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ABSTRACT

Title of Dissertation: Opportunistic Bartering of Digital Goods
and Services in Pervasive Environments

Olga Vladi Ratsimor, 2007

Dissertation directed by: Dr. Tim Finin
Professor
Department of Computer Science and Electrical Engineering

The vision of mobile personal devices querying peers in their environment for information such as local

restaurant recommendations or directions to the closest gas station, or traffic and weather updates has long

been a goal of the pervasive research community. However, considering the diversity and the personal nature

of devices participating in pervasive environments it is not feasible to assume that these interactions and

collaborations will take place with out economically-driven motivating incentives.

This dissertation presents a novel bartering communication model that provides an underlying framework

for incentives for collaborations in mobile pervasive environments by supporting opportunistic serendipitous

peer-to-peer bartering for digital goods such as ring tones, MP3’s and podcasts.

To demonstrate viability and advantages of this innovative bartering approach, we compare and contrast

the performances of two conventional, frequently employed, peer-to-peer interaction approaches namely Al-

truists and FreeRiders against two collaborative strategies that employ the Double Coincidence of Wants

paradigm from the domain of barter exchanges. In particular, we present our communication framework

that represents these collaborative strategies through a set of interaction policies that reflect these strategies.

Furthermore, we present a set of results from our in-depth simulation studies that compare these strategies.

We examine the operation of the nodes employing our framework and executing these four distinct strategies

and specifically, we compare the performances of the nodes executing these strategies in homogeneous and

heterogeneous networks of mobile devices. We also examine the effects of adding InfoStations to these net-



works. For each of the strategies, we observe levels of gains and losses that nodes experience as result of col-

laborative digital good exchanges. We also evaluate communication overhead that nodes incur while looking

for possible collaborative exchange. Furthermore, this dissertation offers an in-depth study of the swarm-like

inter-strategy dynamics in heterogeneous networks populated with diverse nodes displaying varying levels

of collaborative interaction attitudes. Further, the bartering framework is extended by incorporating value

-sensitive bartering models that incorporate digital goods and content valuations into the bartering exchange

process. In addition, the bartering model is extended by integration of socially influenced collaborative in-

teraction that exploit role based social relationships between mobile peers that populate dynamic mobile

environments.

Taken as a whole, the novel research work presented in this dissertation offers the first comprehensive

effort that employs and models opportunistic bartering-based collaborative methodology in the context of

serendipitous encounters in dynamic mobile peer-to-peer pervasive environments where mobile entities ne-

gotiate and exchange digital goods and content.
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Chapter I

INTRODUCTION

The most profound technologies are those

that disappear. They weave themselves into

the fabric of everyday life until they are

indistinguishable from it.” - Mark Weiser[112]

I.A Overview

With the explosion of wireless technologies [108], it is becoming clear that mobile computing is slowly but

surely becoming a dominant new culture [89]. People have quickly become more and more reliant on the

flexibility and autonomy that mobile devices can provide. Mobile users no longer can imagine their lives

without their cell phones, PDAs, MP3 players, digital cameras, etc. This mobile culture is in a fluidic state

of nonstop evolution [38, 100]. New hardware, new software and new services are being developed and

broadly used. Old applications and old services are being transformed to keep up with this mobile evolution.

In addition, a new class of digital goods and services is starting to evolve [103]. Distribution and sales of

cell phone ring tones, MP3 music files, podcasts, mobile games, and electronic coupons is developing into a

separate industry [35]. Mobile users equipped with personal devices are actively accruing theses goods and

services. Many users are motivated by a goal of personalization of their off-the-shelf equipment [41]. Others

are looking for entertainment in a compact, pocket-sized form that can be ubiquitously present with them

throughout the day. As this mobile revolution unravels, it is becoming clear that the next big step to truly

embed pervasive computing in to everyday lives of regular individuals is seamless, automated, personalized
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and context aware collaborations between these personal devices. The vision of mobile personal devices

querying peers in the environment for information such as local restaurant recommendations or directions to

the closest gas station, or traffic and weather updates has long been a goal of the pervasive research community

[77, 75]. However along the way of envisioning these interactions and collaborations, we have lost track of

reasons that would prompt personal devices that have limited resources to cooperate with their peers in the

environment. Personal devices have technical limitations such as limited computing power, limited battery

life etc. and most important of all, they are designed to serve the needs of a single individual.

I.A.1 Problem Statement

Considering the diversity and the personal nature of devices participating in pervasive environments, is the

current model of altruistic ad hoc collaborations still the most effective model to motivate collaborations?

Is it valid to assume that devices in pervasive environments will collaborate regardless of their technical

limitations? Is there a communication and collaboration model that can be employed by personal mobile

devices to enhance the productivity of opportunistic peer-to-peer collaboration?

Consider the following scenario:

Sam and Ellie are undergraduate students at UMBC. Both, Sam and Ellie are taking “The Introduction to

Computer Science” class. Though they are registered for different sections, both of their classes are covering

the same material. Sam missed one of the classes and he is interested in getting the notes for that lecture.

Ellie has the lecture notes that Sam is looking for but she is reluctant to give them away. After all, she has put

a lot of effort in composing those notes. Sam proposes an idea that would motivate Ellie to give him a copy of

the notes. He suggests that in exchange for the much needed notes, he will share with her a useful technique

that his lecturer taught during the last lecture. Ellie is intrigued. She has been having hard time solving one

of the homework problems and she feels that this technique could help her with solving that problem. Sam

and Ellie exchange lecture notes for the technique description. This collaboration proved to be beneficial to

both of the students.

This social collaboration scenario is not far from the desired collaborations that have been envisioned

in mobile pervasive environments. In our work, we employ this bartering model to stimulate opportunistic

collaborations in pervasive environments.
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I.A.2 Thesis Statement

Opportunistic collaborations in mobile pervasive environments driven by

self motivated economic goals yield improved cooperation efficiency

and productivity for such interactions.

I.B Contributions

I.B.1 Conceptual Methodology for Collaborative Trading in Pervasive Environments

The primary objective of this thesis is the development of a conceptual bartering methodology that reflects

the context of cooperative exchanges and trade-based interactions that occur as a result of the serendipitous

encounters between peers in dynamic mobile pervasive environments.

I.B.2 Framework for Opportunistic Collaborative Interaction in MANETs

To solve the problem described in the previous section and to apply the developed methodology, this the-

sis introduces an architectural framework that provides support for opportunistic peer-to-peer collaborative

interactions in mobile pervasive environments. The framework allows nodes to express the preferred col-

laboration attitude through a set of collaborative policies that best reflect users cooperation philosophy. In

addition, our framework facilitates advertisement and discovery of digital goods and content, policy based

negotiations and transaction management. This framework allow nodes to collaborate in both homogeneous

environments where all of the nodes have similar collaboration policies and in heterogeneous environments

which are populated with nodes of varying collaboration levels.

I.B.3 Characterization Study of Collaborative Interactions in Homogeneous and

Heterogeneous MANETs

An important contribution of our work is an in-depth study of opportunistic collaborative interactions in

pervasive environments. In particular, we examine effectiveness of collaborative approaches/strategies in

both homogeneous and heterogeneous environments. Homogeneous environments are populated with nodes

that share similar collaboration philosophy. Thus we examine the effectiveness of the interaction strategies as

a baseline for measuring collaborative behavior. Furthermore, in heterogeneous networks where nodes exhibit
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varying levels of cooperation, we evaluate the effectiveness of the opportunistic interactions and inter-strategy

dynamics that occur in these swarm-like collaborative exchanges.

I.B.4 Development of Value-Sensitive Bartering Communication Models

and Investment-Based Trading Approach for MANETs

An extension of our bartering collaboration methodology is the development of a value-sensitive bartering

model that employs environmental conditions to derive valuation for digital content in the environment. The

valuations are quantified into distinct categories that symbolize the worthiness and the significance of the

digital content. This thesis also provides an in-depth study of a set of specific implementations of the value-

sensitive bartering model including supply and demand sensitive valuation models and personalized valuation

models. Furthermore, as an extension to the value-sensitive collaboration model, we have developed an

investment-based bartering strategy that considers valuation of digital content and relaxes the strict constrains

of conventional bartering methods that relies on the principal of coincidence of double wants.

I.B.5 Socially Influenced Collaborations in MANETs

Consequently, to expand this space of possible deals during bartering, our framework exploits role-based re-

lationships such as social relationships or trust-based relationships among owners of the mobile peer devices.

In particular, our framework reflects significance of the social relationships by exhibiting different levels of

cooperation during the bartering process.

I.C Research Impact

With proliferation of mobile technology and the rapid expansion in the industry of mobile digital content, the

interaction patterns and approaches are soon to become a crucial aspect of mobile pervasive environments.

Promoting collaborative exchanges of services and information among small personal device in such envi-

ronments is an important component of successful peer-to-peer interactions. Considering currently utilized

conventional methods of collaborations and the levels of collaborative interactions that take place in mobile

pervasive environments, it is clear that there is a clear deficit of productive peer-to-peer exchanges in this

class of environments. This dissertations explores an alternative method of cooperation that enhances the

collaboration process and stimulates peer-to-peer interactions and exchange of digital content, goods and
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services. This dissertation presents the first comprehensive research work that employes and models op-

portunistic bartering-based collaborative methodology in the context of serendipitous encounters in dynamic

mobile peer-to-peer pervasive environments. This dissertation also shows that incorporation of barter-driven

cooperation policies into the collaborative interaction process drastically improves the productivity and ef-

fectiveness for the individual mobile nodes and the efficiency of the environment as whole. In addition, the

bartering approach provides mobile nodes with resilience to the harsh conditions that are possible in heteroge-

neous environments which are populated with a wide range of nodes with varying collaborative approaches.

This dissertation also shows that mobile nodes do not need to employ very sophisticated methods of bartering

to achieve a high level of effectiveness. In particular, the valuation of digital content is not a crucial fac-

tor in establishing effective bartering interactions. Though the nodes could attempt to employ sophisticated

valuation mechanisms such as personalized good valuations, these extensions are not critical to the overall

effectiveness of the battering process. On the other hand, social role based collaborative exchanges can pro-

mote inter-circle productivity thus furthering the effectiveness of the inter group collaborations. Overall, this

dissertation presents an approach that promotes efficient and productive interactions in dynamic mobile en-

vironments and provides nodes with an interaction method that protects them from inefficient philanthropic

interactions and predatory free riding behavior that is prevalent in mobile heterogeneous peer-to-peer envi-

ronments.

I.D Dissertation Outline

This dissertation advances the field of collaborative peer to peer interactions in mobile pervasive environ-

ments. The following is a chapter by chapter overview of this dissertation.

Chapter I is an introductory chapter that briefly describes the issues that effect collaborative exchanges

in pervasive environments. The chapter outlines the research contributions of this dissertation and expected

impact of this research.

Chapter II presents the key motivating factors that drive the research work presented in this dissertation.

We also describe a set of collaborative interactions that are representative of the presented approach.

Chapter III describes related work that was done in the areas of mobile pervasive computing, mobile

commerce, context awareness and other related domains.
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Chapter IV provides detailed description of our framework that facilitates the collaborative interactions.

This chapter also presents the collaboration approaches and the policies that are employed by the nodes during

the exchange process.

Chapter V describes the results of the in-depth study of the presented framework. In particular, this

chapter establishes a baseline for performance of the four collaboration strategies described in Chapter IV.

This chapter also considers the effect of adding InfoStations to the mobile collaborative environments and

looks at the effect of this environmental change.

Chapter VI presents the results of the inter-strategy interactions that occur in heterogeneous environ-

ments. In particular, this chapter looks at the interactions in “evenly mixed” networks where each of the

strategies has equal representation in the network population. In addition, we present the results of our time-

based simulation study that models the heterogeneous network in a swarm-line interactions and clearly shows

the advantages of bartering collaboration approach.

Chapter VII presents the results of the inter-strategy interactions in heterogeneous networks where the

population of the network has a strong domination by one of the considered strategies. This chapter further

highlights the strength and versatility of the presented bartering collaboration approach.

Chapter VIII describes a set of extensions to the bartering collaboration model that take into considera-

tion aspects of good valuations. This set of extensions include valuation models that rely on demand-sensitive

valuation of goods, demand and supply sensitive valuation of and finally considers a model where valuations

are personalized to match user preferences and interests. In addition, this chapter describes an investment

based extension that enables mobile node executing the bartering framework to acquire goods for future

transactions where these goods are used as bartering tokens.

Chapter IX describes an extension to our bartering model that relies on the social role based interactions

to improve collaborative exchanges in the environment.

Chapter X is a concluding chapter that summarizes the key results of this dissertation and presents the

overview of the accomplishments of our research work.



Chapter II

MOTIVATION

In the last few decades, we have witnessed dramatic changes in computing technology and people’s percep-

tion of this technology. Many recent technological advances have managed to deeply embed themselves into

every day lives of regular individuals. For instance, small personal devices are no longer perceived to be

luxury articles but are thought of as an every day necessity. Visions of these personal devices coming to-

gether and forming pervasive computing environments have been a focus of many prior and ongoing research

projects [62, 14, 110, 60, 97]. Majority of the work has focused on establishing communication between

these devices[33], discovering services on these devices [54, 87, 77], embedding personalization and con-

text awareness into the services and their management [64, 61, 77]. However, amidst this important work,

there have been limited effort in investigating approaches that would incentivize much discussed opportunis-

tic peer-to-peer collaborations. In this dissertation, we present an alternative approach aimed at stimulating

peer-to-peer collaboration [62, 102, 96]. We present a novel bartering communication model that promotes

opportunistic exchange of digital goods, services and content in the context of serendipitous encounters in

dynamic mobile pervasive environments.

To better illustrate the problem, consider the current status of the mobile pervasive environments that

currently surround us. A typical office environments, a typical shopping mall environments or a typical city

street environments are heavily populated with mobile personal devices such as PDAs, smart phones, MP3

players, laptops. Users of these mobile devices are often interested in obtaining digital content that either

addresses their immediate contextual needs or delivers entertainment or helps them customize and improve

operations of their personal device. However, many of the devices do not attempt to interact or assist other

mobile peers that are in their communication proximity. The key reasons behind this impediment is that there

7
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are no motivating factors that promote user collaborations. In fact, these environments, mobile users are

more likely to either attempt to contact their cell phone service provider or browse through the vast amount

of information available on the web rather than to attempt to search for a needed digital content amongst

the near by peers. Interestingly relying on the geographically collocated mobile peers can prove to be more

effective. The rational behind this channels of communications is that it is common occurrences, that people,

who are in proximity of one another, are likely to share some personal or contextual interests[11].

For example, when two drivers, traveling in the opposite directions, encounter one another at an inter-

section both are likely to share a common interest in the traffic conditions that they are about to encounter.

Another example is a student searching for a new song from Red Hot Chili Peppers while moving through

a university campus. Chances of him meeting another student that has a match for his search are very high.

So, this communication channel is particularly effective for acquiring context relevant content that is hard

to acquire through the traditional communication channels. Our research assumes that mobile devices and

their owners exhibit “rational behavior” and are reluctant to give away digital goods and other resources that

they are in control of, unless there is a stimulating, rewarding incentive that prompts these collaborations.

Thus, returning to previous examples, the driver will not be willing to give away the traffic data however; the

driver would be willing to trade the traffic data for some other context-relevant good such as information con-

cerning seating availability in a popular local restaurant. Similarly, two students are more likely to exchange

MP3s rather than give them away. Thus, the bartering communication model is well suited for opportunistic

serendipitous peer-to-peer interactions and exchanges. In the following Section, we will further motivate

bartering model by grounding it to a particular set of example.

II.A Sample Scenarios

Consider a dynamic mobile computing environment which is currently populated with four mobile devices:

D1, D2, D3 and D4. Each of the devices has a set of services that it is interested in acquiring and a set

services that it is willing to offer to others. For example, device D1 is interested in acquiring Song-A and

could offer RingTones-B, C and D. One option is that all of the devices satisfy each others needs and blindly

and generously offer up their available resources to each other. Another option is that devices could possibly

sell needed services to one another. And third option is that devices attempt to exchange a service for a

service and a good for a good in order to address their needs and wants. Issues associated with the first two
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options are discussed in a later Sections. Let’s look in detail at the third option.

Figure II.1: Basic Bartering Scenarios

II.A.1 Basic Collaborative Bartering Scenario

Suppose, device D1 is interested in acquiring Song-A (Figure II.1). D1 discovers that D2 and D3 are the

devices that could potentially offer the song it is interested in. It starts by contacting D2 and proposing an

exchange of Song-A for a RingTone-B. Device D2 responds with a rejection. D2’s reason for rejection is that

it is not interested in ring tones. After analyzing the reason for rejection D1 terminates negotiations with D2.

D1 attempts to approach D3 with same proposal. D3 is interested in one of the ring tones that D1 has to offer.

D3 responds with a positive reply. D1 and D3 conduct a transaction and exchange Song-A and RingTone-B.

II.A.2 Relationship-Based Collaboration Scenario

Suppose, device D2 and device D4 are owned by two sisters (that like each other). Both devices are aware

of this social relationship. Now suppose, device D4 is interested in acquiring RingTone-B. D4 determines

that D1 and D2 have this ring tone. D4, by default, will prefer to barter with the sibling device since there

is a long history of interactions and familiarity between these two nodes. D4 composes proposal requesting

RingTone-B and in exchange offering either PodCast-A or a RingTone-A or C. D2 is not interested in the

podcast or the ring tones since D2 is only looking for Wallpaper-B which D4 does not have. However, D2,

instead of sending a rejection to D4, considers the social connection between the owners of the devices and

offers D4 much desired RingTone-B with out anything in return.
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II.A.3 Investment Scenario

Devices could also acquire services that they are not planning to personally use. These services could be

treated as an investment and could be bartered off at a later time.

Figure II.2: Acquiring Services for Later Resale

Suppose, device D1 is interested in acquiring PodCast-B (Figure II.2). It discovers that the only device

that is capable of offering this podcast is D2. Unfortunately, D2 is not personally interested in PodCast-A

that D1 is offering in return. However, despite personal disinterest in the PodCast-A, D2 identifies this ring

tone to be in great demand by other devices. So, D2 looks at PodCast-A as an investment that could be

later cashed out for another service that D2 needs. Thus, D2 accepts the proposal from D1 and exchanges

PodCast-B for PodCast-A. So now, D2 has PodCast-A and B but it is still looking for Song-A. At a later time,

D2 meets D3. D2 identifies that D3 has Song-A that D2 was looking for some time. D2 composes a proposal

that suggests an exchange of Song-A for PodCast-A and PodCast-B. D3 analyzes the proposal and decides

though individually each of the podcasts are not as valuable as the song however their combined value is

adequate. Thus after consideration D3 decides to go through with the exchange. Clearly, D2’s the investment

into PodCast-A paid off. D3 did not agree to exchange Song-A for just one ring tone.

To realize the above described scenarios, we need to address a set of challenges that will affect peer-to-

peer collaborations in pervasive environments. In this dissertation, we argue that a bartering communication

model is a viable approach to promote collaboration and exchange of digital goods and services.

In the subsequent parts of this chapter, we present the challenges of collaborations and interactions in

mobile pervasive environments and also describe alternative approaches that can be used to support exchanges

of digital goods and content in mobile environments.
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II.B Challenges of Collaborations in Pervasive Environments

II.B.1 Free Riders in Pervasive Peer-to-Peer Environments

In Chapter III, we discuss prior and ongoing research in cooperation and collaboration of peers in con-

ventional peer-to-peer settings. Similar to conventional peer-to-peer systems, pervasive environments best

function when devices agree to collaborate and coordinate with each other. One of the common visions

of pervasive environment interactions is devices asking one another to share their digital goods, services

and content to enhance the social experience of their owners. Request for traffic updates, restaurant recom-

mendations, search for cheap gas station are all frequently discussed applications of pervasive environments

[42, 94, 28, 104]. Parallels can be drawn between collaborations involved in these applications and col-

laborations in peer-to-peer music file sharing systems. However, unlike conventional peer-to-peer systems,

pervasive environments are populated with small personal devices that are tightly constrained in their re-

sources and computing power. Under these circumstances, inefficient and uneconomical collaborations are

far more damaging to the well being of the individual devices and to the computing environment as a whole.

Analogous to the conventional peer-to-peer systems, collaborations in pervasive environment are not immune

to the problem of free riders [83, 65, 12]. In fact, the limited computing power and the personal nature of

the devices that are involved in the collaborations further stimulates these devices to disregard ongoing part-

nerships and cooperative teamwork efforts in the environment [92, 89, 99, 34]. An example of free rider

behavior in pervasive environments is a device that, in an attempt to conserve it’s computing resources and

power, is ignoring and dropping service requests and other communications from other devices while sending

out service and content discovery requests for its own benefit. If a large enough percentage of devices sab-

otage collaborations, then this incapacitates the computing environment, leaving other cooperative devices

potentially isolated and unable to complete their tasks. Free riders are very taxing on collaborative computing

environments [39, 36, 26].

To deal with this issue, environments need to have strong incentives that would attract devices with limited

resources and limited computing power into honest personally meditated collaborations. The challenge lies

in design and development of a communication management component that is capable of collaboration

opportunities and exploiting them to derive the benefit. In order to achieve that, management components on

these devices need to be able to compute benefits that they would receive from collaborations, so that devices

are not unnecessarily overtaxed and over burdened. Incentives need to be embedded into the communication



12

model to ensure that collaborations are done out of self beneficial economically motivated goals.

II.B.2 Information Noise Makers

Pervasive environments and personal devices are not exempt from spamming and other heavy communication

services [114, 16]. Such services could be regarded by many nodes in the environment as useless noise mak-

ers. Intense environmental noise has a strong potential of hindering collaborative efforts in the environment

by overwhelming the devices with extra information. In such “noisy” environments, devices must be capable

of filtering out communications and interactions that are perceived to be of no interest or importance and still

be able to participate in relatively useful information exchange and discover desired services. The challenge

lies in development of a communication management component that is capable of identifying importance of

the communications in a personalized manner [86, 85]. In essence, a communication management component

needs to be able to determine the value of incoming data and offered services and make a decision of how

critical is this interaction to the state of the device [78, 47]. Acquisition and retention of digital goods, content

and services should be done on the basis of perceived value and desire and not on the basis of availability.

