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Abstract

Kernel-based data mining algorithms, such as Support Vector
Machines, project data into high-dimensional feature spaces,
wherein linear decision surfaces correspond to non-linear de-
cision surfaces in the original feature space. Choosing a ker-
nel amounts to choosing a high-dimensional feature space,
and is thus a crucial step in the data mining process. Despite
this fact, and as a result of the difficulty of establishing that a
function is a positive definite kernel, only a few standard ker-
nels (e.g. polynomial and Gaussian) are typically used. We
propose a method for searching over a space of kernels for
composite kernels that are guaranteed to be positive definite,
and that are tuned to produce a feature space appropriate for
a given dataset. Composite kernel functions are easily inter-
preted by humans, in contrast to the output of other work on
kernel tuning. Empirical results demonstrate that our method
often finds composite kernels that yield higher classification
accuracy than the standard kernels.

Introduction
Kernel-based algorithms are among the most theoretically
and empirically powerful algorithms known for such com-
mon data mining tasks as classification (Joachims 2001),
clustering (Ben-Hur et al. 2002), dimensionality reduc-
tion (Schölkopf, Smola, & Müller 1999), feature extraction
(Bach & Jordan 2003), and many others. A function that
maps from pairs of vectors to real numbers is a (positive def-
inite) kernel if the value it produces for any pair of vectors
corresponds to the dot product of the projection of the vec-
tors into some feature space. In general, this feature space
has very high dimensionality, and linear decision surfaces in
the projected feature space correspond to highly non-linear
decision surfaces in the original feature space. Kernels turn
algorithms for finding linear decision surfaces, such as Sup-
port Vector Machines (SVMs), into algorithms for finding
non-linear decision surfaces.

The choice of a kernel corresponds to the choice of a fea-
ture space, and thus constrains the type of decision surface
that can be formed. For example, the polynomial kernel sim-
ply computes the dot product of two vectors, adds 1 to the
resulting number, and raises this quantity to the power d. Re-
markably, this simple computation corresponds to taking the
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dot product of the vectors after projecting each of them into a
feature space with one axis for each product of d or fewer of
the values in the original vector (Schölkopf & Smola 2002).
For vectors of length n, this feature space contains O(nd) di-
mensions, though computing the dot product in this feature
space, i.e. evaluating the kernel, requires only O(n) time.
Other common kernels, such as the Gaussian and sigmoid,
correspond to dot products of vectors projected into other
feature spaces.

Different datasets and different data mining tasks require
different feature spaces. This suggests that domain-specific
and task-specific kernels would be useful. Kernels represent
prior knowledge about the type of structure expected in a
domain or task. However, to call a function that maps from
pairs of feature vectors to real numbers a (positive definite)
kernel, this function must have certain properties that can
be difficult to establish. Therefore, the handful of functions
for which these properties have already been established are
invariably used.

There has been some prior work on tuning kernels for
specific tasks and domains ((Ayat, Cheriet, & Suen 2002),
(Chapelle et al. 2002), (Wahba et al. 2001)). However,
the vast majority of existing methods operate by adjust-
ing the spectrum of the Gram matrix ((Friedrichs & Igel
2004),(Cristianini 2002)). For a dataset containing m data
vectors x1 . . . xm, the Gram matrix is an m × m array con-
taining the values of K(xi, xj) for kernel K and 1 ≤ i, j ≤
m. This matrix lies at the heart of all kernel-based algo-
rithms. From the standpoint of data mining, spectral meth-
ods have two distinct disadvantages. First, their output is
exceedingly difficult for humans to understand. This is be-
cause they directly modify the Gram matrix produced by a
known kernel, resulting in a Gram matrix that corresponds
to the values of some other kernel that is implicitly defined
by the new values. No analytical form for the kernel func-
tion is available. Second, in a classification setting, these
algorithms are typically transductive and therefore require
the spectrum to be tuned anew for each data item to be clas-
sified, which is expensive ((Friedrichs & Igel 2004),(Cris-
tianini 2002)).

In this paper we explore an alternative approach that in-
volves searching over a space of explicitly defined kernel
functions. Given a base set of atomic functions that are
known to be kernels, there are several ways of combin-



ing these functions to produce composite functions that are
guaranteed to be (positive definite) kernels. This method
involves a search over composite kernel space, which is a
trade-off of training time to accuracy when compared to se-
lecting a single kernel.

