresponded to users accessing the Library web
pages to check the availability of books etc. Then there were
traversal paths obtained for generic or new users who traversed
through most of the links on the main page etc.

5.1 Ad-hoc Analysis
The web interface allows users to perform ad-hoc analysis of both
the web log warehouse and the mining results. By integrating
both the components on a single tool, we have made it easier to
analyze the access trends. A large number of analysis queries were
given to the system and it produced correct results. We present
some examples next.
Figures 4 and 5 show the web based query interface of the log
analysis part of our system to the warehouse. The interface
provides pull down menus and fill in fields that allow rollup, drill
down and slicing queries. For example, for the Status dimension,
users can query for all status values, or can drill down and query
for log entries whose status values fall in HTTP response ranges
such as 100s, 200s etc. The user can also query for individual
status codes like 200 (success) or 404(error). This system can also
handle HTTP 1.1 error codes and Methods. By default, the
attributes have ‘%’ in their fields, which is the wildcard character
that aids in ad-hoc queries. E.g. If we want to query on the
frequency of users accessing our web site from educational
institutions, then we would enter ‘%.edu’ on the Domain field of

our interface. Or by entering ‘%Jun 1998’ on the date field we can
retrieve all records that were logged in June 1998. Figure 4
illustrates such an example. Thus arbitrary OLAP queries can be
performed interactively by the user.
The Users who are aware of the database structure have additional
flexibility of writing on-the-fly SQL queries to do arbitrary
analyses (Figure 5). This feature of our tool also allows dicing
queries (e.g. 'select * from whole_log_fact1 where
(doc_size>=200 and doc_size < 1000); '). This will dice in the
size dimension and retrieve all accesses where the size of the
returned URL was between 200 and 1000 bytes.
Figures 6-8 below show the web interface to our mining results
data. The interface provides pull down menus and fill in fields
that allow users to query the traversal paths, sessions and the
URLs for each application log. For example, if we want to query
on the traversal path of users that originate from educational
institutions, then we would enter ‘%.edu’ on the Domain field of
our interface. Or by entering '0' on the Cluster Number field we
can retrieve all URLs that belong to the sessions of that cluster.

Fig 4 (a): Web Interface: Attributes selected

Fig 4 (b): Web Interface: Results of the Query.

Fig 5(a): Web Interface: SQL query entered.

Figure 5 (b): Web Interface: Results of the SQL query.

Figure 6: Interface to the Data Mining Component

Fig 7: Query Output for the Sessions-URL part

Fig 8: Query Output for the Cluster-URL part

6. FUTURE ENHANCEMENTS
Currently, we have populated the fact table directly from the web
logs. We can augment our system by loading the data into the
transactional database, and then populate the fact tables from it.
Stored procedures or triggers could be written to populate specific
fact tables with web log as they get added, or in a batch mode. By
creating such a transactional database, the pre-processing step will
be automated to a large extent, and more dynamic "monitoring"
can be done by the system automatically. Features like alerts and
warnings can be easily incorporated in this architecture. For
example, access patterns that denote security violations would be
identified as they happen by the system (e.g the abuse of the CGI
phf script, or attempted buffer overflow attacks). If a security
violation is taking place, the site administrator can be alerted or
the web site could be made inaccessible. This proactive feature of
our architecture can aid in more efficient web site administration.
However, this requires modifying the logging module in the web
server to store access logs directly into the database.

Finally, our experimentation with the web mining were done with
single (most reasonable) values for many of the tunable
parameters, such as the time delta involved in sessionizing logs,
confidence and support for associations, initializing of the
medoids in clustering etc. Clearly, it would be interesting to
experiment with and see the effect of these parameters on the
eventual results.

7. ACKNOWLEDGMENTS
This work was partially supported by cooperative NSF awards
(IIS 9801711 & IIS 980089) to Joshi and Krishnapuram
respectively.

8. REFERENCES
[1] O.R. Zaiane, M. Xin, J. Han, "Discovering Web

Access Patterns and Trends by Applying OLAP and
Data Mining Technology on Web Logs'', Proc.
Advances in Digital Libraries Conf. (ADL'98), Santa
Barbara, CA, April 1998, pp. 19-29.

[2] A. Joshi, and R. Krishnapuram, "Robust Fuzzy
Clustering Methods to Support Web Mining", in Proc.
Workshop in Data Mining and knowledge Discovery,
SIGMOD 1998.

[3] M. Perkowitz and O. Etzioni, "Towards Adaptive Web
Sites: Conceptual Framework and Case Study", to
appear in Proceedings of WWW8, 1999.

[4] C. Shahabi, A.M. Zarkesh, J. Abidi and V. Shah,
“Knowledge Discovery from User’s Web-page
Navigation”, Proc. Seventh IEEE Intl. Workshop on
Research Issues in Data Engineering (RIDE), '97, pp.
20-29.

[5] O. Nasraoui, H. Frigui, A. Joshi, and R. Krishnapuram,
"Mining Web Access Logs Using Relational
Competitive Fuzzy Clustering", to be presented at the
Eight International Fuzzy Systems Association World
Congress - IFSA 99, August 99

[6] O. Nasraoui, R. Krishnapuram and A. Joshi, "Mining
Web Access Logs Using a Fuzzy Relational Clustering
Algorithm based on a Robust Estimator", (poster) at
WWW8, August 1999

[7] L. Yi, R. Krishnapuram and A. Joshi, "A Fuzzy
Relative of the k-Medoids Algorithm with Application
to Document and Snippet Clustering", IEEE Int'l
Conference - Fuzzy Systems, 1999

[8] R. Cooley, B. Mobasher, and J. Srivastava, "Web
Mining: information and pattern discovery on the
World Wide Web", in ICTAI'97, Dec, 1997

[9] Agrawal, R. Srikant: ``Fast Algorithms for Mining
Association Rules'', Proc. of the 20th Int'l Conference
on Very Large Databases, Santiago, Chile, Sept. 1994.

[10] ‘A Listing of Access Log Analyzers’,
http://www.uu.se/Software/Analyzers/Access-
analyzers.html

[11] 'Follow: A session based Log analyzing tool' ,
http://www.pobox.com/~mnot/follow/

[12] SGI-MineSet 'http://www.sgi.com/software/mineset/'
[13] B. Lent, R. Agrawal, R. Srikant, "Discovering Trends

in Text Databases", Proc. of the 3rd Int'l Conference on
Knowledge Discovery in Databases and Data Mining,
Newport Beach, California, August 1997.

[14] Helena Ahonen, Oskari Heinonen, Mika Klemettinen,
and Inkeri Verkamo. "Mining in the Phrasal Frontier",
1st European Symposium on Principles of Data Mining
and Knowledge Discovery (PKDD'97), Norway, June
1997.

[15] Amir Zarkesh, Jafar Adibi, Cyrus Shahabi, Reza Sadri,
Vishal Shah, "Analysis and Design of Server
Informative WWW-sites", in Proceedings of the ACM
CIKM'97

[16] M.S. Chen, J.-S. Park and P. S. Yu, ``Efficient Data
Mining for Path Traversal Patterns,'' IEEE Trans. on
Knowledge and Data Engineering, Vol. 10, No. 2, pp.
209-221, April 1998.

[17] "SpeedTracer: A Web usage mining and analysis tool",
IBM Systems Journal, Vol 37, No. 1 - Internet
Computing , 1998 .