II.B.3 Unpredictable Quality of Services and Goods

When devices collaborate and communicate, they acquire and collect information, goods and services. De-

pending on the environment and context, it is possible that received data and services are not what were

originally expected [53]. Upon acquisition, a device might identify the good or a service to be useless and

there is no point it keeping and maintaining this good or service. Similarly, it is possible that when a good or

a service was acquired, it was believed to be a very useful, important, and a valuable item. However, over a

period of time, it became clear that the potential usefulness or need for this good or service was overestimated

[44]. Maintenance and upkeep of this good or a service is consuming limited valuable resources. Yet another

possibility is that an obtained good or service was acquired for a short term use. Once the intended time

expires, the device should be capable of disposing of the service in an optimal way. Another possibility is

that the service is valuable only in a particular rarely occurring context, which is not expected to occur in the

near future. Once again, the device should be able to identify such goods and services and possibly dispose

of them in an optimal fashion. On the other hand, devices should be able to identify and protect goods and

services that are perceived to be very valuable but are rarely used. In addition to that, once a good or a service

is deemed insignificant, there are several logical approaches that could be taken to free the device form this
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good or service. One simple approach is to remove the service and cut the losses of resources that are being

expended on maintenance of this good or a service. Another alternate approach is to try to sell the service or

to trade it away in exchange for another good. In essence, this approach could be titled as “one mans trash is

another mans treasure”.

II.B.4 Anonymous Collaborations

Conventional views of mobile devices in pervasive environments assume that all of the communications and

collaborations are anonymous. Social relationships between the owners of the devices are not propagated

into of the collaboration and communication models that are employed. There is a number of reputation and

trust based mechanisms that are used to identify cooperative and uncooperative devices in the environment

[75, 76, 74]. These mechanisms are powerful and can be combined with real human social relationships.

Such relationships are significant since they can be used to explain and justify the levels of cooperation that

personal devices exhibit during peer-to-peer collaborations. There are a set of tools such as LinkedIn.com [1],

orkut.com [2], mySpaces.com [3] and FaceBook.com [4] that represent such social relationships. Removal

of anonymity from collaborations brings additional flexibility to these strategies in pervasive environments.

Collaboration strategies between “friendly” devices can be more relaxed since there is the factor of long term

relationship between the devices. The challenge lies in developing mechanisms that allow personal devices

to follow and execute personalized collaboration strategies that reflect existing social relationships between

their owners. The communication management component needs to be able to reason over the relationship

status and incorporate the characteristics of the relationship into the communications and negotiations.

II.C Currency and Micropayment Based Alternative Approach

A possible alternative approach that could address some of the challenges satiated above is a computational

economy approach that is based on use of currency and micropayments. In this approach, every digital

good, service or information is assigned a dollar value or an abstract system currently value. Other currency,

including internal currency or a credits system can also be used to implement this approach. Devices that

are interested in obtaining digital content, a good or a service that reflects particular local and temporal

context can purchase these items from the mobile peers that surrounded them. This approach would allow

nodes to acquire most relevant content. This approach would also ensure that the collaborative nodes in
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the environment are protected from the predatory interactions initiated by the by free riders. Overall, this

economic approach provides the flexibility of interactions. Devices would acquire only the data that they

would truly need or be willing to pay for. In essence, this pricing and purchasing approach would create a

miniature economy within computing environments.

Unfortunately, every economic approach that involves currency requires a set of mechanisms that address

issues of payment processing and currency management. Micropayment mechanisms would need to be used

to finalize transactions. However, micropayments have a number of well known shortcomings such as “men-

tal transaction cost” and “user anxiety” [101, 105, 71, 73]. These shortcomings would certainly impact the

over all performance of the computational microeconomic approach. Furthermore, the traditional microe-

conomic approaches rely on the existence of the well connected framework that overlooks these aspects of

micropayment related management. In addition the conventional micropayment approach does not take into

consideration issues of context sensitive, personalized interactions and social relationships of device own-

ers. The drawbacks of the micropayment mechanisms would also apply to environments that use abstract

currency.

The environments that use abstract currency would need to use mechanisms that handle issues of inflation

and deflation of that currency. Clearly this will be a complex and taxing process for the mobile nodes that

have limited battery and limited computational resources. Though, this economic approach addresses the

problem of free riders and noise makers in the computing environment, it does not consider the issues of

dynamic changes of perceived value of data.

Finally, there would be a need to develop a pricing mechanism that would be used to describe every

item in the environment. This mechanism would need to provide a set of critical functions to the nodes in

order to be an effective tool that can be used for dynamic peer-to-peer interactions in the fast pace mobile

environment. In addition, this mechanism would have to be light weight to allow nodes to install it and

execute its functions on the limited mobile platforms. This mechanism would need to be able to take a set

of parameters into account. In particular, this pricing mechanism would need to capture the context sensitive

characteristics of the digital content such as the geographical aspects of the data and temporal restrictions and

limitations such as data expirations and data staleness. In addition, this mechanism would need to be aware of

the personal user settings and preferences, such as upcoming context for this user and personal interests and

partialities. Also, the pricing mechanism would have to be able to capture the environmental characteristics

such as current and upcoming trends, preferences and interests of the general network population. To achieve
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this, this mechanism would need to employ complex learning techniques and be able to quickly adapt to

the fast changing mobile environments and constantly evolving user context. Clearly, this complex solution

would impose a major burden onto the mobile devices that have limited battery and limited computational

resources. This heavy computational footprint would incapacitate typical mobile device and thus will not be

able to provide robust and effective pricing information for the constantly evolving digital content and fast

changing mobile environments.

The currency and the micropayments based approach is capable of delivering a flexible comprehensive

toolset for the conventional environments that have strong presents of well established centralized authorities.

However, the footprint and robustness of these interaction methods are not well suited for the context of

opportunistic, serendipitous peer-to-peer interactions in the pervasive mobile environments that lack these

centralized, well established, reliable authorities.

II.D Bartering Approach

In contrast to the currency and the micropayments based approach, the bartering based approach is well suited

for opportunistic collaborative interactions in mobile pervasive environments. Our bartering framework pro-

vides mobile nodes with the simple yet powerful policy driven mechanisms that allow mobile nodes to select

and employ collaborative interaction method that best reflects their attitude towards collaboration process.

In essence, the collaboration attitude are encapsulated in strategies that are represented through a set of well

defined negotiation policies. This approach allows nodes to customize their interactions to better reflect their

personal preferences and partialities. In addition, our bartering framework is further enhances by the use of

the value sensitive collaboration models that acknowledge the perceived value of goods and services. Our

bartering framework provides nodes with tools that allow nodes to classify the digital content according to

the levels of importance and incorporated this categorization into the bartering process. Our framework also

explores the social relationships between the owners of the mobile nodes and incorporates these relationships

into the collaborative interaction process.

There are a number of issues that affect bartering interactions. One of the more prominent and charac-

teristic issues associated with the bartering process is the issue of the double coincidence of wants. In fact,

this issue is one of the major drawbacks of bartering interactions in any type of environment [49]. Basically,

in order to have a successful trade, the participants need to desire each other’s goods and services. This con-
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straint, in its strictest form, dramatically limits the pool of possible solutions. However, to promote bartering

in pervasive environments, our framework also considers mechanisms that broaden the set of possible solu-

tions to facilitate a trade. In particular, we consider a bartering strategy that involves nodes in the exchanges

where the bartering partner needs to show some level of reciprocity. This strategy does not require “even”

trading. This relaxed approach improves the set of available trading options of goods and services during col-

laborative process. We also employ social relationship dependent strategy. In essence, the nodes executing

this strategy relax the strict constraints of equality of the trade during the exchange with friendly devices. In

addition, our framework facilitates socially motivated interactions, Incorporation of this relationship based

bartering approach further widens the set of possible solutions since devices have an option of being more

tolerant and not driving hard bargains during an exchange with a friendly device.

II.E Summary

In this chapter, we describe the challenges of collaborations in pervasive environments. We motivate our

approach by describing a set of basic collaboration scenarios. We describe a set of challenges that affect tra-

ditional pervasive environments. We also discuss alternative solutions to deal with the described challenges.

We compare our bartering approach with conventional approaches. And finally, we conclude with a discus-

sion of challenges that need to be addressed to ensure optimal approach to manage collaborations in pervasive

environments.



Chapter III

BACKGROUND AND RELATED WORK

III.A Introduction

In this chapter, we survey related work, both to point out contributions of previous researchers and to place

our proposed contributions in the proper context. We organize this survey around the main themes of our

research:

• Pervasive Environment,

– Context-aware Computing,

– Context Mediation,

– Ambient Services,

– Mobile P2P Computing

• Incentive Mechanisms in P2P Systems

• Mobile Commerce

• Electronic Goods and Services

• Bartering

17
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III.B Pervasive Environments

Pervasive environments are populated with mobile personal devices such as cell phones PDAs and laptops.

These devices host personal applications such as calendars, contact managers and business type applica-

tions. But in addition to traditional personal applications, a new set of mobile personalized entertainment

services are emerging and rapidly moving onto personal mobile devices. Explosive growth of computational

capabilities, dramatic increase in demand for communication and information services and development of

integration technologies has resulted in the development of new and effective pervasive computing and com-

munications paradigms. Technologies such as Bluetooth[5] and 802.11[6] enable and empower development

to an entire class of applications that allow users to interact, collaborate and share information in a seamless

and spontaneous way.

III.B.1 Mobile P2P Frameworks

In the following sections, we describe frameworks and architectures that were built to facilitate peer to peer

interaction in pervasive environments. In addition to the frameworks described below, as a part of our pre-

liminary work, we have developed the Numi project. The Numi framework employs collaborative agents to

facilitate p2p data routing to enrich service environments for mobile devices that operate in infrastructure-

based wireless networks. Detailed description of this project can be found in Chapter 4.

Infostations

The Infostations project experimented with the notion of data hoarding in mobile environments. They argued

that even though cellular voice and data networks facilitate “any time, anywhere” connectivity, they are

expensive and offer low bandwidth. Infostation networks[88] have often been suggested as a viable alternative

to meet the needs of mobile applications. An infostation network consists of a set of towers offering short-

range high bandwidth radio coverage. They offer high-speed discontinuous coverage, which is inherently

low cost. Network access is available to users that are passing in close proximity to an Infostation. In

this sense, the infostation is similar to a base station coupled with an information server such that the base

station provides the network connectivity while the information server handles the data requests. A mobile

device thus experiences areas of connectivity (when close to an infostation) and areas of disconnection (when

there is no infostation nearby). Specialized data link protocols have been suggested for allowing devices to

communicate with such Infostations [33].
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MoGATU

MoGATU is a lightweight peer-to-peer data management architecture for pervasive environments. The Mo-

GATU framework facilitates serendipitous querying and data management in mobile ad-hoc environments

[78] [77]. The MoGATU project regards devices as semi autonomous entities which are guided in their in-

teractions by personal user profiles and the context that devices operate in. MoGATU uses a contract-based

transaction model. Information about users is described in the personal profile that are represented in a rich

semantic language. Each of the objects is described in terms of ”beliefs”, ”desires”, and ”intentions”. Mo-

GATU introduces data-based routing algorithms and semantic-based data caching and replication algorithms.

These algorithms enable mobile devices to utilize their data-intensive vicinities. MoGATU devices also use

automated interactions in attempt to obtain data relevant to the user’s ”intentions” and ”desires” which are en-

coded in the user profiles. MoGATUs transaction models is based on contract net principles for peer-to-peer

interaction.

Proem

Proem is a peer to peer middleware framework that allows deployment of mobile and ad hoc applications

[57]. The key goal of Proem is the support of wearable communities [32]. Wearable communities emerge

when sufficient number of people that use wearble computing devices come together and use their devices

to communicate and interact with one another [55]. The framework was developed to augment face to face

interactions that happen between people that come in contact with one another. Proem relies on personal area

networks to create a “digital sphere”. When individuals come in close proximity to each other, their “digital

spheres” overlap and this enables devices to communicate. During this stage, devices are free to exchange

information and access each others services. This communication can potentially enhance social interactions

between individuals and further promote face to face contact. Once the devices move apart, the connection

is severed and the spheres detach and end communications. Match making, friend discovery, and file sharing

are the sample applications that can be built on top of Proem. The Proem middleware consists of three main

components: an application runtime environment, a set of middleware services, and a protocol stack [56].

The application runtime environment in essence is a peerlet engine running Proem compliant applications

called peerlets. Peerlets employ an event based model and can be added to the peerlet engine and removed

from the engine at runtime. Proem employs a set of protocols to facilitate interactions: transport, presence,

data sharing, and community building protocols are used to facilitate interactions between devices. Proem
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also employs a set of managers to provide basic services for presence management, profile management,

data space management and community management. It also provides mechanisms to log encounters and

propagate events.

III.B.2 Context Awareness

Context awareness is a powerful concept that empowers many applications that wound not otherwise be

able to operate in pervasive environments. Context aware applications exploit environmental factors such

as: time, user’s location, current and future events, other users in the environment etc. Describing context,

evaluating it, identifying the most relevant information and then reasoning over it has been a focus of many

research projects. The aspect of filtering through the contextual information is the most relevant aspect for

our proposed approach.

One of the subfields of context aware computing is the use of ambient intelligence [97]. It exploits lo-

cation relevant contexts. Ambient services are linked to the surrounding physical environment. They have

geographical boundaries of relevance and utility. Ambient services are highly applicable in the domain of

location based mobile commerce [64]. An example of a mCommerce ambient service is a mobile advertise-

ment service that distributes ads to potential customers that are a short distance away form the store. This

type of context dependent advertisement is very effective since it is highly relevant to consumer’s proximity

to the store.

Contextual mediation[22] can also be used to filter out contextual noise that overwhelms a mobile device

that operates in pervasive environments. Contextual mediation [21]is a form of application aware adaptation

that is used to manage contextual information requests. During a contextual mediation process, an application

selects the most relevant and the most appropriate subset of available contextual data and delivers it to the

user. This contextual data is described using semantic representation and a set of attributes. The utility of

the data varies between “no interest” to “most interesting”. Preferences that reflect users interests are used to

narrow the set of contextually relevant data.

myCampus Framework

myCampus framework [93] is one of the more prominent and well developed projects that incorporates and ro-

bustly exploits context wariness in pervasive environments. myCampus framework uses eWallet management

component that is running on uses personal devices. Users personal resources are modeled as semantic web
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services. Personal and contextual resources and services are represented in using ontologies. Task specific

agents can use eWallet to reason over the context and application specific reasoning. myCampus framework

gives special attention to the aspects of privacy for context sensitive applications. myCampus project allows

automated management of various context dependent applications such as scheduling of a meeting or privacy

sensitive inquiry about locations of another user.

III.C Incentive Mechanisms in P2P Systems

A number of peer to peer file sharing systems, have been developed in recent years. The more prominent

examples of music file sharing systems that have proven to be immensely popular are Napster, Gnutella and

KaZaA [7, 8, 9]. Participants of these networks can offer songs from their musical collections for others to

download. Participants can also search and upload songs from other peers on the network.

However, majority of the peer to peer systems in their original implementations suffer from the free rider

problems. Many of the participants did not contribute resources to and only consumed them [12, 83, 65]. A

number of approaches have been developed to encourage contributions to collaborations in peer to peer file

sharing systems. The approaches involved currency based solutions, and payment based incentives and the

use of credit systems.

Below we describe several research projects that address issues of free rider problems in peer-to-peer

systems.

MojoNation

MojoNation[48] was one of the earlier designs that addressed the issues of free riding, freeloading and de-

nial of service attacks in peer to peer systems. It also offered mechanism for balancing resource supply

and demand. MojoNation followed a free economy approach of using internal currency called Mojo. The

MojoNation barter system combined a “digital token” micropayment system with peer-to-peer microcredit.

Initially each joining user was given an amount of currency. The user could spend the currency on purchas-

ing the files from other peers. Users earned Mojo currency by sharing their disk space, processing power,

bandwidth etc. All of the transactions were cleared by the centralized authority of a central bank.
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Karma

Karma is a framework for P2P resource sharing[111]. The Karma project addressed issues of free riding in

p2p applications through the use of a decentralized currency. Decentralization is one of the key features of

Karma. This project employs a peer-to-peer scheme for tracking karma currency transfers. This approach

protects the systems against malicious attempts to corrupt and alter the currency balance in the system. Karma

also utilizes a secure exchange mechanism that ensures that participants can not counterfeit karma currency.

This project also addresses issue of inflation and deflation to regulate the supply of karma currency on the

network. These mechanisms provide significant improvement over the unregulated approach of MojoNation

system. Similar to MojoNation, Karma employs a reward mechanism to incentivize peers in the system to

contribute their resources.

N-Way Exchange Based Approach

[13] explored an alternative bartering approach to resolve the free rider problems. Users directly traded

resources between themselves. Transfer priority is given to the users that conduct exchanges rather than

simple consumption. Simple consumption is permitted only if there are no peers that are willing to participate

in the exchange. The authors also explored n-way exchange mechanisms. In the n-way exchanges users

formed rings of N peers. Each peer is served by its predecessor and service the successor in the ring.]

Bittorrent

A file sharing system, called BitTorrent[27], addressed free riding problem thorugh the use of barteirng

model. Bittornet’s aproach relied on didviding files into fiexed size compontnes. The componets are stored

at multiple peers.

Our Proposed Approach

Unlike our proposed approach, above described systems did not consider value of the entities that are being

exchanged. These approaches also did not take into consideration social relationships between the users of

the system.
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III.D mCommerce

Commerce has long been a critical component that stimulates collaborations[89]. Economically motivated

collaborations use incentives of pay off to promote trade and other interactions and collaborations. Our

research primarily focuses on collaborations in pervasive environments. Thus, the most relevant form of

commerce is mobile commerce. There is a grate diversity of mobile applications that fall the under umbrella

of mobile commerce [109]. Mobile financial applications, mobile advertising, mobile inventory management,

product location[106], proactive service management[110], wireless business re-engineering, mobile actions,

mobile entertainment, vehicular mobile commerce[107], are all considered to belong to the mobile commerce

domain [92, 109].

We have done significant amount of preliminary work in the development of mobile commerce middle-

ware that operate in pervasive environments. In particular, we have developed the eNcentive framework which

focuses on the issues of delivering mobile advertisements to the users in pervasive environments[85]. We have

also developed the Agents2Go framework that supports location-dependent service discovery in mobile elec-

tronic commerce environments[86]. We also have developed the Allia framework that uses alliance-based

service discovery to discover mCommerece services in ad-hoc environments[84, 87]. Detailed description of

theses projects can be found in Chapter4.

A framework for mCommerce depends on four general levels of operations: wireless network infras-

tructure, mobile middleware, wireless user infrastructure and finally, mCommerce applications. Below, we

describe a set of mobile commerce middleware projects and implementations are most relevant to our pro-

posed research.

EasiShop - Context Aware Shopping

The EasiShop framework[50, 51] explores the concept of cross merchant product comparison shopping

through the use of personal mobile agents and virtual market places. The framework assists consumers

with their shopping experience. It envisions consumers that are quipped with personal devices that are run-

ning EasiShop Shopping Agent. The Shopping Agent is a mobile agent that is responsible for managing the

shopping list and finding the best suited products that match consumers preferences. As, consumers walk

by the retailers locations, thier Shopping Agents enter the EasiShop Catchment Zones where they come in

contact with the retailers Retailer Agents that is hosted by the wireless device in the shops. If a Shopping

Agent identifies a product that a consumer is interested in, then the interaction is moved to the Market Place.
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Market Place acts as a forum where consumers and retailers can interact with one another independent of

their physical movements. Market Place categorizes products into relevant sets which are represented as

stalls. At a particular stall a consumers Shopping Agent has a chance to cross-compare the products and their

prices. This enables the Shopping Agent to make informed decisions and derive recommendation that could

be passed to the consumer.

iClouds - Mobile Advertising System

iClouds[45] is a framework that was developed to support dissemination of advertisements to mobile devices.

This framework envisions formation of information clouds when several mobile devices come in proximity of

each other. Devices are enabled to exchange electronic advertisements that are supplied by various merchants.

Anonymous bonus points are used to reward active users that propagate advertisements. Devices keep track

of users interests in data structures referred to as iLists. iHave list contains ads that user has and iWish list

contains the list of types of ads that user is interested in. During encounters, devices exchange their iLists.

If a match is found, the ad is moved to the device that desires the ad. The ads propagate from a device to a

device creating a chain. The ad keeps information about every device that participated in its propagation. If

the ad materializes into a purchase, then every device that assisted with propagation is rewarded with bonus

points. The bonus points are managed by the Mediator. The Mediator in essence is a central database that

coordinates merchants and customers. To protect customers privacy dynamic network data and encryption of

application layer information is provided during the building of the chain.

Our Proposed Approach

We propose to exploit economically motivated incentives to promote collaboration in pervasive environments.

Our approach relies on bartering as the exchange mechanism. Economical motivated mobile personal devices

are driven to exchange goods and services in an attempt to increase their personal net worth and provide

needed goods and services to their users. Personalized valuation of goods and services is at the center of our

approach. We also propose to employ personalized bartering strategies that acknowledge and exploit personal

relationships between users of the devices. Detailed description of our approach can be found in Chapter 5.
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III.E Digital Goods and Services

MP3s, podcasts, ring tones, screen savers, mobile games, wallpaper, video clips and electronic coupons are in-

vading everyday lives of average consumers. Digital goods, services and information are becoming common

mainstream entities. The use of digital goods is becoming part of daily routine for many people. Currently,

for a small fee, average consumers can easily acquire any one of the above listed digital goods, store it on a

personal device and have a change to enjoy it at any moment they whish. Some goods, such as ring tones,

wallpaper and screen savers are used by many individuals as a statement of their individuality and personal-

ity. Other digital goods and service such as games, MP3s, podcasts and video clips bring entertainment and

leisure. Development of this new class of goods and services has resulted in the development and emergence

of a new digital economy. Buying ring tones and MP3s is becoming a matter of social norm. Users can log in

into one of hundreds of websites, listen to hundreds of previews of numerous types and various genre of ring

tones and just for a couple of dollars they can buy one and install it their cell phone in a matter of seconds.

However, behind all the fun of immensely popular digital goods and services, lies the serious and complex

nature of digital goods and services. Formally, a digital good can be defined as: “a payoff-relevant bitstring

that affects the utility of or a payoff to some individual in the economy”[82]. Digital goods are discrete since

they are distributed and acquired in integer amounts. Unprotected digital goods can be easily duplicated and

distributed. A copy of a digital good is usually another independent digital good. Digital goods are non-rival

goods which means that consumption of this good by one individual or a device does not diminish the amount

that is available to others. A digital good is an experience good. In order to get an understanding of quality

and content of the goods, one needs to gain access to that good. Digital goods can be fragile and non fragile

[82]. A fragile good is a good that will significantly denticulate in value if even small portion of the good is

lost. A non fragile good is a good that will not significantly suffer in economic value even if a small portion

of that good is lost. All these aspects of the nature of the digital goods have an effect on the distribution and

acquisition mechanisms and strategies employed.