There are a variety of methods for improving the perfor-
mance of SVMs by optimizing the hyper-parameters of the
model ((Friedrichs & Igel 2004),(Chapelle et al. 2002)).
Each of these methods is certainly more expensive (with re-
spect to training time) than methods, such as some spec-
tral methods, that use only a single kernel and training step.
The complexity of this technique is due to the search for the
SVM hyper-parameters and is not unique to the evaluation of
the composite kernels. For a given dataset, this search over
composite kernel space is guided by performance with re-
spect to some generalization estimate, such as radius-margin
(R2M2), target alignment, or training error; and yields a
kernel that is tuned to the structure of the data. Empirical
results show that this approach often yields better accuracy
than SVMs using the standard atomic kernels.

This paper shows that domain-specific composite kernels
and their hyper-parameters can be selected to improve the
accuracy of SVM classifiers. This paper also shows that sim-
ple composite combinations of simple kernels give nearly
the same performance of more complex combinations. We
also demonstrate that existing search techniques can be ap-
plied to select composite kernel parameters at the same cost
as selecting simple kernel parameters, but the resulting mod-
els are better than the simple kernels. Finally we show
that the terms of the Taylor series for composite and sim-
ple Gaussian kernels are distinctly different, and thus induce
different feature spaces, and the different feature spaces lead
to improved SVM performance.

Background
Given a set of labeled instances of the form (xi, yi) where
xi ∈ �n and yi ∈ {−1, 1}, SVMs attempt to find an n-
dimensional hyperplane that separates the positive instances
(i.e., those for which yi = 1) from the negative instances
(i.e., those for which yi = −1). This is accomplished by
solving a quadratic optimization problem to find the maxi-
mum margin hyperplane, i.e., the hyperplane that perfectly
separates the instances and is as far as possible from the con-
vex hulls around the positive and negative instances. SVMs
use dot products of instances, denoted 〈xi, xj〉, to find this
hyperplane.

If the data are not linearly separable, there are two op-
tions available. The optimization problem can be modified
by the addition of slack variables that allow some points to
be on the wrong side of the hyperplane (i.e. to be misclassi-
fied), resulting in a soft margin SVM. Alternatively, SVMs
are amenable to the “kernel trick”, meaning that they can
use kernels to project the instances into high-dimensional
feature spaces wherein the data might be linearly separable
(Cristianini 2001). Let Φ(xi) be the projection of instance
xi into this high-dimensional feature space. For the poly-
nomial kernel of degree d described earlier, Φ(xi) contains
one dimension for each product of d or fewer of the values in
the original vector. Importantly, there is no need to compute

Φ(xi), Φ(xj), or 〈Φ(xi),Φ(xj)〉 explicitly. Rather, the ker-
nel produces the value of the dot product in the feature space,
but with far less computation than the explicit method.

Not all functions from �n ×�n to � are kernels. A func-
tion is a kernel if and only if the value it produces for two
vectors corresponds to the dot product of those vectors after
projecting them into some feature space Φ. This is stated
more formally in Mercer’s theorem:

Theorem 1 (Mercer’s Theorem). Every positive definite,
symmetric function is a kernel. For every kernel K, there is a
function Φ(x) : K(x1, x2) = 〈Φ(x1),Φ(x2)〉. (Cristianini
2001)

Composite Kernels
Proving that a function is a kernel is relatively difficult.
However, there are several well known kernels, including the
polynomial and radial basis function (RBF) kernels, shown
in Table 1. We leverage these established kernel functions by
applying operators that are closed over the kernel property
(Joachims, Cristianini, & Shawe-Taylor 2001). Using these
operators, any known kernels can be combined to create a
new kernel, avoiding the need to prove that the composite
kernel is positive definite. A table of kernel composition
operators and the following theorem appear in (Joachims,
Cristianini, & Shawe-Taylor 2001). With this information,
the four basic kernels shown in Table 1 can be used to create
an infinite combination of composite kernels.