This dynamic nature of the new digital economy does not come with out controversies. At the early

acceptance stages, sharing of MP3 files was a common practice. Music industry claims that is lost millions

of dollars due to the violation of the of the copy rights of the songs that were freely distributed by users of

p2p systems such as Napster and Gnutella. This controversy brought into focus issue of high costs involved

in production of the original first copy of a digital good.
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III.E.1 Original Cost of Digital Goods

Information, digital goods and services are inherently expensive to produce. On the other hand duplication

and reproduction of already existing information, good or service quite inexpensive [98]. For example, if a

device wants to produce a traffic report for a particular stretch of road, it needs to collect a substantial amount

of sensory data from that stretch of road, analyze it and may be even compare it with previous records.

Finally, it needs to assemble the data and convert it into a report format. This device needs to spend a con-

siderable amount of computing and battery power while it’s sensors are collecting and processing the data

and compiling it into a concise report. On the other hand, if the device wanted to share this information with

another device, all it needs to do is to clone this information and transmit it to the other device. Clearly, the

cost of producing an additional copy is insignificant compared to the “sunk cost” of the production of the first

original copy. In fact, there is no limit to the production of additional copies. If a device can produce one

copy, it can produce hundreds of copies. In addition, devices that receive the copies of information can them-

selves make duplicates and start to distribute this information. This distribution will generate fast growing

competition amongst sellers. The end result of this replication and competition will push information price to

zero. This clearly contributes to the diminished importance of original cost during valuation of services and

data. In pervasive environments, production of the first good is notably more expensive since, the devices that

frequently operate in these environments have very limited resources and computational power. To address

the information price issue, devices could employ Digital Rights Management (DRM) mechanisms. These

mechanisms restrict duplication and potentially slow down the effect of the rapid and uncontrolled informa-

tion distribution. Unless DRM mechanisms are employed the price of services, information and digital goods

in the environment will eventually be pushed to zero.

III.E.2 DRM - Digital Rights Management

Recent controversial developments in p2p file sharing applications exposed complexities involved in manag-

ing and distributing electronic goods and services. In addition to that, these controversies brought to the fore-

front, the importance of Digital Rights Management (DRM) mechanisms. DRM mechanisms are designed

to protect the rights of the creators of original goods and service. Typically, DRM mechanisms incorporate

encryption, conditional access, copy control mechanisms, and media identification and tracing mechanisms

such as water marks [91].
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III.F Bartering

Bartering is one of the forms of trading [62]. It is also frequently referred to as a “pure exchange”. Bartering

is a method of trading services and information directly for one another (without the use of money or other

similar unit of account or medium of exchange). In a barter exchange, one good is traded directly for another.

Other forms of trading are: bargaining, bidding, auctions, clearing and contracts [72]. The process of bar-

tering shares many common principals of other trading techniques. In bartering, sellers of a good or service

are worse-off when there is a large number of other sellers of a similar good or service. Buyers of a good or

service will prefer to have as many sellers as possible for the good or service they are buying. Buyers of a

good or service prefer to have as few other buyers as possible. Sellers of a good or service would like to have

as many buyers for their good or service as possible.

Bartering is an ancient form of trading. It is widely believed that it superseded use of money and cur-

rency. Bartering is still commonly used in various social and economical interactions particularly when the

infrastructure that facilitates currency based exchanges fails. Recently, during the first few days in the af-

termath of hurricane Katrina that hit the city of New Orleans, when communications were down and banks

were not operational, local residents and business owners conducted bartering transactions to acquire needed

resources.

Bartering has proven to be a reliable tool of exchange when the conducting transactions become unrea-

sonably expensive. The absentce of exchange infrastructure or high costs of conducting transactions can be

a motivation factor to barter. This is frequently the case in pervasive environments. Access to bank accounts

from a personal device such as a cell phone for a micropayment is not a very complex process. However,

the ratio of the transaction cost to the average amount involved in payments is very high for many average

consumers. In fact, micropayment mechanisms have long been criticized for high transaction cost and high

consumer anxiety [71, 105]. Bartering can alleviate some of the transaction costs in pervasive environments.

A user of a mobile personal device seeking particular MP3 would rather give one of his or her MP3s as a

payment and not deal with conducting a monetary transaction that would involve bank transfers or a credit

card transaction.

Clearly, barter exchange has a set of issues that can hinder a successful exchange. One such issue is

double coincidence of wants, another is potential of asymmetric knowledge of the quality goods that are

being exchanged.
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Double Coincidence of Wants

One of the critical issues that impacts success of bartering is double coincidence of wants. The concept of

double coincidence of wants is the key behind the traditional economic definitions of a bartering process.

The phrase “double coincidence of wants” was used in Jevons (1875)[49]. “[T]he first difficulty in barter

is to find two persons whose disposable possessions mutually suit each other’s wants. There may be many

people wanting, and many possessing those things wanted; but to allow of an act of barter there must be a

double coincidence, which will rarely happen.” The translation of this concept into the bartering in pervasive

environment is the following. Suppose Device-1 that has a Service-A and wants Service-B meets another

Device-2 that has Service-B and wants Service-A. This convenient coincidence allows Device-1 and 2 to

exchange services and satisfy each others needs and wants. General belief in conventional economics is that

this type of coincidence is very uncommon and thus making it difficult to trade.

Our Proposed Approach

We propose relaxation of double coincidence of wants through use of methods and strategies that can be

employed in pervasive environments. To increase the space of possible deals, we propose to exploit social

relationships between the owners of the personal devices that operate in pervasive environments. These

methods and strategies are discussed in Chapter 5.

Asymmetric Knowledge

Sellers of the good or service have full knowledge of the quality of that good or service. On the other hand,

a buyer has only partial knowledge that has been provided by the seller. This unequal and asymmetrical

knowledge of the quality of goods and service that are being exchanged adds complexity and anxiety which

can influence the exchange.

Our Proposed Approach

We propose to exploit social relationships of the owners of devices as a guarantee of the quality of service.

Devices that belong to users that know each other are unlikely to intentionally mislead and misrepresent the

quality of the good that they are offering. Clearly if a relationship is not established, then there is a risk

of abuse of asymmetrical knowledge. However, in pervasive environments, an argument can be made that

devices that come in contact in the pervasive environment most likely belong to individuals that have some
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social link to one anther. It is also reasonable to assume that these devices will come in contact again. This

close knit, personal nature of pervasive environments will discourage abuse of asymmetry of knowledge of

quality of good or service.

III.G Summary of Related Work

In this chapter, we describe related work to provide the foundation that is necessary to describe our research

approach and our expected contributions. We discuss the unique nature of pervasive environments and devices

that operate in them. We also describe p2p systems and their approach to addressing the free riding problems

during resource sharing. We describe mCommerce approaches to stimulate collaborations in mobile pervasive

environments. We also describe and discuss aspects of digital goods and services. In this chapter, we also

introduce and motivate the use of bartering exchanges. We also examine the issues that effect the success

of bartering. We lay the foundation necessary to motive the use of bartering to stimulate collaborations in

pervasive environments.



Chapter IV

THE MBARTER FRAMEWORK

IV.A A Typical Opportunistic Bartering Scenario

Consider the following scenario. Bob is an adamant mobile user who recently purchased a trendy new phone

and is interested in acquiring a set of ring tones, screen savers, a few images and other digital goods that reflect

his strong support for the local football team. His new phone came preloaded with a set of default ring tones

and screen savers and Bob is willing and ready to trade them away in an attempt to get new digital goods that

better reflect this personal interests. As Bob moves through the geographical region, he meets other mobile

users that he can potentially trade with. During his search, Bob comes in radio range with Jane. As their

devices discover each others presence, Bob’s device initiates a bartering protocol in an attempt to discover

a possible trade. Bob’s device starts out by sending Jane’s device a list of desired goods and a list of goods

that can be used as payment. Jane is also interested in bartering so, Jane’s device examines the two lists and

compares them with Jane’s lists of desires and potential “give away” goods. It identifies that it has an image

that will interest Bob and it also identifies that Bob has a hip new polyphonic ringtone that interests Jane.

Since there is a match, Jane’s device consults Jane’s collaboration policies. Jane’s collaboration policy can

be categorized as DCoW policy i.e. Jane is reluctant to give goods away with out receiving a similar good in

return. Since collaboration with Bob is an exchange of goods that complies with Jane’s collaboration policy,

Jane’s device proposes this exchange to Bob’s device. Upon receiving this proposal Bob’s device examines

the proposal by comparing it against Bob’s collaboration policies. Bob’s calibration policy is similar to

Jane’s, so Bob’s device approves the exchanges. This approval is followed by the transfer of goods which

is reconfirmed by a set of acknowledgment messages. In this manner, Bob receives the picture that he is

30
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interested in and Jane gets a new ring tone. This type of exchange is beneficial to both mobile users since

they are able to acquire needed goods in an efficient manner.

Clearly, the outcome of the bartering interactions very much depends on the collaboration policies that

are employed by the mobile users. Consequently, there is a wide range of policies that the devices can employ

to help users negotiate and barter in mobile peer-to-peer environments. The combinations of these policies

create collaboration strategies that the nodes follow as general guidelines during such bartering encounters.

In fact, one can think of these strategies as points along “the collaboration continuum” [96, 95]. Our research

considers four basic strategies from this continuum: a FreeRider, an Altruist(also referred to as philanthropist

[96]), a Weak Double Coincidence of Wants (WDCoW) and a Double Coincidence of Wants (DCoW). The

FreeRider strategy and the Altruist strategy are at the opposite ends of the continuum. These two strategies

have been extensively used in a number of collaboration applications including the traditional wired peer-

to-peer systems [12, 80, 70]. The WDCoW and the DCoW strategies lie along the continuum, where the

WDCoW is on the more cooperative side of the continuum and DCoW is on the less cooperative side of the

continuum. Both of these strategies are the derivatives of fundamental concepts from the barter exchange

domain.

Figure IV.1: Strategies in the Collaboration Continuum.

To better understand the acceptable outcomes for each of the strategies, consider the following set of short

examples.

An uncooperative FreeRider node would only be willing to participate in interactions where:

• This FreeRider node gets 5 goods and pay 0 goods.

A less cooperative DCoW would be willing to participate in interactions where:

• this DCoW node gets 3 goods and gives away 3 goods,

• this DCoW node gets 5 goods and gives away 0 goods (i.e. DCoW can act as a benefiting FreeRider),

• this DCoW node gets 5 goods and gives away 3 good (i.e. DCoW can act as a benefiting WDCoW /

Altruist).
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A more cooperative WDCoW node would be willing to participate in interactions where:

• this WDCoW node gets 5 goods and gives away 1 good,

• this WDCoW node gets 1 good and gives away 5 goods,

• this WDCoW node gets 5 goods and gives away 0 goods (i.e. WDCoW can act as a benefiting FreeRider

when dealing with another Altruist).

On the other hand, the most cooperative Altruist node would be willing to participate in interactions

where:

• this Altruist node gets 3 goods and gives away 5 goods,

• this Altruist node gets 0 goods and gives away 5 goods (i.e. Altruist helps FreeRider),

• this Altruist node gets 5 goods and gives away 0 goods (i.e. Altruist can act as a benefiting FreeRider).

The formal descriptions of the policies for these four strategies are defined in Section IV.C.

IV.B The Framework Architecture

To study the proposed bartering collaboration model, we have developed a framework that allows discovery

of common interests, facilitates negotiations and supports exchange and transfer of digital goods.

IV.B.1 Bartering Structures

Our framework uses two basic structures to facilitate bartering interactions: an iHave List and an iWant List.

An iHave List is set of goods and services that a device is willing to disclose. Digital goods and services

on this list can be used as payment in bartering transactions. An iWant List is set of goods and services

that a device desires and is actively searching for. When a good or service from this list is acquired, the

record is moved to the node’s iHave List. These lists are central to the bartering communications. The

nodes advertise/exchange these lists (or subsets of these lists) to find common points of interests. Upon a

“match”, a node invokes its bartering strategy by generating an appropriate Proposal. In the current design

and implementation, there are no privacy mechanisms that protect the iWant List and the iHave List from

being snooped (by the nodes that have no “matches”). However this design limitation can be addressed with

existing well established mechanisms. For example, to provide a level of discreetness, iWant and iHave List
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can be indexed using Bloom filters [19, 116]. Peer nodes can query these indices in attempt to establish a

possible “match”.

We envision that a real world version of the proposed bartering communication model would rely on

user’s personal profile and user specified policies on what goods to add to the iWant List. Clearly, this is an

interesting research area and there is a lot previous and ongoing work in this research rich domain [58, 78, 23].

IV.B.2 Bartering Communication Protocol

In an attempt to find a bartering partner, a node generates an Inquiry message that gets broadcast to the nodes

one hop neighbors. This node is referred to as an Inquiring node (or an Inquirer). A Proposing node (or a

Proposer) is a node that generates the Proposal message in response to an incoming Inquiry message.

Nodes don’t concurrently negotiate with multiple nodes. A state model within our bartering protocol

ensures that a node participates in only one session at a time. A node can be in one of the following states:

Free, Proposed, Accepted, ACKed Accept and Sent Goods. A node does not enter in to a new session unless it

is in a Free State. A State Manager is responsible for maintaining the states of the node. The State Manager

also sets and keeps track of timers for each non-Free state. The timers are used to prevent locking of the

node in any unfinished sessions that could occur in dynamic ad hoc environments. If a timer is triggered and

the node is still in the same state for the same transaction, the State Manager concludes that this session is

not progressing (either due to the fact that nodes moved out of range or some other errors such as network

congestion). As a result of this error, the State Manager abandons this session and resets the node’s state to

Free.

Our Bartering Protocol uses eight message types to communicate between nodes: Inquiry, Proposal,

Accept, Reject, Busy, ACK Accept, Delivery and ACK Delivery.

An Inquiry message is broadcast by the Inquirer (when it is in a Free state). This message is broadcast

to the node’s one hop neighbors approximately every 15 seconds. It is also possible to extend our simulation

study and allow nodes to set a larger TTL. An Inquiry message is composed of a time stamp, Session ID,

iWant List and iHave List. A Session ID is a unique number that represents the session (it is derived from the

node’s ID).

Upon receiving an Inquiry message, a node’s State Manager checks if the node is in a Free state. If not,

then the Inquiry is discarded. Otherwise, the node’s Proposal Composition Manager examines the Inquiry

using its Proposal Composition Policy. If there is no suitable “match”, the Inquiry is dropped. Otherwise, the
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Manager generates an appropriate Proposal. This Proposal is compared with all the rejected proposals that

this node may already have sent to this Inquiring node. If it matches with any of the prior Rejections, then

the Proposal is discarded and node does not respond to the Inquiry. This comparison ensures that the node

does not repeatedly propose the same exchange. If it is a new Proposal, then the Proposing node sends it to

the Inquirer. All Proposal messages consist of a Give List and Receive List, Proposer’s node ID, Inquirer’s

node ID, Session ID from the Inquiry message and the timestamp of the Inquiry message. A Give List is a

subset of the intersection of the iHave List of the Proposer (the Proposing node) and the iWant List of the

Inquirer (the Inquiring node) GL ∈ (HLR ∩WLI). Basically, a Give List contains a set of goods that the

Proposing node is willing to offer to the node that is looking for the goods. A Receive List is a subset of

the intersection of the iHave List of the Inquirer and the iWant List of the Proposer RL ∈ (HLI ∩WLR).

Basically, the Receive List contains a set of goods that the Proposer wants to receive as a payment for the

goods in the Give List that it is offering to the Inquirer. A Proposal Composition Policy is applied to these

Lists to insure compliance with the node’s strategy. From the point of view of the Proposer, a Receive List

and a Give List, together, constitute a potential “match” between the needs and haves of the two nodes.

Each Inquiring node has a Proposal Evaluation Manager which is responsible for examining the incom-

ing Proposals. This Manager uses the Proposal Evaluation Policy to determine if the incoming Proposal is

acceptable or not. The Proposal Evaluation Policy examines the Receive List and the Give List and checks

whether the proposed match complies with the Inquirer’s strategy. If the Proposal is not acceptable a Reject

message is generated and sent to the Proposer. All acceptable Proposals are collected by the Proposal Eval-

uation Manager for a period of time. The Manager examines this collection of Proposals and using Proposal

Evaluation Policy, identifies the “best” Proposal. This “best” Proposal is accepted and the winning Proposer

is notified by an Accept message. The rest of the Proposals are discarded and the loosing Proposing nodes

are sent Busy messages. These Busy messages, unlike Reject messages, do not discourage the Proposers from

sending similar Proposals at a later time.

A Reject message, an Accept message, and a Busy message is sent by the Inquirer in response to a

Proposal from the Proposer. All three message types contain Proposer’s node ID, Inquirer’s node ID, Session

ID and the timestamp of the Inquiry message.

Upon receiving a Reject, a Busy or an Accept message, the State Manager at a Proposer checks if it’s

state is set to Proposed (for the correct session). If not, then the message is discarded. Otherwise, if Reject

or Busy message was received, the State Manager resets its state to Free. For a Reject message, the Proposer



36

(for future Proposal compositions and comparisons) records the specifics of the rejected Proposal. Note that,

a rejected Proposal will not be resent to the same Inquirer. This reduces traffic on the network and prevents

nodes from unnecessarily re-proposing already failed attempts of exchange. In case of the Busy message,

the node assumes that the Inquirer is in the middle of another exchange session. Upon receiving Accept

message, the Proposer issues an ACK Accept message to the Inquirer and sets it state to ACKed Accept.

Once the Inquirer gets this ACK Accept, its State Manager checks if the node is in the state of Accepted (for

this session). If not, then the ACK Accept message is dropped. Otherwise, the node composes and sends a

Delivery message, to the Proposer and sets its state to Sent Goods. A Delivery message is composed of the

Receive Lists that was agreed on by the two nodes, Proposer’s node ID, Inquirer’s node ID, Session ID and

the timestamp of the Inquiry message.

Once the Proposer receives a Delivery, its State Manager checks if the node is in the state of ACKed

Accept. If not, the Delivery is dropped. Otherwise, the Proposer checks if the Delivery’s Receive List

complies with the reached agreement. If it does not comply, then the node drops the Delivery and resets its

state to Free. Otherwise, the Proposer composes and sends a Delivery message to the Inquirer and resets its

state to Sent Goods. In contrast to the first Delivery, this Delivery contains the Give Lists (and not the Receive

List), it also contains Proposer’s node ID, Inquirer’s node ID, Session ID and the timestamp of the Inquiry

message.

Once the Inquirer receives a Delivery message, its State Manager checks if the node is in the state of

Sent Goods. If not, then the Delivery is dropped. Otherwise, the node checks if the Delivery’s Give List

complies with the previously sent agreement. If not, then the Delivery is dropped and the Inquirer’s state is

reset to Free. Otherwise, the contents of the Delivery’s Give List are transferred into the node’s iHave List

and are also removed from the iWant List. If the node is operating in a DRM (Digital Rights Management)

setting, then the goods that were sent to the Proposer are removed from the iHave List. Once the transfer is

complete, the node composes an ACK Delivery message and sends it to the Proposer. This message contains

the Proposer’s node ID, the Inquirer’s node ID, the Session ID and the timestamp of the Inquiry message.

Upon receiving an ACK Delivery, the Proposer checks if the node is in the state of Sent Goods. If not,

then the ACK Delivery is dropped. Otherwise, the node transfers the content of the Delivery’s Receive Lists

into its iHave List and removes the newly acquired goods from it’s iWant List. If the node is operating in a

DRM setting, then the goods that were sent to the Inquirer are removed from the iHave List. Finally, the node

sets its state to Free.
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IV.C Formal Definitions of Collaboration Strategies

We have implemented four basic strategies: FreeRider, Altruist, Weak Double Coincidence of Wants (WD-

CoW) and Double Coincidence of Wants (DCoW). A node’s strategy is defined by the policies used to com-

pose Proposals (Proposal Composition Policy) and to respond to the received Proposal (Proposal Evaluation

Policy). During collaborations, none of the nodes are aware of the strategies of their neighbors.

IV.C.1 A FreeRider Strategy

The Free Rider strategy is a well covered subject in P2P systems such as Gnutella [8, 12] and Kazaa[9].

Our interpretation of this behavior does not deviate from the conventional view of FreeRiders. The motto

of a FreeRider node is “get goods with out paying for them”. A node that executes this strategy composes

an Inquiry such that it conceals the node’s true iHave List. The Inquiry contains an empty iHave List and a

copy of the iWant List of the node. As a result, the only Proposals that a FreeRider node will ever receive in

response to its Inquiry will only benefit this free riding node: (| GL |> 0 && RL = ∅ ). Thus, following

the Proposal Evaluation Policy for a FreeRider Strategy, all of the incoming Proposals will be accepted by

the FreeRider. Similarly, upon receiving an Inquiry from another node, a FreeRider will follow its Proposal

Composition Policy and will examine only the iHave List of this incoming Inquiry. If it finds an intersection

between the Inquiry’s iHave List and the FreeRider’s iWant List (| RL |> 0) then the node composes a

Proposal where it’s (RL = HLR ∩WLI && GL = ∅), otherwise it ignores this Inquiry. The Proposal

Composition Policy and the Proposal Evaluation Policy ensure that a FreeRider node only accepts goods and

never gives away its goods to other nodes in the environment. Thus, a FreeRider is a purely selfish node.

FreeRider’s Proposal Composition Policy:

(
|RL| > 0 && |GL| == 0

)
FreeRider’ Proposal Evaluation Policy:

Accepts:
(
|RL| > 0 && |GL| == 0

)
Rejects:

(
|GL| > 0

)
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IV.C.2 An Altruist Strategy

In contrast to the FreeRider strategy, an Altruist is a purely selfless node. An Altruist will help/barter with

all other nodes in the environment (including FreeRiders). The motto of an Altruist node is “if I can help

you I will, if you can help me please do so”. One can also think of this strategy as a “good neighbor”

strategy. An Altruist’s Inquiry will contain its complete iHave List and iWant List. If this Inquiry generates

a Proposal, an Altruist will Accept this Proposal regardless of whether this Altruist node benefits from the

Proposal or not. In essence, the Proposal Evaluation Policy of an Altruist is to accept Proposals that are:(
(|GL| ≥ 0 && |RL| > 0) ‖ (|GL| > 0 && |RL| ≥ 0)

)
. This ensures that an Altruist never

rejects an incoming Proposal. Similarly, upon receiving an Inquiry from another node, an Altruist will

generate a Proposal if it can compose a Proposal such that:
(
(|GL| ≥ 0 && |RL| > 0) ‖ (|GL| >

0 && |RL| ≥ 0)
)
. This Proposal Composition Policy insures that a node responds to all Inquires where

one of the nodes (regardless of which one) can benefit from this exchange. These policies ensure that an

Altruist collaborates with all the nodes in the environment regardless of their strategy. Thus, an Altruist is a

purely selfless node.