Theorem 2 (Composite Kernels). Let K1,K2 be valid ker-
nel functions over �n×�n, x, z ⊆ �n, α ∈ �+, 0 < λ < 1,
f(x) a real valued function, and φX → �m with K3 a ker-
nel over �m ×�m. The following are also kernels:

K(x, z) = λK1(x, z) + (1 − λ)K2(x, z) (1)

K(x, z) = αK1(x, z) (2)

K(x, z) = K1(x, z)K2(x, z) (3)

K(x, z) = f(x)f(z) (4)

K(x, z) = K3(φ(x), φ(z)) (5)

For example, let K0(x, z),K1(x, z),K2(x, z) be differ-
ent kernels. The following is one possible composite kernel:

K3(x, z) = (0.35K0(x, z)+0.65(K1(x, z)K2(x, z))) (6)

By using composite kernels, arbitrarily complex feature
spaces can be created, and, so long as each input kernel is
a known Mercer kernel, then the composition of those ker-
nels will be as well.

Model Performance Estimators
The performance of SVMs and other kernel-based learning
algorithms is highly dependent on the choice of a kernel and
kernel parameters. For example, figure 1 shows the CV error
rate on the thyroid dataset for an SVM with the RBF kernel
as a function of γ, the width of the RBF. Note in this graph,
that there is a limited range of values of γ for which CV
errors are minimized. In general, “there is no free kernel”
(Cristianini 2001). That is, there is no kernel that works best
on all datasets or, said differently, there is a need for domain-
specific and task-specific kernels.
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Figure 1: CV Error of RBF as γ varies on Thyroid

As Figure 1 demonstrates, once the functional form of a
kernel is chosen, selecting appropriate parameter values is
a crucial step. When working with composite kernels, the
parameters of multiple atomic kernels may need to be tuned
simultaneously. Therefore, we review existing methods for
parameter selection to identify those that are most efficient
and effective for use in our algorithm.

Most parameter selection algorithms execute a search to
find the optimum value of an error estimator (e.g., (Chapelle
et al. 2002),(Joachims, Cristianini, & Shawe-Taylor 2001)).
The quality of the results of the search depends on the qual-
ity of the estimator. There are three principle types of error
estimators, including Cross Validation, Heuristic, and The-
oretical Bounds. The following is a summary of different
estimators, and a comparison of how those estimators each
performed on the various datasets used in the experiments
described in the results section. This information was used
to select the estimators used to optimize composite kernel
parameters in those experiments.

Cross Validation and Leave One Out Error Estimates
Cross Validation (CV) and Leave-One-Out (LOO) are com-
mon performance estimators. They are an empirical esti-
mate computed by first selecting a set of parameters (such
as γ in an RBF kernel), learning a model using a portion
of the training data, and then measuring the error rate of the
model using held-out training data. This makes it a good tar-
get function for the search to optimize. When the size of the
training set is large enough, n-way CV produces an error es-
timate that has little bias and variance (Hastie, Tibshirani, &
Friedman 2001). Empirically, this approach tends to create
models that most closely approximate the underlying distri-
bution in the data, while still generalizing well to held-out
testing data (Duan, Keerthi, & Poo 2003).

Heuristics Heuristics estimate the performance of a model
based on empirical evidence. Most of these heurisitic
bounds can be derived either directly from the training data
or from the resulting model. Heuristic bounds are often not
tight, and will tend to over-estimate the true error on the val-
idation set.

One typical example of this type of estimator is the Sup-
port Vector Count heuristic bound (Chapelle et al. 2002):

T =
NSV

�
(7)

where T is the estimated upper-bound on the errors made by
the leave-one-out procedure, and NSV is the number of sup-
port vectors for a model with � observations. After the SVM
model is created, this heuristic bound is extremely easy to
compute. The drawback is that the heuristic bound may
overestimate the true error.

Kernel Target Alignment (Cristianini et al. 2001) is an-
other heuristic bound which is based on maximizing the
spectral alignment between the Gram matrix of the kernel
and the labels.

Theorem 3 (Alignment). Let K1,K2 be the m × m Gram
matrices induced by different kernel functions (Cristianini et
al. 2001).

A(K1,K2) =
< K1,K2 >F√

< K1,K1 >F < K2,K2 >F
(8)

and < K1,K2 >F =
∑m

i,j=1 < K1,i,K2,j >.

If K2(xi, xj) = yiyj , then if any kernel K1 is aligned
well with K2 it should be the case that K1 will perform well
in terms of minimizing error rates.

Theoretical Error Estimates The final type of error esti-
mate is based on structural risk minimization theory. This
type of estimate establishes an upper bound on the errors
that a model will make on validation data. There are many
different upper-error bound estimators in this category, and
they differ in accuracy and complexity.