Altruist’s Proposal Composition Policy:

(
(|GL| ≥ 0 && |RL| > 0) ‖ (|GL| > 0 && |RL| ≥ 0)

)
Altruist’s Proposal Evaluation Policy:

Accepts:
(
(|GL| ≥ 0 && |RL| > 0) ‖ (|GL| > 0 && |RL| ≥ 0)

)
Rejects: NA

IV.C.3 A Weak Double Coincidence of Wants Strategy

A node executing the WDCoW strategy relaxes the strict “double coincidence of wants”. The node’s motto

is “to barter only when both of nodes can benefit from the exchange (*)”. A WDCoW’s Inquiry contains its

complete iHave List and iWant List. If this Inquiry generates a Proposal from another node, the node will

consult it’s Proposal Evaluation Policy and will check if
(
|GL| ≥ 0 && |RL| > 0

)
. This node will

not respond to Inquiries where
(
RL = ∅

)
. Thus, a WDCoW will ignore all Inquiries from FreeRiders. A

WDCoW will also ignore some of the Inquiries from Altruists. This will occur only if an Altruists is interested

in a set of goods that the WDCoW has
(
|RL| > 0

)
in its iHave List; however, the Altruist is only node that
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benefits from this exchange (GL = ∅). However, a WDCoW will take advantage of Altruists’ offers where(
|GL| > 0 && RL = ∅

)
. In essence, a WDCoW will agree to an exchange where an Altruist is willing

to give goods to this DCoW and the Altruist wants nothing back from this WDCoW. (*) Thus, collaborations

between WDCoWs and Altruists are sometimes asymmetrical. When it comes to generating Proposals in

response to incoming Inquires, a WDCoW’s policy of Proposal Composition is to generate Proposals such

that
(
|HLI ∩WLR| > 0 && |HLR ∩WLI | > 0

)
. Thus, a WDCoW will never propose an exchange

where only one of the nodes benefits from the collaboration (regardless of the other node’s strategies). Thus,

a WDCoW will never propose to a FreeRider. In addition, any Proposal generated by a DCoW will always

be accepted by another WDCoW node or by an Altruist node.

WDCoW’s Proposal Composition Policy:

(
|RL| > 0 && |GL| > 0

)
WDCoW’ Proposal Evaluation Policy:

Accepts:
(
|RL| > 0

)
Rejects:

(
|RL| == 0

)

IV.C.4 A Double Coincidence of Wants Strategy

A DCoW strategy is one where a node looks for “even” exchanges. This node’s motto is “to barter only

when both of nodes can benefit (*) from the exchange and the benefits are EQUAL”. In essence, a node with

this strategy counts the number goods that it would receive from this collaboration and the number of goods

it needs to give up during this collaboration. A DCoW’s Inquiry contains its complete iHave List and iWant

List. If this Inquiry generates a Proposal from another node, the DCoW node consults its Proposal Evaluation

Policy and checks if
(
|RL| ≥ |GL| ≥ 0 && |RL| > 0

)
.

DCoW’s Proposal Composition Policy:

(
|RL| == |GL| > 0

)
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DCoW’ Proposal Evaluation Policy:

Accept:
(
|RL| ≥ |GL| ≥ 0 && |RL| > 0

)
Reject:

(
|GL| > |RL| ≥ 0

)

IV.C.5 Summary of Bartering Policies

The Table IV.1 summarizes the formal description of the policies for each of the four strategies.

Symmetries and Asymmetries of Collaborations

In each of the strategies, the Proposal Composition Policy and Proposal Evaluation Policy are symmetrical.

When nodes of the same strategy collaborate, they never issue Proposals that would be rejected by the Pro-

posal Evaluation Policy of the Inquiring node. For example, a WDCoW node never rejects a Proposal from

another WDCoW node. Note that a FreeRider never generates Proposals addressed to another FreeRider.

IV.D Stylized Models

To further describe interactions between the above described strategies, we present stylized model that offer

probability based description of the Gains that result for the interaction between two nodes executing a

particular strategy.

• V represents the total Gain of the system/environment

• i and j represent goods that are being exchanged during the transaction

• MBA represents the probability that node A meets node B such that node B has something that node

A wants

• PAwi represents the probability that node A wants good i

• PAhi represents the probability that node A has good i

• XAi represents the perceived Value of good i by node A

• YAi represents the Cost incurred by acquiring and maintaining good i by node A

• Z represents the overhead interaction Cost of conducting the transaction.
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IV.D.1 FreeRider meets FreeRider

Since FreeRider do not interact with one another, the Gain of the system is an empty set.

V = ∅

IV.D.2 FreeRider meets Altruist

As described in the earlier sections, when a FreeRider meets an Altruist, the FreeRider experiences positive

Gain at the expense of the Altruist. In order for a transaction to occur when two such nodes meet, the Altruist

must have something that the FreeRider wants. Using the terms described above, the system Gain from such

an interaction can be modeled as:

V = MAB

{∑n
i=0 PAwiPBhi(XAi − ZAB)−

∑n
i=0 PAwiPBhi(YBi + ZAB)

}
The probability that a FreeRider node A will meet an Altruist B such that B has something that A wants is

captured in MAB . The first summation represents the Gain of the FreeRider node for all goods that A wants

that B has and will offer up (since it is an Altruist). The second summation represents the Loss of the Altruist

node (due to the goods given away).

IV.D.3 FreeRider meets WDCoW or DCoW

When FreeRiders and WDCoWs meet these nodes do not interact thus, the system experiences no such trans-

actions. Similarly, when FreeRiders and DCoWs meet they do not directly interact with each other. Thus, the

universe of such transactions is an empty set.

V = ∅

IV.D.4 Altruist meets Altruist

When two Altruists encounter one another the transaction occurs when one of the nodes is interested in the

content possessed by the other node. The exchange policies of these nodes allow nodes to collaborate when(
(|GL| ≥ 0 && |RL| > 0) ‖ (|GL| > 0 && |RL| ≥ 0)

)
.

These all of the Altruist-to-Altruists interactions can be reduced into a FreeRiders-to-Altruist type in-

teractions when viewed from each node’s perspective. Essentially, the exchange only depends on a single

set of coincidence of “want” and “have”. Using the terms described above, the system Gain from such an

interaction can be modeled as:
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V = MAB

{∑n
i=0 PAwiPBhi(XAi − ZAB)−

∑n
i=0 PAwiPBhi(YBi + ZBA)

}
+MBA

{∑n
j=0 PBwjPAhj(XBj − ZBA)−

∑n
j=0 PBwjPAhj(YAj + ZAB)

}
The first term of the equation represents the Gain of the Altruist A node for all goods that A wants that

Altruist B has and will offer up. The second term of the equation represents the Gain of the Altruist B for all

goods that A has to offer to Altruist B.

IV.D.5 Altruist meets WDCoW

Consider a meeting between an Altruist node and a WDCoW node. Let the Altruist be a node A and let

the WDCoW be a node B. The interactions between these nodes are guarded by the exchanges policies of

these nodes. Using the terms described above, the system Gain from the interactions between Altruists and

WDCoWs can be modeled as:

V = MBA

{
−
∑n

i=0 PAhiPBwi(YAi + ZAB) +
∑n

i=0 PBwiPAhi(XBi − ZBA)
}
+

+{MABMBA{
∑n

i 6=j PAwiPBhiPBwjPAhj(XAi − YBj − ZAB)

+
∑n

i 6=j PAwiPBhiPBwjPAhj(XBj − YAi − ZBA)}}

∗ {MAB{
∑n

i=0 PAwiPBhi(XAi − ZAB)−
∑n

i=0 PAwiPBhi(YBi + ZBA)}}

+{MABMBA{
∑n

i 6=j PAwiPBhiPBwjPAhj(XAi − YBj − ZAB)

+
∑n

i 6=j PAwiPBhiPBwjPAhj(XBj − YAi − ZBA)}

∗MBA{−
∑n

j=0 PBwjPAhj(YAj + ZAB) +
∑n

j=0 PBwjPAhj(XBj − ZBA)}}

One possible transaction that can occur between these two nodes is where the Altruist proposes to “help

out” the WDCoW node by giving a set of goods to this WDCoW with out any the WDCoW reciprocating

this action. This philanthropic transaction can be described as a free riding interaction. Essentially, from the

prospective of the Altruist node, the node B acts as a free riding node. Using the terms described above, the

system Gain from this interaction is represented by the first term of the equation presented above.

Another possible interaction can be characterized as an exchange of a set of K goods that node A wants

and node B has for another set of N goods that node B wants and node A has (such that N ∪ K = ∅ and

N > K > 0). This transaction can be reduced into an “even” exchange transaction complemented by the free

riding transaction. Essentially, the “even” exchange is represented by the transfer of |K| number of goods

from the K set to the node A and the transfer of |K| number of goods from the N set to the node B. This

transaction is further complimented by the free riding interaction which involves transfer of |N −K| number
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of goods from the N set to the node B. This transaction can be characterized as an interaction where the node

WDCoW benefits from the transaction more than the Altruist. This Gains from this interaction are modeled

by the second term of the equation presented above.

Finally, the third possible interaction is the interaction where the Altruist node receives a greter benefit

from the transaction than the WDCoW node. Similar to the previously described interaction, this transaction

can be reduced to an “even” trade interaction complemented by the free riding interaction. This interaction is

modeled as a third term of the equation presented above.

IV.D.6 Altruist meets DCoW

Consider a meeting between an Altruist and a DCoW. Let the Altruist be a node A and let the DCoW be a

node B. Using the terms described above, the system Gain from interactions between Altruists and DCoWs

can be modeled as shown below.

V = MBA

{
−
∑n

i=0 PAhiPBwi(YAi + ZAB) +
∑n

i=0 PBwiPAhi(XBi − ZBA)
}
+

+{MABMBA{
∑n

i 6=j PAwiPBhiPBwjPAhj(XAi − YBj − ZAB)

+
∑n

i 6=j PAwiPBhiPBwjPAhj(XBj − YAi − ZBA)}

∗MBA{−
∑n

j=0 PBwjPAhj(YAj + ZAB) +
∑n

j=0 PBwjPAhj(XBj − ZBA)}}

As described in the previous sections the DCoW nodes are intolerant of philanthropic behavior when they

are on the loosing end of the transactions. Thus, the only free riding type interaction can occur if the Altruist

is the Initiator of such transaction. The first term of this equation presented below models this free riding

type interaction.

Another possible transaction that can be initiated by the Altruist is the transaction that delivers a greater

benefit to the DCoW node B rather than to the Altruistic node A. As mentioned earlier, the Proposal Evalua-

tion Policy of the DCoW accepts the transactions where the DCoW node befits more than the other collabo-

rating partner. This transaction can be modeled as an “even” exchange transaction complemented by the free

riding type interaction. This particular type of transaction between the Altruists and DCoW is modeled by

the second term of the equation presented above.

Finally, the interaction could also be initiated by the DCoW node. In this case, the Proposal Composition

Policy dictates the use of the “even” exchange method of collaboration. This particular type of interaction is

also modeled by the second term of the equation presented above.
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IV.D.7 WDCoW meets WDCoW

Consider a meeting between a WDCoW and another WDCoW. Let the first WDCoW be a node A and let

the second WDCoW node be a node B. Using the terms described above, the system Gain from interactions

between these two WDCoWs can be modeled by equation presented below.

As described in the previous sections, the WDCoW nodes are intolerant of being on the loosing end of

the pure philanthropic transaction. However, they participate in interactions where there are unequal levels

of reciprocity. Thus, the free riding type interaction will never occur between these nodes.

Basically, there are two types of transactions that can occur between the two WDCoW. In the first category

of transactions, the node A is the node that benefits the most from the exchange. While in the seconds category

of the transactions, the node B benefits the most from the exchange. The first term of this equation models the

first transaction type. While, the second term models the second transaction type. Both of these transactions

can be subdivided into an “even” exchange interaction complemented by the free riding type interaction.

V = {MABMBA{
∑n

i 6=j PAwiPBhiPBwjPAhj(XAi − YBj − ZAB)

+
∑n

i 6=j PAwiPBhiPBwjPAhj(XBj − YAi − ZBA)}}

∗ {MAB{
∑n

i=0 PAwiPBhi(XAi − ZAB)−
∑n

i=0 PAwiPBhi(YBi + ZBA)}}

+{MABMBA{
∑n

i 6=j PAwiPBhiPBwjPAhj(XAi − YBj − ZAB)

+
∑n

i 6=j PAwiPBhiPBwjPAhj(XBj − YAi − ZBA)}

∗MBA{−
∑n

j=0 PBwjPAhj(YAj + ZAB) +
∑n

j=0 PBwjPAhj(XBj − ZBA)}}

IV.D.8 WDCoW meets DCoW

Now, lets consider a meeting between a WDCoW and a DCoW. Let the WDCoW be a node A and let the

DCoW node be a node B. The exchange policies of both of these nodes are un-acceptable to the purely

philanthropic exchanges where these nodes are at the loosing end of the transaction. However, as previously

stated, the DCoW nodes are tolerant of the interactions that do not deliver the equal levels of reciprocity.

V = {MABMBA{
∑n

i 6=j PAwiPBhiPBwjPAhj(XAi − YBj − ZAB)

+
∑n

i 6=j PAwiPBhiPBwjPAhj(XBj − YAi − ZBA)}}

∗ {MAB{
∑n

i=0 PAwiPBhi(XAi − ZAB)−
∑n

i=0 PAwiPBhi(YBi + ZBA)}}

+MABMBA{
∑n

i 6=j PAwiPBhiPBwjPAhj(XAi − YBj − ZAB)

+
∑n

i6=j PAwiPBhiPBwjPAhj(XBj − YAi − ZBA)}
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Taking these policies into consideration, there are two possible interactions that can take place when the

node A and the node B meet. The first type of interaction is initiated by the WDCoW node. This transaction is

composed such that the node A receives greater benefit for the transaction than the node B. This interaction is

modeled as an “even” exchange transaction complimented by the free riding type interaction benefiting node

B. The first term of the equitation presented above models the system Gains from this type of interaction.

Note that, if the WDCoW node generates a Proposal that delivers this WDCoW a greater benefit than the

benefit received by the DCoW node then this Proposal is rejected and does not contribute to the Gains of the

system.

Finally, the type of interaction that is initiated by the DCoW node reflects the DCoW’s collaborative

attitude. Essentially, these interactions are initiated in accordance with the DCoW’s Proposal Composition

Policy and thus can be described as an “even” exchange interaction. The system Gains form this interaction

are modeled by the second term of the above presented equation.

IV.D.9 DCoW meets DCoW

Finally, lets consider a meeting between aDCoW and another DCoW. Let the first DCoW be a node A and let

the second DCoW node be a node B. As described in the previous sections, the DCoW nodes are intolerant

of philanthropic behavior. In addition, these nodes also demand even levels of reciprocity. Thus, considering

the Proposal Composition Policy of the participating nodes the only exchange that can occur between the two

DCoWs are “even” exchange interactions. Therefore, in order for a transaction to occur when two such nodes

meet, the node A must “have” something that the node B “wants” and the B must “have” something that the

node A “wants”. Using the terms described above, the system Gain from such an interaction can be modeled

as:

V = MABMBA

{∑n
i 6=j PAwiPBhiPBwjPAhJ(XAi − YBj − ZAB)

+
∑n

i 6=j PAwiPBhiPBwjPAhJ(XBj − YAi − ZAB)
}
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IV.E The Framework Evaluation Metric

To validate the viability of our approach and to evaluate the performance of our communication model, we

have developed a simulation for a large scale deployment of nodes executing one of the collaboration strate-

gies. We have used GloMoSim [117] as our modeling tool (detailed configuration description of GloMoSim

setup is in Section IV.E.1).

To establish a baseline for the performance of each of the strategies, initially, we consider four homo-

geneous networks (running one of the four strategies). This allows us to compare the effectiveness of each

of the strategies and determine specific characteristics that are descriptive of the performance of each of the

considered collaboration strategies.

In addition to basic homogeneous networks, we also examine the influence that InfoStations can inflict

on each of the four homogeneous networks. An InfoStation is a wireless “information kiosk” that is capable

of providing data services and high speed connectivity to mobile wireless devices that come into its commu-

nication range [33, 88, 115, 37]. This addition of InfoStations to our MANETs is motivated by our desire

to simulate the recently emerging trend of wireless access points(using 802.11 technology[6]) and providing

near by wireless users with high-speed, relatively cheap wireless access. In the context of our work, Info-

Stations inject additional digital goods into the environment and act as ultra cooperative data rich wireless

“information kiosks”[54].

Consequently, we examine heterogeneous networks that are composed of a mixture of nodes running

different strategies. We start by examining an evenly mixed network where, the network population is evenly

divided into four quarters, each running one of the four strategies (i.e. there is no majority or minority). We

continue our study by exploring networks that have a distinct majority (40% of network population) running

one of the strategies and three evenly sized minorities (20% of network population) each running one of the

other three strategies. For example we look at a mix where population is split into 40% of Altruists, 20%

of FreeRiders, 20% of WDCoWs and 20% of DCoWs. Essentially, we examine thirteen distinct networks:

four homogeneous networks, four homogeneous networks with five InfoStations, evenly mixed network and

finally the four networks with a distinct majority and minorities.

In addition to the above described network population configurations we also examine effects of employ-

ing the value-based evaluation paradigm of digital goods and content. Furthermore, we study the effects of

the role based social relationships on the bartering process. The details of these extensions are in Chapter

VIII and Chapter IX.
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As we examine the above described networks, we look at the following factors and behaviors to identify

the key aspects that are representative of each of the considered strategies and network population composi-

tions:

• Average Gains and Average Losses - the average Gain represents the average number of goods ac-

quired by a node as a result of collaborations that this node participated in. Similarly, the average Loss

represents the average number of goods a node had to give away during its collaborative exchanges and

interactions.

• Average Transaction Count - represents the average number of transactions that a node participated

in.

• Average Size of Transactions - represents the average number of goods that are involved in an ex-

change or interaction.

• Average Number of Peer-to-Peer Transactions - represents the average number of transactions that

a node participated in where the bartering partner is another mobile node. This comes in to play when

there are InfoStations present in the environment.

• Average Size of Peer-to-Peer Transactions - represents the average number of goods that are involved

in a p2p exchange. This comes in to play when InfoStations are added to the environment.

• Outcome of Collaborative Interactions- not all interactions end in a successful exchange. Some

Proposals could get rejected, or get a Busy reply and transactions could be terminated due to node

movements or due to the congestion of the network.

• Unfulfilled Wishes - To offer additional measurement of productivity of each of the strategies we count

number of wishes that are still on the iWish List. We also examine the nodes progress over a period of

time.

The effectiveness of a strategy is directly proportional to the Gains that a node experiences during its

collaborations. The effectiveness is also inversely proportional to the Losses that a node incurs due to these

collaborations. In addition, communication related overhead has an impact on the effectiveness of a strategy.

For example, a strategy is more efficient if a
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node participates in a few large volume (or high Gain) transactions than many small ones to minimize pro-

tocol overhead. Similarly, the interactions that end in a Proposal Rejection are very taxing on the Proposing

node since it unproductively worked on creating a “match and sending the Proposal.

IV.E.1 Framework Evaluation Configurations

To evaluate our communication model and study the scalability of our framework which employs the pro-

posed digital good exchange protocol, we have built a prototype simulation using GloMoSim 2.02 simulation

tool [117]. The following table provides GloMoSim configuration parameters that were used in our simula-

tion studies.

GloMoSim Parameters

Number of Nodes 30-70 (+10)

Number of InfoStations 0 - 5

Total Simulation Time 100 min

Terrain Size 1000m x 1000m

Node Speed 9-13 mps (20-30 mph), Pause 10 sec

Mobility Model Random Waypoint

Range for Node and InfoStations 30 m

Average Node Degree 0.12 - 0.23

Collaborative Environment Parameters

In addition to the GloMoSim configuration parameters, our simulation study has the following application

level configurations:

• There are 450 unique goods in the universe.

• All nodes start out with 50 goods in iHave List (randomly selected from 450).

• All nodes also start out with 50 goods in iWant List, randomly selected according to the Pareto distri-

bution [31, 24, 15] where f(x) = 450 ∗ (x−0.8309). FigureIV.3 shows the f(x).

• All InfoStations have 450 goods in their iHave List and 0 in their iWant List.
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• There is no good duplication or replication by the nodes. However, InfoStations have unlimited number

of copies of every good. Thus as two peers interact, a node gains goods that the other node loses.

Therefore, in a network with no InfoStations the total number of goods in the environment does not

change.

• All nodes and InfoStations have a cap of giving only 25 goods per transaction.

• Every node (if Free) broadcast its iHave List and its iWant List every 14sec + 500 mil-sec.

Figure IV.3: Pareto distribution

IV.F Summary and Discussion

This chapter provides detailed description of our framework that facilitates the collaborative interactions.

This chapter also presents the collaboration approaches and the policies that are employed by the nodes

during the exchange process. In particular this chapter describes formal policies for collaborations for the two

conventional interaction strategies of FreeRiders and Altruists and for the two bartering interaction of Double

Coincidence of Wants (DCoW) and weak DCoW. In the consequent chapters, we will preset a characterization

study that evaluates each of the strategies parented in this chapter.



Chapter V

COLLABORATIVE EXCHANGES IN

HOMOGENEOUS NETWORKS

In this Chapter, we will look at collaborations in homogeneous networks populated with mobile nodes exe-

cuting one of the four exchange strategies described in Section IV.C and compare performances of each of

the four strategies according to the metrics defined in Section IV.E. We also look at the impact of adding

InfoStations to these homogeneous networks.