One of the many theoretical estimated upper-bounds is the
Radius Margin (R2/M2) bound. Let T represent the upper-
bound on the number of LOO errors, then

T =
1
�
R2‖w‖2 (9)

where the margin (1
2‖w‖2) is defined in (Chapelle et al.

2002) as the following, where Kθ is a Mercer kernel with
parameters θ:

1
2
‖w‖2 =

�∑
i=1

αi − 1
2

�∑
i,j=1

αiαjyiyjKθ(xi,xj)(10)

subject to
∑�

i αiyi = 0 and ∀i : αi ≥ 0.
Similarly, the radius (R2) is defined as:

R2 = maxβ

�∑
i=1

βiKθ(xi,xi)−
�∑

i,j=1

βiβjKθ(xi,xj) (11)

subject to
∑�

i=1 βi = 1 and ∀i : βi ≥ 0.
This theoretical bound is particularly interesting, as it is

differentiable with respect to θ, the set of parameters of
the kernel (Chapelle et al. 2002),(Keerthi 2004). Chapelle
demonstrated that using the derivatives of the bound, a gradi-
ent descent algorithm is an efficient method to select kernel
parameters. This particular heuristic still requires training
an SVM model to determine the margin (eq. 10), and it must
solve another quadratic problem to determine the β values
of the radius R.

Minimization of the error estimator does not guarantee
that model error will also be minimized at that point. A



brute-force search using the RBF kernel, and an adjustment
factor of 0.001 on each of the RBF parameters in the range
0 to 5 found that the minimum radius-margin point occurred
at α = 0.001 and C = 4.510. The CV error rate observed
at that point was 24.68% error. The minimum CV error rate
was observed at α = 4.201 and C = 0.401 with an observed
error of 23.38%.

Estimator Selection Each of the previously described es-
timators have appeared previously in the literature for SVM
parameter selection. They each were evaluated to assess
their computational overhead and search performance for
this paper. Two estimators, Radius-Margin R2M2 and
Training CV error gave the best results for both the single
RBF kernel and the composite kernel.

Approach
Our goal is to demonstrate that domain-specific composite
kernels can be selected from the training data that perform
statistically significantly better than the base kernels. Our
approach was to find the optimum composite kernel param-
eters with respect to two performance estimators: Radius-
Margin, and Training CV Error. Our approach required im-
plementing two major steps. A composite kernel language
was developed to define and evaluate kernels. A hill climb-
ing search with random restart was used to enumerate com-
posite kernel parameters, and the model with the best per-
formance estimator was selected.

A scanner-parser was developed that recognizes the ker-
nels shown in Table 1 and the composition rules described
in Theorem 2. An interpreter was developed to evaluate
the value of the parsed kernel function. The interpreter was
compiled into SVMlite(Joachims 2002) as a custom kernel.
An example of a kernel parameter string recognized by the
kernel language is: (K0() + K2(0.35)).

Table 1: Kernel Notation
Linear K0() < X, Y >
Polynomial K1(d, s, r) (s < X, Y > +r)d

RBF K2(γ) exp−γ‖X−Y ‖2

Sigmoid K3(s, c) tanh(s < X, Y > +c)

Evolutionary Algorithm

An evolutionary algorithm was used to search through a
broad range of kernel compositions for a variety of data
sets. Composite kernel functions were encoded as expres-
sion trees of kernel expressions. This enabled genes to rep-
resent arbitrarily complex kernel functions.

Table 2: Kernel Selection Probabilities
Kernel Type Probability
Simple Kernel 25%

Linear 10%
Polynomial 30%
RBF 60%

Lambda Kernel 30%
Add/Multiply 25%
Constant 20%

The search began with a population of 200 randomly gen-
erated genes. Each gene was constructed by recursively pop-
ulating its expression tree, randomly selecting one of the
simple kernels (creating a leaf node) or another composite
kernel (an inner tree node). Randomly generated expression
trees were capped at a height of 4. Fitness was determined
by observing cross-validation accuracy of the gene’s kernel
function. Two different cross-over algorithms were imple-
mented. When the parents had the same kernel structure
(i.e. two simple kernels of the same type), their function
parameters were merged by averaging the values of each pa-
rameter. When the parents had different structures, a point
in the expression tree of each parent was selected, and the
child was constructed by splicing the tree of one parent to
the tree of the other. The mutation operator would either ran-
domly change a single kernel parameter or randomly replace
a node in the expression tree with a random kernel. Succes-
sive generations were created by using roulette wheel selec-
tion and applying one of the cross-over algorithms. This
search proved to be less efficient than other techniques, but
was able to explore a much less restricted search space than
other types of searches. Empirical evidence from this pro-
cedure identified two composite kernel structures that pro-
duced good results in a variety of data sets, including those
listed in this paper:

((λK1(d, s, b)) ∗ ((1 − λ)K2(σ))) (12)
and

((λK1(d, s, b)) + ((1 − λ)K2(σ))) (13)
Because the genetic algorithm explored an extremely

large number of composite kernels for a variety of datasets
and invariably found one of the above kernels to be best, we
restrict further attention to just these kernels.

If kernel K1 projects instances into feature space Φ1 and
kernel K2 projects instances into feature space Φ2, into what
feature spaces do the composite kernels above, denoted K+

and K∗, project instances? Let Φi(x) denote the ith feature
in feature space Φ. Let Φ1(x) ◦ Φ2(x) denote the concate-
nation of two feature vectors. It is then easy to see that:

K+(x1, x2) = K1(x1, x2) + K2(x1, x2)
= 〈Φ1(x1),Φ1(x2)〉 + 〈Φ2(x1),Φ2(x2)〉
=

∑
i

Φi
1(x1)Φi

1(x2) +
∑

j

Φj
2(x1)Φ

j
2(x2)

= 〈Φ1(x1) ◦ Φ2(x1),Φ1(x2) ◦ Φ2(x2)〉
That is, feature space Φ+ contains the union of the fea-

tures in Φ1 and Φ2. Similar algebraic manipulation of
the expression for K∗(x1, x2) leads to the conclusion that
Φ∗(x) = Φ1(x)×Φ2(x). That is, feature space Φ∗ contains
the cross product of the features in Φ1 and Φ2, or one di-
mension for the product of each pair of features drawn from
the two feature spaces.

Hill Climbing
Hill Climbing was selected as the composite kernel search
algorithm. The properties that made it ideal were that it per-
formed well given the numerous local extrema in the search



space, had little overhead over the cost of model evaluation,
and with random restart, yielded the best empirical results
over other methods.

The hill climbing search used in this paper used CV ac-
curacy as the target to improve. The search modified each
of the parameters of the kernel formula by a fixed amount
and moved in the direction of maximum CV accuracy. The
search stops when the greatest improvement of any param-
eter is less than some small ε value. The search used 15
random restarts, and selected the models with the greatest
accuracy.

The primary drawback of the Hill Climbing approach is
the inefficiency from the generation of a large number of
model evaluations. The empirical results suggest that this
is not a concern in practice. When the hill climber detects
a local plateau, it terminates that iteration of the search, and
randomly restarts. In practice, there are many local plateaus,
and the Hill Climber reaches them after only a few evalua-
tions.

Empirical Results
Description of Data: The experiments were conducted
using nine different data sets due to (Ratsch 1999). All of
the data sets were 0-1 classification tasks, and composed of
continuous, mean-centered, standardized data.

Table 3: BFGS / R2M2 Search Timing
RBF Composite

Data Evals Time (s) Evals Time (s)
Banana 166 136 257 245
Breast 47 21 77 49

Diabetis 35 166 47 214
Flare 253 628 257 1041

German 67 1097 55 999
Heart 46 33 55 24
Image 43 1292 55 1587
Splice 35 1343 142 2716

Thyroid 215 25 72 13
Titanic 253 20 257 30

Table 4: Hill Climbing Search Timing
RBF Composite

Data Evals Time (s) Evals Time (s)
Banana 116 11 368 69
Breast 120 9 358 30

Diabetis 116 18 362 106
German 120 46 362 163

Heart 120 342 358 3631
Image 120 323 360 2373
Splice 120 2283 346 16126

Thyroid 120 9 356 268
Titanic 120 156 366 3112

The data sets from Ratsch are distributed with 100 in-
stances of the data split into training and testing data sets.
Statistics such as R2M2 are generated using the data sets un-
changed. Statistics such as Training CV Error are generated
by further partitioning the training data. The Ratsch “test-
ing” data is used as held-out data for final cross-validation
estimation of the performance of the selected model. This

was done to ensure that the error estimation was conserva-
tive, and that the models generalized well and were not over-
fitting the data.