V.A Comparing Gains and Losses in Homogeneous Networks

As mentioned in Chapter IV, each of the strategies displays different levels of cooperation when nodes in-

teracts. As expected, these levels of cooperation permeate into the levels of Gains and Losses that nodes

experience as a result of these interactions. For example, the Altruists are the most cooperative nodes in

the “collaboration continuum” while the FreeRiders are the least cooperative. Figure V.1 clearly shows that

the Altruists enjoy the highest Gains while the FreeRiders have absolutely no Gains at all (for purposes of

graph clarity, the Gains of the FreeRiders are not in the graph). Similarly, the Gains of the WDCoWs and the

DCoWs are reflective of the stands of these strategies in the “collaboration continuum”. The lines in Figure

V.1 in addition to representing Gains, also represent the Losses of the collaborative strategies. However, in

homogeneous networks with no InfoStations, the average Loss equals to the average Gain since, the nodes

receive goods from their peers. Since, in these networks, one node’s Gain is another node’s Loss, the average

Gain is equivalent to the average Loss.

51
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Figure V.1: Comparing the Average Gains/Losses of Nodes Running Different Strategies in Homogeneous
Networks

Now, lets examine the effects of adding InfoStations to the homogeneous networks. FigureV.2 shows the

Gains for the nodes in the networks with no InfoStations (represented by the dashed lines) and the Gains for

the nodes in the networks with five InfoStations (represented by the solid lines). Regardless of the presence

of the InfoStations, the levels of Gain that these nodes experience are closely related to the levels of col-

laboration exhibited by the nodes. For example, a FreeRider node, running the least collaborative strategy,

gains significantly less (even with five InfoStations in the network) compared to the other nodes with more

collaborative strategies (with no InfoStations in the network). On the other hand, the Altruist nodes, which

are running the most collaborative strategy, receive the highest Gains. Similarly, the WDCoW strategy is also

a cooperative strategy; however, it is not as cooperative as the Altruist strategy. The WDCoW’s Gains are

slightly lower but are still very similar to the Gains of the Altruists (particularly, when the WDCoWs operate

in the network with five InfoStations). Finally, the Gains of the less collaborative DCOW nodes fall short of

the Gains of the Altruists and the WDCoWs but, clearly surpass the Gains of the FreeRiders (even in the net-

work with five InfoStation). Also, for the three collaborative strategies, the nodes in the larger networks see

higher Gains since there are more opportunities for these nodes to interact with their peers. As InfoStations

are added to the homogeneous network, the Gains of all four strategies increase. As shown in Figure V.2, the

FreeRiders benefit the most from the presence of the InfoStations. For the other three collaborative strategies,

the benefits are very similar.
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Figure V.2: Comparing the Average Gains of Nodes Running Different Strategies with 0 or 5 InfoStations

Figure V.3: Comparing the Average Losses of Nodes Running Different Strategies with 0 or 5 InfoStations
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In addition to the Gains, mobile nodes also experience Losses which are shown in Figure V.3. In homoge-

neous networks with no InfoStations, the average Losses equal to the average Gains since, the nodes receive

goods from their peers. Once the InfoStations are added to the homogeneous networks, the average Losses

decline due to the fact that the nodes are able to get digital goods from the InfoStations in addition to their

peers. So, let’s look at the Losses of the nodes in the networks with five InfoStations. Similar to the Gains,

the Losses are related to the levels of cooperation. The FreeRiders experience no Losses as they do not give

anything away (for graph clarity, they are not part of the graph). On the other hand, the most cooperative

Altruists experience the highest Losses. However, the InfoStations provide some relief to the Altruists. The

Losses of the WDCoW and the DCoW nodes are not as high as the Losses of the Altruists but also reflect their

levels of cooperation. All of these findings are very much in line with original expectations.

V.B Communication Overhead in Homogeneous Networks

In addition to the Gains and the Losses, the effectiveness of every exchange strategy can be influenced by the

communication-related overheads. Each successful transaction is preceded by an exchange of control mes-

sages. If the transaction has a small return, the overhead from these communications can have a significant

impact on the efficiency of the exchange strategy. Figure V.4 shows the average number of successful trans-

actions while, Figure V.5 shows the average size of these transactions. Let’s first consider the homogeneous

networks with no InfoStations. The most interesting finding that comes out of these two graphs is that the

nodes executing the WDCoW strategy have the lowest communication overhead in homogeneous networks.

The WDCoW nodes participate in the smallest number of transactions and have the largest average transaction

size. This makes the nodes that are running the DCoW strategy the most efficient collaborators. On the other

hand, the Altruists have the largest communication overhead since; they have the largest average transaction

size and a large number of transactions. Thus, when comparing overheads of the Altruists and the WDCoWs,

the WDCoW strategy is more efficient than the Altruistic strategy. Now let’s look at the communication over-

head of the DCoW. Interestingly, the DCoWs participate in more transactions than the WDCoWs; however,

the average size of the DCoWs’ tractions is small compared to the average size of the WDCoWs’ transactions.

These overheads make the DCoW strategy a less efficient collaborative strategy than the WDCoW strategy.

Now, let’s compare the overheads of the DCoWs and the Altruists. The average transaction count of the

DCoWs is similar to the average transaction count of the Altruists. However, the DCoWs show better average
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transaction size. Thus, the DCoWs have a lower transaction overhead than the Altruists.

Now, let’s look at the homogeneous networks with five InfoStations. All of the cooperative strategies

experience a similar jump in the average transaction size. This relatively evenly distributed improvement is

attributed to the fact that the InfoStations generously give away goods to any requesting node. However, the

presence of the InfoStations does not evenly effect the average number of transactions. The WDCoWs and the

DCoWs see a moderate decrease in the average transaction size while the Altruists see a significant decrease.

Thus, when adding InfoStations to the homogeneous networks, the Altruists’ communication costs signifi-

cantly decrease compared to the two bartering strategies. The key reasons behind the differences in these

communication overheads lie in the Proposal Composition Policies and the Proposal Evaluation Policies of

each of the strategies. The Altruists’ exchange policies make nodes very responsive and overly cooperative;

while, the WDCoWs’ policies make nodes more focused on the Gain-related cost effectiveness of the ongoing

exchange. On the other hand, the DCoWs’ policies make nodes consider the fairness of the ongoing exchange

which naturally limits the size of the transactions.

In essence, when it comes to deriving communication related efficiency, the WDCoW strategy is the most

economical strategy across the board. It fares very well when the nodes operate in the homogeneous networks

without InfoStations. Upon adding of the InfoStations, the WDCoW’s efficiency increases (since the number

of transactions further decreases and the average transaction size gets a significant jump). On the other hand,

nodes running the Altruist strategy prove to be the least efficient communicators particularly, in the network

with no InfoStations. The Altruists participate in a larger number of small-sized transactions thus, increasing

their communications overhead. However, when adding InfoStations, the Altruists see the most dramatic

improvement in communication costs. Finally, the nodes executing the DCoW strategy fare well without the

help from the InfoStations. With the presence of the InfoStations,the DCoWs and the Altruists have similar

communication-related overheads; however, neither one of theses two strategies is as efficient as the WDCoW

strategy.

V.B.1 Communication Overheads in Peer-to-Peer Transactions

To better understand the initial conclusions about the communication related costs, we take a closer look at the

communication overheads generated specifically by the peer-to-peer exchanges. Examining this subcategory

of communication overhead allows us to better understand the impact of the InfoStations in homogeneous

networks. Figure V.6 and Figure V.7 show the overhead differences that the nodes experience when the Info-
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Figure V.4: Comparing the Average Number of Successful Transactions of Nodes Running Different Strate-
gies with 0 or 5 InfoStations.

Figure V.5: Comparing the Average Size of Successful Transaction of Nodes Running Different Strategies
with 0 or 5 InfoStations.
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Figure V.6: Differences in the Average Number of Successful Peer-to-Peer Transactions Between 0 InfoSta-
tions and 5 InfoStations.

Figure V.7: Differences in the Average Size of Successful Peer-to-Peer Transactions Between 0 InfoStations
and 5 InfoStations.
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Stations are added to the homogeneous networks. Note that, the Altruists experience the largest improvement

in their peer-to-peer communication costs. They see the largest relative decline in the peer-to-peer transaction

count and also experience the largest relative increase in the average peer-to-peer transaction size. Basically,

the presence of the InfoStations has the most influence on the peer-to-peer exchanges between the nodes exe-

cuting the Altruist strategy. In contrast, the DCoWs experience the lowest relative declines in the peer-to-peer

communication overheads. The relative increase of their average DCoW peer-to-peer transaction size shows

the lowest improvement. In addition, the relative rate of the DCoW’s peer-to-peer transaction count remains

relatively high compared to the other collaborative strategies. Thus, the nodes executing the DCoW strategy

do not take advantage of the InfoStations as the Altruists do. The WDCoWs’ communication overheads un-

dergo a greater improvement than the overheads of the DCoWs. The WDCoWs’ see a relatively big jump in

their average peer-to-peer transaction size and also see a relatively promising decline in a number of peer-to-

peer exchanges. All of the above described changes in the overhead costs are the result of the collaboration

policies of each of the considered strategies. The Altruists’ policies are the most open and supportive of

collaborative exchanges thus, they are more likely to be affected by the changes in the environment while

the DCoWs’ policies are more restrictive thus, this make the nodes executing this strategy less likely to be

affected by the environmental changes such as the presence of the InfoStations in the network.

V.B.2 Transaction Failures

So far, we have considered communication overheads that occur as a result of successful transactions. How-

ever, in mobile wireless environments, transactions can also fail. These failures can occur due to the node’s

motion (nodes move out of range) or due to the noise in the wireless medium. These failures add to the

communication-related inefficiencies which is not present in the more traditional, less dynamic collaborative

environments. Figure V.8 shows the average number of failed transactions for each of the three cooperative

strategies. First, let’s look at the networks with no InfoStations (represented by the solid lines). The Altruists

suffer the highest rates of transaction failures while the WDCoWs experience the lowest failure rate. These

differences can be attributed to the number of transactions that each of the strategies participates in. Once

the InfoStations are added, the failure rates continue to reflect communication levels of each of the strate-

gies. These results are in line with our expectations and further compliment the findings of already described

communication overheads.
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Figure V.8: Comparing the Average Number of Failed Transactions of Nodes Running Different Strategies
with 0 or 5 InfoStations

V.C Summary and Discussion

To conclude, in homogeneous networks the WDCoW strategy is the most efficient strategy among the four

discussed strategies. It delivers relatively high Gains and incurs relatively tolerable Losses. It also has the

lowest communication overhead and lowest failure rate. The DCoW strategy fairs well by delivering modest

Gains while suffering the lowest Losses amongst the three collaborative strategies. It also incurs tolerable

communication overhead. On the other hand, the Altruists deliver the highest Gains, they do so by incurring

the largest Losses and also incur a very high communication overhead.



Chapter VI

COLLABORATIVE EXCHANGES IN EVENLY MIXED

HETEROGENEOUS NETWORKS

In Chapter V, we have examined the Gains, the Losses and the communication overheads in homogeneous

networks. In this Chapter, we analyze the performance of each of the strategies presented in Chapter IV

in evenly mixed heterogeneous networks. An evenly mixed network, is a network where each of the four

strategies described in Section IV.C have an equal representation of 25% of the network population (i.e. there

are no majorities or minorities). Examining this particular population configuration allows us to identify how

each of the four network subgroups effect one anther. We start by examining the evenly mixed networks of

varying sizes after 100 minutes of simulation and later move to analysis of time-based evaluation of evenly

mixed networks where we look at the progress of 70 nodes during 3 hours of interactions (in increments of

20 minutes).

VI.A Evenly Mixed Network

Similar to the analysis of performance of each of the strategies in the homogeneous networks (described in

Chapter V), we examine the Gains, the Losses and the communication overheads of each of the subgroups in

our evenly mixed networks. In particular, we look at the inter-strategy collaborative interactions and identify

the benefits of the proposed bartering approach while contrasting bartering with conventional collaboration

approaches.

60
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VI.A.1 Gains and Losses in Evenly Mixed Networks

FigureVI.1 provides a unique view of the benefits of the DCoW and the WDCoW bartering strategies over

the conventional Altruistic and FreeRiding strategies. FigureVI.1 shows the Gains (represented by the solid

lines) and the Losses (represented by the dashed lines) of an evenly mixed heterogeneous network. First,

let’s look at the Gains. The highest Gains are achieved by the two bartering strategies. In fact, the Gains

of the DCoWs and the WDCoWs are very similar. This is due to the fact that these two strategies have very

similar exchange policies. In contrast, the Gains of FreeRiders are significantly lower than the Gains of the

other collaborative strategies. As mentioned in Section IV.C, FreeRiders are able to acquire goods only from

Altruists. Since the other collaborative strategies are not as philanthropic as the Altruists are, the FreeRiders

have limited number of opportunities to acquire the needed goods. Finally, the Gains of the Altruist are not

as outstanding as they were in homogeneous networks. In fact, Altruists’ Gains are the lowest amongst the

three cooperative strategies. This disappointing performance is related to unbeneficial interactions with other

nodes in the network in particular with FreeRiders.

Figure VI.1: Comparing the Average Gains and Losses of Nodes Running Different Strategies in Evenly
Mixed Networks

When examining the Losses, the Altruists and the FreeRiders stand out since they represent the two
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extremes. Firstly, an average Altruist pays a hefty price for executing a highly cooperative strategy. The

Altruists experience the largest Losses due to the fact that they indiscriminately participate in every possible

exchange regardless of the benefits and losses of these interactions. These Losses weaken Altruists and

contribute to their lower Gains. In essence, the other three more cautious strategies exploit Altruists’ liberal

exchange policies and weaken Altruists ability to collaborate. Furthermore, Altruists’ Losses are significantly

higher than their Gains. This discrepancy makes this philanthropic strategy even less appealing. In contrast

to the Altruists, the FreeRiders get away without any Losses. However, since FreeRiders’ Gains are also

very low, this strategy is not particularly appealing as well. Now, let’s look at the Losses of the nodes

running the WDCoW and the DCoW strategies. Both of the bartering strategies experience lower Losses

than the conventional Altruist strategy since the bartering nodes are more cautious during every exchange.

When comparing the WDCoWs and the DCoWs, the more liberal WDCoWs have higher Losses than the

conservative DCoWs. Similarly, when contrasting their Losses with their Gains, the WDCoWs’ Losses are

slightly higher than their Gains, while the DCoWs’ Losses are lower than their Gains. This is inline with our

expectations, since the WDCoWs potentially can participate in exchanges where they give away more goods

than they receive. On the other hand, the DCoWs’ policies insure that these nodes are never on the losing end

of the deal. From the graph we can determine that, both the WDCoW and the DCoW can be considered to

be effective strategies that provide reasonable Gains while incurring tolerable Losses. In essence, in regards

to Gains and Losses, in evenly mixed heterogonous networks, the two bartering strategies exhibit better

performance than the non-bartering strategies.

VI.A.2 Communication Overheads in Evenly Mixed Networks

As mentioned earlier, the communication overhead is an important component of collaborations in mobile

peer-to-peer environments. To better understand the interaction between the nodes in the heterogeneous

network, we take a closer look at the transactions in the evenly mixed network. FigureVI.2 and FigureVI.3

show how nodes in each of the population subgroups interact with their peer that are executing different

strategies.

As described in Section IV.B.2, the outcome of the collaborative exchanges is very dependent on the

collaboration policies of the two nodes involved in the interaction. The content of the Proposal is very

dependent on the Proposal Composition Policy of the proposing node. Similarly, the response to the Proposal

is dependent on the Proposal Evaluation Policy of the Inquiring node.
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Figure VI.2: Comparing Average Number of Successful Transactions of Nodes Running Different Strategies
in Evenly Mixed Networks

Figure VI.3: Comparing Average Size of Successful Transactions of Nodes Running Different Strategies in
Evenly Mixed Networks
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We start by examining interactions between the DCoWs and the WDCoWs depicted in FigureVI.2 and

FigureVI.3. If a WDCoW is responding to a DCoWs’ Inquiry, then the Proposal is created by the WDCoW.

As discussed previously in Section V.B, WDCoWs tend to generate Proposals that are relatively large in size.

However, the DCoWs’ Proposal Evaluation Policy is very prone to Rejections. Considering these two aspects,

the transactions between these two nodes, initiated by the WDCoW, are not common but when they do occur,

they have high transaction size. On the other hand, transactions where a DCoW responds to a WDCoW

Inquiry are relatively common, since DCoW’s Proposal Composition Policy generates Proposals that are

always accepted by the DCoWs (and also by the Altruists). However, referring to our previous discussions in

Section V.B, the average size of these exchanges is not particularly large since the DCoWs insist on “even”

exchange.

Now, let’s consider transactions between the Altruists and the WDCoWs. The Altruists help the WDCoWs

more often than the WDCoWs help the Altruists. This mismatch is once again related to composition and

evaluation policies of the nodes. In addition to mismatch, there is a transaction size difference between these

transactions. The transactions where the WDCoWs make Proposals have a larger average transaction size

compared to transactions where the Altruists make Proposals. This behavior is consistent with the strategies’

behaviors exhibited in homogeneous networks.

Finally, let’s examine transactions between the Altruists and the DCoWs. Since Proposal Evaluation

Policy of the nodes executing the DCoW strategy is very strict, there are very few transactions where Altruists

initiate the transaction. As we will discuss later, there are a lot of Rejections that take place during these

interactions. Also, the average size of these transactions is relatively low. On the other hand, the number of

transactions where the DCoWs initiate transactions with the Altruists is high. This is due to the fact that any

Proposal that could be generated by the DCoWs is acceptable to the Altruists. As expected, the average size

of these transactions is also low since, the DCoWs always insist on an “even” exchange.

In addition to examining the communication cost of nodes collaborating with other strategies, we also

consider costs of collaborations within their own subgroup. FigureVI.4 and FigureVI.5 show how nodes

behave when they collaborate with their own “kind”. As expected, the Altruists continue to have large number

of small-volume transactions while, the WDCoWs continue to participate in few large volume transactions.

The DCoWs also fare well, since their transaction costs are lower than the Altruists but greater than the

WDCoWs. These results are consistent with results from interactions in the homogeneous network.
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Figure VI.4: Comparing Average Number of Successful Transactions of Nodes Running Different Strategies
in Evenly Mixed Networks

Figure VI.5: Comparing Average Size of Successful Transactions of Nodes Running Different Strategies in
Evenly Mixed Networks
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VI.A.3 Rejections and Transactions Failures in Evenly Mixed Networks

Unlike interactions in homogeneous networks, in heterogeneous networks interactions can end with Rejec-

tions. Out of the four strategies there are only three that receive Rejections to their Proposals: the FreeRider,

the Altruist and the WDCoW. Also, the two bartering strategies are the only two strategies that generate the

Rejection messages. Let’s look at the details of sending and receiving Rejection messages. The FreeRiders

get Rejections only from the WDCoWs and the DCoWs. They never get Rejections from the Altruists. The

Altruists can receive Rejections from the WDCoWs. This occurs when an Altruist makes a “freerider-type”

Proposal. The Altruists can also receive Rejections from the DCoWs. This occurs when an Altruist requests

to receive more goods than it is planning to give. Similarly, the DCoWs reject the WDCoWs’ “non-even” Pro-

posals that would benefit the WDCoWs more than the DCoWs. The formal definition of the policies driving

the rejection generating process can be found in Table IV.1.

Though there are only two strategies that reply with Rejection, after 100 min of simulation, the levels

of Rejections in an evenly mixed network is significantly higher than the levels of successful transactions.

FigureVI.6 shows the average number of Rejections that an average node, experiences in an evenly mixed

network. Since generating a Proposal is a relatively heavy computational process, for a node to receive a

Rejection in response to its Proposal is a very taxing computational overhead. If a node receives a Rejection

then the work that was done to create this Proposal becomes an unnecessarily wasted effort.

Figure VI.6 shows that, when comparing the rates of Rejections in an evenly mixed heterogeneous net-

work, the DCoWs on average send the most number of Rejections. This is not surprising, since there is a

significant portion of the population that generates Proposals that do not comply with DCoW Proposal Eval-

uation Policy. Similarly, the FreeRiders receive the highest number of Rejections. This is due to the fact that

the Proposal Composition Policy of the FreeRider generates Proposals that are likely to be rejected by a half

of the population of the evenly mixed networks. The Altruists receive more Rejections than the WDCoWs due

to the fact that they can generate “freerider-type” Proposals or Proposals that benefit the Altruist more than

the other node. A WDCoW never generates “freerider-type” Proposals; however, it generates “non-even”

Proposal and thus it can receive Rejections from the DCoWs. Comparing the rejection rates of the Altruists

and the WDCoWs, the WDCoWs have the smaller overhead associated with receiving Rejections. Also, the

rejection rate is much higher in larger size networks than in the smaller networks. This increase is related to

the fact that as the density of the network increases, larger set of free riding nodes have more opportunities to

attempt to interact with bartering nodes.
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Figure VI.6: Comparing Number of Sent and Received Rejections of Nodes Running Different Strategies in
Evenly Mixed Networks

Figure VI.7: Comparing Transaction Outcomes for Nodes Running Different Strategies in Evenly Mixed
Networks
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Similar to homogeneous networks, in evenly mixed heterogeneous networks, a node can have failed trans-

actions. These failures are attributed to nodes moving out of range and to unreliability of wireless commu-

nication medium. FigureVI.7 shows that though the failed transactions (represented by the green line) are

common, they are less frequent than the Rejections. Finally, as previously discussed in Section IV.B.2, a

transaction can also have a Busy outcome and an Inconsistent outcome. Both of these outcomes are relatively

rare and have small impact on the communication costs. Thus the Rejections are the primary source of in-

teraction inefficacies and failed transaction are the secondary source. Also unlike rejection rates, the failed

transaction rates are not as affected by the size of the network. This implies that the primary cause behind the

failed transactions is the mobility of the nodes and not the noise and congestion of the wireless medium.

Brining together all of the above described analysis, we conclude that the bartering strategies are more

efficient during their operations in evenly mixed network. Both, the DCoWs and the WDCoWs get good gains

while experiencing tolerable Losses. Bartering nodes also incur lower communication overheads. Therefore,

the bartering approach is more efficient than conventional free riding or altruistic strategies.

VI.B Time Based Evaluation of Strategies in Evenly Mixed Network

In addition to tracking node interactions in heterogeneous networks of varying sizes, we also track node

performance over time. This evaluation allows us to understand swarm-like dynamics [113, 20, 52] of the

cooperative interactions that occur in these heterogeneous networks. We examine the progress that the nodes

in each of the subgroups of an evenly mixed 70-node network go through in a span of 3 hours of simulation

time in increments of 20 minutes.

VI.B.1 Counting the Unfulfilled Wishes

The primary goal for each of the nodes in the network is to fulfill as many wishes as possible on the nodes

iWant List. Measuring the number of unfulfilled wishes gives us the insight into productivity and effective-

ness of each of the subgroups of the population. Measurement of unfulfilled wishes also provides us with

opportunity to evaluate the dynamics of the subgroup interactions and observe the inter-strategy collaboration

dynamics. Figure VI.8 shows the number of nodes in each of the subgroups of the evenly mixed network that

have unfulfilled wishes in their iWant Lists. In particular, this Figure shows how close the nodes get to obtain-

ing all of the goods on their iWant Lists. We have subdivided nodes into threshold-like categories according
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to the size of their iWant List at the particular time (marked on the x axis on the graph). The nodes with

empty iWant List are in the first subcategory (represented by red bars), followed by the second subcategory

which contains nodes with 1 to 5 wishes in their iWant List (represented by orange bars), and so on. The last

broad subcategory contains a set of nodes with more than 25 unfulfilled wishes on their iWant List (i.e. nodes

have less than half of their wishes fulfilled).

Figure VI.8: Number of Nodes With Unfulfilled Wishes in Evenly Mixed Networks

As expected, the FreeRiders which are represented by the left most column in each of the column sets

are the least productive nodes. Note that, after the first 20 min of simulation, a significant majority of the

FreeRiders belong to the broad subcategory of nodes with more than 25 wishes in their iWant List. As the time

progresses, the FreeRiders make progress in fulfilling their wishes. After 180 minutes of simulation time, the

majority of the FreeRiders have less than 20 unfulfilled wishes on their iWant List. However, despite all

of this progress, these nodes still deserve to be categorized as the most unproductive part of the network

population. Let’s look at the progress of the Altruists. Interestingly, the fulfillment rate of the Altruists is

disappointing. These nodes make very limited progress during the simulation. This is due to the fact that,

the Altruists are overwhelmed by the FreeRiders. In fact, progress made by FreeRiders is solely attributed

to the generous philanthropic collaboration policies of the Altruists. In essence, the progress of the Altruists
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stalls during the second part of the time-based simulation. Both of these conventional exchange strategies are

clearly underperforming compared to the proposed bartering approach.

Let’s investigate the effectiveness of the bartering strategies. When examining the DCoWs’ performance

it is clear that these nodes are executing the most effective collaboration strategy. The DCoWs make a

steady progress and in 180 min majority of the nodes have less than five wishes on their iWant List. These

accomplishments can be attributed to the cautious trading policies of the DCoWs. In essence, these nodes

insist on an “even” or a self-benefiting exchange which protects them from inefficient interactions which

are common amongst the nodes that are executing one of the other three strategies. Similarly, the WDCoW

nodes, which execute the other bartering strategy, also make good progress. However, this progress is not

as distinguished as the progress of DCoWs. This promising performance of WDCoWs is also related to

the exchange policies of the nodes. The WDCoWs’ policies provide some level of protection from uneven

exchanges that the Altruists and the FreeRiders propose. The “long term” effectiveness of the bartering

strategies can be explained by the nodes’ ability to protect their interests from the dynamics of the interactions

between the nodes that are executing conventional altruistic and free riding strategies.

VI.B.2 Counting Goods in iHave Lists

To better understand the “long term” effectiveness of the bartering strategies, we further examine the details

of our time-based experiment by analyzing the growth and declines of the nodes’ iHave Lists. The size of an

iHave List impacts node’s ability to find collaboration partners. Thus, tracking the changes of the average list

size gives us the insight into the nodes’ collaboration readiness. FigureVI.9 tracks the progress of the average

size of the iHave Lists for each of the subgroups of the mobile network population. Every node in the network

starts out with 50 goods in their iHave List (represented by the dashed black line in the graph). The first 20

minutes of the simulation show the initial inclinations of each of the subcategories in the network population.

The Altruists experience a major decline in the number of goods in their iHave Lists. Their philanthropic

policies predispose these nodes to giving away their digital content. The declines continue as the simulation

progresses. At the very end of the simulation, the Altruists have the lowest number of goods in their iHave

List. These declines incapacitate Altruists since they have less and less to offer to the other trading nodes in

the network. In contrast, the FreeRiders are getting “wealthier” with time. Since they never give away any

of their goods, they collectively act as a “black hole” for digital goods circulating in the network. In essence,

the FreeRiders only accumulate goods and never release them back into the network. Since Altruists are the
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only subgroup of the population that interacts with the FreeRiders, the Altruists suffer the greatest declines

in the average size of their iHave Lists. Both, the FreeRiders and the Altruists undergo major changes in the

average size of their iHave Lists in the span of the simulation. In contrast, the average size of the iHave Lists

of the bartering strategies remain relatively stable through out the time of the simulation. In essence, both,

the WDCoWs and the DCoW are able to maintain the rates of their iHave Lists. The DCoWs get a minor

increase that comes from interactions with the Altruists and the WDCoWs. On the other hand, the WDCoWs

gets a minor decrease in the average size of their iHave List. This decrease is attributed to interactions with

the Altruists and the DCoWs. Over the span of the simulation, the average size of the DCoWs’ iHave List

grows (very slowly) while for the WDCoWs average size drops (very slowly). This stability allows nodes to

maintain their collaboration appeal to the other nodes in the network.

Figure VI.9: Comparing the Average Size of iHave Lists of Nodes Running Different Strategies in Evenly
Mixed Networks

In essence, the swarm-like dynamics of this micro-economy show that the FreeRiders eventually consume

significant percentage of the goods that the Altruists possesses. This in term transforms the Altruists into

FreeRider-like nodes. As a significant portion of the population starts to exhibit strong free riding tendencies,

the bartering nodes find fewer bartering opportunities. However, these bartering strategies also protect and

isolate the nodes from depleting their iHave List and allow them to productively interact with the network

population and thus fulfilling a significant portion of the wishes on their iWant List.
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VI.B.3 Counting Number of Transactions

To further understand the intricacies of the outcome of our time-based experiment, lets look at the number

of transactions that take place in the evenly mixed network. Figure VI.10 shows both the heterogeneous

transaction counts (the bottom part of the graph) and the homogeneous transaction counts (the top of the

graph). Note that, a significant percentage of transactions occur during the first part of the simulation. During

this period, the Altruists conduct the largest number of their transactions. A second column (from the left)

in each of the column groups in the lower part of the graph represents the average count of transaction

initiated by the Altruists. The majority of these transactions are attributed to the Altruists interactions with

the FreeRiders. The first column of each of the column groups in the graph represent the average number of

transactions initiated by the nodes executing the FreeRider strategy. All of these transactions are interactions

with the Altruists. These two transaction counts show the severity of the impact that the FreeRider have on

the Altruists. Clearly, the majority of transactions conducted by the Altruists are dedicated to servicing the

FreeRiders. In fact, throughout this time-based simulation, the Altruists interact more with the FreeRiders

than with any other nodes running collaborative strategies. This volume of interactions is attributed to the

fact that FreeRiders are unable to engage nodes from any other subset of the network population. Thus,

the FreeRiders are not as preoccupied and have more opportunities to interact with the Altruists which are

the only set of population that responds to their Inquires and Proposals. Note, as the time progresses the

Altruists continue to show high rates of transactions that service the FreeRiders. In fact, towards the end

of the simulation, the interaction activity of the Altruists’ is completely designated to transacting with the

FreeRiders. This interaction pattern eventually converts Altruists into the FreeRiders thus splitting network

population into the free riding nodes and the bartering nodes.

Lets look at transaction counts of the bartering strategies. The DCoWs tend to participate in more trans-

actions than the WDCoWs. During the first half of the simulation, the DCoWs transactions count is split

into three relatively even parts: transaction with the Altruists, transaction with the WDCoWs and transaction

with peers of its own subgroup. In essence, these nodes do not differentiate between the subgroups. These

non-preferential interaction patterns are related to the primary concern of the DCoWs which is the preserva-

tion of the evenness of the transaction. In the second half of this time-based experiment, the DCoWs reduce

interactions with Altruists since the Altruists transform into FreeRider type nodes. In fact there are very few

transactions conducted by the DCoWs. This can also be explained by the fact that, these nodes have reached

a very high wish fulfillment rate and have very few goods in their iWant List.
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Figure VI.10: Comparing the Average Number of Transactions for Nodes Running Different Strategies in
Evenly Mixed Networks

In contrast to DCoWs, the WDCoWs conduct very few transactions. Through out the simulation, their

average transaction count is frequently lower than the average transaction count of the FreeRiders. As men-

tioned in Section V.B and Section VI.A.2, the WDCoWs tend to have relatively high average transactions

size. In the time-based experiment, this materializes into the fact that the DCoWs are able to acquire needed

goods in few transactions. Looking at the Figure VI.8 from Section VI.B.1, it is clear that the DCoWs wish

fulfillment rates are high which basically shows that this strategy also exhibits “long term” efficiency.

VI.B.4 Counting Number of Rejections

In addition to the successful transactions, nodes also send and receive Rejections. FigureVI.11 shows the

rates of the rejected Proposals in our time-based experiment. The graph shows both aspects of Rejections:

number of sent Rejections and number of received Rejections. As discussed in Section IV.C, the Rejections

are sent only by the DCoWs and the WDCoWs. Rejections can be received by the FreeRiders, the Altruists

and the WDCoWs. The left two bars of each of the groups in Figure VI.11 represent the average number of

sent Rejections. Similarly, the right three bars represent the average numbers of received Rejections.

This graph complements the graph in Figure VI.10 since, it shows how bartering strategies are able to
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protect themselves from unbeneficial transactions by generating Rejections to all of the Proposals from the

FreeRiders and to some of the Proposals from the Altruists. In particular, the DCoWs generate the largest

number of Rejections. They generate most Rejections during the early stage of the simulation and through out

the simulation, continue to lead in the Rejection-sending rates. Not surprisingly, the FreeRiders are the main

recipients of the Rejections. In fact, they lead in rate of receiving Rejections throughout the simulation. The

Altruists are not as bothered by the incoming Rejections at the start of the simulation. However, towards the

end of the simulation, the Altruists’ Rejection-receiving rates are almost as high as the FreeRiders Rejection-

receiving rates. This, again, confirms the previous findings that in this swarm like micro-economy, the Altruist

eventually become the FreeRiders and the bartering strategies are forced to reject collaborations that are

initiated by the conventional interaction strategies.

Figure VI.11: Comparing the Average Number of Rejections for Nodes Running Different Strategies in
Evenly Mixed Networks

VI.C Summary and Discussion

In this Chapter, we have examined heterogeneous networks that are evenly subdivided into four subgroups.

Mobile nodes in each of the subgroups are executing one of the collaboration strategies described in Chapter

IV. This network population configuration is designed to bring out the key aspects of the inter-strategy col-

laboration patterns that further highlight the key differences between conventional collaboration approaches
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and the proposed bartering collaboration approach. This Chapter clearly highlights the Gains and Losses re-

lated benefits of the bartering approach in such networks. This Chapter also underlines the importance of the

bartering approach in the mobile environments where the opportunistic collaborations are not only burdened

by the communication overheads that are directly related to the aspects of the dynamic wireless environment

but also are challenged by the unpredictability of encounters with other mobile peers that do not necessarily

share the same collaboration strategy. This Chapter also examines the swarm-like network dynamics that take

place in the heterogeneous networks. In particular, the opportunistic interactions in the mixed environments

lead to a split of the network into two distinct groups of free rider type nodes and bartering nodes. In essence,

the nodes that are executing the conventional altruistic strategies inevitably get overpowered by the other

nodes in the network population and start to act as free riders.



Chapter VII

COLLABORATIVE EXCHANGES IN

STRATEGY-DOMINATED HETEROGENEOUS

NETWORKS

In Chapter VI, we have examined the Gains, the Losses and the communication overheads in evenly mixed

heterogeneous networks. In this Chapter, we analyze the performance of the collaboration strategies (pre-

sented in Chapter IV) in heterogeneous networks that are “dominated” by one of the strategies. In particular,

we consider four heterogeneous networks: a FreeRider-dominated network, an Altruist-dominated network,

a WDCoW-dominated network and finally, a DCoW-dominated network. Each of these networks has a dom-

inating strategy presence such that, the majority strategy represents 40% of the network population while,

the other strategies are 20% each. Studying strategy dominated networks gives us a better understanding

of inter-strategy communication patterns and influences that strategies exert on one another [79, 29, 69]. In

addition, studying these dominated networks gives us an opportunity to examine the more realistic network

population compositions that are more likely to occur in the real world situations.

VII.A Gains and Losses in Strategy-Dominated Heterogeneous Net-

works

Now that we have looked at performance of each of the strategies in the evenly mixed heterogeneous network,

let’s consider networks dominated by one of the strategies. This Section in detail will look at the Gains and

76
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Losses that each of the four strategies experiences in the dominated networks.

VII.A.1 Gains and Losses in FreeRider-Dominated Heterogeneous Networks

FigureVII.1 shows Gains and Losses for the network dominated by the FreeRiders. As previously discussed

in Sections IV.C and VI.A.1, the Altruists form the only subset of the population that are willing to interact

with the FreeRiders. In the FreeRider-dominated network, the ratio of FreeRiding part of the population to

the Altruistic part of the population is two to one. This ratio creates an extremely unfavorable environment for

both, the FreeRiders and the Altruists. Essentially, the issue is that there is a small set of suppliers and a large

set of consumers. Thus, as expected, both of the subgroups of the population experience very low Gains. In

fact, out of the three collaborative minorities, the Altruists get the lowest Gains. In addition to the low Gains,

the Altruists also experience extremely high Losses. These Losses are directly related to the population

ratios. In regards to the Gains of the FreeRiders, the FreeRiding nodes continue to see disappointing levels

of Gains and, as mentioned before, they do not incur any Losses. Basically, the large majority of FreeRiders

incapacitates both, itself and the Altruistic minority that supports the FreeRiders.

Figure VII.1: Comparing the Average Gains and Losses of Nodes Running Different Strategies in FreeRider-
Dominated Heterogeneous Networks
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Interestingly, in the FreeRider-dominated network, the bartering DCoW minority is able to protect itself

from the Free Riding majority. The DCoWs survive with the highest Gains in this network configuration and,

as before, have tolerable Losses. Similarly, the WDCoWs fair well since, they show promising Gains and also

suffer tolerable Losses. Thus, in the mobile networks dominated by the Free Riding majority, the bartering

approach proves to be relatively resilient. To conclude, due to the large presence of uncooperative nodes in

the population, the FreeRider-dominated networks deliver limited levels of productive collaborations.

VII.A.2 Gains and Losses in Altruist-Dominated Heterogeneous Networks

FigureVII.2 shows Gains and Losses for the network dominated by the Altruists. Since Altruists are selfless

and ultra cooperative nodes, all subgroups of the population in the network experience high levels of Gain.

In fact, all the three collaborative strategies exhibit similar levels of Gains. The DCoW minority shows the

highest Gains and the lowest Losses. Similarly, the performance of theWDCoW minority is consistent with

it’s previous performances. The Altruistic majority has similar or slightly lower Gains than the bartering

nodes; however, these Gains are offset by the highest Losses in the network.

Figure VII.2: Comparing the Average Gains and Losses of Nodes Running Different Strategies in Altruist-
Dominated Heterogeneous Networks
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Interestingly, the FreeRider minority distinguishes itself by exhibiting uncharacteristically high Gains.

This improvement can be attributed to the fact that, this particular network configuration is composed of a

limited number of FreeRiders and a relatively large population of highly accommodating Altruists. This ratio

is very beneficial to the FreeRiding minority since, these nodes get plenty of opportunities to collect goods

from their only set of collaborative partners. In addition, the limited number of FreeRiders means that, on

average, these nodes encounter less competition from one another. Furthermore, the bartering minorities

present limited opposition in regards to interactions with Altruists. In fact, nodes form the WDCoW minority

occasionally enrich the Altruists majority by participating in exchanges that benefit the Altruist nodes more

than the WDCoW nodes.

VII.A.3 Gains and Losses in WDCoW-Dominated and DCoW-Dominated Hetero-

geneous Networks

FigureVII.3 shows Gains and Losses for the network dominated by the WDCoW while, FigureVII.4 shows

Gains and Losses for the DCoW-dominated network. In both of these networks, there is a strong resemblance

in the levels of Gains for both bartering strategies. Since, the DCoWs are less forgiving, the Gain levels for

all of the cooperative strategies are slightly lower than in the WDCoW-dominated network. This is consistent

with previously described findings and also with our expectations.

Also, levels of Gain for the Altruists are relatively low and unlike the previous two networks the Gains in

these networks are similar to the Gains in the evenly mixed network. In the DCoW-dominated network, all of

the collaborative strategies see a slight decrease in the levels of Losses. This relative decline is attributed to

the bartering policies of the DCoWs which focus on the evenness of the exchange thus frequently rejecting

Proposals that are composed by the Altruists. Essentially, when the majority of nodes in the network employ

the bartering communications approach for their interactions, the levels of collaborations in this network are

higher than in the networks dominated by nodes executing conventional collaborative interaction methods.
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Figure VII.3: Comparing the Average Gains and Losses of Nodes Running Different Strategies in the
WDCoW-dominated Heterogeneous Networks

Figure VII.4: Comparing the Average Gains and Losses of Nodes Running Different Strategies in the DCoW-
dominated Heterogeneous Networks
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VII.B Comparing Strategy Performance in Heterogeneous Networks

Each of the strategies described in Chapter IV.C has different inter-strategy collaborative advantages and

disadvantages. In Chapter VI and Section VII.A, we have described how network population can influence

the strategy performances. In this Section, we look at the performance of each of the strategies and attempt

to identify the network population compositions where the nodes that are executing this strategy experience

the best and the worst performance. In essence, this Section will attempt to answer the following question:

“For a node executing a particular strategy what should the network population composition be so that this

node can get the highest Gains and incur the lowest Losses?”

VII.B.1 Performance of FreeRiders in Heterogeneous Networks

Lets identify the network population composition that deliver the best and the worst performance to the nodes

executing the FreeRiders strategy. FigureVII.5 shows the Gains that the FreeRiders experience in heteroge-

neous networks. As mentioned earlier, the FreeRiders can acquire digital goods only from the Altruistic

subset of the population. So, as expected, FreeRiders experience the highest levels of Gains in the Altruist-

dominated network where, the ratio of Altruist nodes to Free Riding nodes is the highest. The FreeRiders also

experience relatively high Gains in the evenly mixed network. This again relates to the ratio of the Altruists

and the FreeRiders in the network. However, in the network dominated by the bartering nodes, the levels

of Gain of the FreeRiders are significantly lower than in the network with Altruistic majority or in evenly

mixed networks. The collaborative exchange policies of the bartering majorities in these networks are very

intolerant of free riding behavior. Thus, the FreeRiders have limited number of opportunities to interact with

the network population. Similarly, in the network dominated by FreeRiders, the Gains of FreeRiders are

very low, particularly in the larger network. These low rates are attributed to the fact that a large number of

FreeRiders (40% of the network population) is competing against each other for the opportunity to collab-

orate with a small number of Altruists (20% of the network population). So to summarize, the FreeRiders

exhibit the best performance in the Altruists-dominated networks. The worst performance is exhibited in the

FreeRider-dominated networks.
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Figure VII.5: Comparing the Average Gains of FreeRiders in Heterogeneous Networks

VII.B.2 Performance of Altruists in Heterogeneous Networks

Lets identify the heterogeneous networks where Altruists experience the best and the worst levels of produc-

tivity. FigureVII.6 shows the Gains(represented by the solid lines) and Losses (represented by the dashed

lines) that Altruists experience in five heterogeneous networks. The collaboration policies of the Altruists

make them the most philanthropic nodes in the environment. Thus, not surprisingly, the Altruists receive

the lowest Gains and the highest Losses in a FreeRider-dominated network where the Free Riding majority

takes full advantage of the liberal collaboration policies of the Altruists. The Altruists’ productivity is at its

peak when the Altruistic nodes are surrounded by their own kind. In the Altruist-dominated network, the

average Gains are at their highest and the average Losses are at their lowest. Clearly, the philanthropists do

well when they are surrounded by other philanthropists. In the DCoW-dominated networks, where there is

the greatest concern with “fairness of exchange”, the Altruists receive unexceptional Gains. However, the

average levels of Loss are relatively low. Thus, the exchange policies employed by the DCoW majority have

a clear positive effect on the productivity levels of collaborative Altruists. Interestingly, the DCoW strategy,

which is the other bartering strategy, has a less prominent impact on the Losses of the Altruists. However, the

DCoW-dominated network population delivers the second best level of Gains amongst the five heterogeneous

networks. So to summarize, the Altruists exhibit the best performance in the Altruists-dominated networks
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where they are surrounded by their philanthropic peers. Interestingly, the Altruists also have very high levels

of productive interactions in the WDCoW-dominated networks. The worst performance is exhibited in the

FreeRider-dominated networks.

Figure VII.6: Comparing the Average Gains and Losses of Altruists in Heterogeneous Networks

VII.B.3 Performance of WDCoWs in Heterogeneous Networks

Now lets identify the network populations that are best and worst suited for the nodes executing the WDCoW

strategy. FigureVII.7 and VII.7 show the Gains and the Losses of the WDCoWs operating in five heteroge-

neous networks.

Similar to Altruists, the FreeRider-dominated network provides the WDCoWs with the worst conditions

for of opportunistic bartering and collaborative peer to peer exchanges. The average Gains and the average

Losses of the WDCoWs are the lowest in the FreeRider-dominated network. The WDCoW nodes are very

unproductive in this network configuration.

In regards to the Altruist-dominated network, the WDCoWs exhibit unremarkable Gains but they also

show low Losses. Coupling these Losses and these Gains, it is clear that the WDCoWs take advantage of

the philanthropic nature of Altruists. Interestingly, the WDCoWs exhibit the highest Gains in the network

dominated by their own kind. However, the WDCoWs-dominated network also delivers very high Losses
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Figure VII.7: Comparing the Average Gains of WDCoW in Heterogeneous Networks

Figure VII.8: Comparing the Average Losses of WDCoW in Heterogeneous Networks



85

which is related to the fact that majority of this network population insists on bartering interactions and does

not initiate philanthropic transactions. The Loss levels in other cooperative networks are relatively high and

similar to each other. This similarity and consistency is related to the versatility of the WDCoW strategy.

The exchange policies of this strategy enable the WDCoW nodes to deliver consistent performance in a wide

range of network populations. Similar to other strategies, the WDCoWs exhibits the worst performance in the

FreeRider-dominated networks.