Experiment Design
Implementation: The hill-climbing algorithm was im-
plemented to optimize training CV error. The hill climber
generates a set of parameters and trains an SVM on the first
half of the training set and then tests on the second half of
the training data. The hill-climber greedily selects the pa-
rameters that minimized training CV error, and then starts a
new iteration. Ultimately, the model that generates the low-
est training CV error was selected. The selected model is
then used in 10 way CV on held-out data.

Two different performance estimates were also selected
for comparative results, including Chapelle’s R2/M2 ap-
proach, and training error minimization. The BFGS-Line
Search found in MATLAB’s Optimization Toolbox was used
to minimize the R2/M2 measurement for the RBF and
Composite kernels (Chapelle et al. 2002).

Results
The results comparing the performance of RBF and Com-
posite Kernels are shown in Table 5. Using a standard 95%
confidence interval, models using a composite kernel per-
formed significantly better on four of the nine data sets (Di-
abetes, Image, Splice, Thyroid). The composite kernel per-
formed worse than the others on Titanic. There was not a
significant difference on the remaining four data sets (Ba-
nana, Breast-Cancer, German, Heart) and some other model.
In general, models trained with a Composite Kernel per-
formed at least as well as models trained with an RBF kernel,
and often performed better.

Kernel formulas selected by the hill climbing search ap-
pear in table 6. The C parameter corresponds to the SVM
penalization parameter. The formulas shown represent com-
posite kernels consisting of a polynomial kernel, K1(d, s, b)
and an RBF kernel, K3(γ).

Runtime performance for the BFGS-Line Search and Hill
Climbing method appear in tables 3 and 4 respectively.
These results were collected using a standard PC worksta-
tion with a 2.8Ghz Pentium Xeon processor. A compari-
son of the geometric mean of the run-time shows that for
the composite kernels, Hill Climbing approach is 2.7 times
slower than the BFGS search. A similar comparison shows
that the Hill Climbing is 1.5 times slower for the compos-
ite kernel than for the RBF kernel. One reason for this is
that each composite kernel requires computing two kernels
and combining the results. Each kernel computation must
stride through each of the columns in the data vectors. Thus,
the data sets (such as Splice and German) that are ‘wider’
have a higher run-time penalty using the composite kernels.
In general, the cost of the more aggressive Hill Climbing
search is not unreasonable for the gain in training accuracy.
Additionally, evaluation of the results could easily be done
in parallel, leading to further reduction in training time.

Decision Boundary: One clue to the improvement in
performance of the Composite kernels can be visualized
on another dataset. Using Principal Components Analysis



Table 5: Results Estimated error rates on held-out data with the RBF and Composite Kernels using 10-way cross validation
error and the 95% confidence interval are shown. Results that are not significantly worse than the best model are shown in bold
face.

Kernel RBF Kernel Polynomial Kernel Composite Kernel
Target BFGS/Trainerr BFGS/R2/M2 HC/Trainerr HC/Trainerr

Banana 10.3 ± 0.26% 10.5 ± 0.37% 10.4 ± 1.48% 10.8 ± 2.00% 9.7 ± 0.54%
Breast Cancer 28.9 ± 0.65% 29.1 ± 0.40% 36.7 ± 8.40% 26.0 ± 16.2% 29.7 ± 4.54%

Diabetes 36.3 ± 0.39% 36.3 ± 0.32% 28.6 ± 5.84% 24.7 ± 5.2% 22.9 ± 3.33%
German 31.0 ± 0.42% 31.0 ± 0.36% 31.0 ± 6.39% 35.7 ± 9.2% 29.9 ± 2.91%

Heart 19.2 ± 1.93% 48.4 ± 3.55% 44.6 ± 10.11% 44.6 ± 16.3% 16.1 ± 3.97%
Image 22.8 ± 4.34% 13.1 ± 1.29% 7.9 ± 2.12% 14.0 ± 3.1% 3.6 ± 0.60%
Splice 17.3 ± 0.79% 49.3 ± 1.36% 16.4 ± 1.75% 14.9 ± 1.7% 10.8 ± 1.08%

Thyroid 16.6 ± 7.93% 7.8 ± 1.72% 13.1 ± 5.97% 17.8 ± 10.2% 5.7 ± 4.59%
Titanic 22.3 ± 0.50% 22.5 ± 0.45% 22.9 ± 2.91% 32.5 ± 2.2% 25.2 ± 1.80%