VII.B.4 Performance of DCoWs in Heterogeneous Networks

FigureVII.9 and VII.9 compares the Gains and the Losses of the DCoW nodes. Let’s examine which of

the network configurations is the best suited network for the DCoW nodes. Similar to the Altruists and the

WDCoWs, the DCoW nodes get the lowest Gains and the lowest Losses when they operate in the FreeRider-

dominated networks. So the FreeRider-dominated network is once again the worst network configuration for

collaborative interactions. The Gains in the other networks are higher and relatively similar. However, at

a closer look, the highest Gains are archived in the WDCoW-dominated networks. This slight edge can be

contributed to the fact that, the WDCoWs can generate Proposals that benefit the Inquiring node more than

the Proposing node. Thus, the DCoWs occasionally get involved in transactions with WDCoWs where they

gain more than they give away. This aspect of the exchange process elevates the Gains of the DCoWs in the

WDCoW-dominated networks over the Gains of the DCoWs in the DCoW-dominated networks. The Losses

in this network configuration are also relatively high, partially because there are a lot more opportunities

to barter. Interestingly, the DCoW nodes suffer the highest Losses when they are surrounded by their own

kind. These levels of Losses are related to the rigid bartering policies that are executed by the DCoWs.

When these nodes initiate transactions, the size of the Receive List is equal to the size of the Give List and

as a result, the DCoW nodes in the DCoW-dominated networks tend to loose as much as they receive. The

DCoWs fair well in the Altruist-dominated networks. In this network configuration, the Gains are relatively

low but so are the Losses. Overall, the DCoW nodes exhibit consistent performance in the networks that are

largely populated with other cooperative nodes. The stability and consistency of the DCoW nodes and the

WDCoW nodes shows that the bartering approach is a robust collaborative methodology which is well suited

for opportunistic collaborations and exchanges in mobile peer-to-peer heterogeneous environments.
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Figure VII.9: Comparing the Average Gains of the WDCoW in Heterogeneous Networks

Figure VII.10: Comparing the Average Losses of the DCoW in Heterogeneous Networks
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VII.C Comparing Communication Overhead in Strategy-Dominated

Heterogeneous Networks

As discussed earlier, communication overheads can have significant impact on the node’s efficiency. How-

ever, in addition to considering the efficiency of a single node, we also need to examine the efficiency of the

network as a whole. In this section, we compare the average communication overheads for each of the four

dominated heterogeneous networks. FigureVII.11 shows the average number of successful transactions in

these networks, while, FigureVII.12 shows the average size of these transactions.

As expected, the FreeRider-dominated networks have the lowest transaction count while, the Altruist-

dominated networks have the highest transaction count. Also, the average transaction size in both of these

networks is the smallest compared to other heterogeneous network mixes. Clearly, the prominent character-

istics for these conventional strategies have an adverse affect on the overall network efficiently. In contrast,

the evenly mixed networks, the WDCoW-dominated and the DCoW-dominated networks have very similar

transaction counts. However, the WDCoW-dominated networks display the highest average transactions size.

This distinction, sets the WDCoW-dominated networks aside by delivering the lower overall communication

overheads. This encouraging performance is related to the WDCoW exchange policies which are well bal-

anced since they are not too rigid nor too liberal. In essence, these policies are not at either extreme of the

collaboration continuum. Thus, in the WDCoW-dominated networks, the average network operating costs

are relatively low and the productivity of the nodes, in terms of average levels of Gains, is relatively high.

Similar to the WDCoW-dominated network, the DCoW-dominated networks also exhibit low operating costs

since these networks have a low transaction count and a high average transaction size. By looking at these

heterogeneous networks, we can conclude that communication overheads in the networks dominated by the

nodes that are utilizing the proposed bartering approach are low compared to the networks dominated by the

conventional strategies.
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Figure VII.11: Comparing the Average Gains and Losses of Nodes Running Different Strategies in Evenly
Mixed Heterogeneous Networks

Figure VII.12: Comparing the Average Gains and Losses of Nodes Running Different Strategies in Evenly
Mixed Heterogeneous Networks
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VII.C.1 Comparing Rejections in Strategy-Dominated Heterogeneous Networks

As mentioned earlier, Rejections are one of the major contributors to the communication overhead related

costs. FigureVII.13 shows levels of rejected Proposals in heterogeneous strategy-dominated networks. When

comparing these levels of Rejections in these networks, it is not surprising that the FreeRider-dominated net-

works have the highest Rejection rates while, the Altruist-dominated networks have the lowest Rejection

rates. Also, as expected, the DCoW-dominated networks experience relatively high Rejection rates. These

high rates are attributed to the DCoW’s Proposal Evaluation Policy which rejects all unbeneficial exchanges.

Interestingly, both, evenly mixed networks and the WDCoW-dominated networks have very similar Rejection

rates. This similarity can be attributed to the fact that WDCoWs’ collaboration policies do not obstruct col-

laborative interactions.

Figure VII.13: Comparing the Average Gains and Losses of Nodes Running Different Strategies in Evenly
Mixed Heterogeneous Networks

VII.D Summary and Discussion

To conclude, the WDCoW and the DCoW bartering strategies once again prove to be effective collaborative

interaction methods in heterogeneous networks. These strategies show good levels of resilience to the diverse
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network conditions since the nodes that are executing these strategies deliver relatively high levels of Gains

and experience relatively modest and tolerable levels of Losses. These strategies also protect nodes from ex-

cessive operational costs. Nodes that are executing the WDCoW and the DCoW strategies also exhibit lower

communication overheads by either having few large-volume transactions or by participating in more even

and balanced exchanges that protect these nodes from recklessly giving away their goods to other nodes in

the environment. In contrast, the very cooperative Altruists and the extremely selfish FreeRiders are not as

effective in these heterogeneous environments. On average, the philanthropic nodes that are executing the

Altruistic strategy incur dramatic Losses since other nodes tend to take advantage of their liberal collabo-

ration policies. While, the FreeRiders, unwilling to share their goods, are sidelined by Rejections from the

less liberal nodes and thus have very limited Gains. Also, the Altruists incur major communication related

overhead since they mainly participate in great number of low-volume transactions. Likewise, due to the

very high Rejection rate, the FreeRiders get very high communication overheads as well. Thus, bartering ex-

change policies provide versatile collaboration mechanisms that are well suited for a wide range of network

configurations.



Chapter VIII

VALUE-BASED BARTERING AND INVESTMENTS

APPROACH

In the previous Chapters, we have described the key concepts of the proposed bartering collaboration model

and contrasted this model with conventional widely used Free Riding and Altruistic collaboration approaches

[12, 96, 95]. In this Chapter, we examine two extensions to the bartering model. We take a close look a the

valuation sensitive bartering and at the investment enhanced trading.

VIII.A Value Based Bartering

The bartering collaboration model presented and analyzed in Chapters IV, V and VI makes an assumption

that all of the digital goods and digital content in the mobile environment are of the same equal value. In

essence, when nodes setup a collaborative exchange they do not consider the importance and the significance

of the goods being given away or being purchased. We can will refer to this initial valuation model as

the Equal Valuation model (EV). Clearly, this model does not capture the dynamic personal nature of the

mobile peer-to-peer environments. These environments are populated with diverse set of users with varying

interests and partiality. Users in these environments assign different levels of worthiness and significance to

the digital content that they desire, possesses. and consume. Valuing all digital goods with an equal value

eliminates an important dimension of the peer-to-peer collaborations. However adding value-sensitive aspect

to the bartering collaborations adds a layer of complexity that can hinder nodes’ collaboration productivity

by limiting collaboration opportunities.

91
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VIII.A.1 Valuation Models for Digital Goods

To challenge the use of our initial Equal Valuation model, we have developed a set of more descriptive valua-

tion models that allow us to measure the effects of valuation sensitive bartering for digital goods and content

during the opportunistic peer-to-peer bartering exchanges. In particular, we have developed three valuation

models and incorporated them into our collaborative exchange framework described in Chapter IV. These

three models are: the Demand Sensitive Valuation model, the Demand and Supply Sensitive Valuation model

and finally the Personalized Valuation model. Each of these models is incorporated into the proposed barter-

ing framework and can be used to enrich the bartering collaboration process. Each model uses a particular

method to develop a set of values that represent valuation of each good and associate these value with every

digital good in the environment. Each of these three models uses its particular approach to measure the im-

portance of every good in the environment. All of the values, in every one of these models are incorporated

into the bartering process. With these valuation models, during the battering process, the nodes do not con-

sider the number of goods that are being exchanged but instead examine the value of the ongoing transaction.

This allows nodes to add extra layer of awareness that captures yet another dimension of collaborations and

exchanges in mobile pervasive environments. From the framework implementation perspective, the Propos-

ing node ensures that the value of the Receive List in the Proposal is equal to the value of the Give List of this

Proposal.

Before we give the detailed description of the three proposed valuation models, we need to present the

details of how our framework interprets the concept of “value” of a digital good. Identifying and capturing

the valuation of a digital good in a qunatifiable discrete number that represents this valuation is a changing

process. Debates about what is a “value” and what is the best way to capture this concept of “value” has been

extensively looked at in a number of scientific domains including Social Sciences, Economics and Ethics

[90, 98, 81, 46]. Though there are a number of ways to interpret valuation concept, for the purposes of our

research, we have limited our interpretation of “value” by treating it as a quantifiable unit of measurement.

Specifically, for the purpose of our proposed framework, we sort all of the digital goods into ten threshold-

like categories. Goods belonging to the “category-1” are considered to be the least valuable goods in the

environment. Goods belonging to the “category-10” are considered to be the most valuable goods in the

environment. This approach delivers a well defined scale that is used to unambiguously quantify the valuation

for every good in the network. This categorization approach is different from the conventional approach of

assigning a currency based “price tag”. With categorization, not only we can capture the relative differences
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between the good values but also limit the inflation and deflation of values in the network. In essence,

every one of our three valuation models normalizes the values of the goods by categorizing them in to one

of these categories. Our current implementation does not handle issues of value inflation and deflation.

However, normalizing the values and reassigning goods to new categories can be used to address issues of

value inflation and deflation. Also, for purposes of comparison and analysis, we have identified “category-5”

to the be the only category used the networks employing the Equal Valuation model.

Now that we have defined our method of quantifying the value, we move on to describing the valuation

modes that our bartering framework can employ during the peer-to-peer exchanges.

Demand Sensitive Valuation

The Demand Sensitive Valuation model (DSV) is a model that computes values for each of the goods in the

environment based on the level demand for every good. This model is designed with a basic assumption that,

the valuation of each good should be directly related to the demand that nodes have for this good. We assume

that, the values can be externally computed at the beginning of the collaboration cycle and are shared with

all of the nodes at the beginning of this collaboration cycle. In essence, this model represents a “categorized

global valuation list” that is built by evaluating the demands of every node in the environment. For example,

if the environment contains a great number of node that are looking to acquire a particular good then that

good is categorized into a “high value” category. On the other hand, if a good is in a very low demand then it

is categorized into a “low value” category.

Note that in our current simulation evaluation, the demand is explicitly stated in the iWant List of every

node. One can envision a system where, mobile nodes periodically synchronize their iWant Lists with a central

server (or a set of distributed servers) which could identity the current demand trends and assign appropriate

values that reflect this demand. This synchronization assumption is not unreasonable, since currently many

users of mobile technology already frequently synchronize their mobile devices with some server.

As we have described in Section IV.E.1, our current simulation evaluation of the bartering collaboration

framework employs Power Law distribution[31, 24, 15] which is used to generate list of wishes for every

iWant List in the network. This uneven distribution of wishes also creates unevenly distributed demand for

the digital content in the network. Thus, when demand sensitive values are generated, they also reflect these

uneven levels of desire for each of the goods in the environment.

Below is a pseudo code used to derive the value related categorization of good in our simulation evaluation
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of DSV model. Note that the DemandCount is a list-type data structure that is populated with a count of

the number of times each good is listed in the iWant Lists of the nodes in the network. Basically, this list

contains the demand levels for every good. Similarly, the maxDemandCount and the minDemandCount

represent the count for the least demanded good and the count for the most demanded good (respectively)

in the environment. Using these two parameters, the valuations are normalized into the previously described

categories.

Algorithm 1 Computing Global Valuation List Based on Demand

Input: Array of DemandCount for digital goods, maxDemandCount, minDemandCount
Output: Array of Digital Good Valuations

coef = 10−1
maxDemandCount−minDemandCount

for every Good in ListOfGoods do

V alue = coef ∗ (DemandCount[GoodID]−minDem)
V alue = round(V alue + 1)
GlobalListOfV alues[GoodID] = V alue

end for

Demand and Supply Sensitive Valuation

The Demand and Supply Sensitive Valuation model (DSSV) builds valuation categories in the similar man-

ner as the DSV model. The key assumption used in this particular model is that the valuations of the digital

goods and content are not only dependent on how many nodes are looking for these goods but also dependent

on the levels of available supply of these goods in the environment. For example, the goods that are in high

demand and low supply are categorized into a “high value” category. On the other hand, if a good is widely

available and very few nodes are looking to acquire this good then this good is categorized into a “low value”

category. Thus, this model captures additional aspects of valuation that further improves the categorization

mechanism used to identify valuations of the goods in the network.

Note that, in our current simulation evaluation, the demand can be determined by looking at the nodes’

iWant Lists and the supply can be determined by looking at the nodes’ iHave Lists. Similar to DSV model,

at the beginning of the collaboration cycle, nodes are bootstrapped with a set of DSSV-compliant categorized

valuation list that reflect the significance of every good in the network.

Below is a pseudo code used to derive value related categorization of good in our simulation evaluation
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of DSSV model. Note that, the DemandCount is a list-type data structure that is populated with a count of

the number of times each good is listed in the iWant Lists and the SupplyCount is a list-type data structure

that is populated with a count of the number of times each good is listed in the iHave Lists. Essentially, these

lists contain the demand and supply levels in the network.

Algorithm 2 Computing Global Valuation List Based on Supply and Demand

Input: Array of DemandCount, Array of SupplyCount, maxDemandCount, minDemandCount
Output: Array of Digital Good Valuations

coef = 10−1
maxDemandCount−minDemandCount

for every Good in ListOfGoods do

if SupplyCount[GoodID]! = 0 then
ratio = DemandCount[GoodID]

SupplyCount[GoodID]
else

ratio = maxDemandCount
end if

V alue = coef ∗ (ratio−minDemandCount)
V alue = round(V alue + 1)
GlobalListOfV alues[GoodID] = V alue

end for

Personalized Demand and Supply Sensitive Valuation

The Personalized Demand and Supply Sensitive Valuation model (PDSSV) is a model that takes it one step

farther than the DSSV model. In addition to being sensitive to the demand and supply levels, this model

assumes that not all users have the same value for the same good. In essence, the assumption is that users

have different preferences and tastes for the digital content that exists in the network. The PDSSV assumes

that the valuations are similar but not necessarily totally identical to the globally available categorized DSSV

list. These deviations and preferences in the valuation method better reflect the heterogeneous nature of the

mobile environments that are inhabited by the users with diverse interests. Our framework assumes that

nodes are already bootstrapped with well expressed profiles that reflect personal preferences and interests of

the mobile users. There are a number of ways to acquire the profiles, they can be learned and derived from

user’s day to day activities[18, 17], or they can be built from the widely popular online websites such as

orkut.com[2], mySpaces.com [3] and FaceBook.com[4].

Similar to the DSV and the DSSV models, the PDSSV model also assumes that there is a synchronization
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of the demand and supply information. This model relies on the distribution of the global valuation catego-

rization list. However, once each node receives this categorization list, it reexamines this list and modifies the

values to better suit its’ personal preferences. Essentially, nodes consider the global valuation categorization

list to be a guideline. Each node takes these guideline into account and modifies valuations to better reflect

its preferences.

From the prospective of our simulation evaluation study, the networks that are using the PDSSV model,

at the beginning of the collaboration cycle assemble a global valuation list according to the DSSV model.

During the bootstrapping, each node receives the global categorization list. Each node has an option of

personalizing these valuations in this list to better reflect the user’s personal preferences. The node also has

an option of leaving some or all of the values unchanged. Personalizing the valuations is essentially done

through re-categorizing the valuations of the goods. The re-categorizing is limited to upgrading to a category

directly above the original category or by downgrading to the category directly below the original category.

Currently, in our simulation, a node at random generates one of the following three integers [−1, 0, 1] which

symbolize the action that the node takes in regards to re-categorizing. Note that, goods in the valuation

“category-1” cannot be further downgraded and the goods in “category-10” can not be further upgraded.

This personalization approach allows nodes to have similar but not identical valuations of the goods in the

environment. Additional valuation methods and models can be added to the framework . However, any of

the valuation models would need to overcome the issues of additional complexity that valuation sensitive

approach brings in to the bartering process.

In Chapter V, we have already described behavior of the homogeneous DCoW networks. In the following

Sections, we will compare the performances of the nodes executing the DCoW strategy while employing the

valuation sensitive bartering models which we described above.

VIII.A.2 Gains in Valuation Sensitive Bartering

To better understand the effects of introducing the valuation concept into the bartering process, we com-

pare the Value Gains that the nodes experience in the homogeneous bartering network executing the DCoW

strategy. The Value Gain of a node represents how much overall value, on average, did the node acquire

during the simulation. We examine the Value Gains in the four valuation sensitive modes: the EV model, the

DSV model, the DSSV model and finally in the PDSSV model. FigureVIII.1 shows Value Gains which are

normalized for the purposes of comparison.
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Figure VIII.1: Gains in Valuation Sensitive Approaches

Note that, the most productive set of nodes are the nodes that are employing the EV model. The reason

behind such high Value Gains for this model are related to the fact that this model does not add valuation-

related noise to the bartering process. The evenness of the good count is the primary concern of the nodes

executing the EV model. The other three valuations models add valuation categorization thus forcing nodes to

employ value-sensitive “filtration” which impose additional restrictions on the terms of the exchange. When

comparing the three value-sensitive models, the PDSSV model stands out as the least productive model.

This model uses personal valuation approach which introduces additional noise into the value categorization

process. This noise resonates into the bartering transactions and further complicates the matching process.

This more complex matching process affects the overall productivity of the nodes and eventually materializes

into lower Value Gains for the PDSSV networks. The DSV model and the DSSV model both show relatively

similar levels of the Value Gains with a sight edge to the DSV model. The reasons for this similarity are

related to the communication overheads which are discussed in the next Section.

VIII.A.3 Impact of Transaction Overheads on Valuation Sensitive Bartering

The importance of communication overhead was previously discussed in Sections V.B and VI.A.2. In the

case of valuation sensitive bartering, there is an additional parameter of the average transaction valuation

that can be used to describe effectiveness collaboration. In this Section, we also discuss the average trans-
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action valuation which represents the average total value of the average transaction. The average transaction

valuation complements the average size of the transaction parameter. The greater the average transaction

valuation the more effective is the exchange.

Figure VIII.2: Transaction Count in Value-Based Approach

FigureVIII.2 shows the average number of transactions, while FigureVIII.3 and FigureVIII.4 show the

average size of bartering transactions and the average valuations of the bartering transactions. Note that the

average transaction valuation are normalized for purposes of comparison.

Lets start our examination of the communication overhead by looking at the performance of the simplistic

EV model. In the EV networks, the nodes conduct the largest number of transactions with the smallest

average transaction size. The average transaction valuation is also very low. As mentioned earlier, all of these

factors contribute to the bartering inefficiency. Thus, the EV model is the least efficient collaboration model.

Combining this analyses with the analyses of Value Gains, it is clear that, the main reason behind the high

Value Gains exhibited by the EV nodes needs to be attributed to the very high quantity of the transactions and

not to the nodes’ efficient bartering behavior.

On the other hand, the networks that are employing the PDSSV approach exhibit relatively efficient barter-

ing behavior since their transaction count is low and the average transaction size and the average transaction

valuations are both relatively high. However, this efficient behavior is not exhibited in a sufficient quantity
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Figure VIII.3: Transaction Size for Value-Based Approach

Figure VIII.4: Transaction Valuation for Value-Based Approach
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to contribute to the overall network productivity. As mentioned earlier, the noise generated by the personal

value re-categorization limits the pool of possible exchange deals which in turn, hinders the overall network

productivity.

Now, lets compare the performance of the DSV and the DSSV networks. Though the average transaction

size and the average transaction valuations of the DSV networks are higher than the size and valuation of

the transactions of the DSSV networks, the transaction count shows the opposite trend. The DSSV networks

have greater average transaction count than the DSV networks. Lack of a clear-cut difference contributes

to the similarity in the levels of the productivity that are exhibited by these networks. Thus, based on just

these parameters, there is no clear-cut benefit of using the DSSV model over the DSV model. They deliver a

relatively even performance.

VIII.B Investment-Based Approach

In attempt to improve the average Value Gains and increase nodes collaboration related effectiveness, we

have developed an extension to the value-sensitive bartering approach described in the previous section. This

extension is built on the concept of investment [41, 103, 102] which involves purchasing goods with intention

to resell these goods. The application of this concept to our framework involves nodes purchasing digital

content that is not part of the nodes’ initial iWant List in hope of later re-trading this content for goods

that are in the nodes’ original iWant List. Essentially, the nodes take a risk and acquire not-needed goods

for purposes of later trading them away for the desired content. The key contribution of our work is to

employ this investment based approach to improve opportunistic bartering collaborations in mobile peer-to-

peer environments.

As described in Section IV.C, nodes executing the DCoW strategy insist on even trades where the good

count of the Receive List is equal to the good count of the Give List. In case of the value-sensitive bartering,

the basic trading philosophy is modified such that the bartering nodes compare the total value of the Receive

List with the total value of the Give List and not the cardinality of these lists. At the start of the transactions,

the Proposing node establishes an initial “match” and then using its Proposal Composition Policy, it trims the

Lists to be of an equal value. Clearly, trimming the lists reduces the transaction size and thus effects bartering

communication efficiency. The occasions where the Give List needs to undergo trimming are frequent. Using

the proposed investment based trading extension, the nodes take an opportunity and instead of trimming the
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Give List, attempt to expand the Receive List. This expansion is done to equate the value of the Receive

List with the value of the Give List. The goods that are added to the Receive List are selectively picked for

the iHave List of the bartering partner. The selection strategy is simple, the Proposing node identifies the

cardinality and the total value of the goods that were originally planed to be trimmed away. The Proposer

looks through the iHave List of the bartering partner and attempts to find a set of goods such that this set has a

smaller cardinality and a similar value as the trim set. In essence, the node tries to exchanges it’s “unwanted”

goods for a smaller set of more valuable “unwanted” goods. The reasoning is that, if the node reduces the

cardinality of its iHave List and also increases the total value of the goods in this iHave List, it will have a

better chance of giving “unwanted” goods way and acquiring “needed” goods. Basically, the philosophy is

that in the environment where the value is derived from the network-based demand it is better to have few

valuable goods than many less valuable goods. The hope is that other nodes in the network will find these

goods desirable and will be willing to pay for them with the goods that this node is originally interested in

acquiring. Clearly, there is a risk of acquiring a good and not being able to trade it away. In the next Section,

we will look at the performance of the nodes employing the investment enhanced trading.