Table 6: Selected Kernel Functions
Data C Formula
Ban. 1.00 0.06K1(3, 1.07, 1.07) + 0.94K3(4.52)
BCan. .20 0.41K1(1, 0.99, 0.89) + 0.59K3(1.20)
Diab. .01 0.05K1(2, 1.37, 1.37) + 0.95K3(5.81)
Ger. .29 0.35K1(1, 0.12, 0.12) + 0.65K3(4.14)
Hrt. .03 0.31K1(1, 0.61, 1.23) + 0.69K3(0.95)
Img. .10 0.62K1(3, 0.95, 1.01) + 0.38K3(0.32)
Spl. .01 0.22K1(2, 0.42, 0.16) + 0.78K3(5.36)
Thy. .23 0.87K1(4, 0.38, 1.23) + 0.13K3(1.11)
Ttnc .75 0.99K1(2, 1.06, 1.07) + 0.01K3(3.75)

(PCA), the Ionosphere dataset was projected into two di-
mensions. Using the parameter selection method described,
the parameters for a polynomial, RBF, and composite kernel
were selected.

The decision boundary induced by each of the three ker-
nels is shown in Figure 2. The first plot corresponds to the
polynomial kernel, and is dominated by a region in the cen-
ter of the graph that negatively classifies points. Moving out-
ward, the lightest colored ring is the margin, and the zone of
positive values is extremely small (in this graph). In the plot
for the RBF kernel, there is a nucleus of extremely strong
negative classification surrounded by a definite margin, and
another nucleus of strong positive classification. The third
graph shows the composite kernel’s decision boundary. The
two nuclei from the RBF plot are still present, although
weakened in both shape and magnitude. The margin has
been shifted up on the upper-center region. Intuitively, this is
the due to the effects of the polynomial kernel’s strong cen-
tral well. It is in this new region that the composite kernel
correctly classifies additional points leading to its improved
performance.

Discussion
It has often been said of the RBF kernel that it is “uni-
versal”, or that it has the flexibility via parameter γ to fit,
and not overfit, any decision surface. Why, then, would we
see improvements in classification accuracy when combin-
ing RBF and polynomial kernels? What is the feature space
into which the RBF kernel projects the data?

Recall that for RBF kernel K:

K(x, y) = e−γ‖x−y‖2

= e−γ
∑

i
(x2

i−2xiyi+y2
2)

A Taylor series expansion of this expression leads to the fol-
lowing sum:

K(x, y) =
∞∑

j=0

γj

j!
(−1)j

(∑
i

x2
i − 2xiyi + y2

2

)j

Expanding the expression above results in a polynomial with
monomials of even degree comprising terms from both x
and y. As j grows large, two things happen. The degree of
the monomials in the polynomial grows large as well, and
the leading term γj/j! tends to zero. The rate of decline is
dependent on γ, which is inversely proportional to the width
of the basis function (in this case a Gaussian). When γ is
large the basis functions are tight and the multiplier on the
monomials goes to zero more slowly, allowing higher order
terms to have an impact. Conversely, when γ is small the ba-
sis functions are broad and the multiplier on the monomials
goes to zero rapidly, causing lower order terms to dominate.

Note that an RBF kernel can never rid itself of the lower
order terms. One can only increase γ to increase the weight
on higher order terms, at the same time increasing the weight
on the lower order terms. Multiplying a polynomial kernel
and an RBF kernel increases the degree of all of the terms
in the composite kernel, in effect dropping the lower order
terms from the RBF kernel. The number of lower order
terms dropped depends on the degree of the polynomial ker-
nel. This allows the RBF kernel to fit separators that are best
described without the use of lower order terms.



Figure 2: Decision Boundary of polynomial, RBF, and Composite Kernels

Conclusion
We have demonstrated that composite kernels can improve
classification accuracy over the standard atomic kernels. We
demonstrated that composite kernels can be selected by stan-
dard minimization techniques using the same target func-
tions employed in selecting parameters for the RBF kernel.

The performance of the search methods used here yielded
surprisingly good general performance. In general, param-
eter selection requires only a few minutes to complete. We
demonstrated that our approach can improve training accu-
racy, at a cost of increased time to select kernel parameters.

One area of future work is to compute the gradients of the
composite kernel parameters. The gradients are used to by
the BFGS-Line Search algorithm to adjust the parameters of
the model. Finite-difference analysis is less efficient, as it
must generate models to estimate the gradients of the pa-
rameters. This would likely only improve the time cost and
not the classification accuracy of the resulting models.
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