Figure VIII.5: Scenario for Investment-Based Approach

To simplify our analysis description we will refer to the value-sensitive networks that employ investment

based extension as the iDSV, the iDSSV and the iPDSSV networks.
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VIII.B.1 Valuation Gains in Investment Based Approach

Lets start our analysis by comparing the average Value Gains of the networks employing the investment en-

hancements of the value-sensitive bartering. In Section VIII.A.1, we have described a set of valuation models.

FigureVIII.6 shows the average Value Gains for each of the three value-sensitive models with and without

investment based extension. Firstly, the main trend is that all three models saw a positive improvement in

their Value Gains when employing the proposed investment based extension. Both, the iDSV and the iDSSV

networks experience similar improvements, while the PSSSV, which was lagging behind, goes through the

most dramatic improvment that elevates its Value Gains to the levels of the other two value-sensitive net-

works. The reasons for this major improvement in the iPSSSV networks will be discussed later. However, an

interesting conclusion that can be derived from this graph is that even with this investment based extension

the value-sensitive trading is still delivering the lower Value Gains than the initially used Equal Value model.

Clearly, the value-sensitive trading adds a significant communication complexity that hinders the productiv-

ity of collaborative interactions. Though, the investment based extension helps the value-sensitive trading to

reduce the effects of the filtering, these improvements are not substantial enough to negate the drawbacks of

“filtering”.

Figure VIII.6: Gains in Investment-Based Approach
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VIII.B.2 Communication Overheads of Investment-Based Approach

To better understand the dynamics of the investment based trading in mobile peer-to-peer environments, lets

take a closer look at the transaction count and the average size and value of the average transactions occurring

in these networks.

FigureVIII.7 shows that investment based trading has a mixed impacts on the value-sensitive networks. In

particular the iPDSSV networks see a major increase in the transaction count while the iDSV and the iDSSV

networks experience a minor drop in the average number of transactions. FigureVIII.8 shows that, when

the networks employ investment based extension, the average transaction size in the iDSV and the iDSSV

networks experience a relatively even increase. However, FigureVIII.9 shows that the iPDSSV networks

undergo a sizable increase in average valuation of their transactions, while both the iDSV and the iDSSV

networks experience moderate and relatively similar increase for the average transaction value.

Figure VIII.7: Transaction Count in Investment-Based Approach

From these three graphs, it is clear that the dramatic increase in Value Gains of the iPDSSV networks are

attributed to the increase in the overall collaboration volume in these networks. Essentially, investment based

approach provides iPDSSV nodes with the extended flexibility such that these nodes are able to participate in

a greater number of transactions that, on average, are of a higher value than the transactions in the originally
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Figure VIII.8: Average Transaction Size in Investment-Based Approach

Figure VIII.9: Average Transaction Value in Investment-Based Approach
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described PDSSV networks. In contrast, the iDSV networks and the iDSSV networks experience the increase

in their Value Gains due to the general increase in overall efficiency of the collaborative transactions.

VIII.B.3 Impact of Failed Investments

Similar to concept of investing in the real world, the proposed investment approach can also result in “failed

investments”. It is unreasonable to expect that every investment will be a successful investment. Thus, there

is distinct possibility that a mobile node acquires a set of goods as an investment and does not encounter

any other nodes that are interested in any of these “investment” good. This accumulation of unwanted goods

clearly can add up and impact the overhead and operational costs of the bartering nodes. On the other hand,

since the unwanted goods are replaced by another set of unwanted goods the impact of this overhead is not

significant. FigureVIII.10 show the normalized valuation of the failed investments. Clearly, the iDSSV has

the best record of turning around investment since it has the lowest failure rate.

Figure VIII.10: Impact of Failed Investments - Value Count

On the other hand the iDSV is not as effective as the other value-sensitive networks. The main reason

behind this difference is the fact that valuation categorization of the iDSSV relies on both the network-based

demand and supply as opposed to the iDSV derives its categorization only from the levels of demand. The

iPDSSV networks display the highest failure rate compared to the other value-sensitive bartering networks.

The primary reason for this poor performance is that, the nodes in the iPDSSV networks employ the “fuzzy”
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categorization of content valuations which adds more uncertainty to the investment decision making. How-

ever, despite the high the failure rate, the iPDSSV model experiences a very strong improvement in the

iPDSSV’s Value Gain performance. Clearly, for the iPDSSV networks the benefits of the outweigh the costs.

To conclude, the investment based trading delivers major improvements to the collaborative interactions

in the iPDSSV networks. This extension provides flexibility and long term collaboration benefits to the other-

wise excessively complex valuation methodology. Furthermore, the investment based trading also improves

the performance of the iDSV and the iDSSV networks.

VIII.C Summary and Discussion

In this Chapter we have described two extensions to the proposed bartering communication model. We have

analyzed the value based bartering and the investment based trading approaches. In particular, we have

described three value-sensitive digital good categorization methods. The Demand Sensitive Valuation model,

employed Demand based valuations. The Demand and Supply Sensitive Valuation model relied on both

demand and supply to derive the valuations. Finally, the Personalized Valuation model extended the DSSV

model by customizing the values to better reflect personal preferences of the mobile users.



Chapter IX

SOCIALLY INFLUENCED BARTERING

In previous Chapter VIII, we have described a set of extensions to the bartering collaboration model that take

into consideration aspects of good valuations. In this Chapter, we describe another extension to our bartering

model that relies on the social role based interactions to improve collaborative exchanges in the environment.

Social interaction motivated by collaboration are an important factor in mobile environments [89, 30, 15].

The long lasting nature of social relationships [11, 25] can be leveraged to provide short term flexibility

[81] by allowing nodes to adjust their strict bartering attitude to a more relaxed and kindhearted attitude

when they meet a mobile peer who is part to their social group. To expand the limited space of possible

deals and exchanges that are considered during bartering process, our framework exploits social relationships

between owners of the mobile peer devices. In particular, our framework reflects significance of the social

relationships by exhibiting different levels of cooperation during the bartering process. This approach allows

nodes to act as philanthropic Altruists during the exchanges with members of the node’s social circle while

still maintaining a strict bartering attitude towards the nodes that do not belong to this social circle.

As previously mentioned in Sections II.B.4 and VIII.A.1, there are a number of methods that can be used

to bootstrap the social network information on to the mobile devices [66, 67, 68]. Current well developed web

based social networks such as LinkedIn.com [1], orkut.com [2], mySpaces.com [3] and FaceBook.com [4]

can be used to extract the needed social information. Our framework does not provide tools for this extraction

and assume that the mobile nodes are already bootstrapped with the needed data.
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IX.A Bartering Environments without Social Networks

Let’s first consider homogeneous bartering environments where the nodes do not acknowledge social relation-

ships during the bartering collaborations. In fact, we can look at this environment as a baseline (for the future

socially aware interactions) since this environment experiences only simple non-role based interactions. In

essence, every node in this environment treats all of its mobile peers as “strangers”. In these environments,

the nodes are focused on the immediate goal of an “even” exchange and treat all interactions as anonymous

transactions. To measure the productivity of such network, we examine the trends in levels of the unfulfilled

wishes in the network population. As we have previously described in section VI.B, the time based evalua-

tion of the levels of unfulfilled wishes provides a beneficial perspective into the swarm-like dynamics of the

peer-to-peer interactions. Figure IX.1 show the results of the time-based study of this homogeneous network

configuration. As the time progresses, the bartering mobile nodes eventually reach high levels of fulfillment.

Figure IX.1: Number/Ratio of Nodes with Unfulfilled Wishes in Environment without Social Networks
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IX.B Performance of Bartering Environments Employing Social Net-

works

Section IX.A provides a baseline for the environment that employs anonymous collaborations. In this section,

we contrast this baseline performance with socially sensitive collaborative interactions. In particular, we look

at the two network configurations.

The first environment configurations is populated with two distinct social groups. The first social group is

a larger group comprised of 28 nodes which is 40% of network population. The second group is a significantly

smaller group and it is composed of just 7 nodes which is 10% of network population. In addition to these

two groups, the network contains a set of nodes that do not identify with any other node in the environment.

These unassociated nodes represent the largest part of the network environment of 35 nodes, which is 50%

of network population. This population configuration allows us to look at the dynamics between the three

distinct groups that have various level of support from their peers.

The second environment configuration is composed of the four distinct social groups of nodes and a set of

unassociated nodes. The first groups is the largest group in the network. It is comprised of 21 nodes, which is

30% of network population. The other three groups are of an equal size of 14 nodes each, which is equivalent

to 20% of the network population. Finally, the unassociated nodes are represented by 7 nodes, which is 10%

of the network population. This network configuration is reflective of environments that have one relatively

strong majority and a set of similar sized minorities. The unassociated nodes reflect the presence of transient

“strangers” in the network.

IX.B.1 Performance of Environments with Population Subdivided into Two Social

Groups

Lets first examine the performance of the network with two distinct social groups and a large set of unas-

sociated nodes. Figure IX.2 shows the number of nodes and their levels of success, we rely on these levels

of unfulfilled wishes as a way to gauge the productivity of the groups. In addition, Figure IX.3 shows the

normalized productivity ratios for each of the groups. From both of these Figures, it is clear that the larger

social group shows a greater level of productivity than the other subgroups of the population. Also, the

smaller network shows comparatively low level of productivity. As expected, the unassociated nodes are not
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as effective as the nodes in the large network group. However, interestingly, the unassociated nodes that rep-

resent the largest part of the network population show better performance than the small social group. This is

performance can be explained by the environment partitioning that occurs through the time of the simulation.

This partitioning is evident when evaluating transaction counts.

Figures IX.4 and IX.5 provide an insight into the interactions between the subgroups by showing the

transaction rates of each of the subgroups. Essentially, the larger social group reaches a high fulfillment

level relatively quickly. And as this process takes place, the nodes in this group have less motivation to

interact with the another subparts of the population. Thus, these behavioral dynamics isolate the smaller

social subgroup and the unassisted nodes. Thus, these nodes are sectioned off into a separate small sub-

environment. Furthermore, the limited size of this remaining environment that is not part of the larger social

group impedes on the interactions dynamics of the residual part of the network population. Essentially,

the residual sub-environment contains only a few bartering partners that are interested in the collaborative

exchanges.

Clearly, the social group that is the strong majority of the network is the most successful sub-part of the

population. The altruistic interactions between the nodes belonging to the same large social circle allow this

subgroup to achieve the highest levels of satisfaction since, the digital goods circulating within this subgroup

are freely shared. This larger group, in essence, forms its own micro-environment and isolates the rest of the

population since the nodes of this subgroup become less interested in collaborations.
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Figure IX.2: Number of Nodes with Unfulfilled Wishes in Environment with 2 Social Nets

Figure IX.3: Number/Ratio of Nodes with Unfulfilled Wishes in Environment with 2 Social Nets
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Figure IX.4: Number of Transactions in Environment with 2 Social Nets

Figure IX.5: Number/Ratio of Transactions in Environment with 2 Social Nets
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IX.B.2 Performance of Environments with Population Subdivided into Four Social

Groups

Now, let’s examine the performance of the second network configuration where the population is comprised of

four distinct social groups and a small set of unassociated nodes. Figure IX.6 and IX.7 show the productivity

levels of nodes in this network configuration. While, Figure IX.8 and IX.9 show the transaction rates between

these groups. Note that Figure IX.7 and IX.9 provide the normalized levels of data presented in Figure IX.6

and IX.8.

As in the first network configuration, the larger social group of this network is the most productive subpart

of the population. This group relatively quickly distinguishes itself by achieving a high level of fulfillment.

Looking at the transaction rates from Figure IX.8 and IX.9, we can see that this group conducts a large

portion of it’s transactions with it’s social circle. Also, these graphs show that the this larger group is, by

far, the busiest transacting group that interacts with the rest of the environment, particularly at the early parts

of the simulation. As the simulation progresses, we observe the overall drop in interaction rates. This can

be attributed to the high levels of fulfillment of the larger subgroup. Essentially, the larger subgroup looses

interest in the collaborative process and thus isolates itself from the rest of the network population.

Now, let’s examine the performance of the three smaller social groups which are each comprised of only

14 nodes. These groups resemble small social cliques of peers [68]. Initially, these nodes are not as productive

as the nodes from large social group. However, these nodes become more productive at the later time of the

simulation. The fulfillment rate of each of these three groups are relatively lower compared to the larger

group. When comparing these smaller groups between themselves, one of the groups (represented by the

third column in the graphs) has a slight edge compared to the other two. This edge can be explained by the

slightly higher transaction count in the early part of the time based simulation.

Finally, let’s consider the performance of unassociated nodes. These nodes are a very small minority

and are meant to reflect the presence of the transient “strangers” that are not associated with any of the node

in the environment. These nodes are clearly the least productive nodes in this network configuration. They

display the lowest levels of fulfillment throughout the time based simulation. As the large social group and

the three small group progress through their iWant Lists, they become less and less interested in interactions

with external nodes. The unassociated nodes are not able to gain enough momentum during the time based

simulation to join the fast pace of interactions between the nodes in the social groups. Figure IX.8 and IX.9

show low transaction rates of the unassociated nodes through out the simulation. In very time slice, the
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Figure IX.6: Number of Nodes with Unfulfilled Wishes in Environment with 4 Social Nets

Figure IX.7: Number/Ratio of Nodes with Unfulfilled Wishes in Environment with 4 Social Nets
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Figure IX.8: Number of Transactions in Environment with 4 Social Nets

Figure IX.9: Number/Ratio of Transactions in Environment with 4 Social Nets
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unassociated nodes are experiencing the lowest transaction rates. When comparing performance of these

unassociated node with the performance of the baseline network presented in Section IX.A, it is clear that

these nodes are unproductive. In essence, these nodes are sidelined during the collaboration process.

To summaries, the second network configuration showed the expected levels of productivity for each of

the subparts of the population. Clearly, the larger the social group is the fastest in achieving high fulfill-

ment rates. The unassociated nodes clearly suffer in this population configuration, since they are unable to

participate in the fast pace collaborative exchanges between the socially connected nodes.

IX.C Summary and Discussion

In this Chapter, we have described an extension to our bartering communication model that relies on the

social role based interactions. We have analyzed this extension by evaluating the swarm-like dynamics of

the inter-group interactions. The size of the social group has a major impact on the productivity of the group

and the network as a whole. The large social groups are displaying high levels of wish fulfillment while the

unassisted nodes are more likely to be sidelined particularly when they are in the network where most of the

nodes are associated with one of the social groups in the environment.



Chapter X

CONCLUSION

This chapter summarize the research work and the research contributions presented in this dissertation. This

chapter also presents possible future research directions in the relevant research domains.

X.A Research Summary

Promoting collaborative interaction in mobile pervasive environments is an important aspect that lies at the

forefront of the research work presented in this dissertation. Our work focuses of development of col-

laborative bartering methodology that promotes and encourages cooperative interactions and exchanges of

digital goods, services and content. This dissertation presents the first comprehensive research work that

employs and models an opportunistic bartering-based collaborative methodology in the context of dynamic

mobile peer-to-peer pervasive environments which frequently lack a centralized coordination authority that

is traditionally present in the conventional well, connected more and stable computing environments. This

bartering-based collaborative methodology is well suited for such environments since it does not require ex-

ternal coordination and extensive transaction-related management that could be associated with negotiation

and exchange of digital content during serendipitous encounters that are innate to mobile pervasive environ-

ments.

In addition, this dissertation also presents a framework that provides mechanisms for negotiation and

bartering exchange that are necessary for opportunistic peer-to-peer interactions in dynamic mobile environ-

ments. The presented framework provides mobile nodes with an interaction protocol and a set of cooperation

strategies that can be employed by these nodes during the interaction process. These strategies are represented
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through a set of policies that reflect the collaborative interaction attitude intended to be taken by the nodes.

In particular, this dissertation focuses on comparison of the two conventional strategies of “free riding” and

“altruistic” behaviors frequently observed in conventional peer-to-peer systems [12, 83, 65] against the novel

bartering-based approach derived form the presented opportunistic collaborative methodology. Specifically,

the bartering-based approach is represented by the two trading strategies that reflect the key characteristics of

the bartering exchange paradigm [49]. The Weak Double Coincidence of Wants (WDCoW) strategy represents

a “good neighbor” approach were nodes are looking for a presence of a minimum levels of reciprocity during

the collaborative exchanges. While, the Double Coincidence of Wants (DCoW) strategy represents a stricter

approach that insists on “even” levels of reciprocation during the trading exchanges.

Furthermore, this dissertation offers an in-depth study of the effectiveness, the communication and co-

operation overhead costs of the above described collaborative approaches. In particular, a set of simulation

results that model peer-to-peer interactions in homogeneous environments are described in Chapter V. These

results serve as a baseline for the study of the inter-strategy interactions that occur in the heterogeneous net-

works populated by nodes with varying levels of cooperation-relevant attitudes and approaches. Moreover,

a time-based simulation study offers detailed performance finding and analysis of swarm-like dynamics that

occur in heterogeneous populations of nodes with varying cooperative attitudes. Furthermore, this disser-

tation also presents results of collaborative inter-strategy interactions in heterogeneous networks where the

population of the network has a strong domination by one of the considered strategies. These results further

highlight the strength and versatility of the presented bartering collaboration methodology when it is applied

in the context of serendipitous encounters of small personal mobile devices.

In addition, this dissertation offers a set of extensions of the original concept of bartering based interac-

tions by exploring the concept of valuation sensitive bartering. Essentially, the framework is extended with a

set of valuation models that derive value of the digital goods and content and incorporate these valuations into

the bartering process. In particular, the framework employs the Demand Sensitive Valuation model, the De-

mand and Supply Sensitive Valuation model and finally the Personalized Valuation model. An in-depth study

of the effects of these valuation models on the collaborative effectiveness of the bartering networks is pre-

sented in Chapter VIII. Moreover, the bartering framework further extends the concept of valuation sensitive

interactions by employing an investment-based trading approach which facilitates nodes with mechanisms

for acquiring valuable digital content with an intent to later trade it away for originally desired set of goods.

Furthermore, this dissertation explores a concept of social role based interactions in the context of dynamic
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mobile peer-to-peer pervasive environments by adding an extension that correlates collaboration levels to the

levels of social relationships between the collaborating nodes.

Taken as a whole, this dissertation delivers a comprehensive view of a novel bartering-based collaborative

method which is designed for the context of serendipitous opportunistic collaborative interactions in dynamic

mobile peer-to-peer pervasive environments.

X.B Future Research Directions

The following categories represent potential directions for future research work.

• Impact of digital rights management on collaborative exchanges and interactions.

• Incorporation of node movement into cooperation attitude selection.

• Effects of uncertainty of quality of digital goods and content on collaborative exchanges.

X.B.1 Impact of Digital Rights Management on Collaborative Interactions

Collaborative interactions can be effected by the constraints related to the transfer of ownership rights of the

digital content. There is a wide range of Digital Rights Management mechanisms and approaches that can

guard the process of transferring of the digital content [43, 63, 91]. One such approach involves complete de-

nial of transfer. This approach represent one of the extremes in the wide range of available DRM mechanisms

[59, 40]. Another strict DRM approach requires total surrender of ownership rights during the transfer of the

content. This strict approach is commonly applied to commercially generated copyrighted digital content

such as MP3 files and other entertainment and gaming digital content. In contrast, the approach that provides

nodes with total freedom of replication allows these nodes to freely exchange and replicate digital goods and

content. This approach is commonly used in cases of user generated content or advertisement related content

that is designed to reach a larger audience of consumers. In addition to these two extreme approaches, there

are a number of methods that attempt to strike balance between complete freedom of replication and totally

ridged restrictions. One such example is the “squirting” approach which is employed by the Zune MP3 player

[10]. The “squirting” approach limits the replication of content to three copies thus allowing nodes to have

some flexibility when they attempt to replicate and distribute the content.

This wide range of DRM approaches can have an impact on the collaborative interactions between mobile

devices. Ridged approaches that restrict transfer of rights can dramatically hinder the interactive process in
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any collaborative environment. On the other hand, the infinite duplication and uncontrolled replication of

content can result in degradation in quality of digital content available in the network. These issues are not

thoroughly addressed in this dissertation since we make an explicit assumption that goods are transferable

and are node duplicated during the transaction. Researching impact of DRM approach can potentially be an

interesting extension to the work presented in this dissertation.

X.B.2 Incorporating Expected Future Node’s Movements into The Bartering Pro-

cess

The research work presented in this dissertation does not consider proactive context awareness of the collab-

orative environments. Adding an extension that considers the node’s upcoming route would be an interesting

expansion of this research work. For example, a mobile node can identify the fact that it is moving towards a

more populated area and thus adjust it’s collaborative attitudes and policies accordingly. The node could also

exploit its awareness of the desires, interests and predictable predispositions of the upcoming network pop-

ulation. Thus the node could adjust its current trading patters and attitudes by taking this upcoming context

into consideration. This proactive context awareness can have an impact on the negotiating strategy selection

and thus have an impact on the overall collaboration productivity.

X.B.3 Uncertainty of The Quality of Digital Goods and Content

The research work presented in this dissertation does not take into account aspects of the quality of digital

content. This work makes an assumption that the content is well described and properly formatted. Though

this assumption is not unreasonable, removal of this assumption presents an interesting extension. Devel-

opment of a set of mechanisms that guard nodes from exchanging incomplete or incorrectly marked digital

goods and content would have a positive impact on the collaborative process and would allow nodes to make

more informed decisions when establishing a collaborative exchange.

X.C Conclusion

This research work presented in this dissertation delivers a novel opportunistic barter-based collaboration

method for the context of serendipitous encounters in dynamic mobile pervasive environments. This disser-

tation presents a framework employing bartering methods and also delivers an in-depth study of effects of the
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collaborative attitudes in dynamic mobile environments.
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